23,654 research outputs found

    Dimensions of Mobile Augmented Reality for Learning: A First Inventory

    Get PDF
    Specht, M., Ternier, S., & Greller, W. (2011). Dimensions of Mobile Augmented Reality for Learning: A First Inventory. Journal of the Research for Educational Technology (RCET), 7(1), 117-127. Spring 2011.This article discusses technological developments and applications of mobile augmented reality (AR) and their application in learning. Augmented reality interaction design patterns are introduced and educational patterns for supporting certain learning objectives with AR approaches are discussed. The article then identifies several dimensions of a user context identified with sensors contained in mobile devices and used for the contextualization of learning experiences. Finally, an AR game concept, “Locatory”, is presented that combines a game logic with collaborative game play and personalized mobile augmented reality visualization

    Collaborative geographic visualization

    Get PDF
    Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia do Ambiente, perfil Gestão e Sistemas AmbientaisThe present document is a revision of essential references to take into account when developing ubiquitous Geographical Information Systems (GIS) with collaborative visualization purposes. Its chapters focus, respectively, on general principles of GIS, its multimedia components and ubiquitous practices; geo-referenced information visualization and its graphical components of virtual and augmented reality; collaborative environments, its technological requirements, architectural specificities, and models for collective information management; and some final considerations about the future and challenges of collaborative visualization of GIS in ubiquitous environment

    Secure Collaborative Augmented Reality Framework for Biomedical Informatics

    Get PDF
    Augmented reality is currently a great interest in biomedical health informatics. At the same time, several challenges have been appeared, in particular with the rapid progress of smart sensors technologies, and medical artificial intelligence. This yields the necessity of new needs in biomedical health informatics. Collaborative learning and privacy are some of the challenges of augmented reality technology in biomedical health informatics. This paper introduces a novel secure collaborative augmented reality framework for biomedical health informatics-based applications. Distributed deep learning is first performed across a multi-agent system platform. The privacy strategy is developed for ensuring better communications of the different intelligent agents in the system. In this research work, a system of multiple agents is created for the simulation of the collective behaviours of the smart components of biomedical health informatics. Augmented reality is also incorporated for better visualization of the resulted medical patterns. A novel privacy strategy based on blockchain is investigated for ensuring the confidentiality of the learning process. Experiments are conducted on the real use case of the biomedical segmentation process. Our strong experimental analysis reveals the strength of the proposed framework when directly compared to state-of-the-art biomedical health informatics solutions.acceptedVersio

    Bridging the multiple reality gap: Application of augmented reality in new product development

    Get PDF
    Increased product complexity and internal team dynamics pose serious challenges to the quality of collaboration, usually reflected upon long delays, cost overruns and poor design quality during product development. Our focus is to study the factors that drive collaboration, shared understanding and team learning in product development in order to investigate new tools to facilitate this process. The present paper provides the theoretical framework to experiment with novel collaborative tools like Augmented Reality in the product development setting. The core argument is that Augmented Reality technologies act as a catalyst to the communication between the various stakeholders. The main idea behind this work is a dynamic investigation on the nature of collaboration in product development teams, through a socio-cognitive lens. The basic focus of this work is to connect insights from the social sciences to collaborative design and visualization technologies. © 2011 IEEE

    Augmented Reality im öffentlichen Raum

    Get PDF
    Diese Arbeit beschäftigt sich mit aktuellen Einsatzgebieten von Augmented Reality-Anwendungen im öffentlichen Raum. Dazu gehören nicht nur Entscheidungsinstrumente für Planer, Politik und Öffentlichkeit, sondern auch eine breite Palette an Anwendungen für Tourismus, Bildung und Entertainment. Augmented Reality oder Erweiterte Realität mag zunächst nach Science Fiction klingen. Die rasante Entwicklung von Smartphones und Tablets ermöglicht aber viele neue und interessante Anwendungen im öffentlichen Raum – und das nicht nur für wenige Fachleute, sondern für die breite Öffentlichkeit. Dieser Beitrag gibt einen Überblick über aktuelle Augmented Reality-Anwendungen die sich im öffentlichen Raum einsetzen lassen. Das sind einerseits sogenannte Augmented City Guides, Augmented Reality Games, Urban Story Telling und historische Stadt- und Architekturführer, wie zum Beispiel die Anwendungen „Chronovizor“, „Landauer Walk“, „Time Traveller“ oder „Zeitfenster“. Andererseits gibt es aber auch neue Werkzeuge zur Beurteilung von Planungen und Neubauten im öffentlichen Raum, sogenannte Design Review Systems und Collaborative Virtual Environments (CVE´s). Dazu gehören die Projekte „Talking Places“, „Location-Based-Audio“, „Baukultur mit allen Sinnen entdecken und erleben“, „Variantendiskussion im Entwurfsprozeß“, „Augmented Collaborative Architectural Visualization“ und der „AR-Bebauungsplan“. Diese Projekte unterstützen die Beteiligung von Bürgern und Politik in frühen Phasen einer Projektentwicklung. Diskutiert werden unter anderem die technischen Voraussetzungen und Komponenten eines AR-Systems, Content und umsetzbarer Detaillierungsgrad, Servermanagement und Cloudlösungen, Geolokalisierung und Trackingverfahren, sowie die markerbasierte und die markerlose Umgebungserkennung. Es wird gezeigt, dass sowohl die eingesetzte Technologie als auch deren Komponenten stark vom Content, dessen Detaillierungsgrad und vom beabsichtigten Nutzerkreis abhängig sind. Gespannt warten darf man heute auf den Einsatz weiterer Kamerasensorik (Oculus Rift, Samsung Gear VR, Intel Real Sense Camera) in Hinblick auf zukünftige Anwendungen und deren Rezeption durch den Nutzer

    Collaborative educational environments incorporating mixed reality technologies: a systematic mapping study

    Get PDF
    In this paper, we report findings from a systematic mapping study, conducted to review the existing literature on collaborative educational environments incorporating mixed reality technologies. There is increasing interest in mixed reality technologies in education, especially with the introduction of new Over Head Mounted Displays (OHMDs), such as HoloLens, Oculus Rift and HTC Vive. with the consideration of areas such as education, dynamic technology and complex environments, a research area is identified. We carried out an extensive review of the literature from 2007 to 2017 and conducted an analysis of the works on mixed reality technologies and its subcategories applied to collaborative education environments. Results highlighted the lack of research across the mixed reality spectrum, especially in the augmented virtuality subcategory, as well as technical limitations such as response time in the development of mixed reality technologies for collaborative environments. Furthermore, the difficulty of teaching professionals to replicate mixed reality experiments in real environments, due to the technical skills required, was identified. The main contribution of this article is the discussion of the current works with visualization of the present state of the area, which is aimed to encourage educators to develop mixed reality artefacts and conduct further research to support collaborative educational environments

    Visualization of scientific data in multi-user augmented reality

    Get PDF
    Humanity has always strived to learn more about the origins of our neighboring celestial bodies. With the help of modern rover systems, unknown areas are explored through scientific measurements. With increasingly better sensors, this data becomes more extensive and complex, creating an evident need for new and improved tools. These tools should support the scientists in the collaborative analysis of the recorded measurements. Scientists from different disciplinary backgrounds work together on this analysis. Exploring the data can be made more efficient with the help of intuitive visualization, interaction, and collaborative tools. At the same time, misunderstandings among the experts can be minimized. This thesis investigates how modern augmented reality approaches can support the process of collaborative rover data analysis. Three main aspects are considered: the threedimensional visualization of high-resolution terrain data, the visualization and interaction with rover data, and the integration of multi-user collaboration tools for the collaborative discussion. A mobile augmented reality device, the Microsft HoloLens 2, is used to input, output, and process the data. In order to evaluate the implemented visualization and interaction concepts, an expert interview and several experiments for a user study are prepared in this work. Due to the current COVID-19 pandemic restrictions, both interview and user study could not be conducted. Based on promising informal preliminary user tests, potential improvements of the presented concepts are discussed

    Exploring the Potential of 3D Visualization Techniques for Usage in Collaborative Design

    Get PDF
    Best practice for collaborative design demands good interaction between its collaborators. The capacity to share common knowledge about design models at hand is a basic requirement. With current advancing technologies gathering collective knowledge is more straightforward, as the dialog between experts can be supported better. The potential for 3D visualization techniques to become the right support tool for collaborative design is explored. Special attention is put on the possible usage for remote collaboration. The opportunities for current state-of-the-art visualization techniques from stereoscopic vision to holographic displays are researched. A classification of the various systems is explored with respect to their tangible usage for augmented reality. Appropriate interaction methods can be selected based on the usage scenario
    corecore