221,970 research outputs found

    Performing Hybrid Recommendation in Intermodal Transportation – the FTMarket System’s Recommendation Module

    Get PDF
    Diverse recommendation techniques have been already proposed and encapsulated into several e-business applications, aiming to perform a more accurate evaluation of the existing information and accordingly augment the assistance provided to the users involved. This paper reports on the development and integration of a recommendation module in an agent-based transportation transactions management system. The module is built according to a novel hybrid recommendation technique, which combines the advantages of collaborative filtering and knowledge-based approaches. The proposed technique and supporting module assist customers in considering in detail alternative transportation transactions that satisfy their requests, as well as in evaluating completed transactions. The related services are invoked through a software agent that constructs the appropriate knowledge rules and performs a synthesis of the recommendation policy

    A Generic Conceptual Model for Risk Analysis in a Multi-agent Based Collaborative Design Environment

    Get PDF
    Organised by: Cranfield UniversityThis paper presents a generic conceptual model of risk evaluation in order to manage the risk through related constraints and variables under a multi-agent collaborative design environment. Initially, a hierarchy constraint network is developed to mapping constraints and variables. Then, an effective approximation technique named Risk Assessment Matrix is adopted to evaluate risk level and rank priority after probability quantification and consequence validation. Additionally, an Intelligent Data based Reasoning Methodology is expanded to deal with risk mitigation by combining inductive learning methods and reasoning consistency algorithms with feasible solution strategies. Finally, two empirical studies were conducted to validate the effectiveness and feasibility of the conceptual model.Mori Seiki – The Machine Tool Compan

    Data-driven through-life costing to support product lifecycle management solutions in innovative product development

    Get PDF
    Innovative product usually refers to product that comprises of creativity and new ideas. In the development of such a new product, there is often a lack of historical knowledge and data available to be used to perform cost estimation accurately. This is due to the fact that traditional cost estimation methods are used to predict costs only after a product model has been built, and not at an early design stage when there is little data and information available. In light of this, original equipment manufacturers are also facing critical challenges of becoming globally competitive and increasing demands from customer for continuous innovation. To alleviate these situations this research has identified a new approach to cost modelling with the inclusion of product lifecycle management solutions to address innovative product development.The aim of this paper, therefore, is to discuss methods of developing an extended-enterprise data-driven through-life cost estimating method for innovative product development

    Distributed product development approaches and system for achieving optimal design.

    Get PDF
    The research in this dissertation attempts to provide theoretic approaches and design systems to support engineers who are located in different places and belong to different teams or companies to work collaboratively to perform product development.The second challenge is addressed by developing a collaborative design process modeling technique based on Petri-net. Petri-net is used to describe complex design processes and to construct different design process alternatives. These alternative Petri-net models are then analyzed to evaluate design process alternatives and to select the appropriate process.In this dissertation, three major challenges are identified in realization of a collaborative design paradigm: (i) development of design method that supports multidisciplinary xi design teams to collaboratively solve coupled design problems, (ii) development of process modeling techniques to support representation and improve complex collaborative design process, and (iii) implementation of a testbed system that demonstrates the feasibility of enhancing current design system to satisfy with the needs of organizing collaborative design process for collaborative decision making and associated design activities.New paradigms, along with accompanying approaches and software systems are necessary to support collaborative design work, in a distributed design environment, of multidisciplinary engineering teams who have different knowledge, experience, and skills. Current research generally focuses on the development of online collaborative tools, and software frameworks that integrate and coordinate these tools. However, a gap exists between the needs of a distributed collaborative design paradigm and current collaborative design tools. On one side, design methodologies facilitating engineering teams' decision making is not well developed. In a distributed collaborative design paradigm, each team holds its own perspective towards the product realization problem, and each team seeks design decisions that can maximize the design performance in its own discipline. Design methodologies that coordinate the separate design decisions are essential to achieve successful collaboration. On the other side, design of products is becoming more complex. Organizing a complex design process is a major obstacle in the application of a distributed collaborative design paradigm in practice. Therefore, the principal research goal in this dissertation is to develop a collaborative multidisciplinary decision making methodology and design process modeling technique that bridges the gap between a collaborative design paradigm and current collaborative design systems.To overcome the first challenge, decision templates are constructed to exchange design information among interacting disciplines. Three game protocols from game theory are utilized to categorize the collaboration in decision makings. Design formulations are used to capture the design freedom among coupled design activities.The third challenge, implementation of collaborative design testbed, is addressed by integration of existing Petri-net modeling tools into the design system. The testbed incorporates optimization software, collaborative design tools, and management software for product and process design to support group design activities.Two product realization examples are presented to demonstrate the applicability of the research and collaborative testbed. A simplified manipulator design example is used for explanation of collaborative decision making and design process organization. And a reverse engineering design example is introduced to verify the application of collaborative design paradigm with design support systems in practice

    Network support for integrated design

    Get PDF
    A framework of network support for utilization of integrated design over the Internet has been developed. The techniques presented also applicable for Intranet/Extranet. The integrated design system was initially developed for local application in a single site. With the network support, geographically dispersed designers can collaborate a design task through out the total design process, quickly respond to clients’ requests and enhance the design argilty. In this paper, after a brief introduction of the integrated design system, the network support framework is presented, followed by description of two key techniques involved: Java Saverlet approach for remotely executing a large program and online CAD collaboration

    Fostering collaborative knowledge construction with visualization tools

    Get PDF
    This study investigates to what extent collaborative knowledge construction can be fostered by providing students with visualization tools as structural support. Thirty-two students of Educational Psychology took part in the study. The students were subdivided into dyads and asked to solve a case problem of their learning domain under one of two conditions: 1) with content-specific visualization 2) with content-unspecific visualization. Results show that by being provided with a content-specific visualization tool, both the process and the outcome of the cooperative effort improved. More specifically, dyads under that condition referred to more adequate concepts, risked more conflicts, and were more successful in integrating prior knowledge into the collaborative solution. Moreover, those learning partners had a more similar individual learning outcome

    Measuring situation awareness in complex systems: Comparison of measures study

    Get PDF
    Situation Awareness (SA) is a distinct critical commodity for teams working in complex industrial systems and its measurement is a key provision in system, procedural and training design efforts. This article describes a study that was undertaken in order to compare three different SA measures (a freeze probe recall approach, a post trial subjective rating approach and a critical incident interview technique) when used to assess participant SA during a military planning task. The results indicate that only the freeze probe recall method produced a statistically significant correlation with performance on the planning task and also that there was no significant correlation between the three methods, which suggests that they were effectively measuring different things during the trials. In conclusion, the findings, whilst raising doubts over the validity of post trial subjective rating and interview-based approaches, offer validation evidence for the use of freeze probe recall approaches to measure SA. The findings are subsequently discussed with regard to their implications for the future measurement of SA in complex collaborative systems

    Collaborative recommendations with content-based filters for cultural activities via a scalable event distribution platform

    Get PDF
    Nowadays, most people have limited leisure time and the offer of (cultural) activities to spend this time is enormous. Consequently, picking the most appropriate events becomes increasingly difficult for end-users. This complexity of choice reinforces the necessity of filtering systems that assist users in finding and selecting relevant events. Whereas traditional filtering tools enable e.g. the use of keyword-based or filtered searches, innovative recommender systems draw on user ratings, preferences, and metadata describing the events. Existing collaborative recommendation techniques, developed for suggesting web-shop products or audio-visual content, have difficulties with sparse rating data and can not cope at all with event-specific restrictions like availability, time, and location. Moreover, aggregating, enriching, and distributing these events are additional requisites for an optimal communication channel. In this paper, we propose a highly-scalable event recommendation platform which considers event-specific characteristics. Personal suggestions are generated by an advanced collaborative filtering algorithm, which is more robust on sparse data by extending user profiles with presumable future consumptions. The events, which are described using an RDF/OWL representation of the EventsML-G2 standard, are categorized and enriched via smart indexing and open linked data sets. This metadata model enables additional content-based filters, which consider event-specific characteristics, on the recommendation list. The integration of these different functionalities is realized by a scalable and extendable bus architecture. Finally, focus group conversations were organized with external experts, cultural mediators, and potential end-users to evaluate the event distribution platform and investigate the possible added value of recommendations for cultural participation
    • 

    corecore