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Abstract— The importance of finding relevant information 

for business and decision making is imperative for both 

individuals as well as enterprises. In this paper, we present 

an approach for the development of a fuzzy information 

retrieval (IR) system. The approach provides a new 

mechanism for constructing and integrating three relevancy 

profiles: a task profile, a user profile and document profile, 

into a unified index through the use of relevance feedback 

and fuzzy rule based summarisation. Experiments were 

performed from which relevance feedback and user queries 

were captured from 35 users on 20 predefined simulated 

enterprise search tasks. The captured data set was used to 

develop the three types of profiles and train the fuzzy 

system. The system shows 86% performance accuracy in 

correctly classifying document relevance. The overall 

performance of the system was evaluated based on standard 

precision and recall which shows significant improvements 

in retrieving relevant documents based on user queries.  

I. INTRODUCTION 

The amount of digital information available on the 

Internet and various Intranets often causes information-

overload, significantly increasing the amount of time and 

cognitive resources needed to acquire relevant and 

accurate information. Current enterprise systems produce 

results based on specific keywords without taking into 

account user’s context, such user location, browsing 

history, and previous interaction patterns.  The research 

performed by the International Data Corporation on 

information workers showed that more than 26% of their 

search sessions failed to bring any relevant results [1]. It 

was estimated that the information workers spend 

approximately 9% of their overall time searching for 

information that did not produce any results. This leads to 

a decreased quality of products as well as decisions being 

based on inaccurate or out of date information [2].  

In order to produce accurate search results 

corresponding to the needs of a user, it is necessary to 

develop an intelligent IR system. Such systems can be 

developed using relevance feedback based approaches [3] 

that are based on the knowledge of how relevant the 

particular piece of information (document) is to the user 

and how its content can be reused in order to find 

documents that are similar. Documents that are similar to 

the relevant content have a very high probability of being 

returned or retrieved. There are two techniques of 

relevance feedback: explicit and implicit [4]. In explicit 

feedback, users explicitly mark the documents as relevant 

or not whereas in implicit feedback, the relevance is 

estimated based on behavioural observation such as 

reading time, click count, etc.  

User profiling can be developed using the above 

mentioned relevance feedback approaches. User profiling 

is one of the significant techniques in modern IR systems   

where such profiles contain user browsing history, tasks, 

preferences and interest [5]. 

 The modern IR systems should be self-learning and 

adaptive by responding accurately and timely to user 

needs. These systems mainly use machine learning 

techniques to learn and adapt their models over time [6]. 

Fuzzy logic can be used to enhance the classification of 

user relevancy by handling the uncertainty and ambiguity 

in user data. Fuzzy sets provide an expressive method for 

user judgment modelling and fuzzy rules provide an 

interpretable method of representing the classification 

rules.  

In this paper, we present an approach for the 

development of a fuzzy based IR system. The approach 

provides a new mechanism for constructing and integrating 

three relevancy profiles: a task profile, a user profile and 

document profile, into a unified index through the use of 

relevance feedback and fuzzy rule based summarisation 

[7].  

We used the relevance feedback to develop a linear 

predictive model showing the association between the 

implicit and explicit feedback parameters. The model was 

used to predict the document relevancy from the implicit 

user feedback parameters. The predicted relevance values 

were used to identify the successful queries (which led to 

document visits) and train the fuzzy rule summarising 

model. The successful user queries were preprocessed and 

the query terms were extracted.  TF-IDF (Term Frequency 

and Inverse Document Frequency) matrices were 

calculated for the terms and used by the fuzzy system to 

create profiles for task, user and document. For each of 

these profiles, each search term was then associated with 

its retrieved documents and the predicted relevancy (i.e. 

term weight) . This formed a rule base consisting of three 

inputs (term weights associated with the three profiles) and 

one output which was the predicted relevance level of the 

document. Then the fuzzy rule based summarisation was 

applied to extract the most representative fuzzy rules. 

These were used to build the unified relevancy index. A 

web-based user interface was developed to handle the user 

queries and display results based on the user query.  

The rest of the paper is organised as follows: Section II 

presents a literature review of relevance feedback and 

fuzzy logic approaches for IR systems. Section III 
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describes the proposed method. Section IV discusses 

experiments and results. Finally conclusions and future 

directions are presented in Section V. 

II. LITERATURE REVIEW 

Towards the development of intelligent IR systems and 

user profiling, relevance feedback has been investigated by 

several researchers [3] [8] [9] [10].  Previous research has 

analysed user behaviour and found a significant 

relationship between the time spent on reading Usenet 

news and interest level. This was proved by comparing 

observational studies  with explicit interest measures.  

Current research shows that the combination of several 

relevance feedback parameters can produce better results 

[11], [12], [13], [14] and [15]. It was found that reading 

time, along with some other user behaviours can be a very 

reliable indicator of content relevancy. It was noticed that 

even though there is a positive correlation between mouse 

movement and amount of clicks, reading time was shown 

to be a reliable indicator of user interests [16]. In [15] 

multiple implicit parameters (dwell time, click-through, 

text selection and page review) were combined to 

investigate their impact on the document relevancy. The 

experiments showed that the retrieval performance was 

improved when more parameters were used.   

The relationship between user behaviour during the 

dwell time on the search engine results page and relevancy 

of the page was investigated in [12]. The experiments 

showed that including cursor movements and scrolling was 

more effective than considering only the dwell time to 

estimate the page (document) relevancy. Similarly, in [13] 

the search performance was enhanced significantly using 

text-selection data.  User post-click behaviour parameters 

such as mouse clicks, mouse movements, text selection 

and cursor trails are used to cluster the users based on their 

behaviour similarity as described in [14].   

A document can be represented using the vocabulary 

used by the user during the retrieval of the document [17]. 

Recently, [18] integrated the content-based (TF-IDF) and 

the connectivity-based ranking algorithms using the click-

through data to improve the search result for a web page. 

Another approach was proposed to develop a snippet-

based algorithm to estimate the document relevance. The 

proposed algorithm was found to be more efficient than the 

commercial search engines [19].  

Another post-click parameter which has been deemed 

to be useful is page review or re-finding. It is argued that 

about 30% of the user queries are used to retrieve a page 

which the user has previously visited [20]. Other research 

has proposed a page review based algorithm to predict the 

page relevancy and has shown the retrieval performance 

can be significantly improved [21].  

Fuzzy logic systems (FLSs) have been applied to a 

range of application areas in Information Retrieval (IR) 

that include information filtering and personalised search. 

In this paper we are focusing on the approaches which 

used fuzzy logic to handle the uncertainty and subjectivity 

in the user feedback. The recursive method is a single 

individual fuzzy based recommending method [22] in 

which the recommendation is created recursively and 

based on the users profile without using  any other 

collaborative preferences. The fuzzy sets were used to 

model the recommended object as well as justifying the 

recommendations. Cornelisa et al [23] proposed a fuzzy 

based conceptual framework for recommending one-and-

only items. One-and-only items are the items which have 

only one occurrence in the data.  The single occurrence of 

such items limits the classic collaborative filtering abilities 

to recommend the required item. The fuzzy logic was used 

for user preferences   modelling to justify the similarity 

calculation.  

Carbo and Molina [24] developed a collaborative 

filtering based algorithm in which the linguistic labels and 

the associated fuzzy sets were used to handle the 

uncertainty and inaccuracy in ranking the retrieved items. 

In [25] and [26] a hybrid fuzzy approach was proposed, to 

support the decision making process of individuals when 

seeking recommendations from other individuals about 

their personal selections. Here, fuzzy logic was used to 

model the similarity of an individual’s feelings towards a 

specific item which in this case was a movie.  

In [27] a fuzzy based agent to rank recommended 

candidates CVs within recruitment systems was proposed. 

Fuzzy logic was used to model the job preferences of the 

selection board members and also to resolve the 

uncertainty and conflict in the group decision making. A 

similar fuzzy based approach was proposed  for activity-

led learning [28]. A fuzzy based method that improves the 

collaborative filtering efficiency for multiple collaborating 

users was proposed in [29]. In this system fuzzy sets were 

used to model the user bias and uncertainty which result 

from multiple user interaction.  

The existing approaches described above were mainly 

focused on methods identifying indicators of document 

relevancy and user preference. They did not consider 

combining these methods with the need to create profiles 

both of the user and the task, regarding the relevance of the 

returned information. Also, many of these approaches 

focus on well described content such as news stories, 

events, and movies and not on the unstructured content 

(documents), commonly found in enterprise systems, 

which have less descriptive details. In addition, such 

systems also have to contend with uncertainties 

(subjectivity and inconsistencies) in information relevance 

and the user perception of relevancy in respect of the 

retrieved content. Finally, these approaches do not 

integrate implicit and explicit feedback parameters with 

the query text analysis in order to gain more reliable 

relevance feedback. 

III. PROPOSED METHOD 

The relevance feedback including user query is used as 

the main data source for developing three profiles: task 

profile, user profile and document profile. The task profile 

is modelled as a sequence of weighted terms. The term 

weight reflects relevance level of the term to the task, the 

user and the document which the profile is related to. 

However, relevance feedback involves a high level of 

uncertainty due to inconsistency in user behaviour and 

subjectivity in their assessment of relevancy [30]. 

Therefore, handling such uncertainty is crucial to achieve 

better performance.  We use a fuzzy approach to overcome 
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the uncertainty and bias in user judgment in order to 

provide a normalized ranking method for enterprise search. 

Our approach consists of six phases as shown in Fig.1. 

 
Figure. 1. The Proposed Approach 

 

A. Phase 1: Relevance Feedback Collection  
 

  In this phase the relevance feedback is captured from 

the users during the search process. The captured 

relevance feedback includes implicit parameters, explicit 

parameters and user queries. The implicit parameters 

include: document Id, document hyperlink, visit time 

stamp, time on page, number of mouse clicks, mouse 

movement, mouse scrolling, scroll bar holding, key down 

times, key up times, book mark, save and  print. Explicitly, 

the users are asked to rate the visited documents indicating 

their relevance to the query. The users and their tasks are 

identified through their unique user IDs.  

The query information include: query text, query time 

stamp, number of retrieved documents based on the query. 

  
 

 
Figure. 2. Relevance Feedback Collection 

B. Phase 2: Document Relevance Prediction 
  

In this phase the relevance level of the visited 

documents is predicted from the implicit feedback 

parameters. The predicted value was calculated, as shown 

in TABLE I, using a linear predictive model based on 

linear regression analysis. The model was validated using 

R-squared (R2) method which is a common accuracy 

validating method for regression models [31].The accuracy 

of the model is 76.5 %.  

TABLE I. COEFFICIENTS FOR THE TARGET EXPLICIT RELEVANCE 

FEEDBACK 

 Model Term  Coefficient (��)  Sig Importance 

Intercept (�°) 1.395  .000 - 
Time on Page (X1) .0.069 (��) .021 0.893 

Mouse Scroll Count (X2) 0.013 (��) .012 0.079 

Mouse Movement Count (X3) 0.113 (��) .031 0.028 
 
 

C. Phase 3: Fuzzy based  Task, User and Document 

profiling  
 

In this phase, three types of profiles are created: the 

search task profile which is predefined and related to the 

role [32], the user profile and the document profile. The 

profiles are created by employing an adaptive fuzzy 

approach [33]. The approach contains 18 fuzzy rules to 

calculate the terms’ fuzzy weights based on the term 

frequency measures NDF, NNTDF and NIDF. In this 

paper, we modified the approach to suit the query text 

analysis  And to create the  profiles through the following 

steps. 

Step 1, we selected the set of queries Q which led to 

document visits. Subsets ΩOcx of the query set Q are 

identified based on a collection O where c = {‘s’, ‘u’,‘d’}, 

‘s’ denotes task, ‘u’ denotes user and ‘d’ denotes 

document, and x is an identifier (referring to a particular 

task, user or document related queries) in Ocx. 
 

 
Figure. 3 Fuzzy based Task, User and document profiling 

Step 2, after identifying the sets ΩOcx in step 1, the 

queries in each set were pre-processed and transformed 

into a set of candidate terms through eliminating stop-

words and stemming by Porter's algorithm [34]. The 

frequency measures: Distributed Term Frequency DTF, 

Document Frequency (DF), and Inverse Document 

Frequency (IDF) of each candidate term were calculated 

and normalized based on each set ΩOcx and used as inputs 

to a fuzzy system for calculating a weight for each term.  

These frequency measures are used to calculate the 

term frequency in a document collection. However, they 
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rule compression on the fuzzy rules resulting 

from the previous step. This was done in order to extract 
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rule compression on the fuzzy rules resulting 

from the previous step. This was done in order to extract 

those rules with the maximum firing strength. This process 

involves a modified calculation of two rule quality 

measures from which we then derive the sc

weight of each unique summarisation rule. The quality 
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The scaled fuzzy weight measures the quality of each 

rule in modelling the data. It can be used to rank the top 

rules associated with each output set and to choose a single 

winner rule among compatible rules, based on methods for 

rule weight specification described in [36]. We used these 

weights to extract the most representative rule patterns 

where the pattern with the highest value of scWi was 

selected over the other contradictive patterns. The selected 

patterns were used in a fuzzy system, as described in the 

following step, for modelling the relevancies based on the 

most important profile weighted terms.   

Step 4, Calculation of the unified term weight, in this 

step the resulting rules from the previous step are used to 

build a fuzzy system to calculate the unified term weight 

Wiykg for each query term ti in each associated document 

visit Vh. The fuzzy system calculates the unified term 

weight based on the term weights in the profiles of the 

associated    user Uk, document Dg and search task Sy 

which were created in phase 2 and the fuzzy rules 

extracted in step 3 of this phase.  

The fuzzy system consists of the three input variables { 

'<)-./, 'AB-./, '(*-./}  ,one output variable which is 

the unified term weight Wiykg ,  and the fuzzy rules which 

are extracted in step 3. The fuzzy system is then fed with 

the values of the inputs: '<)-./, 'AB-./and '(*-./   

which were associated with each query term for each 

document visit in step 1. The calculated value of Wiykg  was 

then was used to create the UTWI which consists of { Vh,ti, 

Sy, Uk, Dg, Wiykg}. UTWI was used in the next phase to 

create the recommendations. 
 

E. Phase 5: Recommendation of documents and people.    
 

In this phase the proposed system’s user query is pre-

processed in the same way as in phase 1.   

The UTWI index is searched for the extracted query 

terms to find matching documents and people who visited 

those documents frequently. This starts with finding the 

matching tasks in order to recommend documents and 

people based on the relevant task. A matching task should 

have at least one occurrence of at least one of the query 

terms in its associated instances in UTWI. Then for each 

of these tasks the averages of the matching terms’ weights 

are calculated. Then these weights are summed to give the 

aggregate task weight. Based on the aggregate task weight 

the relevant documents and users of each matching task 

can be extracted. A relevant document/user should have at 

least one matching term occurrence in UTWI with the 

tasks terms. The average weight of each matching term is 

calculated for the relevant document/user and these are 

summed to calculate the aggregate weight of the relevant 

document/user. The document/users are sorted in 

descending order based on their aggregate weights.    

 
 

F.  Phase 6: Recommendation Presentation  
 

In this phase, the recommended document and search users 

are presented through a web-based graphical user 

interface. Through this interface the recommended 

documents can be viewed as a weighted list where the 

relevance weight of each document to the query is shown. 

Similarly, it also shows a user analysis chart containing the 

relevant search user with their relevance weight to the 

query. The search queries made by each person are shown, 

together with the relevance weight of the information 

returned by the query. The interface provides a query-task 

tree in which each query is displayed. For each query the 

people making that query on a task are grouped according 

to the relevance given by the system to the data returned 

by that query.  

IV. EXPERIMENTS AND RESULTS 

A. Experimental Set up  

In order to run our experiments, we have selected a 

TREC Enterprise 2007 Track, a slandered test collection 

for enterprise search [37]. The data set was labelled as the 

test collection and provided a group of 50 queries which 

were previously created by real users and associated with 

the relevant documents for each query according to users’ 

judgment [37]. The data set was then extended by creating 

search tasks. We invited 35 users to participate in the 

experiment. The users were asked to freely formulate their 

queries in order to search for information which can help 

them to find solutions to those tasks. 
 

 
Figure. 7. Experimental Set Up 

After preparing the search tasks, TREC Enterprise 

2007 Track was indexed using a configured text based 

search system. The configured system is based on the open 

source technology and consists of the following 

components: Apache Solr, Apache Tika and Hadoop. 

Hadoop is an open source framework for distributed 

computing. Tika is an open source toolkit that can parse 

and acquire different types of documents. Solr is an open 

source enterprise search server which is based on the 

underlying search library Lucene that is widely used in 

information retrieval applications [38]. A web user 
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