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ABSTRACT One of the main and most effective measures to contain the recent viral outbreak is the
maintenance of the so-called Social Distancing (SD). To comply with this constraint, governments are
adopting restrictions over the minimum inter-personal distance between people. Given this actual scenario,
it is crucial to massively measure the compliance to such physical constraint in our life, in order to figure out
the reasons of the possible breaks of such distance limitations, and understand if this implies a potential threat.
To this end, we introduce the Visual Social Distancing (VSD) problem, defined as the automatic estimation
of the inter-personal distance from an image, and the characterization of related people aggregations. VSD
is pivotal for a non-invasive analysis to whether people comply with the SD restriction, and to provide
statistics about the level of safety of specific areas whenever this constraint is violated. We first point out
that measuring VSD is not only a geometrical problem, but it also implies a deeper understanding of the
social behaviour in the scene. The aim is to truly detect potentially dangerous situations while avoiding false
alarms (e.g., a family with children or relatives, an elder with their caregivers), all of this by complying
with current privacy policies. We then discuss how VSD relates with previous literature in Social Signal
Processing and indicate a path to research new Computer Vision methods that can possibly provide a solution
to such problem. We conclude with future challenges related to the effectiveness of VSD systems, ethical
implications and future application scenarios.

INDEX TERMS Social signal processing, proxemics, human behaviour, person detection, group detection,
single view metrology.

I. INTRODUCTION
Humans are social species as demonstrated by the fact that
in everyday life people continuously interact with each other
to achieve goals, or simply to exchange states of mind. One
of the peculiar aspects of our social behavior involves the
geometrical disposition of the people during an interplay,
and in particular regards the interpersonal distance, which
is also heavily dependent on cultural differences. However,
the recent pandemic emergency has affected exactly these
aspects, as the extraordinary capability of COVID-19 coro-
navirus of transferring between humans has imposed a sharp
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and sudden change to the waywe approach each other, as well
as rigid constraints on our inter-personal distance.

This recently imposed restriction is widely, but impre-
cisely, referred to as ‘‘social distancing’’ (SD) since preven-
tion of the virus diffusion does not require us to weaken our
social bonds. The likely reason of SD naming is that, from
a cognitive point of view, physical and social aspects of dis-
tance are deeply intertwined [47], a phenomenon that popular
wisdom captures through a proverb that, in slightly different
versions, appears in different languages and cultures, namely
‘‘far from eyes, far from heart’’.

Not surprisingly, the time spent in physical proximity with
others, in opposition to the time spent in individual activ-
ities, is a crucial factor in the ‘‘social brain hypothesis’’,
one of the most successful theories of human evolution [26].
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FIGURE 1. The VSD can be estimated in a single frame as the
interpersonal distance between people (a 1m radius disk in this
example). People that are closer than the imposed distance (red disks),
i.e. not respecting geometry, might still respect public rules if having a
bond of kinship. Results obtained using the following code:
https://github.com/IIT-PAVIS/Social-Distancing.

Similarly, Attachment Theory, probably the development
model most widely accepted in child psychiatry, revolves
around the ability of children and parents to establish and
maintain physical proximity [13]. Finally, the different mod-
ulation of interpersonal distances is known to be one of the
main obstacles in intercultural communication [37].

The above suggests that dealing with interpersonal dis-
tances means to deal with evolutionary, developmental and
cultural forces that shape, to a significant extent, our every-
day life. As a consequence, the role of technologies for
the analysis of such distances becomes crucial during pan-
demics, given that they must mediate between the forces
above, responsible for the human tendency to get too close to
avoid contagion, and the pressure of prophylactic measures,
artificially designed to fight a pathogen inaccessible to our
senses and cognition.

One possible solution is to go beyond simply measuring
how far we are from one another, as most of the applications
on the market are doing (see Sec. II-C) and try to make sense
of what distances mean. In other words, it is necessary to
inform technologies with principles and laws of Proxemics,
the psychology area showing how people convey social
meaning through interpersonal distances and, ultimately, how
social and physical dimensions of space interplay with one
another [74].

Proxemics is strictly linked to the definition of people
gatherings, namely groups, and as such, it depends on its
spatial organization and the number of people involved. In
general, the surrounding space around a person is charac-
terized by interpersonal distance classes [38], namely: inti-
mate, personal, peri-personal or social, and public spaces (see
Fig. 2), all associated to different social distances, in turn, also
dependent by the degree of kinship and familiarity between
the subjects and by the geometrical configuration and size
of the environment in which an interplay occurs. A blind
application of SD rules, encouraging to stay further than 1-2
meters, will eliminate an entire interpersonal distance class
and all of the social interactions which take play within it,

FIGURE 2. A graphical representation of the personal spaces that are
used in proxemics.

including for example those between children and relatives.
Indeed, as can be noticed, behavior, social interactions, and
space arrangements are tightly coupled, and affect each other.
This is why it is important to take into consideration all these
aspects when constraints in this respect are to be imposed,
in particular when people health is in play.

For all these reasons, the focus of this paper lies on
Visual Social Distancing (VSD), i.e. on approaches relying
on video cameras and other imaging sensors (see Fig. 1 for
an example) to analyse the proxemic behaviour of people.
The main reason behind the choice of VSD is that computer
vision and social signal processing have already developed
methods for automatic measurement and understanding of
interpersonal distances (see Sec. II for more details). Fur-
thermore, VSD approaches have shown advantages that can
complement other technologies like, e.g., mobile applications
based on large-scale mobility patterns. In particular, VSD
approaches can characterize interpersonal distances in terms
of social relations (e.g., whether people at a certain distance
are friends, family members or partners), thus allowing one
to modulate interventions according to such an information.
Furthermore, vision-based technologies can detect contextual
information helpful to understand whether social distancing
rules are actually being broken or not. For example, VSD can
understand whether people get too close because the situation
makes it necessary (e.g., when someone rescues a person in
trouble) or whether the distance is not a problem (e.g., when
people wear personal protective equipment and can safely
stay close).

Finally, VSD helps to understand the reason why some
people stand close, distinguishing whether they are social-
izing among themselves, or if they are interacting with the
environment (as, for example, looking at a timetable in the
airport), thus suggesting the most proper countermeasures to
ensure SD (e.g., rising an audio alarm to discourage social
interactions or putting markers into the floor so that people
can watch the time table while keeping the right distances).

The advantages of VSD appears to be of particular impor-
tance since at the moment social distancing rules have to
be expressed in simplistic terms (e.g., people have to be
at least 2 meters far from one another) requiring one to

VOLUME 8, 2020 126877



M. Cristani et al.: VSD Problem

distinguish between the intention (avoid contagion) and the
rule (keep a minimum interpersonal distance). Such a dis-
tinction, evident to humans, poses a real and new challenge
to a computational algorithm for VSD that could solve the
problem by leveraging, for instance, the use of contextual
information. Differently, the number of false alarms would be
so high that any benefit resulting from the use of technology
would be canceled.

In the following, we will discuss in detail the VSD problem
and its connection to the Computer Vision and Social Signal
Processing research domains. Starting from a geometrical
point of view, i.e. estimating inter-personal distances between
people from an image, we show that this first step does not
take into account scene and social context. For this reason,
a further stage needs to elaborate the geometrical VSD in
order to interpret whether the violation of the distance is a
real cause of alert or an acceptable situation (e.g., a family
walking). Then, we contextualise the VSD in different appli-
cation domains and we finally conclude with a description of
the possible ethical shortcomings of VSD.

FIGURE 3. The VSD problem requires the solution of different problems.
The estimation of a local metric reference system using the scene
geometry (blue box) and the detection of pedestrians and (possibly) their
pose in the image (green box). This information provides a geometrical
measure of interpersonal distance that has to be interpreted given the
social context of the scene (orange box).

II. VISUAL SOCIAL DISTANCE ESTIMATION
Estimating the VSD requires one to solve a few classi-
cal Computer Vision and Social Signal Processing tasks
as identified in Fig. 3, namely, scene geometry under-
standing (Sec. II-A), person detection/body pose estimation
(Sec. II-B) and social distance characterization (Sec. II-C).
Indeed, the geometry of the scene is important to define
a local reference system for measuring inter-personal dis-
tances. Clearly, a second and important task is the detection
of people in the scene in possibly crowded environments.
Once the target people are correctly localised in a scene,
their distance can be locally estimated in order to realize
if the mutual distance is lower than a threshold (e.g. 1m
or 2m). Afterwards, this metric information is analysed to
output whether there is a violation of the protocol or the short
distance is due to a legitimate situation, e.g., a family walking
together.

In the following, we will describe these modules in detail
re-targeting, when possible, previous Computer Vision meth-
ods that can provide a solution to these problems.

A. SCENE GEOMETRY UNDERSTANDING
The task of measuring social distancing from images requires
the definition of a (local) metric reference system. This prob-
lem is strongly related to the single viewmetrology topic [20]
as we consider the most common case of a fixed camera.
An initial solution for estimating inter-personal distances
requires the identification of the ground plane where people
walk [1], [40], [50], [62], [79], [102], [107]. Such ground
plane serves in many video-surveillance systems to visualise
the scene as a bird’s eye view for ease of visualisation and data
statistics representation. Many works impose the assumption
that the ground plane is planar. Then, the problem is to
estimate a homography given some reference elements (e.g.,
known objects or manual measurements) extracted from the
scene or using the information of detected vanishing points
in the image [4], [5], [20], [51], [58], [60], [69], [77], [109],
[113]. Another common approach is to calibrate fixed cam-
eras by observing the motion of dynamic objects such as
pedestrians [53], [59], [91], [95]. Recently, approaches based
on deep learning attempt at estimating directly camera pose
and intrinsic parameters on a single image [41], [57].

Even if these approaches might provide an estimate of the
camera intrinsic/extrinsic parameters and the detection of the
ground plane, still VSD estimation requires a metric refer-
ence. Such an information can be coarsely computed in the
scene given objects of known dimension or by using a stan-
dardised height of pedestrians as a rule of thumb [8], [100],
[102]. Given the current state of the art, we have the following
observations related to the geometrical aspects of VSD:

• Although the planarity constraint might not hold for
the entire image, VSD has to do a local estimation of
proximity for which is safe to relax the scene being
piece-wise planar.

• Self-calibration approaches highly rely on the exis-
tence of a Manhattan world (e.g. vanishing points are
detectable) or pedestrian walking in straight trajectories,
which limit the applicability of such methods. Estimat-
ing depth from single image might be a viable option,
but a metric reference is still needed.

• Estimating a metric reference for precise SD measures
from images is an issue. Such reference extracted from
pedestrians might be unreliable given the variations in
anthropometric characteristics. Reasoning on the geo-
metrical context of the scene (e.g., object shapes) can
lead to a more robust metric estimate.

It is also important to emphasizes here that VSD is a sim-
pler problem than estimating every metric distances among
people in any position in the image. Estimating social dis-
tance is necessary when two or more pedestrians get close
enough for triggering the necessity of a measure. At this
point, a local reference system can be estimated and metric
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references can be leveraged by using surrounding objects and
the height of the local cluster of people.

To this end, Social Signal Processing (SSP) findings
related to the detection of the group formation and track-
ing [6], [21], [28], [84], [88] can be useful to identify which
pedestrians should be selected for estimating the local VSD.
These local estimates with an associated metric reference can
be useful whenever a global camera pose is hard to estimate
or if the single ground plane assumption is violated, a likely
occurrence in an unconstrained scenario.

B. PERSON DETECTION AND POSE ESTIMATION
Person detection has reached impressive performance in the
last decade given the interest in automotive industry and
other application fields [9]. Real-time approaches can now
estimate people pose even in complex scenarios [14] and
even reconstruct the 3D mesh of the person body [35]. The
majority of the approaches estimate not only people location
as a bounding box but also 2D stick-like figures, so conveying
a schematic representation of the pose. Recently, several
methods augment 2D poses in 3D or infer directly a 3D pose
in a normalised reference system [11], [63], [67], [68], [71],
[75], [93], [103], [114].

Capturing diffused small SDs with Computer Vision
requires to localize multiple people, realizing the hardest sce-
nario for pedestrian detection techniques. Specific pedestrian
detection techniques have been designed to work in crowded
scenes [29], [55], [97], [106], where saliency-based masks
are often preferred to skeleton-based representations. When
the image resolution becomes too low to spot single people,
regression-based approaches are employed [12], [15], [54],
[80], [92], [104], [111], providing in some case density mea-
sures [73], [86], [87], [110]. This information, merged with a
geometric model of the scene, will directly lead to a measure
of the average SD in the field of view. Obviously, regression
or density-based approaches cannot provide additional cues
on pose which are highly important for capturing human
actions and interactions. To fill this gap, ad-hoc approaches
individuate general crowd activities, classifying them as nor-
mal or not (e.g. a person collapsing and many people getting
close) [25], [34], [70], [72].

Recently, new efforts address human detection and body
pose estimation in crowded environments [32], [52], the very
same scenario social distancing is dealing with. Yet, finding
the location of people in such cases is necessary for alert-
ing or creating statistics of overcrowded areas. To this end,
a people detection module has to be robust to severe self
and other objects/people occlusions, different image scales,
and indoor/outdoor scenarios. Although a person detection
(i.e., without the pose) may be enough for estimating the
VSD, finding joints and body parts of pedestrian has certain
advantages. This is due the fact that to obtain an approxi-
mate metric reference, or even calibrating cameras, usually
the person height is used as a coarse proxy as computed
from a bounding box or by more precise techniques [8],
[24], [36], [100], [102]. However, bounding boxes do not

account for different body poses (e.g., sitting, riding) that
might negatively impact the estimate of height and thus a
wrong VSD. Another issue is related to occlusions, i.e. how
reliable is to extract a person height without having a full body
information? This is necessary in the likely case of crowded
environments or whenever an object partially hides person
body parts (e.g., a person seated at a desk).

Given a metric reference from scene geometry and the
position/pose of the people in the scene, the SD can be
calculated as a distance on the ground plane (feet/body pose
centroid) among all the possible detected pedestrians. As pre-
viously discussed, this information can be estimated locally
or pairwise in order to reduce the complexity of estimating a
global reference system for the whole image.

C. VISUAL SOCIAL DISTANCE CHARACTERIZATION
Social distances should be complemented with additional
contextual information to understand whether social distanc-
ing rules are actually being broken or not, consequently sug-
gesting the most proper reaction.

FIGURE 4. How to characterize social distances. Together with the
taxonomy explained in the text, we specify in courier new the Computer
Vision technologies to access a particular level of SD specification. The
more detailed the SD characterization, the more advanced yet fragile
Computer Vision technology is.

Fig. 4 reports a multi-layer pipeline, which will be
detailed in the following, indicating which information can
be accessed with the current Computer Vision technology.
The deeper the layer (indicated by a darker color), the finer
the visual analysis which is needed and the harder the corre-
sponding request for Computer Vision.

As previously stated, SDs taking values above a certain
threshold would certainly comply with social distancing
rules. On the contrary, the presence of SDs under a certain
threshold (SD < Thresh in Fig. 4) could be considered as
breaking the rules, but actually many are the scenarios where
this should not raise any concern.

For example, occasional small SDs holding for few frames,
especially in a crowded scenario (the few and occasional
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small SDs blob in the figure), can be allowed, considering that
they are detected by automatic approacheswhich are typically
not so accurate. Instead, small SDs can be critical if they are
1) diffused and/or 2) persistent.

In the former case, a high percentage of small SDs is char-
acterizing the monitored area: This may occur at a crossing
intersection or walking in a corridor of an airport. Here, many
persons stand close, without an explicit will, possibly for a
short (∼seconds) period. Computer Vision helps here provid-
ing robust approaches for pedestrian detection and counting
(as discussed in Sec. II-B).

Persisting small SDs mean that specific people stand close
to each other for a certain time interval. This condition
addresses a more interesting situation, since it likely indi-
cates people staying close by intention. Under a Computer
Vision point of view, persisting small SDs are more difficult
to capture, since they require people to be tracked continu-
ously, maintaining their identity. Interested readers may refer
to [23], [56], discussing the problem of tracking in crowded
situations.

In Social Signal Processing, diffused and/or persisting
small SDs individuate gatherings [30], [31], [47], [84], which
are generically addressed as ‘‘groups’’ or ‘‘crowds’’ in Com-
puter Vision. The term gathering refers precisely to ‘‘any
set of two or more individuals in mutual presence at a
given moment who are having some form of social interac-
tion’’ [31]. With the expression social interaction we mean
the process by which we act and react to those around us [84].
Many types of gatherings are documented in the sociological
literature, depending on:

• number of people being part of the gathering;
• type of social interaction;
• spatial dynamics.

As for the number of people, we may have small
(2 to 6 people), medium (7 to 12-30 people), or large gath-
erings (larger than 13-31) [39].

Small gatherings occur in private (home, private garden,
car), semi public (classroom, office, club, party area), and
public places (open plaza, transportation station, walkway,
park, street). Medium gatherings may occur in private, but
mostly in semi-public and public places, the latter being also
the preferred venues of large gatherings [39].

As for the type of social interaction, unfocused interaction
occurs whenever individuals find themselves by circumstance
in the immediate presence of others. For instance, when form-
ing a queue, or when walking in the crowded corridor of an
airport. On such occasions, simply by virtue of the reciprocal
presence, some form of interpersonal communication must
take place regardless of the individual intent.

For our study, having people forming an unfocused gath-
ering and exhibiting small SD may indicate a problematic
scenario, since it is the context which encourages the for-
mation of tight gatherings and not the will of people. As a
consequence, to avoid such type of gathering may require a
change of the context itself, for example discouraging the

queues with markers on the floor, or creating lanes with
barricades.

Conversely, a focused interaction occurs whenever two or
more individuals willingly agree – although such an agree-
ment is rarely verbalised – to sustain for a period a single
focus of cognitive and visual attention [30].

Focused gatherings can be further distinguished in common
focused and jointly focused [46]. In the former case, the
focus of attention is common and not reciprocal, for example
watching a timetable screen at the airport, watching a map
in the metro station, being at a concert. Common focused
gathering exhibiting small SDs can be dealt more easily than
in presence of unfocused gathering, since in this case the
reason of the gathering is easier to be captured, which is the
item or event attracting the common attention of people.

Jointly focused gathering, finally, entails the sense of
mutual, instead of merely common, activity. In this case,
the participation is not at all peripheral but engaged: people
are – and display to be – mutually involved [31]. Since the
presence of a jointly focused gathering depend on the will of
people, when this is characterized by a small social distance,
it can be discouraged by simply alerting the people about the
ongoing critical setup. An exception for this scenario occurs
when a jointly focused gathering involves children, elderly
requiring care, or anybody with an impairment that have to
be accompanied, and are usually at physical contact with their
relatives or caregivers.

Some combinations of these attributes give rise to specific
types of gatherings (shown in Fig. 5), some of them addressed
by explicit definitions: small gatherings of jointly focused
people, mostly static, are dubbed by Kendon free-standing
conversational groups [47], highlighting their spontaneous
aggregation/disgregation nature, implying that their members
are jointly focused, and specifying their mainly-static prox-
emic layout. Large gatherings of unfocused people are named
casual crowds [10], commonly focused large gathering refers
to spectator crowd [10] and, finally, large gatherings of
jointly focused people are demonstration/protest or Acting
crowd [66].
As anticipated above, most Computer Vision approaches

do not build upon this taxonomy, distinguishing merely gath-
erings depending on the number of individuals involved,
leading to groups (= small gathering for sociology) and
crowds (= large gatherings), with some exception pre-
sented in the following. Groups have been usually iden-
tified exploiting positional and velocity cues (people in
a group are close and move with similar oriented veloc-
ity) [33], [42], [76], [78], [81], [82], [88]–[90], [94].
Explicit focus on free-standing conversational groups is given
in [21], [44], [83], [84], [98], [99]. In most of these lat-
ter approaches, positional and velocity cues are enriched
by pose information, fully capturing the people proxemics.
Coming back to the characterization of SDs, and to Fig. 4,
joint-focused groups where people stand closer than a given
threshold requires maximal attention, since their vicinity is
by choice, and not by external circumstances. At this level of
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FIGURE 5. Different typologies of gathering, depending on the number of individuals involved and type of social interaction. (cfr.
https://vips.sci.univr.it/research/fformation/).

characterization, avoiding false alarms would mean to focus
on the age of the interactants: Having children in a small
gathering would probably indicate a family. Approaches like
[112] estimate the age from pedestrian detections, but solving
this task efficiently seems to be still at its early stages.

As for the modelling of crowd, some approaches allow
to estimate the number of individuals [12], [15], [54], [80],
[104] or their density [86], [87], [110]. Social Signal Pro-
cessing approaches for large gatherings focus specifically
on common-focused formations (i.e. spectator crowd), still
capturing proxemic cues including the body pose [18], [19].
Medium gatherings have never been properly addressed nei-
ther by Computer Vision nor Social Signal Processing litera-
ture.

Finally, we should consider the static/dynamic axis con-
cerning the degree of freedom and flexibility of the spa-
tial, positional, and orientational organisation of gatherings.
Distinguishing between uncommon, common-focused and
jointly focused is hard, since when a gathering is moving,
their members spend attention to follow safe trajectories,
avoiding collisions. Therefore, the aforementioned taxon-
omy holds especially for static formations, with few excep-
tions [17].When people aremoving, the only valid distinction
between Computer Vision and Social Signal Processing is
related to small and large gatherings.

For small gatherings, temporal information allows one to
provide stronger grouping estimations, analyzing pedestrians
motion paths instead of static positions [64], [88], [101].
For large gathering, many approaches identify dominant
flows and segment crowd according to coherent motion [16],
[45], [96], [105], and to identity collective/abnormal behav-
iors [25], [34], [70], [72].

Summarizing, once small SDs are detected, it is necessary
to understand if they are persistent and/or diffused in the
scene. Then, proxemic analysis is needed to characterize

the gatherings which are generating those SDs. Unfocused
gatherings indicate that SDs are caused by no explicit will,
while common-focused gatherings usually occur because of
the presence of precise environmental conditions (a specific
item/landmark of interest or an event attracting the attention).
Jointly-focused gatherings indicate explicit will of interact-
ing, and could be further described by capturing the age of
interactants (kinship). Each of these formations may demand
for different interventions, thus going beyond the simple
alarm when SDs are too small, while diminishing false posi-
tive alarms.

Computer vision approaches following this taxonomy
exist for jointly focused (small) gatherings, (large) common
focused gatherings, and show that positional and body pose
cues are of primary importance. Further work has to be
done to cover all the possible types of gatherings, as current
technology is still struggling to achieve a solution, especially
when they are composed by several people.

III. BEYOND SOCIAL DISTANCING: APPLICATIONS
While potentially playing a crucial role in the case of a virus
outbreak, technology developed for the analysis of social
distancing can be useful in a large number of application
domains that, therefore, can benefit from the approaches
proposed in this work.

The detection of mental health issues is one of the areas
that will benefit most from the application of AI,1 supported
by the World Health Organization observing that a pathology
like depression affects around 300 millions people around
the world [108]. In such a particular case, the tendency to
avoid physical proximity and engagement with others is an
important symptom. The technologies proposed in this work

1According to the Gartner Group, a relevant strategic consulting com-
pany: http://www.gartner.com/smarterwithgartner/ 13-surprising-uses-for-
emotion-ai-technology/
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can also help tomonitor the increase of SD, especially when it
is hard to observe. Similarly, the analysis of interpersonal dis-
tances can help to identify children with insecure attachment,
known tomanifest their condition through irregular proximity
patterns (among other cues) [13].

Another important domain where the analysis of SD is
important is social robotics. In particular, the International
Federation of Robotics pointed out that public relation robots
are the fastest growing area of service robotics with estimates
in sales moved from a total of USD 319 million in the period
2015-2017, to a total of USD 746 million between 2018 and
2020. In this field, the use of proxemics appears to be par-
ticularly important to ensure that a robot is perceived to play
correctly its role (e.g., whether it is expected to be a servant or
a companion in playing) [49], and to establish a sense of inti-
macy [48], an aspect of focal importance in assistive robotics.
In addition, distance plays a major role along one of the five
Godspeed dimensions typically used to assess the quality of
human-robot interaction, namely perceived safety [3].

In the last years, most major companies have introduced
training to avoid unconscious bias, i.e. the tendency to dis-
criminate certain categories of people without being aware
of it. This happens not only for ethical reasons, but also
becauseMcKinsey has shown that companies ensuring diver-
sity in their workforce, especially at the top management
levels, are 30% more likely to be above national median
in terms of financial returns [43]. As a consequence, major
companies like Facebook (https://managingbias.fb.com) and
Google (https://diversity.google) adopt implicit training pro-
grams. Furthermore, Forbes estimates that the market of
implicit bias and diversity training has reached a value close
to USD 9 billion-a-year (http://goo.gl/R53xn4). Unconscious
bias leaves different traces in nonverbal behaviour and one
of these is the increase of physical distances (e.g., see [65]).
Therefore, automatic technologies for proxemic analysis can
help to detect the phenomenon, contributing to protect the
potential victims, and train the bias bearers to identify and
attenuate their tendencies to discriminate others.

A large number of studies show that the architectural
design of space influences the behaviour of its inhabi-
tants [61]. For example, a simple line on the floor separating
right and left side of a corridor makes the flow of people
through it more ordered [2]. Similarly, the restructuring of
Westminster in the UK aims at improving the efficiency of
parliamentary works, but encounters the opposition of Par-
liament workers afraid of disrupting established traditions by
the change of the way space is organised [85]. Until now,
the study of these phenomena has been performed mainly
through ethnographic observations, but the development of
technologies for proxemic analysis can certainly help by
producing more objective and quantitative data about the
change in habits of the people. This is in line with previous
works about the study of organisations through the use of
smart badges detecting who is in proximity with whom in an
organisation [27].

Besides the application scenarios above, likely to benefit
from the technologies presented in this work in the future,
there are established domains that can benefit from models
of mutual distancing. For example, Augmented and Mixed
Reality technologies can provide more immersive and engag-
ing experiences through the inclusion of virtual characters
capable to move with respect to users like humans do with
respect to one another. Similarly, surveillance systems can
further refine their ability to detect events of interest in a
given environment like, e.g., an aggression in a public space.
Finally, technologies analysing interpersonal distances can be
of help to social psychologists that investigate the dynamics
of social interactions. In other words, far from being exhaus-
tive, the list of application domains listed in this section still
provides an indication of how wide the application of VSD
can be once the COVID-19 outbreak, at the origin of the
most recent interest towards interpersonal distances, will be
over.

IV. PRIVACY AND ACCEPTABILITY CONCERNS
Optical cameras are the most widespread sensors for VSD
measurements and the acceptance of this monitoring technol-
ogy can be difficult since it clearly raises privacy concerns.
Video footage may disclose the identity of the persons cap-
tured and in general recording is regulated by strict laws, both
at national and international level.Moreover, potential attacks
to the video transmission channels and to storage servers can
pose a relevant security issue.

However, the current computer vision technology is now
mature to manage effectively privacy concerns. Alternatives
benefit from the usage of the so-called smart cameras [7]
which, having computing capability onboard, are able to
process video data up to a certain capacity. By adopting a
privacy-by-design principle, a first option is to process video
sequences internally, while measuring and transfer only VSD
estimates without any visual data, thus sensible informa-
tion, being transmitted to the remote control operative room.
This is of crucial importance for VSD, since as we have
been shown in the previous sections, accurate estimates may
require the identification of kinship. This sensible informa-
tion is clearly not necessary to be disclosed for estimating
VSD, and any possible leak has to be avoided.

At the same time it is worth noting that VSD technology
exhibits features that differentiate it from other apparently
safer alternatives, as geolocation data collected from mobile
applications. VSD techniques are in fact non-invasive and
mostly non-collaborative, meaning that the user does not need
to provide ID personal data. Tracing technologies, on the
contrary, need to be fed with sensible data and even when
this is totally anonymized, recent research [22] proves that
individuals may still be identified by a few information – four
spatio-temporal points allows one to uniquely identify 95%
of people in a mobile phone database of 1.5 million subjects,
and 90% of people in a credit card database of 1 million
individuals.
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V. CONCLUSIONS
In this paper, we have presented the VSD problem as the
estimation and characterization of inter-personal distances
from images. Solving such problems allows a quick screening
of the population for detecting potential behaviours that can
cause a health risk, especially related to recent pandemic
outbreaks. We pointed out that VSD is not only a Computer
Vision problem related to geometrical proxemic since people
distancing has to be weighted given the social context in the
current scene. Close relationships can allow closer interper-
sonal distances as well as being a caregiver of individuals
with fragile conditions. We have shown that understanding
such social context is a compelling problem in the literature of
signal social processing that requires further research efforts
for a reliable solution. As the solution is intertwined with the
decoding of social relationships from images, there are strong
ethical and privacy concerns that need to be addressed with
novel privacy-by-design solutions. Past this grievous global
crisis, VSD has still an important role in several application
fields thus providing a continuous source of interest in this
new problem.
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