97 research outputs found

    IEEE Access Special Section Editorial: Big Data Technology and Applications in Intelligent Transportation

    Get PDF
    During the last few years, information technology and transportation industries, along with automotive manufacturers and academia, are focusing on leveraging intelligent transportation systems (ITS) to improve services related to driver experience, connected cars, Internet data plans for vehicles, traffic infrastructure, urban transportation systems, traffic collaborative management, road traffic accidents analysis, road traffic flow prediction, public transportation service plan, personal travel route plans, and the development of an effective ecosystem for vehicles, drivers, traffic controllers, city planners, and transportation applications. Moreover, the emerging technologies of the Internet of Things (IoT) and cloud computing have provided unprecedented opportunities for the development and realization of innovative intelligent transportation systems where sensors and mobile devices can gather information and cloud computing, allowing knowledge discovery, information sharing, and supported decision making. However, the development of such data-driven ITS requires the integration, processing, and analysis of plentiful information obtained from millions of vehicles, traffic infrastructures, smartphones, and other collaborative systems like weather stations and road safety and early warning systems. The huge amount of data generated by ITS devices is only of value if utilized in data analytics for decision-making such as accident prevention and detection, controlling road risks, reducing traffic carbon emissions, and other applications which bring big data analytics into the picture

    Efficiency and Sustainability of the Distributed Renewable Hybrid Power Systems Based on the Energy Internet, Blockchain Technology and Smart Contracts

    Get PDF
    The climate changes that are visible today are a challenge for the global research community. In this context, renewable energy sources, fuel cell systems, and other energy generating sources must be optimally combined and connected to the grid system using advanced energy transaction methods. As this book presents the latest solutions in the implementation of fuel cell and renewable energy in mobile and stationary applications such as hybrid and microgrid power systems based on energy internet, blockchain technology, and smart contracts, we hope that they are of interest to readers working in the related fields mentioned above

    Joint optimisation of drone routing and battery wear for sustainable supply chain development: a mixed-integer programming model based on blockchain-enabled fleet sharing

    Get PDF
    Alongside the rise of ‘last-mile’ delivery in contemporary urban logistics, drones have demonstrate commercial potential, given their outstanding triple-bottom-line performance. However, as a lithium-ion battery-powered device, drones’ social and environmental merits can be overturned by battery recycling and disposal. To maintain economic performance, yet minimise environmental negatives, fleet sharing is widely applied in the transportation field, with the aim of creating synergies within industry and increasing overall fleet use. However, if a sharing platform’s transparency is doubted, the sharing ability of the platform will be discounted. Known for its transparent and secure merits, blockchain technology provides new opportunities to improve existing sharing solutions. In particular, the decentralised structure and data encryption algorithm offered by blockchain allow every participant equal access to shared resources without undermining security issues. Therefore, this study explores the implementation of a blockchain-enabled fleet sharing solution to optimise drone operations, with consideration of battery wear and disposal effects. Unlike classical vehicle routing with fleet sharing problems, this research is more challenging, with multiple objectives (i.e., shortest path and fewest charging times), and considers different levels of sharing abilities. In this study, we propose a mixed-integer programming model to formulate the intended problem and solve the problem with a tailored branch-and-price algorithm. Through extensive experiments, the computational performance of our proposed solution is first articulated, and then the effectiveness of using blockchain to improve overall optimisation is reflected, and a series of critical influential factors with managerial significance are demonstrated

    Towards Cyber Security for Low-Carbon Transportation: Overview, Challenges and Future Directions

    Full text link
    In recent years, low-carbon transportation has become an indispensable part as sustainable development strategies of various countries, and plays a very important responsibility in promoting low-carbon cities. However, the security of low-carbon transportation has been threatened from various ways. For example, denial of service attacks pose a great threat to the electric vehicles and vehicle-to-grid networks. To minimize these threats, several methods have been proposed to defense against them. Yet, these methods are only for certain types of scenarios or attacks. Therefore, this review addresses security aspect from holistic view, provides the overview, challenges and future directions of cyber security technologies in low-carbon transportation. Firstly, based on the concept and importance of low-carbon transportation, this review positions the low-carbon transportation services. Then, with the perspective of network architecture and communication mode, this review classifies its typical attack risks. The corresponding defense technologies and relevant security suggestions are further reviewed from perspective of data security, network management security and network application security. Finally, in view of the long term development of low-carbon transportation, future research directions have been concerned.Comment: 34 pages, 6 figures, accepted by journal Renewable and Sustainable Energy Review

    Blockchain Technology for Intelligent Transportation Systems: A Systematic Literature Review

    Get PDF
    The use of Blockchain technology has recently become widespread. It has emerged as an essential tool in various academic and industrial fields, such as healthcare, transportation, finance, cybersecurity, and supply chain management. It is regarded as a decentralized, trustworthy, secure, transparent, and immutable solution that innovates data sharing and management. This survey aims to provide a systematic review of Blockchain application to intelligent transportation systems in general and the Internet of Vehicles (IoV) in particular. The survey is divided into four main parts. First, the Blockchain technology including its opportunities, relative taxonomies, and applications is introduced; basic cryptography is also discussed. Next, the evolution of Blockchain is presented, starting from the primary phase of pre-Bitcoin (fundamentally characterized by classic cryptography systems), followed by the Blockchain 1.0 phase, (characterized by Bitcoin implementation and common consensus protocols), and finally, the Blockchain 2.0 phase (characterized by the implementation of smart contracts, Ethereum, and Hyperledger). We compared and identified the strengths and limitations of each of these implementations. Then, the state of the art of Blockchain-based IoV solutions (BIoV) is explored by referring to a large and trusted source database from the Scopus data bank. For a well-structured and clear discussion, the reviewed literature is classified according to the research direction and implemented IoV layer. Useful tables, statistics, and analysis are also presented. Finally, the open problems and future directions in BIoV research are summarized

    User-centric Demand Side Energy Management Techniques with Mobile Battery Energy Storage System Integration and Socialization Modelling

    Get PDF
    Smart grids enable two-way communication between power generation and demand sides, allowing efficient operation of the energy system by power generators, grid operators, end users, and market stakeholders. Demand Side Management (DSM) in smart grids helps users adjust their energy usage, providing energy, environmental, and economic benefits. User engagement is crucial for DSM performance, but current DSM designs focus mainly on economic and energy factors, ignoring user participation drivers. Integrating large-scale renewable energy poses challenges in maintaining power system flexibility. Therefore, more user-centric DSM studies are needed, especially with distributed renewable energy. This thesis first proposes a community-level user-centric DSM model for energy trading in a Peer-to-Peer (P2P) market. By considering social factors like social networks and socio-demographic characteristics, user engagement can be greatly improved. The second research introduces a DSM model addressing renewable penetration using Mobile Battery Energy Storage Systems (MBESS) due to their low cost and ease of deployment. MBESS enhances distribution system reliability and integrates distributed energy without causing grid fluctuations. This research designs two comprehensive decision-making frameworks for MBESS service providers to generate MBESS-based energy backup plans for energy users under planned outage events and two decoupled solving approaches are also proposed correspondingly to solve these two problems. The third research focuses on household appliance usage, proposing a local-level DSM model to create intelligent usage plans under real-time electricity pricing. It considers economic factors, user satisfaction, and thermal comfort, formulating a multi-objective problem with a corresponding solving approach. Finally, comprehensive simulations and case studies validate the effectiveness of these DSM models

    Intelligence artificielle à la périphérie du réseau mobile avec efficacité de communication

    Get PDF
    L'intelligence artificielle (AI) et l'informatique à la périphérie du réseau (EC) ont permis de mettre en place diverses applications intelligentes incluant les maisons intelligentes, la fabrication intelligente, et les villes intelligentes. Ces progrès ont été alimentés principalement par la disponibilité d'un plus grand nombre de données, l'abondance de la puissance de calcul et les progrès de plusieurs techniques de compression. Toutefois, les principales avancées concernent le déploiement de modèles dans les dispositifs connectés. Ces modèles sont préalablement entraînés de manière centralisée. Cette prémisse exige que toutes les données générées par les dispositifs soient envoyées à un serveur centralisé, ce qui pose plusieurs problèmes de confidentialité et crée une surcharge de communication importante. Par conséquent, pour les derniers pas vers l'AI dans EC, il faut également propulser l'apprentissage des modèles ML à la périphérie du réseau. L'apprentissage fédéré (FL) est apparu comme une technique prometteuse pour l'apprentissage collaboratif de modèles ML sur des dispositifs connectés. Les dispositifs entraînent un modèle partagé sur leurs données stockées localement et ne partagent que les paramètres résultants avec une entité centralisée. Cependant, pour permettre l' utilisation de FL dans les réseaux périphériques sans fil, plusieurs défis hérités de l'AI et de EC doivent être relevés. En particulier, les défis liés à l'hétérogénéité statistique des données à travers les dispositifs ainsi que la rareté et l'hétérogénéité des ressources nécessitent une attention particulière. L'objectif de cette thèse est de proposer des moyens de relever ces défis et d'évaluer le potentiel de la FL dans de futures applications de villes intelligentes. Dans la première partie de cette thèse, l'accent est mis sur l'incorporation des propriétés des données dans la gestion de la participation des dispositifs dans FL et de l'allocation des ressources. Nous commençons par identifier les mesures de diversité des données qui peuvent être utilisées dans différentes applications. Ensuite, nous concevons un indicateur de diversité permettant de donner plus de priorité aux clients ayant des données plus informatives. Un algorithme itératif est ensuite proposé pour sélectionner conjointement les clients et allouer les ressources de communication. Cet algorithme accélère l'apprentissage et réduit le temps et l'énergie nécessaires. De plus, l'indicateur de diversité proposé est renforcé par un système de réputation pour éviter les clients malveillants, ce qui améliore sa robustesse contre les attaques par empoisonnement des données. Dans une deuxième partie de cette thèse, nous explorons les moyens de relever d'autres défis liés à la mobilité des clients et au changement de concept dans les distributions de données. De tels défis nécessitent de nouvelles mesures pour être traités. En conséquence, nous concevons un processus basé sur les clusters pour le FL dans les réseaux véhiculaires. Le processus proposé est basé sur la formation minutieuse de clusters pour contourner la congestion de la communication et est capable de traiter différents modèles en parallèle. Dans la dernière partie de cette thèse, nous démontrons le potentiel de FL dans un cas d'utilisation réel impliquant la prévision à court terme de la puissance électrique dans un réseau intelligent. Nous proposons une architecture permettant l'utilisation de FL pour encourager la collaboration entre les membres de la communauté et nous montrons son importance pour l'entraînement des modèles et la réduction du coût de communication à travers des résultats numériques.Abstract : Artificial intelligence (AI) and Edge computing (EC) have enabled various applications ranging from smart home, to intelligent manufacturing, and smart cities. This progress was fueled mainly by the availability of more data, abundance of computing power, and the progress of several compression techniques. However, the main advances are in relation to deploying cloud-trained machine learning (ML) models on edge devices. This premise requires that all data generated by end devices be sent to a centralized server, thus raising several privacy concerns and creating significant communication overhead. Accordingly, paving the last mile of AI on EC requires pushing the training of ML models to the edge of the network. Federated learning (FL) has emerged as a promising technique for the collaborative training of ML models on edge devices. The devices train a globally shared model on their locally stored data and only share the resulting parameters with a centralized entity. However, to enable FL in wireless edge networks, several challenges inherited from both AI and EC need to be addressed. In particular, challenges related to the statistical heterogeneity of the data across the devices alongside the scarcity and the heterogeneity of the resources require particular attention. The goal of this thesis is to propose ways to address these challenges and to evaluate the potential of FL in future applications. In the first part of this thesis, the focus is on incorporating the data properties of FL in handling the participation and resource allocation of devices in FL. We start by identifying data diversity measures allowing us to evaluate the richness of local datasets in different applications. Then, we design a diversity indicator allowing us to give more priority to clients with more informative data. An iterative algorithm is then proposed to jointly select clients and allocate communication resources. This algorithm accelerates the training and reduces the overall needed time and energy. Furthermore, the proposed diversity indicator is reinforced with a reputation system to avoid malicious clients, thus enhancing its robustness against poisoning attacks. In the second part of this thesis, we explore ways to tackle other challenges related to the mobility of the clients and concept-shift in data distributions. Such challenges require new measures to be handled. Accordingly, we design a cluster-based process for FL for the particular case of vehicular networks. The proposed process is based on careful clusterformation to bypass the communication bottleneck and is able to handle different models in parallel. In the last part of this thesis, we demonstrate the potential of FL in a real use-case involving short-term forecasting of electrical power in smart grid. We propose an architecture empowered with FL to encourage the collaboration among community members and show its importance for both training and judicious use of communication resources through numerical results

    Spatial-temporal domain charging optimization and charging scenario iteration for EV

    Get PDF
    Environmental problems have become increasingly serious around the world. With lower carbon emissions, Electric Vehicles (EVs) have been utilized on a large scale over the past few years. However, EVs are limited by battery capacity and require frequent charging. Currently, EVs suffer from long charging time and charging congestion. Therefore, EV charging optimization is vital to ensure drivers’ mobility. This study first presents a literature analysis of the current charging modes taxonomy to elucidate the advantages and disadvantages of different charging modes. In specific optimization, under plug-in charging mode, an Urgency First Charging (UFC) scheduling policy is proposed with collaborative optimization of the spatialtemporal domain. The UFC policy allows those EVs with charging urgency to get preempted charging services. As conventional plug-in charging mode is limited by the deployment of Charging Stations (CSs), this study further introduces and optimizes Vehicle-to-Vehicle (V2V) charging. This is aim to maximize the utilization of charging infrastructures and to balance the grid load. This proposed reservation-based V2V charging scheme optimizes pair matching of EVs based on minimized distance. Meanwhile, this V2V scheme allows more EVs get fully charged via minimized waiting time based parking lot allocation. Constrained by shortcomings (rigid location of CSs and slow charging power under V2V converters), a single charging mode can hardly meet a large number of parallel charging requests. Thus, this study further proposes a hybrid charging mode. This mode is to utilize the advantages of plug-in and V2V modes to alleviate the pressure on the grid. Finally, this study addresses the potential problems of EV charging with a view to further optimizing EV charging in subsequent studies

    Internet of Things From Hype to Reality

    Get PDF
    The Internet of Things (IoT) has gained significant mindshare, let alone attention, in academia and the industry especially over the past few years. The reasons behind this interest are the potential capabilities that IoT promises to offer. On the personal level, it paints a picture of a future world where all the things in our ambient environment are connected to the Internet and seamlessly communicate with each other to operate intelligently. The ultimate goal is to enable objects around us to efficiently sense our surroundings, inexpensively communicate, and ultimately create a better environment for us: one where everyday objects act based on what we need and like without explicit instructions
    corecore