16,906 research outputs found

    Large scale Micro-Photometry for high resolution pH-characterization during electro-osmotic pumping and modular micro-swimming

    Full text link
    Micro-fluidic pumps as well as artificial micro-swimmers are conveniently realized exploiting phoretic solvent flows based on local gradients of temperature, electrolyte concentration or pH. We here present a facile micro-photometric method for monitoring pH gradients and demonstrate its performance and scope on different experimental situations including an electro-osmotic pump and modular micro-swimmers assembled from ion exchange resin beads and polystyrene colloids. In combination with the present microscope and DSLR camera our method offers a 2 \mu m spatial resolution at video frame rate over a field of view of 3920x2602 \mu m^2. Under optimal conditions we achieve a pH-resolution of 0.05 with about equal contributions from statistical and systematical uncertainties. Our quantitative micro-photometric characterization of pH gradients which develop in time and reach out several mm is anticipated to provide valuable input for reliable modeling and simulations of a large variety of complex flow situations involving pH-gradients including artificial micro-swimmers, microfluidic pumping or even electro-convection.Comment: 5 figures, 15 page

    The Visual Social Distancing Problem

    Get PDF
    One of the main and most effective measures to contain the recent viral outbreak is the maintenance of the so-called Social Distancing (SD). To comply with this constraint, workplaces, public institutions, transports and schools will likely adopt restrictions over the minimum inter-personal distance between people. Given this actual scenario, it is crucial to massively measure the compliance to such physical constraint in our life, in order to figure out the reasons of the possible breaks of such distance limitations, and understand if this implies a possible threat given the scene context. All of this, complying with privacy policies and making the measurement acceptable. To this end, we introduce the Visual Social Distancing (VSD) problem, defined as the automatic estimation of the inter-personal distance from an image, and the characterization of the related people aggregations. VSD is pivotal for a non-invasive analysis to whether people comply with the SD restriction, and to provide statistics about the level of safety of specific areas whenever this constraint is violated. We then discuss how VSD relates with previous literature in Social Signal Processing and indicate which existing Computer Vision methods can be used to manage such problem. We conclude with future challenges related to the effectiveness of VSD systems, ethical implications and future application scenarios.Comment: 9 pages, 5 figures. All the authors equally contributed to this manuscript and they are listed by alphabetical order. Under submissio

    Laser calibration system for the CERES Time Projection Chamber

    Full text link
    A Nd:YAG laser was used to simulate charged particle tracks at known positions in the CERES Time Projection Chamber at the CERN SPS. The system was primarily developed to study the response of the readout electronics and to calibrate the electron drift velocity. Further applications were the determination of the gating grid transparency, the chamber position calibration, and long-term monitoring of drift properties of the gas in the detector.Comment: 28 pages, 26 figures; reference to the TPC preprint update

    Multi-camera Realtime 3D Tracking of Multiple Flying Animals

    Full text link
    Automated tracking of animal movement allows analyses that would not otherwise be possible by providing great quantities of data. The additional capability of tracking in realtime - with minimal latency - opens up the experimental possibility of manipulating sensory feedback, thus allowing detailed explorations of the neural basis for control of behavior. Here we describe a new system capable of tracking the position and body orientation of animals such as flies and birds. The system operates with less than 40 msec latency and can track multiple animals simultaneously. To achieve these results, a multi target tracking algorithm was developed based on the Extended Kalman Filter and the Nearest Neighbor Standard Filter data association algorithm. In one implementation, an eleven camera system is capable of tracking three flies simultaneously at 60 frames per second using a gigabit network of nine standard Intel Pentium 4 and Core 2 Duo computers. This manuscript presents the rationale and details of the algorithms employed and shows three implementations of the system. An experiment was performed using the tracking system to measure the effect of visual contrast on the flight speed of Drosophila melanogaster. At low contrasts, speed is more variable and faster on average than at high contrasts. Thus, the system is already a useful tool to study the neurobiology and behavior of freely flying animals. If combined with other techniques, such as `virtual reality'-type computer graphics or genetic manipulation, the tracking system would offer a powerful new way to investigate the biology of flying animals.Comment: pdfTeX using libpoppler 3.141592-1.40.3-2.2 (Web2C 7.5.6), 18 pages with 9 figure

    Blazar Optical Variability in the Palomar-QUEST Survey

    Full text link
    We study the ensemble optical variability of 276 FSRQs and 86 BL Lacs in the Palomar-QUEST Survey with the goal of searching for common fluctuation properties, examining the range of behavior across the sample, and characterizing the appearance of blazars in such a survey so that future work can more easily identify such objects. The survey, which covers 15,000 square degrees multiple times over 3.5 years, allows for the first ensemble blazar study of this scale. Variability amplitude distributions are shown for the FSRQ and BL Lac samples for numerous time lags, and also studied through structure function analyses. Individual blazars show a wide range of variability amplitudes, timescales, and duty cycles. Of the best sampled objects, 35% are seen to vary by more than 0.4 magnitudes; for these, the fraction of measurements contributing to the high amplitude variability ranges constantly from about 5% to 80%. Blazar variability has some similarities to that of type I quasars but includes larger amplitude fluctuations on all timescales. FSRQ variability amplitudes are particularly similar to those of QSOs on timescales of several months, suggesting significant contributions from the accretion disk to the variable flux at these timescales. Optical variability amplitudes are correlated with the maximum apparent velocities of the radio jet for the subset of FSRQs with MOJAVE VLBA measurements, implying that the optically variable flux's strength is typically related to that of the radio emission. We also study CRATES radio-selected FSRQ candidates, which show similar variability characteristics to known FSRQs; this suggests a high purity for the CRATES sample.Comment: 29 pages, 12 figures. Accepted for publication in Ap

    EyePACT: eye-based parallax correction on touch-enabled interactive displays

    Get PDF
    The parallax effect describes the displacement between the perceived and detected touch locations on a touch-enabled surface. Parallax is a key usability challenge for interactive displays, particularly for those that require thick layers of glass between the screen and the touch surface to protect them from vandalism. To address this challenge, we present EyePACT, a method that compensates for input error caused by parallax on public displays. Our method uses a display-mounted depth camera to detect the user's 3D eye position in front of the display and the detected touch location to predict the perceived touch location on the surface. We evaluate our method in two user studies in terms of parallax correction performance as well as multi-user support. Our evaluations demonstrate that EyePACT (1) significantly improves accuracy even with varying gap distances between the touch surface and the display, (2) adapts to different levels of parallax by resulting in significantly larger corrections with larger gap distances, and (3) maintains a significantly large distance between two users' fingers when interacting with the same object. These findings are promising for the development of future parallax-free interactive displays

    Using a new high-throughput video-tracking platform to assess behavioural changes in Daphnia magna exposed to neuro-active drugs

    Get PDF
    © 2019. ElsevierOne of the major challenges that faces today regulatory risk assessment is to speed up the way of assessing threshold sublethal detrimental effects of existing and new chemical products. Recently advances in imaging allows to monitor in real time the behaviour of individuals under a given stress. Light is a common stress for many different organisms. Fish larvae and many invertebrate species respond to light altering their behaviour. The water flea Daphnia magna as many other zooplanktonic species has a marked diel vertical phototactic swimming behaviour against light due to fish predation. The aim of this study was to develop a high throughput image analysis to study changes in the vertical swimming behaviour to light of D. magna first reproductive adult females exposed to 0.1 and 1 µg/L of four psychiatric drugs: diazepam, fluoxetine, propranolol and carbamazepine during their entire life. Experiments were conducted using a new custom designed vertical oriented four 50 mL chamber device controlled by the Noldus software (Netherlands). Changes in speed, preferred area (bottom vs upper areas) and animal aggregation were analysed using groups of animals under consecutive periods of dark and apical light stimulus of different intensities. Obtained results indicated that light intensity increased the speed but low light intensities allowed to better discriminate individual responses to the studied drugs. The four tested drugs decreased the response of exposed organisms to light: individuals move less, were closer to the bottom and at low light intensities were closer each other. At high light intensities, however, exposed individuals were less aggregated. Propranolol, carbamazepine and fluoxetine were the compounds effecting most the behaviour. Our results indicated that psychiatric drugs at environmental relevant concentrations alter the vertical phototactic behaviour of D. magna individuals and that it is possible to develop appropriate high-throughput image analysis devices to measure those responses.Peer ReviewedPostprint (author's final draft

    External localization system for mobile robotics

    Get PDF
    We present a fast and precise vision-based software intended for multiple robot localization. The core component of the proposed localization system is an efficient method for black and white circular pattern detection. The method is robust to variable lighting conditions, achieves sub-pixel precision, and its computational complexity is independent of the processed image size. With off-the-shelf computational equipment and low-cost camera, its core algorithm is able to process hundreds of images per second while tracking hundreds of objects with millimeter precision. We propose a mathematical model of the method that allows to calculate its precision, area of coverage, and processing speed from the camera’s intrinsic parameters and hardware’s processing capacity. The correctness of the presented model and performance of the algorithm in real-world conditions are verified in several experiments. Apart from the method description, we also publish its source code; so, it can be used as an enabling technology for various mobile robotics problems
    • …
    corecore