11,073 research outputs found

    Survey of data mining approaches to user modeling for adaptive hypermedia

    Get PDF
    The ability of an adaptive hypermedia system to create tailored environments depends mainly on the amount and accuracy of information stored in each user model. Some of the difficulties that user modeling faces are the amount of data available to create user models, the adequacy of the data, the noise within that data, and the necessity of capturing the imprecise nature of human behavior. Data mining and machine learning techniques have the ability to handle large amounts of data and to process uncertainty. These characteristics make these techniques suitable for automatic generation of user models that simulate human decision making. This paper surveys different data mining techniques that can be used to efficiently and accurately capture user behavior. The paper also presents guidelines that show which techniques may be used more efficiently according to the task implemented by the applicatio

    Collaborative recommendations with content-based filters for cultural activities via a scalable event distribution platform

    Get PDF
    Nowadays, most people have limited leisure time and the offer of (cultural) activities to spend this time is enormous. Consequently, picking the most appropriate events becomes increasingly difficult for end-users. This complexity of choice reinforces the necessity of filtering systems that assist users in finding and selecting relevant events. Whereas traditional filtering tools enable e.g. the use of keyword-based or filtered searches, innovative recommender systems draw on user ratings, preferences, and metadata describing the events. Existing collaborative recommendation techniques, developed for suggesting web-shop products or audio-visual content, have difficulties with sparse rating data and can not cope at all with event-specific restrictions like availability, time, and location. Moreover, aggregating, enriching, and distributing these events are additional requisites for an optimal communication channel. In this paper, we propose a highly-scalable event recommendation platform which considers event-specific characteristics. Personal suggestions are generated by an advanced collaborative filtering algorithm, which is more robust on sparse data by extending user profiles with presumable future consumptions. The events, which are described using an RDF/OWL representation of the EventsML-G2 standard, are categorized and enriched via smart indexing and open linked data sets. This metadata model enables additional content-based filters, which consider event-specific characteristics, on the recommendation list. The integration of these different functionalities is realized by a scalable and extendable bus architecture. Finally, focus group conversations were organized with external experts, cultural mediators, and potential end-users to evaluate the event distribution platform and investigate the possible added value of recommendations for cultural participation

    Just an Update on PMING Distance for Web-based Semantic Similarity in Artificial Intelligence and Data Mining

    Full text link
    One of the main problems that emerges in the classic approach to semantics is the difficulty in acquisition and maintenance of ontologies and semantic annotations. On the other hand, the Internet explosion and the massive diffusion of mobile smart devices lead to the creation of a worldwide system, which information is daily checked and fueled by the contribution of millions of users who interacts in a collaborative way. Search engines, continually exploring the Web, are a natural source of information on which to base a modern approach to semantic annotation. A promising idea is that it is possible to generalize the semantic similarity, under the assumption that semantically similar terms behave similarly, and define collaborative proximity measures based on the indexing information returned by search engines. The PMING Distance is a proximity measure used in data mining and information retrieval, which collaborative information express the degree of relationship between two terms, using only the number of documents returned as result for a query on a search engine. In this work, the PMINIG Distance is updated, providing a novel formal algebraic definition, which corrects previous works. The novel point of view underlines the features of the PMING to be a locally normalized linear combination of the Pointwise Mutual Information and Normalized Google Distance. The analyzed measure dynamically reflects the collaborative change made on the web resources

    K-Space at TRECVid 2007

    Get PDF
    In this paper we describe K-Space participation in TRECVid 2007. K-Space participated in two tasks, high-level feature extraction and interactive search. We present our approaches for each of these activities and provide a brief analysis of our results. Our high-level feature submission utilized multi-modal low-level features which included visual, audio and temporal elements. Specific concept detectors (such as Face detectors) developed by K-Space partners were also used. We experimented with different machine learning approaches including logistic regression and support vector machines (SVM). Finally we also experimented with both early and late fusion for feature combination. This year we also participated in interactive search, submitting 6 runs. We developed two interfaces which both utilized the same retrieval functionality. Our objective was to measure the effect of context, which was supported to different degrees in each interface, on user performance. The first of the two systems was a ‘shot’ based interface, where the results from a query were presented as a ranked list of shots. The second interface was ‘broadcast’ based, where results were presented as a ranked list of broadcasts. Both systems made use of the outputs of our high-level feature submission as well as low-level visual features

    Historical collaborative geocoding

    Full text link
    The latest developments in digital have provided large data sets that can increasingly easily be accessed and used. These data sets often contain indirect localisation information, such as historical addresses. Historical geocoding is the process of transforming the indirect localisation information to direct localisation that can be placed on a map, which enables spatial analysis and cross-referencing. Many efficient geocoders exist for current addresses, but they do not deal with the temporal aspect and are based on a strict hierarchy (..., city, street, house number) that is hard or impossible to use with historical data. Indeed historical data are full of uncertainties (temporal aspect, semantic aspect, spatial precision, confidence in historical source, ...) that can not be resolved, as there is no way to go back in time to check. We propose an open source, open data, extensible solution for geocoding that is based on the building of gazetteers composed of geohistorical objects extracted from historical topographical maps. Once the gazetteers are available, geocoding an historical address is a matter of finding the geohistorical object in the gazetteers that is the best match to the historical address. The matching criteriae are customisable and include several dimensions (fuzzy semantic, fuzzy temporal, scale, spatial precision ...). As the goal is to facilitate historical work, we also propose web-based user interfaces that help geocode (one address or batch mode) and display over current or historical topographical maps, so that they can be checked and collaboratively edited. The system is tested on Paris city for the 19-20th centuries, shows high returns rate and is fast enough to be used interactively.Comment: WORKING PAPE

    Adaptive information retrieval system based on fuzzy profiling

    Get PDF

    Fuzzy rule based profiling approach for enterprise information seeking and retrieval

    Get PDF
    With the exponential growth of information available on the Internet and various organisational intranets there is a need for profile based information seeking and retrieval (IS&R) systems. These systems should be able to support users with their context-aware information needs. This paper presents a new approach for enterprise IS&R systems using fuzzy logic to develop task, user and document profiles to model user information seeking behaviour. Relevance feedback was captured from real users engaged in IS&R tasks. The feedback was used to develop a linear regression model for predicting document relevancy based on implicit relevance indicators. Fuzzy relevance profiles were created using Term Frequency and Inverse Document Frequency (TF/IDF) analysis for the successful user queries. Fuzzy rule based summarisation was used to integrate the three profiles into a unified index reflecting the semantic weight of the query terms related to the task, user and document. The unified index was used to select the most relevant documents and experts related to the query topic. The overall performance of the system was evaluated based on standard precision and recall metrics which show significant improvements in retrieving relevant documents in response to user queries

    Continuous Improvement Through Knowledge-Guided Analysis in Experience Feedback

    Get PDF
    Continuous improvement in industrial processes is increasingly a key element of competitiveness for industrial systems. The management of experience feedback in this framework is designed to build, analyze and facilitate the knowledge sharing among problem solving practitioners of an organization in order to improve processes and products achievement. During Problem Solving Processes, the intellectual investment of experts is often considerable and the opportunities for expert knowledge exploitation are numerous: decision making, problem solving under uncertainty, and expert configuration. In this paper, our contribution relates to the structuring of a cognitive experience feedback framework, which allows a flexible exploitation of expert knowledge during Problem Solving Processes and a reuse such collected experience. To that purpose, the proposed approach uses the general principles of root cause analysis for identifying the root causes of problems or events, the conceptual graphs formalism for the semantic conceptualization of the domain vocabulary and the Transferable Belief Model for the fusion of information from different sources. The underlying formal reasoning mechanisms (logic-based semantics) in conceptual graphs enable intelligent information retrieval for the effective exploitation of lessons learned from past projects. An example will illustrate the application of the proposed approach of experience feedback processes formalization in the transport industry sector
    corecore