5,290 research outputs found

    Artificial Intelligence based Anomaly Detection of Energy Consumption in Buildings: A Review, Current Trends and New Perspectives

    Get PDF
    Enormous amounts of data are being produced everyday by sub-meters and smart sensors installed in residential buildings. If leveraged properly, that data could assist end-users, energy producers and utility companies in detecting anomalous power consumption and understanding the causes of each anomaly. Therefore, anomaly detection could stop a minor problem becoming overwhelming. Moreover, it will aid in better decision-making to reduce wasted energy and promote sustainable and energy efficient behavior. In this regard, this paper is an in-depth review of existing anomaly detection frameworks for building energy consumption based on artificial intelligence. Specifically, an extensive survey is presented, in which a comprehensive taxonomy is introduced to classify existing algorithms based on different modules and parameters adopted, such as machine learning algorithms, feature extraction approaches, anomaly detection levels, computing platforms and application scenarios. To the best of the authors' knowledge, this is the first review article that discusses anomaly detection in building energy consumption. Moving forward, important findings along with domain-specific problems, difficulties and challenges that remain unresolved are thoroughly discussed, including the absence of: (i) precise definitions of anomalous power consumption, (ii) annotated datasets, (iii) unified metrics to assess the performance of existing solutions, (iv) platforms for reproducibility and (v) privacy-preservation. Following, insights about current research trends are discussed to widen the applications and effectiveness of the anomaly detection technology before deriving future directions attracting significant attention. This article serves as a comprehensive reference to understand the current technological progress in anomaly detection of energy consumption based on artificial intelligence.Comment: 11 Figures, 3 Table

    TLAD 2011 Proceedings:9th international workshop on teaching, learning and assesment of databases (TLAD)

    Get PDF
    This is the ninth in the series of highly successful international workshops on the Teaching, Learning and Assessment of Databases (TLAD 2011), which once again is held as a workshop of BNCOD 2011 - the 28th British National Conference on Databases. TLAD 2011 is held on the 11th July at Manchester University, just before BNCOD, and hopes to be just as successful as its predecessors.The teaching of databases is central to all Computing Science, Software Engineering, Information Systems and Information Technology courses, and this year, the workshop aims to continue the tradition of bringing together both database teachers and researchers, in order to share good learning, teaching and assessment practice and experience, and further the growing community amongst database academics. As well as attracting academics from the UK community, the workshop has also been successful in attracting academics from the wider international community, through serving on the programme committee, and attending and presenting papers.Due to the healthy number of high quality submissions this year, the workshop will present eight peer reviewed papers. Of these, six will be presented as full papers and two as short papers. These papers cover a number of themes, including: the teaching of data mining and data warehousing, databases and the cloud, and novel uses of technology in teaching and assessment. It is expected that these papers will stimulate discussion at the workshop itself and beyond. This year, the focus on providing a forum for discussion is enhanced through a panel discussion on assessment in database modules, with David Nelson (of the University of Sunderland), Al Monger (of Southampton Solent University) and Charles Boisvert (of Sheffield Hallam University) as the expert panel

    TLAD 2011 Proceedings:9th international workshop on teaching, learning and assesment of databases (TLAD)

    Get PDF
    This is the ninth in the series of highly successful international workshops on the Teaching, Learning and Assessment of Databases (TLAD 2011), which once again is held as a workshop of BNCOD 2011 - the 28th British National Conference on Databases. TLAD 2011 is held on the 11th July at Manchester University, just before BNCOD, and hopes to be just as successful as its predecessors.The teaching of databases is central to all Computing Science, Software Engineering, Information Systems and Information Technology courses, and this year, the workshop aims to continue the tradition of bringing together both database teachers and researchers, in order to share good learning, teaching and assessment practice and experience, and further the growing community amongst database academics. As well as attracting academics from the UK community, the workshop has also been successful in attracting academics from the wider international community, through serving on the programme committee, and attending and presenting papers.Due to the healthy number of high quality submissions this year, the workshop will present eight peer reviewed papers. Of these, six will be presented as full papers and two as short papers. These papers cover a number of themes, including: the teaching of data mining and data warehousing, databases and the cloud, and novel uses of technology in teaching and assessment. It is expected that these papers will stimulate discussion at the workshop itself and beyond. This year, the focus on providing a forum for discussion is enhanced through a panel discussion on assessment in database modules, with David Nelson (of the University of Sunderland), Al Monger (of Southampton Solent University) and Charles Boisvert (of Sheffield Hallam University) as the expert panel

    Big Data and the Internet of Things

    Full text link
    Advances in sensing and computing capabilities are making it possible to embed increasing computing power in small devices. This has enabled the sensing devices not just to passively capture data at very high resolution but also to take sophisticated actions in response. Combined with advances in communication, this is resulting in an ecosystem of highly interconnected devices referred to as the Internet of Things - IoT. In conjunction, the advances in machine learning have allowed building models on this ever increasing amounts of data. Consequently, devices all the way from heavy assets such as aircraft engines to wearables such as health monitors can all now not only generate massive amounts of data but can draw back on aggregate analytics to "improve" their performance over time. Big data analytics has been identified as a key enabler for the IoT. In this chapter, we discuss various avenues of the IoT where big data analytics either is already making a significant impact or is on the cusp of doing so. We also discuss social implications and areas of concern.Comment: 33 pages. draft of upcoming book chapter in Japkowicz and Stefanowski (eds.) Big Data Analysis: New algorithms for a new society, Springer Series on Studies in Big Data, to appea

    Machine learning based anomaly detection for industry 4.0 systems.

    Get PDF
    223 p.This thesis studies anomaly detection in industrial systems using technologies from the Fourth Industrial Revolution (4IR), such as the Internet of Things, Artificial Intelligence, 3D Printing, and Augmented Reality. The goal is to provide tools that can be used in real-world scenarios to detect system anomalies, intending to improve production and maintenance processes. The thesis investigates the applicability and implementation of 4IR technology architectures, AI-driven machine learning systems, and advanced visualization tools to support decision-making based on the detection of anomalies. The work covers a range of topics, including the conception of a 4IR system based on a generic architecture, the design of a data acquisition system for analysis and modelling, the creation of ensemble supervised and semi-supervised models for anomaly detection, the detection of anomalies through frequency analysis, and the visualization of associated data using Visual Analytics. The results show that the proposed methodology for integrating anomaly detection systems in new or existing industries is valid and that combining 4IR architectures, ensemble machine learning models, and Visual Analytics tools significantly enhances theanomaly detection processes for industrial systems. Furthermore, the thesis presents a guiding framework for data engineers and end-users

    User-Centric Active Learning for Outlier Detection

    Get PDF
    Outlier detection searches for unusual, rare observations in large, often high-dimensional data sets. One of the fundamental challenges of outlier detection is that ``unusual\u27\u27 typically depends on the perception of a user, the recipient of the detection result. This makes finding a formal definition of ``unusual\u27\u27 that matches with user expectations difficult. One way to deal with this issue is active learning, i.e., methods that ask users to provide auxiliary information, such as class label annotations, to return algorithmic results that are more in line with the user input. Active learning is well-suited for outlier detection, and many respective methods have been proposed over the last years. However, existing methods build upon strong assumptions. One example is the assumption that users can always provide accurate feedback, regardless of how algorithmic results are presented to them -- an assumption which is unlikely to hold when data is high-dimensional. It is an open question to which extent existing assumptions are in the way of realizing active learning in practice. In this thesis, we study this question from different perspectives with a differentiated, user-centric view on active learning. In the beginning, we structure and unify the research area on active learning for outlier detection. Specifically, we present a rigorous specification of the learning setup, structure the basic building blocks, and propose novel evaluation standards. Throughout our work, this structure has turned out to be essential to select a suitable active learning method, and to assess novel contributions in this field. We then present two algorithmic contributions to make active learning for outlier detection user-centric. First, we bring together two research areas that have been looked at independently so far: outlier detection in subspaces and active learning. Subspace outlier detection are methods to improve outlier detection quality in high-dimensional data, and to make detection results more easy to interpret. Our approach combines them with active learning such that one can balance between detection quality and annotation effort. Second, we address one of the fundamental difficulties with adapting active learning to specific applications: selecting good hyperparameter values. Existing methods to estimate hyperparameter values are heuristics, and it is unclear in which settings they work well. In this thesis, we therefore propose the first principled method to estimate hyperparameter values. Our approach relies on active learning to estimate hyperparameter values, and returns a quality estimate of the values selected. In the last part of the thesis, we look at validating active learning for outlier detection practically. There, we have identified several technical and conceptual challenges which we have experienced firsthand in our research. We structure and document them, and finally derive a roadmap towards validating active learning for outlier detection with user studies
    corecore