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RÉSUMÉ

L’intelligence artificielle (AI) et l’informatique à la périphérie du réseau (EC) ont permis
de mettre en place diverses applications intelligentes incluant les maisons intelligentes, la
fabrication intelligente, et les villes intelligentes. Ces progrès ont été alimentés principale-
ment par la disponibilité d’un plus grand nombre de données, l’abondance de la puissance
de calcul et les progrès de plusieurs techniques de compression. Toutefois, les principales
avancées concernent le déploiement de modèles dans les dispositifs connectés. Ces modèles
sont préalablement entraînés de manière centralisée. Cette prémisse exige que toutes les
données générées par les dispositifs soient envoyées à un serveur centralisé, ce qui pose plu-
sieurs problèmes de confidentialité et crée une surcharge de communication importante.
Par conséquent, pour les derniers pas vers l’AI dans EC, il faut également propulser l’ap-
prentissage des modèles ML à la périphérie du réseau. L’apprentissage fédéré (FL) est
apparu comme une technique prometteuse pour l’apprentissage collaboratif de modèles
ML sur des dispositifs connectés. Les dispositifs entraînent un modèle partagé sur leurs
données stockées localement et ne partagent que les paramètres résultants avec une entité
centralisée. Cependant, pour permettre l’ utilisation de FL dans les réseaux périphériques
sans fil, plusieurs défis hérités de l’AI et de EC doivent être relevés. En particulier, les dé-
fis liés à l’hétérogénéité statistique des données à travers les dispositifs ainsi que la rareté
et l’hétérogénéité des ressources nécessitent une attention particulière. L’objectif de cette
thèse est de proposer des moyens de relever ces défis et d’évaluer le potentiel de la FL
dans de futures applications de villes intelligentes.

Dans la première partie de cette thèse, l’accent est mis sur l’incorporation des propriétés
des données dans la gestion de la participation des dispositifs dans FL et de l’allocation
des ressources. Nous commençons par identifier les mesures de diversité des données qui
peuvent être utilisées dans différentes applications. Ensuite, nous concevons un indicateur
de diversité permettant de donner plus de priorité aux clients ayant des données plus
informatives. Un algorithme itératif est ensuite proposé pour sélectionner conjointement les
clients et allouer les ressources de communication. Cet algorithme accélère l’apprentissage
et réduit le temps et l’énergie nécessaires. De plus, l’indicateur de diversité proposé est
renforcé par un système de réputation pour éviter les clients malveillants, ce qui améliore
sa robustesse contre les attaques par empoisonnement des données.

Dans une deuxième partie de cette thèse, nous explorons les moyens de relever d’autres
défis liés à la mobilité des clients et au changement de concept dans les distributions de
données. De tels défis nécessitent de nouvelles mesures pour être traités. En conséquence,
nous concevons un processus basé sur les clusters pour le FL dans les réseaux véhiculaires.
Le processus proposé est basé sur la formation minutieuse de clusters pour contourner la
congestion de la communication et est capable de traiter différents modèles en parallèle.

Dans la dernière partie de cette thèse, nous démontrons le potentiel de FL dans un cas
d’utilisation réel impliquant la prévision à court terme de la puissance électrique dans un
réseau intelligent. Nous proposons une architecture permettant l’utilisation de FL pour
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encourager la collaboration entre les membres de la communauté et nous montrons son
importance pour l’entraînement des modèles et la réduction du coût de communication à
travers des résultats numériques.

Mots-clés : apprentissage fédéré, apprentissage machine, communication sans fil, intelli-
gence artificielle, informatique en périphérie, optimisation.



ABSTRACT

Artificial intelligence (AI) and Edge computing (EC) have enabled various applications
ranging from smart home, to intelligent manufacturing, and smart cities. This progress
was fueled mainly by the availability of more data, abundance of computing power, and
the progress of several compression techniques. However, the main advances are in relation
to deploying cloud-trained machine learning (ML) models on edge devices. This premise
requires that all data generated by end devices be sent to a centralized server, thus raising
several privacy concerns and creating significant communication overhead. Accordingly,
paving the last mile of AI on EC requires pushing the training of ML models to the
edge of the network. Federated learning (FL) has emerged as a promising technique for
the collaborative training of ML models on edge devices. The devices train a globally
shared model on their locally stored data and only share the resulting parameters with
a centralized entity. However, to enable FL in wireless edge networks, several challenges
inherited from both AI and EC need to be addressed. In particular, challenges related
to the statistical heterogeneity of the data across the devices alongside the scarcity and
the heterogeneity of the resources require particular attention. The goal of this thesis is
to propose ways to address these challenges and to evaluate the potential of FL in future
applications.

In the first part of this thesis, the focus is on incorporating the data properties of FL in
handling the participation and resource allocation of devices in FL. We start by identifying
data diversity measures allowing us to evaluate the richness of local datasets in different
applications. Then, we design a diversity indicator allowing us to give more priority to
clients with more informative data. An iterative algorithm is then proposed to jointly select
clients and allocate communication resources. This algorithm accelerates the training
and reduces the overall needed time and energy. Furthermore, the proposed diversity
indicator is reinforced with a reputation system to avoid malicious clients, thus enhancing
its robustness against poisoning attacks.

In the second part of this thesis, we explore ways to tackle other challenges related to
the mobility of the clients and concept-shift in data distributions. Such challenges require
new measures to be handled. Accordingly, we design a cluster-based process for FL for the
particular case of vehicular networks. The proposed process is based on careful cluster-
formation to bypass the communication bottleneck and is able to handle different models
in parallel.

In the last part of this thesis, we demonstrate the potential of FL in a real use-case involv-
ing short-term forecasting of electrical power in smart grid. We propose an architecture
empowered with FL to encourage the collaboration among community members and show
its importance for both training and judicious use of communication resources through
numerical results.

Keywords: artificial intelligence, edge computing, federated learning, machine learning,
optimization, wireless communication.
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CHAPTER 1

INTRODUCTION

Following the exponential growth of Internet of Things (IoT) applications, the volume of
data generated by connected objects requires phenomenal processing power. It is estimated
[1] that by 2025 the number of IoT devices will reach 41.6 billion with data generation up
to 79.4 ZettaBytes. Existing cloud computing infrastructure will not be able to cope with
the generated data of these massively distributed devices. Furtheremore, sending data to
the cloud over untrusted networks raises privacy concerns from the data owners and users
whose behaviours are captured in the data. Users are wary of uploading their sensitive
and personal data to the cloud (e.g., faces, speech, location) and of how the application
will use these data.

Therefore, Edge Computing (EC) [2] emerges as an attractive solution to host computation
tasks as close as possible to the data sources and end users. Rather than being transmitted
to a remote data center, in EC data is processed directly by the device that generates it
(e.g., connected object, smartphone, etc.) or by a multi-access edge computing (MEC)
server. Thereby EC complements and extends the cloud functionalities.

Artificial Intelligence (AI), on the other hand, is what nurtures the growth of smart ap-
plications and analysis of data generated by IoT devices. Pushing AI to the edge of the
network is seen as the best way to meet current and upcoming network service require-
ments, such as low latency, high bandwidth and real-time data processing. This leads to
the emergence of a new field of study termed Edge Intelligence (EI) [3]. We use EI to refer
to the mechanisms and approaches used to enable AI in EC, and extend this definition to
include the collaboration with the cloud.

Several aspects of EI, such as using pre-trained models on edge devices (i.e., on edge ML
inference) [4], and using AI to enhance edge functions [5, 6], are already at production
stage, owing to the improved hardware and enhanced software libraries. Training models
on the other hand remains an arduous task however enticing. Federated learning (FL)
[7] was recently proposed to train ML models on edge devices with the coordination of a
centralized server (e.g., cloud server, MEC server). Nonetheless, FL is still in its infancy,
and it is facing challenges inherited from both EC and AI [4], such as the limitations of the
computation and communication resources versus the resource-hungry ML algorithms.

1
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1.1 Problem Statement
As described previously, EI enables the full potential of EC and allows applications to meet
the quality of service requirements in terms of latency and privacy. In particular, leveraging
compression and careful design techniques, several ML models are successfully deployed on
edge and end devices for tasks such as facial recognition [8], keyboard prediction [9], and
autonomous driving (AD) [10]. However, these models are often trained in a centralized
manner either on publicly available data or through collecting the user generated data.
Such training paradigm raises concerns related to privacy and communication. Instead,
to unlock the full potential of EI, it is necessary to find ways to enable model training
at the edge of the network. FL [7] was proposed as a promising solution for privacy
preserving and communication efficient ML. FL is a ML setting that utilizes EC to tackle
these concerns. In contrast to centralized ML, FL consists of training the model on the
user equipment (UE)- referred to as client, device, or user, interchangeably throughout
the thesis- under the orchestration of a central entity, where only the resultant parameters
are sent to the MEC or cloud servers to be aggregated.

In this setting, a global model is usually initialized by a centralized entity, then an it-
erative training process begins. Each iteration, called communication round, starts by
the selection of a subset of participating clients that receive the current version of the
global model. Ideally, all the available devices should participate, but the communication
bandwidth often limits the number of participants. Next, each client trains the data on
its local dataset and uploads a model update to the server. The collected updates are
then aggregated, typically by averaging, to create a new global model, and a new commu-
nication round starts. This process is repeated until the model converges or a maximum
number of iterations is attained.

Similarly to edge inference, there are many challenges facing the efficient deployment of
FL in wireless edge environment, inherited from both AI and EC.

1) The heterogeneity, scarcity, and uncertainty of computation, storage and communi-
cation capabilities across different devices sparks new system challenges. For example,
significant delays can be caused by stragglers. In other cases, devices might lose their con-
nection or run out of battery. Furthermore, the bandwidth’s scarcity limits the scalability
of FL for large models or large numbers of clients. Communication overhead becomes
the bottleneck of FL. Additionally, mobility, especially in vehicular networks, poses new
limitations to FL in applications such as autonomous vehicles and infotainment.
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2) As the data collected by the clients depends on their local environment and usage
pattern, both the size and the distribution of the local datasets will typically vary be-
tween different clients. This non-identically and independent distribution (non-i.i.d) na-
ture of data across the network imposes significant statistical challenges. Furthermore,
local datasets can be subject to data poisoning (e.g., label-flipping attack) and concept-
shift (e.g., varying preferences), which requires additional measures to be integrated to
the FL process.

Consequently, it is important to design resource-efficient FL algorithms that are able to
handle data challenges. Accordingly, this thesis raises the following research question:

How to enable federated learning in wireless edge networks taking into consid-
eration data and resource constraints?

1.2 Objective
Given the multi-disciplinary nature of FL, optimizing the iterative process proves to be
a challenging task. In fact, it is hard to capture both the resources problems and data
challenges in a combined goal, as there is no direct relation between the learning goal
(i.e., model’s loss function) and the resource optimization (e.g., reducing required energy
or time). Furthermore, the wireless edge environment imposes several constraints related
to the available bandwidth and energy budget. As a result, each step of FL’s iterative
process can be redesigned to take these goals and constraints into account.

The main objective of this thesis is therefore to enable FL in wireless edge environments
under data and resource constraints. To achieve this objective, the aim is to find ways to
jointly handle these challenges. We divide the main objective into the following interme-
diate objectives.

• Propose a data-aware client selection and resource allocation
The first intermediate objective is to judiciously select the subset of participating
clients while taking into consideration the richness of their data. The client selection
in wireless edge networks cannot be considered independently from the resource
allocation. Accordingly, we raise the following research questions:

- How to determine whether a dataset is more informative?

- How to include the data properties as a key-consideration in the FL process?

- How to assess the data quality under data poisoning attacks?

- How to jointly select clients and allocate the bandwidth ?
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• Extend FL to account for mobility and concept-shift
The second intermediate objective is to enhance the FL process and extend it to
handle extreme case such as concept-shift and mobility in vehicular networks. A
tractable solution found to handle cluster-shift is through clustering. Yet, clus-
tering is also used in vehicular networks through vehicle-to-vehicle communication
to bypass the communication bottleneck. We aim to define possible ways to exploit
clustering to handle both these extreme cases. The corresponding research questions
for this intermediate objective are as follows:

- How to form FL clusters under mobility constraints?

- How to maintain FL clusters under concept-shift ?

• Integrate FL in a EI empowered architecture and evaluate it in a realistic scenario.

The last intermediate objective is to demonstrate the potential of FL in a use-case
and determine an appropriate mechanism to enhance its potential. We chose the
electrical consumption in residential context as an interesting use case as the short-
term forecasts are privacy-sensitive, but important for the electrical production and
other applications in the smart grid. However, to train FL models in the smart grid
context, and how to use the resulting models is an unexplored question. To the best
of our knowledge, our work is the first to explore this use-case in a FL setting. The
research questions for this intermediate objective are as follows:

- How to determine which subset of clients should collaborate ?

- What is the motivation / incentive for clients to participate in the training ?

- How to improve the accuracy of the models given the different lifestyles of the
clients ?

- How to integrate FL with other mechanisms to build a pro-active decision
mechanism ?

1.3 Contributions and Originality
The originality of this work rests in bridging the gap between ML related goals and EC
related challenges through the direct integration of the data properties in the different
steps of FL. In fact, data properties were at the heart of FL since its inception, but they
have been largely overlooked in the optimization of FL process in edge networks.

1.3.1 Contributions
The first contribution of this thesis draws its inspiration from active learning. The premise
of active learning is that models can be trained using few labelled data samples if the highly
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diverse data is selectively added to the training set. In FL, due to the communication
constraints, only a subset of the clients can participate. However, in FL, the selection is at
the dataset level. Furthermore, due to privacy constraints, the server cannot have access
to the local datasets. Hence, we design a dataset diversity indicator that evaluates the
richness of a local dataset without revealing sensitive details. With the purpose of enabling
FL in wireless edge networks, this thesis proposes a general framework for FL that takes
into consideration the statistical heterogeneity of the local datasets. This framework is
then formalized to include energy and time optimization goals, and an algorithm that
encloses learning and resource goals.

The second contribution of this thesis is proposing an optimized framework for FL in ve-
hicular networks and concept-shift cases. This is achieved through the use of a carefully
tailored clustering algorithm. The proposed process is based on careful cluster-head selec-
tion and matching algorithms, which utilize vehicle-to-vehicle communication to bypass
the communication bottleneck and is able to handle different models in parallel. Such
algorithm will enable FL for smart transportation systems by providing a more secure
alternative than communication intensive data-sharing and protecting privacy-sensitive
localization data.

The last part of this thesis consists on defining an enabling architecture and process in
a smart city level application, namely smart grid. More specifically, to the best of our
knowledge, our work is the first to explore and demonstrate the potential of FL in electrical
load forecasting, which is a key operation for energy production and trading.

In the following, we summarize the main contributions of this thesis.

• We propose a general framework for incorporating data properties in FEEL, by
providing a guideline for a thorough algorithm design, and criteria for the choice of
diversity measures in both datasets and models.

• we present several possible measures and techniques to evaluate data and model
diversity, which can be applied in different scenarios (e.g., classification, time se-
ries forecasting), in an effort to assist fellow researchers to further address FEEL
challenges.

• we design a suitable diversity indicator, which serves as a priority criterion for the
selection of devices;

• we formulate a joint device selection and bandwidth allocation problem taking into
account data diversity, and we propose a data-aware scheduling algorithm based on
an iterative decomposition technique to solve it;
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• we evaluate the diversity indicator and the data-aware algorithm through extensive
simulations;

• we design a reputation system to handle outliers and combine it with the diversity
indicator;

• we evaluate the importance of each component in client selection under different
data-poisoning attack scenarios.

In order to extend the work to vehicular networks and concept-shift cases, we leverage the
vehicle-to-vehicle (V2V) communication to bypass the communication bottleneck. Hence,
our contributions are as follows:

• we design an architecture and corresponding FL process for clustered FL in vehicular
environments;

• we formulate a joint cluster-head selection and resource block allocation problem
taking into account mobility and data diversity properties;

• we formulate a matching problem for cluster formation taking into account mobility
and model preferences;

• we evaluate the proposed scheme through extensive simulations.

Finally, since most of the work in FL is evaluated using simulated distributions of datasets
such as CIFAR-10 and MNIST which does not give realistic expectations for real deploy-
ments, we evaluated FL on a real-dataset of electrical consumption and production and
proposed a process to integrate FL in a collaborative process. In fact, residential electrical
consumption data reveals sensitive details about the habits of the residents. At the same
time, forecasting the consumption and production of electricity is important for saving
energy and other applications in the smart grid such as demand-response. Accordingly,
we propose a EI framework leveraging a centralized aggregator to coordinate the energy
trading in prosumer (i.e., producers and consumers) community groups (PCGs). The
proposed framework demonstrates the potential of EI in smart grid through the use of EC
and FL. The contributions in this part of the thesis are as follows:

• we discuss key elements for 5G empowered energy markets and highlight challenges
related to their design,

• we design a multi-stage energy forecasting framework and a decision process for
PCGs empowered with FL using edge equipment,

• we use personalization to enhance the quality of the resulting models, and

• using real datasets, we evaluate the accuracy of load forecasts and the potential
network load gain through simulations.
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Grid with Wireless Communications and Federated Edge Learning”, IEEE Wireless
Communications 2021, vol. 28, no. 6, pp. 26-33, December 2021,
doi: 10.1109/MWC.017.2100187. (Chapter 7) 5

1.4 Thesis Plan
This thesis is based on manuscripts (Article-based). Chapter 2 conducts a literature re-
view describing recent advances related to our research project. Chapter 3, chapter 4, and
chapter 5 present our contributions related to joint client selection and resource allocation
with a focus on data aspects. In chapter 3, we propose a general design framework for

1. https://github.com/afaf-taik/Data-aware-FL
2. https://github.com/afaf-taik/ReputationFL
3. https://github.com/afaf-taik/vehicularFL
4. https://github.com/afaf-taik/Smart-Grid-FL
5. https://github.com/afaf-taik/Smart-Grid-FL
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data-aware FL, listing several possible measures to evaluate the data diversity. In chapter
4, we formulate an optimization problem to select the clients with potentially more in-
formative datasets while optimizing the overall time and energy required for the training,
and we develop an iterative algorithm to solve the optimization problem. In chapter 5,
we extend the client selection indicator to take into account outliers and malicious devices
by implementing a reputation system. In chapter 6, we broaden the horizon of tackled
challenges to consider mobility in vehicular networks, and concept-shift by proposing an
optimized clustered vehicular FL process. In chapter 7, we integrate FL in a collaborative
EI empowered energy trading decision process, and we evaluate the efficiency of FL in the
use-case of smart-grid using real time series data.



CHAPTER 2

State of the Art

EI is an emerging paradigm meeting the challenging requirements of future smart services
scenarios and applications where latency and privacy are of upmost importance. EI mainly
consists of training and inference of different AI models at the edge of the network. While
on-device and edge inference have reached production-level, training models at the edge
remains challenging. Federated learning (FL) is the arch end of EI offering the possibility
to train several ML models on user equipment (UE), thus aligning with stringent privacy
requirements of several AI-based applications. However, FL is still in its infancy and faces
several challenges related to both AI and EC. In this chapter, we present a literature review
of recent advances related to this research project. We start by providing, in section 2.1,
an overview on AI on edge, and some key definitions. In section 2.2, we introduce FL
and the challenges surrounding its adoption in wireless edge networks. More specifically,
we identify two categories of challenges : resources and data. In section 2.3, we review
recent approaches proposed to address the challenges related to data in FL and discuss
their advantages and shortcomings. In section 2.4, we discuss the recent work focusing on
challenges related to resources in FL. Finally, in section 2.5, we conclude the state of the
art and introduce the contributions of this thesis.

2.1 EC and AI : Preliminaries and definitions
The recent progress in deep learning (DL) have paved the way for large scale adoption of AI
applications and services, spanning from home assistants to caching and recommendation
systems. More recently, with the proliferation of mobile computing and the Internet
of Things (IoT), data generated by widely distributed mobile and IoT devices require
phenomenal processing power. Existing cloud computing infrastructure will be soon unable
to keep up with these massively distributed devices and analyze their data. Inevitably,
there will be a pressing need to push the AI algorithms to the network’s edge so as to
deliver the full potential of AI applications in IoT. To resolve this challenge, EC was
proposed as an emerging paradigm consisting of pushing computing tasks and services
from the network core to a vicinity near the devices that generated the data. The new
inter-discipline AI on edge, is beginning to receive a tremendous amount of attention. In
the following, we define its various components, starting with an overview on EC, then
presenting preliminary definitions of AI algorithms.

9



10 CHAPTER 2. STATE OF THE ART

2.1.1 Edge computing/ Multi-Access Edge Computing
The exponential growth of IoT deployment, and the emergence of new applications with
stringent latency and privacy requirements, have paved the way to a wide adoption of
EC as a popular and innovative technology. EC refers to placing computing, storage and
network capabilities at the network’s edge, close to the end users. The physical proximity
to the data generators is the most emphasized characteristic of EC. Such proximity insures
low latency response and data privacy, making EC an important complement to the cloud,
and even a replacement for it in some scenarios [2, 11, 12]. Indeed, being in the vicinity
of end-devices can benefit many use cases where latency and privacy are of foremost
importance, such as industrial IoT [13] autonomous driving (AD) [14], and e-health [15].

Various new technologies are designed to work at the edge of the network, such as Micro
Data Centers (MDCs) [16], Fog Computing [17] and Multi-Access Edge Computing (MEC)
[18]. Several technologies are identified as enabling technologies for EC realization, such
as Network Function Virtualization (NFV) [19] and Software Defined Networking (SDN)
[20]. NFV aims to abstract and virtualize the network functions addressing flexibility
and agility requirements of EC. On the other hand, SDN provides 5G networks with
programmability, automation and centralization of control functions for the traffic flows.
NFV/SDN can enhance the interoperability of the EC infrastructure. For example, Edge
Analytics services can be hosted on a NFV framework as virtual network functions [21].
SDN/NFV can also allow edge nodes to be efficiently orchestrated and integrated with
cloud data centers [22].

The EC layer is the intermediate layer between the users (end devices) and the Cloud
data centers. Fig 2.1 illustrates the different components of an EC enabled architecture.
The EC network comprises both Edge and end nodes. End nodes are often heterogeneous
devices, from different manufacturers, with limited capacities. The end nodes reside at the
bottom of the architecture. They are essentially smart devices that generate data and/or
consume smart services. The upper layer is the cloud computing layer, it is dedicated to
big data analytics and permanent storage facilities.
The edge layer is formed by various networking components like edge routers, Base Stations
(BSs), and switches, alongside with MEC servers and MDCs. These components act as a
single processing, storage or networking unit. They provide real-time data processing and
serve as a caching facility. As a result, EC is one of the 5G enabling pillars by virtue of
its advantages of reducing data transmission, improving service latency and easing cloud
computing pressure.
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Figure 2.1 EC enabled architecture

2.1.2 Artificial Intelligence
AI refers to the set of techniques and approaches aimed at building intelligent machines
capable of performing tasks requiring human-level intelligence such as planning, learning,
reasoning, problem solving, and even some social intelligence and creativity. AI is essential
for enabling quick analysis of huge volumes of data and extracting insights, which leads
to a strong demand to integrate EC and AI. This integration leads to the emergence of
Edge Intelligence (EI) [23]. EI refers to pushing AI to the edge of the network. This
definition is not restricted to running AI models on edge servers/devices, but expanded to
include the collaboration of edge and cloud [3], and using AI for EC. By adapting models
to resource-restricted devices, EI will unleash the full potential of EC.

An AI system combines machine learning (ML) algorithms alongside other data analysis
methods to achieve intelligent capabilities. ML refers to a set of techniques that enable a
system to learn from data or past experiences without explicit programming. ML encom-
passes a wide range of algorithms including supervised learning (e.g., linear regression,
decision trees), unsupervised learning (e.g., k-means), and reinforcement learning (RL).
Briefly, supervised learning requires training with labelled data comprising inputs and
desired outputs. In contrast with the supervised learning, unsupervised learning does not
require labeled training data and the environment only provides inputs without desired
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targets. RL enables learning from feedback received through interactions with an external
environment.

In ML, a model refers to the mathematical expression of a real-world process learned
through a learning algorithm that finds patterns in the training data, by aiming to min-
imize the error function often termed loss function. A model is first trained then used
to inference useful information from raw/test data. In the following, we present several
definitions related to ML that are used throughout this thesis.
a) Loss function: ML models include a set of parameters which are learned based on
training data. A training data sample j usually consists of two parts for supervised learn-
ing models. The first part is the input denoted xj (e.g., the pixels of an image, previous
steps in time series) and the other denoted yj is the desired output of the model (e.g., the
label of the image, the value of the next step in a time series). To enable the learning, each
model has a loss function defined on its parameter vector w for each data sample j. The
loss function captures the error of the model on the training data, and the model learning
process aims to minimize the loss function on a set of training data samples. For each data
sample j, we define the loss function as f(w, xj, yj). For some unsupervised models such
as K-means, the training data is composed of only xj, and accordingly, the loss function
value only depends on xj. Table. 2.1 summarizes some examples of ML models and their
corresponding loss functions, with ∥ . ∥ denoting the L2 norm, and xT the transpose of x .

b) Stochastic Gradient Descent Stochastic gradient descent (SGD) is an iterative
method for optimizing an objective function with smoothing properties (e.g., differen-
tiable) [24]. SGD is used in high-dimensional optimization problems, as it reduces the
computational load compared to gradient descent. This is achieved by replacing the ac-
tual gradient, which is computed from the entire data set in gradient descent, by an
estimate of it computed from a randomly chosen subset of the data. After initializing the
model and choosing a learning rate, a model w in step t+1 is computed either on a single

Model Loss Function f(w, xj, yj)

Linear Regression 1
2

∥∥yj − wTxj

∥∥2

K-means 1
2
minl

∥∥x(l) − w(l)

∥∥2 where w
def
= {wT

(1), ...}
Squared-SVM λ ∥w∥2 + 1

2
max0; 1− yjw

Txj
2 (λ is a constant)

Table 2.1 Loss functions for some ML models
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sample, or on a mini-batch as follows:

w(t+ 1) = w(t)− η∇f(w(t)) (2.1)

Other variations and improvements of the SGD were proposed, such as adding momentum,
Adagrad [25] and Adam [26]. SGD is widely used for training several models such as SVMs
and logistic regression. Moreover, combined with the back-propagation algorithm, it is is
also used for training artificial neural networks (ANNs).

c) Artificial neural networks: The latest rise in AI was in the past decade and was
partially due to breakthroughs achieved in deep learning (DL), a subset of ML algorithms,
where the new advances achieved human-level accuracy in some areas and even surpassed
humans in some applications [27], including computer vision [28] and natural language
processing [29, 30]. DL models consist of various types of Deep Neural Networks (DNNs).
In short, a DNN is an ANN that has multiple hidden layers. Many of the work realized
in the thesis and its related work use or are related to ANN models in general and DNNs
for supervised learning in particular, therefore, we provide a brief background on these
models.

As depicted in Fig 2.2, each layer of a DNN is composed of neurons that generate linear
or non-linear outputs. Each neuron has a vector of weights associated with the input data
size of the layer.

Figure 2.2 DNN and neuron structures

In inference, the input data is propagated through the layers sequentially, where each layer
performs matrix multiplications on it. The output of a layer is -usually- the input to the
next layer. Once the data has been processed by the final layer, the output is provided at
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the output layer.This process is called feed-forward pass. Depending on the problem, an
output can take different forms such as a numerical value, a vector, or a matrix.

Convolutional neural networks (CNNs) are a special case of DNNs where the matrix mul-
tiplications include convolutional filter and pooling operations, which are essential to cap-
turing the high-level representation of the input data. They are mostly used in computer
vision tasks [31, 32]. For example, provided a picture of an animal, the CNN will be
used to analyze the pixels to classify the animal. Recurrent neural networks (RNNs) are
another type of ANNs. They are used to process sequential input data, such as time series
and text. RNNs are widely used in forecasting tasks and natural language processing
[29, 30]. Some of the most used RNN neurons are Long-short term memory (LSTM) and
gated-recurrent units (GRU).

In supervised ANN training, the initial values of weights and biases in the model are often
randomly generated. As it is the case for other ML models, The goal of ANN training is to
optimize these weights and biases. We feed samples of data to the network, and after the
feed-forward pass, the output of the last layer is compared to the ground truth via a loss
function (e.g., root mean squared error (RMSE), mean average percentage error (MAPE)
). To adjust the weights of each neuron in the model, SGD or a variant, is used and the
gradient of the loss function is calculated. Using the Back Propagation mechanism [33],
the error is propagated back across the layers of the ANN. The weights are then updated
based on the gradient and the learning rate. By feeding a large set of training samples
and repeating this process for a few epochs (i.e., passages through the entire training
dataset) until the training loss is below a predefined threshold, or the accuracy reaches
the desired level, the final model is obtained. The DL training procedure consists of the
feed-forward process and the back-propagation process while the inference involves the
feed-forward process only. This makes the training more resource-consuming, especially
that it is repeated for multiple iterations. As a result, edge inference is in production
stages for several applications, while edge training is still at its infancy.

2.2 Federated Learning : Overview and Challenges
Earlier work in EI focused on deploying pre-trained models at the edge for inference.
Nevertheless, privacy issues and communication overhead generated a pressing need for
pushing the training task to the edge. FL emerged as an attractive solution for training
models at the edge. FL was first proposed by Google and deployed on android phones
for keyboard prediction [9]. The premise of FL is to keep the data at each device and
train a shared global model across the federation of distributed connected devices by only
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sharing model updates with a cloud server for aggregation. By keeping data at the edge,
FL prevents data leakage, reduces bandwidth usage, and benefits from rapid access to
ephemeral data. The application of FL in wireless edge networks forms the so-called
concept of FEderated Edge Learning (FEEL). In FEEL, edge devices collaboratively train
models and send updates to a MEC server for aggregation. The MEC server is equipped
with a parameter server (PS), and can be a next generation nodeB (gNB), or a base
station (BS). In this section, we introduce a general template for FEEL and we present
the different challenges related to it in terms of data and resources, key performance
indicators, alongside current and future applications.

2.2.1 Learning Problem
Let us consider a wireless edge cellular network with K edge devices. Each device k has
a local dataset Dk with a data size of |Dk|. For each device k the loss function on the
dataset Dk is

fk(w) =
1

|Dk|
∑
j∈Dk

fj(w) (2.2)

Assuming that Dk ∩ Dk′ = ⊘ for k ̸= k′ , the goal is to find the optimal global model
parameters w ∈ Rl that minimizes the average prediction loss f(w):

min
w∈Rl

f(w) =
1

D

∑
j∈

⋃
j Dj

fj(w) =
1

D

K∑
k=1

|Dk| fk(w), (2.3)

where w is the model parameter vector to be optimized with dimension l, fk(w) is the
loss value function computed by device k based on its local training data, and D is the
total number of data points across all devices (i.e., D =

∑N
k=1 |Dk|). Due to the inherent

complexity of most ML models, it is usually impossible to find a closed-form solution to
2.3. Thus it is often

2.2.2 FEEL template
Ideally, all the devices train their local models using their local training data and upload
their gradient or model updates to the server for aggregation. Then, the server sends
the new global model to the edge devices starting a new iteration termed communication
round. Nonetheless, the constrained edge resources and limited communication bandwidth
in wireless (edge) networks result in significant challenges and imposes new considerations
for FEEL in contrast to centralized and distributed learning paradigms. For instance,
only a subset of devices are available and suitable for training at once. Moreover, the
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aggregation step needs to take into consideration the statistical heterogeneity of the local
datasets. A template for FEEL training can be considered as follows [34]:

1. Client Selection: The server selects a subset of devices meeting training require-
ments. For instance, only devices that have enough battery, good reception and
enough data samples could be selected for training.

2. Global Model Broadcast: The selected clients receive the current model weights along-
side other hyperparameters (e.g., number of local epochs, optimizer) from the MEC
server.

3. Local Training: Each selected device locally trains the model.

4. Models Upload: The MEC server collects the device updates.

5. Model Update: The server updates the global model using the collected updates
typically by averaging.

Each of these steps should be carefully optimized for a seamless deployment in wireless
edge networks. Having defined a general framework for FEEL, we next discuss the different
challenges that need to be considered.

2.2.3 Challenges
Compared to similar problems such as distributed learning in data centers, the two chal-
lenging aspects of FEEL settings are resources and data.

Resources: The first set of challenges that should be considered are related to compu-
tation, storage and communication resources. These resources are usually heterogeneous,
scarce, and subject to uncertainties.

– Resources heterogeneity: In most use-cases of FEEL, the computation, storage and
communication capabilities vary from a device to another. For instance, devices,
even from the same manufacturer, will often be equipped with different hardware
(e.g., CPU, GPU, AI chips), network connectivity (e.g., 4G/5G, Wi-Fi), and may
differ in available power (e.g., plugged-in, unplugged) [35]. For synchronous updates
aggregation, which is the most adopted aggregation method [36], the gaps in compu-
tational and communication resources introduce challenges such as significant delays
caused by stragglers. FEEL algorithms should therefore aim to be adaptive to the
heterogeneous hardware during client selection and updates’ collection.

– Limited Resources: Unlike cloud servers, the computing and storage resources of
the devices are very limited. Therefore the models that can be trained on device
are relatively simpler and smaller than the models trained on the cloud [37, 38, 39].
Furthermore, devices are frequently offline or unavailable either due to low battery
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levels, or because their resources are fully or partially used by other applications. As
for the communication resources, the available bandwidth is limited. It is therefore
important to develop communication-efficient methods that allow to send compressed
[40] or partial model updates[41].

– Mobility: FL is considered a key enabler toward Intelligent transportation systems
[42]. It was investigated and evaluated for scenarios involving vehicle management in
AD, Infotainment and route planning. In these scenarios, the communication chal-
lenges are exacerbated because of the high mobility in vehicular ad-hoc networks
(VANETs). Particularly, the communication channel states in mobile and vehic-
ular environments are subject to rapid changes, which leads to uploading partial
participation and frequent disconnections.

Data: Unlike distributed learning in data centers where the data distributions can be
controlled and identically and independently distributed (i.i.d), data distributions in FEEL
contexts are wedged by the users’ environments and behaviours [43, 44]. For this reason,
the local datasets for most use-cases are massively distributed, statistically heterogeneous
(i.e., non-i.i.d, unbalanced, subject to concept-shift), and highly redundant. Additionally,
the raw generated data is often privacy-sensitive as it can reveal personal and confidential
information. Furthermore, local data quality cannot be verified, meaning local datasets
can be subject to poisoning attacks.

– Privacy: When FL was first coined, privacy was among the first aspect considered
in the design. FEEL aims to protect the raw data generated on each device by only
sharing model updates with the server. However, recent work has shown that model
updates can be reverse-engineered to reveal sensitive information, either by a third-
party or a malicious central server [45]. FEEL design therefore requires additional
mechanisms to guarantee data privacy [46].

– Small and widely distributed datasets: In FEEL scenarios, the users are usually
dispersed over large geographic areas and the number of the local samples is limited
by the devices’ memory. A large number of devices participate in training with a
small average number of data samples per client. Training models on small numbers
of samples makes them prone to overfitting. Additionally, depending on the MEC
defined requirements, many devices may not own enough data for training.

– Unbalance: In several FEEL scenarios, the size of the generated data depends on
the user’s behaviour and device usage. Moreover, the number of training samples
the device’s storage capacity. The large gaps in the training data sizes imposes new
considerations regarding the training deadline and the number of local epochs that
can be executed on each device.
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– Non-i.i.d data: The training data on a given device is typically based on the usage
of the device by a particular user, and hence any particular user’s local dataset will
not be representative of the population distribution. This data-generation paradigm
fails differs from the i.i.d assumptions usually found in distributed learning, hence
adding complexity to the FEEL performance evaluation and convergence analysis.

– Redundancy: The unbalance of the data can be also observed within the local train-
ing samples of a single device. In fact, IoT data is often highly redundant. For
instance, in sequential data such as video surveillance and sensors data, only a sub-
set of the data contains new information or events.

– Concept-shift and data poisoning: In use-cases where the user preferences are in-
play, for example dating application and content streaming platforms, resulting in
concept-shift. Concept-shift refers to when data with same feature have different
labels between clients, or when different features share the same label. However,
this same kind of shift can be viewed differently in other cases. Particularly, in
some security applications where some behaviours should be labelled as malicious,
a malicious client may label these behaviours as normal thus launching a label-
flipping attack. Taking into consideration the particularities of the labels in different
scenarios is essential to guarantee the training convergence.

– Artificial datasets vs real use case data: There exists a large gap between artificial
datasets that are popular and accessible for benchmarking, and datasets that realisti-
cally capture the characteristics of a federated scenario. In fact, most existing work
use artificial distributions of artificial datasets to simulate non-i.i.d, unbalanced,
and concept-shift scenarios. While this allows for reproducibility and accessibility
of data, they do not reflect challenges that are often found in real use-cases such as
missing and erroneous data [47].

These challenges require re-designing and rethinking the different steps of FEEL. Taking
into account possible issues with data and resources constraints, proposed techniques often
will aim to accelerate the training and reduce its cost. However, these two goals are often
in conflict. Depending on the use-case, the performance of a FEEL method or algorithm
should be evaluated based using predetermined indicators.

2.2.4 Key Performance Indicators
In order to adequately assess the performance of a FEEL method or technique, we iden-
tify key performance indicators that should be evaluated in FEEL environments. More
specifically, we pinpoint three general axis of evaluation : Time, energy, and learning, and
for each of these axis, we detail key performance indicators.
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Time: Time in FEEL can be evaluated through different angles: communication round
duration, total time or required number of communication rounds until model convergence.
For synchronous updates aggregation, the total duration of a round is determined by the
slowest device among all the selected devices [48]. Bandwidth and power allocation in
the model upload step are crucial when the round’s deadline is not pre-determined. For
instance, more bandwidth could be allocated to stragglers and less for faster devices.
Another aspect than can be evaluated is the time/number of rounds until convergence.
The optimization techniques centered on this aspect mainly focus either on the selective
upload of updates [49], or on maximizing the participating devices in each round [50].

Energy efficiency: Optimizing the energy consumption across the network is necessary
to reduce the rate of drop-out devices because of battery drainage. In fact, training
and transmission of large-scale models are energy consuming, while most edge and end
devices have limited battery lives. Additionally, using the maximum capacity of the devices
would make the users less-likely willing to participate in the training. A design goal of
a scheduling algorithm (i.e., joint selection and resource allocation) would be to allocate
bandwidth based on the devices’ channel states and battery levels. As a result, more
bandwidth should be allocated to devices with weaker channels or poorer power states, to
maximize the collected updates [50].

Learning performance: The goal of several training processes is to find the parameters
that minimize a loss function across the population of the devices. However, the loss func-
tion is not enough to evaluate the performance of the model. Instead, the model is usually
tested on a test-set, which can either be stored at the server through publicly available
data, or distributed across the devices. In order to evaluate the learning performance, sev-
eral metrics can be used throughout the training. For instance, in classification models,
we can use accuracy, which refers to the ratio of the number of the input samples that get
the correct predictions from inference to the total number of input samples. In regression
models, the performance can be reflected by other metrics such as RMSE and MAPE,
where the RMSE is often in the same unit as the predicted value, and the MAPE reflects
the percentage that the error represents compared to the real value. In contrast to central-
ized learning, optimizing the learning in the FEEL setting cannot be seen independently
from time and energy optimization.

2.2.5 FEEL applications
FEEL will enable a wide range of IoT services and applications.
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a) IoT services

FEEL was proposed as a key-enabler for several IoT services, such as IoT data sharing,
caching, and mobile crowdsensing. Data sharing consists of sending data over a shared
network to serve end users in a specific application. Instead of sharing the raw IoT data,
FEEL offers an alternative of sharing learning results to enable intelligent IoT networks
with low latency and privacy preservation [51]. Using FEEL as an alternative was proposed
for industrial IoT [52] and vehicular network scenarios [53, 54]. Moreover, work in [55, 56]
proposed to build proactive data caching schemes without directly accessing user data to
predict the most popular files for caching.

b) IoT Applications

Leveraging several IoT services, FEEL has the potential to be the backbone for several
IoT applications such as smart health-care, smart transportation, smart cities, and smart
industry.

Compared to other domains, healthcare date are highly sensitive and often subject to
regulations such as United States Health Insurance Portability and Accountability Act
(HIPPA) [57]. Anonymization techniques such as the removal the metadata are insufficient
to preserve privacy of patients. FL in general and FEEL in particular were used for medical
imaging processing [58, 59] and arrhythmia detection [60]. Smart health applications focus
on reinforcing FL with privacy techniques such as differential privacy [61].

Smart transportation applications such as AD [62] and traffic prediction tasks [63]. AD in
particular relies heavily on data-sharing, thus creating several concerns regarding privacy
and communication overhead where FL becomes an attractive alternative. Nonetheless,
challenges related to mobility are understudied in the case of vehicular networks.

Smart city applications such as smart surveillance [64] and smart grid use several privacy
sensitive data in their classification and prediction models. More specifically, smart surveil-
lance can make individuals subject to stalking and harassment. Additionally, smart-grid
data reveal the habits of house residents, household occupancy, and even traces of some
appliances. Such information can be maliciously used for burglary and targeted adver-
tisement. Nonetheless, the prediction models are still required to enable the potential of
these applications, which makes FEEL a promising alternative. Nonetheless, experimental
studies in this area are still lacking.

2.3 Tackling data related challenges
To tackle challenges related to data, several adjustments, techniques, and algorithms,
were proposed. These efforts focused on one or several steps of the FEEL algorithms,
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spanning from client selection to updates averaging. In this section, we first focus on
data distribution skew (non-i.i.d and unbalanced aspects), then we discuss efforts toward
handling concept-shift and poisoning attacks.

2.3.1 Non-i.i.d and unbalanced data
In FEEL, the client represents the data owner. Each client has full autonomy for the
local data and it often reflects the end user’s behaviour. The non-i.i.d data is among the
most common features of data in FEEL and distinguishes it from similar settings such as
distributed training. In classification problems, the non-i.i.d aspect is often reflected in
cases where the input features or data labels are not evenly distributed between clients.
Some works [65, 66] proposed to distribute publicly available data or data shared by some
clients to overcome this challenge. However, it is unrealistic to deploy this solution as data
might not always be publicly available and clients might not be willing to share sensitive
data. Instead, optimizing the different steps in FEEL’s iterative process remain more
tractable solutions.

Client Selection: In FEEL, the number of available clients could be sufficiently large,
but the bandwidth available for model broadcast and updates’ upload is rather limited,
making it more practical to only involve a subset of the devices in the training. Under data
distribution skew, the client selection policy becomes critical in terms of training efficiency,
and highly affects the final model’s quality. Early work focusing on client selection often
aimed to maximize the number of selected clients [50, 67]. In [67], the client selection
algorithm gives priority to the end devices with good communication and computation
capabilities. Authors in [50] propose an energy-efficient algorithm that ensures the training
speed by collecting the maximum amount of updates possible. These algorithms do not
perform well in skewed data distributions, as they are biased toward powerful devices
with better channel states. Such bias will likely lead to models that cannot generalize to
a wide population of devices, as it does not guarantee the diversity of updates sources.
Consequently, fairness measures [68, 69, 70] were adopted to ensure gradient diversity. In
[69, 70], an age-based scheduling algorithm was proposed, where higher priority is given
to devices that were not selected in several previous rounds. However, relying on fairness
only might affect the number of collected updates within a round. In [68], authors focus on
long-term fairness, where the client selection is defined as an online Lyapunov optimization
problem and a long-term guarantee of client participating rate is quantified using dynamic
queues.

Updates collection: "Not all updates are significant" is the intuition on which sev-
eral works are based. For instance, Gaia [71] determines which local updates should not
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be transferred based on their magnitude compared to the global model. Updates where∥∥Update
Model

∥∥ < Threshold are considered insignificant and thus are not uploaded. However,
this method cannot be applied for non-i.i.d distributions.Furthermore, the value of this
significant measure decreases over the iterations which makes finding a global threshold
difficult. Accordingly, Communication-Mitigated Federated Learning (CMFL) [49] pro-
posed a significance measure based on the percentage of same-sign parameters in the two
updates. This approach identifies whether the client-side updates follow the collaborative
direction and excludes outliers. Evaluating the updates’ significance might help mitigate
the communication overhead and improve the learning efficiency by excluding devices with
redundant data and outliers. However, this method is not suitable in energy and resource-
constrained environments, mainly leading to wasting devices computing resources and
energy.

Model Update: To mitigate issues related to data heterogeneity, previous work pro-
posed different ways to update the global model using the collected updates. For instance,
authors in [72] propose q-Fair FL (q-FFL), that encourages fairer and more uniform ac-
curacy distributions across devices in FL. q-FFL minimizes an aggregate reweighted loss
function, parameterized by q > 0 such that the devices with higher loss are given higher
relative weight. Authors in [73] proposed weighting mechanism based on how well the local
model performs on the model performs on the device’s validation data. Yet, the federated
averaging (FedAvg) [74] is perhaps the most widely adopted and studied FL algorithm. In
FedAvg, the updates are aggregated using weights parameterized using the local datasets’
sizes. Nonetheless, measuring the contribution using the dataset size only does not take
into consideration the statistical heterogeneity and redundancy of the data.

2.3.2 Concept-shift and Data poisoning
While simple data distribution skewness cases might be handled with tweaks and adjust-
ments to the FEEL process, concept-shift and data-poisoning require novel and additional
measures, especially since work on these two aspects is still in its early days [75]. an early
attempt to focus on data poisoning is found in [76], where authors propose to send a model
to be executed locally to assess whether data is poisoned. However, a malicious client can
fake the results of the model and a model might not be trained to predict all kinds of pos-
sible poisoning attacks. Another approach was proposed, handling both malicious clients
and concept-shift is updates clustering. In the following, we discuss how clustering and
personalization techniques are used to handle outliers and concept-shift.

Updates clustering: Due to training small models in FEEL, the standard process in
FEEL might not be suitable in the presence of adversaries (e.g., label flipping attack), and
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varying preferences. In order to tackle these challenges, updates clustering was proposed
to detect malicious clients and overcome limited model complexity. By calculating the
updates’ similarity, using cosine similarity for instance, the updates can be clustered during
a pre-set communication round [77] or when the model has converged to a stationary point
[78]. After clustering the updates, new models are created for each cluster in the case of
varying preferences for each cluster, or outliers (and possibly malicious devices) can be
excluded from the training.

Personalization: The standard formulation of FEEL produces one shared model for all
clients. However, in some cases, the local models trained solely on the private data per-
form better than the global shared model due to statistical heterogeneity of data [79]. As
a result, several techniques were proposed to personalize global models to work better for
individual clients. For instance, work in [80] suggest clustering clients with similar prop-
erties (e.g., geographical) and training a separate model for each group. Personalization
can also be achieved by fine-tuning a global model using standard optimization methods
on data stored locally on a single device[81]. While it is expected that personalization
could be beneficial for most clients, it is necessary to ensure that personalized models do
not overfit.

2.3.3 Benchmark data
Several efforts were put toward evaluating and demonstrating the potential of FL algo-
rithms. Existing and realistic FL scenarios use proprietary federated datasets e.g., crowd-
sourced and proprietary data by Huawei in [82] and by Google in [9]. Some realistic-like
federated datasets were derived from publicly available data, but which are not straightfor-
ward to reproduce or to simulate FEEL scenarios, examples include Shakespeare’s works
based dataset for text generation, where each of the characters represents a client [83]. As
a result, the datasets used in FEEL are usually based on artificial partitions of MNIST[84],
MNIST-fashion [85] or CIFAR-10 [86].

2.3.4 Conclusion
Several approaches were proposed to tackle the non-i.i.d and unbalanced aspect of FL.
For instance, a hybrid form of FL consisting of using public data and data from clients
willing to share some sample to balance the distributions. Nonetheless, this method is
not always feasible. Other approaches focused on optimizing the different steps in the FL
iteration. In the client selection step for instance, the most common goal is the diversify
the data sources through maximizing the number of collected updates or through imple-
menting fairness as a selection criterion. The updates’ collection step was also modified
to prioritize more significant updates through the evaluation of the resulting models and
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their direction. Lastly, several methods for the model aggregation were proposed to assign
weights to the collected updates with different considerations such as fairness and the local
data size. However, the local data properties are often overlooked by these general meth-
ods in the client selection and updates collection. Likewise, more challenging problems
like concept-shift and data poisoning require additional attention. Updates clustering in
particular was proposed to mitigate these challenges. Nonetheless, it has is based on some
unrealistic expectations like the participation of all the clients in the training round where
the clustering is executed. Moreover, personalization techniques, through local retraining,
can allow outliers with different usage patterns to be better captured locally without over-
fitting. Lastly, the empirical evaluation of FEEL algorithms on non-i.i.d data is usually
performed on artificial partitions of datasets such as MNIST and CIFAR-10, which do not
provide a realistic model of a federated scenario. It is thereby necessary to evaluate its
potential to encourage and facilitate future adoption.

2.4 Tackling Resources related challenges
Recently, the resource-constrained FEEL systems have surged in popularity, and have
been widely studied in the literature. In addition to several compression [87] and partial
participation [7] techniques, several mechanisms were proposed to adapt the federated
training to the constrained resources. This is often achieved bu optimizing time and energy
throughout client selection, local training and model upload steps. Tackling mobility
related challenges, especially in vehicular networks, imposes other considerations. In this
section, we review and discuss the research efforts in FEEL from resource point of view.

2.4.1 Client Selection and Resource Allocation
As communication is FEEL’s bottleneck, client selection has been studied jointly with
resource allocation in the existing literature. More specifically, algorithms where clients
are selected and allocated an amount of time [67], fraction of the bandwidth [50], number
of resource blocks [88], and/or transmission power [89].

The work considering resource allocation is two-fold: work aiming to optimize energy, and
work focusing on time in terms of round duration.

In work aiming to reduce the total required energy for training and upload, the client
selection will exclude devices that do not have enough energy to carry-out these tasks
[90, 91]. Through resource allocation, adequate transmission power and CPU-frequency
will be chosen to maximize the number of participants with an optimal energy consumption
across devices [92]. Authors in [93] propose scheduling clients with a long-term perspective,
where more participants are included in later rounds compared to earlier rounds.
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Work aiming to reduce the duration time of a round need to handle the straggler
problem [94]. Indeed, the heterogeneity of computation and communication resources will
lead to some devices being faster than others. In this case, more bandwidth is allocated
for transmission by slower devices and less for faster devices. This to some extent can
equalize their total update time (training plus upload time) [95]. Furthermore, to avoid
squandering bandwidth on extremely slow devices, client selection should exclude slowest
devices by applying thresholds on their expected completion time, which can be inferred
using their computing and communication capacities, alongside their channel states [67].
Nonetheless, in the case of highly unbalanced datasets, such method may exclude clients
owning larger and richer datasets.

While these works focused either on time or energy, there exists a clear trade-off between
these two goals in resource allocation. As a result, several proposed algorithms consid-
ered both time and energy during resource allocation [96]. For instance, authors in [97]
formulate resource allocation as a multi-objective optimization problem, aiming to min-
imize both time and energy. But in general, defining the optimization goal depends on
the use-case and its constraints. For example, in the case of battery-powered devices, the
optimization problem will often have energy constraints, while for devices that are always
plugged in, the focus might be on time for instance. For example, authors in [98] aim to
minimize communication round’s time within an energy budget, while authors in [99] aim
to minimize the total energy within a fixed deadline.

2.4.2 Model Training and Upload
In order to enable the heavy tasks of training and uploading large models, several compres-
sion techniques such as quantization and pruning have been used in FEEL. Quantization
[40] consists of changing the model’s parameters from floating-point numbers to low-bit
width numbers, thus avoiding costly floating-point multiplications. Pruning [100] is also
a widely adopted technique of model compression. Pruning a neural network involves
removing the least important parameters (e.g., weights below a threshold), namely neu-
rons or connections. Nonetheless, removing neurons might damage the accuracy of the
DNN, leading to an important trade-off between the network size and accuracy. More-
over, dynamic choice of training parameters such as number of local epochs and batch size
significantly improve the number of devices that can participate in FEEL. Additionally,
FL is premised on replacing frequent gradient uploads with more local computation. Such
trade-off can be carefully modelled to reduce the overall communication round’s cost.

Partial Updates: Authors in [7] define two strategies to improve resource usage in model
update: structured updates and sketched updates.
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– Structured Updates: The main advantages gained from this strategy are energy ef-
ficiency and low latency in both training and update upload. When it was first
proposed in [7], the update is restricted to be a sparse matrix, following a pre-
defined random sparsity pattern (i.e., a random mask). The pattern is generated
afresh by a random seed in each round and for each client independently. After
training, each client then sends the update and the random seed. Later work in
[101] takes resources heterogeneity into account, as it proposes soft-training where
an algorithm is designed to choose subsets of neurons of an ANN to be masked in
each round for each client based on energy and time profiling.

– Sketched updates: Sketched updates only optimize the upload phase in contrast to
structured updates which optimize both training and upload. They can be based
on edge intelligence compression techniques such as quantization [102] and prun-
ing [100]. Furthermore, similarly to structured updates, sketched updates can be
achieved through sending a subset of parameters using a random mask. Variations
of sketching were used to enhance communication in a loss-less manner [103], and to
enforce privacy in FL [104].

Communication and computation parameters: While FL’s main idea is trading fre-
quent communication with more local computation, optimizing training (e.g., number of
local iterations, batch size) and uploading parameters is necessary to better benefit from
this trade-off. For instance, authors in [35] propose an adaptive mechanism where the
numbers of global and local iterations are chosen depending on the available communi-
cation and computation resources. Authors in [105] design a compression control scheme
to balance the energy consumption of local training and wireless communication from the
long-term learning perspective. In particular, the compression parameters are elaborately
chosen for FL participants adapting to their computing and communication environments.
Another idea is found in [106], where authors propose to bypass the synchronization barrier
through adaptive batch size, enforced by appropriate learning rates on different devices.

2.4.3 Model Aggregation
Resources heterogeneity and scarcity often lead to straggler’s problem. A popular direction
is asynchronous aggregation with adaptive weighting. Work in [107] proposes FedAsync,
which consists of collecting the updates in an asynchronous manner and assigning weights
depending on the staleness of the update, allowing a smooth adaptation to heterogeneous
resources through a flexible updates collection. Similarly, in [108], the weight assigned to
the updated gradients decreases as the staleness value increases. Other works proposed
semi-asynchronous approaches. For instance, in [109] local models on clients that were
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not selected will be cached for several iterations before uploading. However, due to stale
updates’ effect on learning, and due to the convergence being guaranteed only on a subset
of problems [107], synchronous updates collection remains the preferred method [36].

2.4.4 Mobility
Vehicles have become equipped with a wide range of sensors and equipment serving diverse
applications such as autonomous driving and infotainment. To enhance the overall ML
models’ performance, the deployed ML/AI models in vehicles need to be updated and im-
proved periodically by original equipment manufacturers (OEM). Traditionally, this would
be achieved by uploading the collected data to the OEMs, which creates significant com-
munication overhead and violates data privacy. FL was recently introduced to vehicular
applications as an efficient tool for reducing this transmission overhead while also achiev-
ing privacy. However, mobility challenges are a roadblock facing an efficient deployment
for FL in vehicular networks.

A naive approach in [42] proposes to simply train models when vehicles stay in a fixed
location, for example, parking lots, ensuring that the connection is stable. Nonetheless,
this is not always suitable since vehicles from different OEMs may not be available in the
same area. A joint vehicle selection and updates aggregation based on contract-theory
was proposed by authors in [110]. The vehicle selection focuses on image quality. In fact,
the mobility has on the quality of captured images by on-board cameras, as they generally
suffer from motion blur, noise, and distortion. In particular, the motion blur level varies
with instantaneous velocity of each vehicular client. However, this work does not take the
impact of the mobility on the training and upload time and the possible disconnections.
Authors in [111] focus on the same problem related to the quality of images, but propose
a greedy selection algorithm taking into consideration the mobility and heterogeneity of
the vehicles. They formulate a joint selection and resource allocation problem aiming to
minimize time and energy, and solved using a greedy algorithm. Nonetheless, the com-
munication with the MEC server in vehicular scenarios is subject to several uncertainties
and disconnections. Vehicle-to-vehicle (V2V) provides an efficient alternative to evade
the communication issues. Authors in [112] introduce a decentralized alternative where
vehicles collaboratively train a model without any centralized coordination by utilizing
the consensus mechanism of the blockchain. Nonetheless, fully decentralized models are
harder to control and reuse by the OEMs.

2.4.5 Conclusion
Communication and computation efficiency of FEEL have been largely studied in the
literature. Several compression techniques can be leveraged for FEEL, such as sketched
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and structured updates. Furthermore, optimization algorithms were heavily investigated
for client selection, resource allocation, and to select optimal training parameters (e.g.,
number of local epochs, batch size, number of clients to select). The optimization often
targeted time, energy, or both, and usually considered cost budgets (limited energy, lim-
ited bandwidth). Nonetheless, data properties were often overlooked, thus making the
proposed algorithms inefficient, especially in the case of non-i.i.d and unbalanced data
distributions. Furthermore, mobility related challenges, especially in vehicular networks
are under-explored. While FEEL can potentially enable several privacy-sensitive applica-
tions in AD and infotainement for instance, the iterative process needs several adjustments
before its adoption in vehicular networks. Few works were done in this direction, mainly
considering the effect of velocity on the quality of captured images, and not on the over-
all process. Moreover, V2V offers a new opportunity to overcome the communication
resources’ scarcity, but requires further investigation.

2.5 Conclusions and contributions
Through this review of the state of the art, we have briefly presented AI and EC as the main
components of EI, and FL as the last piece of the puzzle. Then, we discussed the challenges
facing the adoption of FL in wireless edge networks in terms of data and resources. We
then discussed recent efforts toward addressing these challenges and identified some of
their shortcomings. In particular, bridging the gap between resource-oriented work and
ML-focused work is vital for FEEL.

To begin with, data properties were highly overlooked in client selection and update col-
lection steps. In this thesis, we consider such properties at the heart of FEEL. Therefore,
we identify several metrics to evaluate the quality of a dataset and its richness. Then, we
formulate the client selection as an optimization problem taking into account resources
and data. We then extend the proposed algorithm by adding to its robustness against
malicious clients launching data poisoning attacks through the evaluation of the collected
updates.

Additionally, clustering was used in vehicular networks to enable several services, while a
different notion of clustering was proposed in FL to mitigate concept-shift and malicious
clients. In this thesis, we propose a combined approach using clustering in a vehicular
sense and clustering in FL to enable several applications in vehicular networks.

Lastly, we bring a more realistic sense for FEEL and evaluate its potential in smart city
applications. We propose an EI-powered architecture and decision process for energy
trading in the smart grid. To the best of our knowledge, we were the first to investigate
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FEEL as a solution for building energy forecasting in the smart grid. Additionally, we show
through evaluations its potential gain in terms of communication and improved prediction
models.
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CHAPTER 3

Federated Edge Learning : Design Issues and
Challenges.

3.1 Abstract

Federated Learning (FL) is a distributed machine learning technique, where
each device contributes to the learning model by independently computing the
gradient based on its local training data. It has recently become a hot research
topic, as it promises several benefits related to data privacy and scalability.
However, implementing FL at the network edge is challenging due to system
and data heterogeneity and resources constraints. In this article, we examine
the existing challenges and trade-offs in Federated Edge Learning (FEEL).
The design of FEEL algorithms for resources-efficient learning raises several
challenges. These challenges are essentially related to the multidisciplinary
nature of the problem. As the data is the key component of the learning, this
article advocates a new set of considerations for data characteristics in wireless
scheduling algorithms in FEEL. Hence, we propose a general framework for
the data-aware scheduling as a guideline for future research directions. We
also discuss the main axes and requirements for data evaluation and some
exploitable techniques and metrics.

3.2 Introduction

The growing interest in intelligent services motivates the integration of artifi-
cial intelligence (AI) in Internet of Things (IoT) applications. The collection
of large volumes from the different devices and sensors is necessary for training
AI models. However, uploading massive data generated by connected devices
to the cloud is usually impractical, mainly due to issues including privacy,
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network congestion, and latency. Federated Edge Learning (FEEL) [113] is
a Machine Learning (ML) setting that utilizes edge computing [12, 114] to
tackle these concerns. In contrast to centralized ML, Federated Learning
(FL) [7] consists of training the model on the devices, with the orchestration
of a central entity, where only the resultant model parameters are sent to the
edge servers to be aggregated. FEEL refers to the use of FL at the edge of
the network, which makes it a promising solution for privacy preserving ML.

An important design decision for a FEEL algorithm is whether to choose ei-
ther asynchronous or synchronous aggregation. Recent works tend to promote
synchronous training, where, for instance, synchronization among participat-
ing devices is required for updates averaging [7] and privacy-preservation
[115]. However, there are many challenges upon using synchronous FL in
edge environments.

To begin with, the heterogeneity of resources across different devices sparks
new system challenges. For instance, significant delays can be caused by
stragglers. Moreover, communication loads across devices limit the scalability
of FL for large models. Participating devices communicate full model updates
during every training iteration, which are of the same size as the trained
model. For large models, such as deep neural networks, the model size can be
in the range of gigabytes. As a result, if communication bandwidth is limited
or communication is costly, FEEL can be deemed impractical or unfeasible,
as communication overhead becomes a bottleneck for FEEL.

Furthermore, end devices have limited battery lives and varying available
energy levels. As training ML models is a computation-heavy task, only
devices that have enough energy can be solicited to participate. Furthermore,
energy and computational constraints limit both the size of the models that
can be trained on-device, and the number of local training iterations.
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Additionally, as the data collected by the clients depends on their local en-
vironment and usage pattern, both the size and the distribution of the local
datasets will typically vary between different clients. This non-Independently
and Identically Distributed (non-IID) and unbalanced nature of data across
the network imposes significant challenges linked to models’ convergence.

Consequently, designing an efficient FEEL algorithm should take into account
the limited and heterogeneous nature of the resources, alongside the non-IID
and unbalanced aspect of the data distributions. In general, proposed FEEL
algorithms target efficient selection of participant devices, optimization of the
resource allocation and usage, or adequate updates’ aggregation. However,
it is hard to capture both the resources problems and the learning goal, as
there is no direct relation between the model’s loss function and the resource
optimization. A manageable approach found in current works is to focus on
resource optimization with certain learning guarantees, such as maximizing
the number of collected updates and maintaining the level of local accuracy
[50]. Nonetheless, these guarantees are not sufficient, as a significant drop in
accuracy is observed when data is non-IID and unbalanced. Therefore, we
propose to lighten the effects of design trade-offs through the direct integra-
tion of the data properties in the device selection and resource optimization
algorithms. In fact, data properties were at the heart of FL since its incep-
tion, but they have been largely overlooked in the design of FEEL algorithms.
Moreover, data diversity has long been premised on in active learning, where
models can be trained using few labelled data samples if the highly diverse
data is selectively added to the training set. Thus, data diversity should be
considered in the design of FEEL algorithms, as we advocate in this article.

The main contributions of this article can be summarized as follows:

– We discuss the FEEL challenges imposed by the nature of the edge
environment, from an algorithms design perspective. We review the
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challenges related to computational and communication capacities, as
well as data properties, as they are at the core of the trade-offs in learning
and resource optimization algorithms.

– We propose a general framework for incorporating data properties in
FEEL, by providing a guideline for a thorough algorithm design, and
criteria for the choice of diversity measures in both datasets and models.

– We present several possible measures and techniques to evaluate data
and model diversity, which can be applied in different scenarios (e.g.,
classification, time series forecasting), in an effort to assist fellow re-
searchers to further address FEEL challenges.

The remainder of this article is as follows. In Section II, we review the
challenges found in designing FEEL algorithms, and we derive the main trade-
offs. Then, we shed the light on a new data-aware design direction for FEEL
algorithms in section III. Some possible techniques and methods to evaluate
diversity are detailed in this section. At last, a conclusion and final remarks
are presented in Section IV.

3.3 Design challenges : Overview
FEEL has several constraints related to the nature of the edge environment.
In fact, FEEL involves the participation of heterogeneous devices that have
different computation and communication capabilities, energy states, and
dataset characteristics. Under device and data heterogeneity, in addition
to resources constraints, participants selection [67] and resource allocation
have to be optimized for an efficient FEEL solution.

3.3.1 Design Challenges

The core challenges associated with solving the distributed optimization prob-
lem are twofold: Resources and Data. These challenges increase the FEEL
setting complexity compared to similar problems, such as distributed learning
in data centers.
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Resources: The challenges related to the resources, namely computation,
storage and communication, are mainly in terms of their heterogeneity and
scarcity.

Heterogeneity of the resources: The computation, storage and communica-
tion capabilities vary from a device to another. Devices may be equipped with
different hardware (CPU and memory), network connectivity (e.g., 4G/5G,
Wi-Fi), and may differ in available power (battery level). The gap in com-
putational resources creates challenges such as delays caused by stragglers.
FEEL algorithms must therefore be adaptive to the heterogeneous hardware
and be tolerant toward device drop-out and low or partial participation. A
potential solution to the straggler problem is asynchronous learning. How-
ever, the reliability of asynchronous FL and the model convergence in this
setting are not always guaranteed. Thus, synchronous FL remains the pre-
ferred approach.

Limited Resources: In a contrast to the cloud, the computing and storage
resources of the devices are very limited. Therefore the models that can be
trained on device are relatively simpler and smaller than the models trained
on the cloud. Furthermore, devices are frequently offline or unavailable either
due to low battery levels, or because their resources are fully or partially used
by other applications.

As for the communication resources, the available bandwidth is limited. It is
therefore important to develop communication-efficient methods that allow to
send compressed or partial model updates. To further reduce communication
cost in FEEL settings, two potential directions are generally considered 1)
reducing the total number of communication rounds until convergence [49],
and 2) reducing the size of the transmitted updates through compression and
partial updates [7].
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Data: In most cases, data distributions depend on the users’ behaviour. As
a result, the local datasets are massively distributed, statistically heteroge-
neous (i.e., non-IID and unbalanced), and highly redundant. Additionally,
the raw generated data is often privacy-sensitive as it can reveal personal and
confidential information.

Small and widely distributed datasets: In FEEL scenarios, a large number of
devices participate in the FL training with a small average number of data
samples per client. Learning from small datasets makes local models prone
to overfitting.

Non-IID: The training data on a given device is typically based on the usage
of the device by a particular user, and hence any particular user’s local dataset
will not be representative of the population distribution. This data-generation
paradigm fails to comply with the independent and identically distributed
(IID) assumptions in distributed optimization, and thus adds complexity to
the problem formulation and convergence analysis. The empirical evaluation
of FEEL algorithms on non-IID data is usually performed on artificial par-
titions of MNIST or CIFAR-10, which do not provide a realistic model of a
federated scenario.

Unbalance: Similarly to the nature of the distributions, the size of the gener-
ated data depends on the user. Depending on users’ use of the device, these
may have varying amounts of local training data.

Redundancy: The unbalance of the data is also observed within the local
datasets at a single device. In fact, IoT data is highly redundant. In sequential
data (e.g., video surveillance, sensors data) for instance, only a subset of the
data is informative or useful for the training.

Privacy: The privacy-preserving aspect is an essential requirement in FL
applications. The raw data generated on each device is protected by sharing
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only model updates instead of the raw data. However, communicating model
updates throughout the training process can still be reverse-engineered to
reveal sensitive information, either by a third-party or a malicious central
server.

3.3.2 Design Trade-offs

Several efforts were made to tackle the aforementioned challenges. However,
FEEL is a multi-dimensional problem that brings about several trade-offs. As
a result, algorithms designed to address one issue at a time are deemed un-
practical. Perhaps a tractable solution may be to combine several techniques
when developing and deploying FEEL algorithms.

In general, an end-to-end FEEL solution should cover devices selection, re-
source allocation, and updates aggregation. In the following, we discuss major
trade-offs that should be considered when designing solutions in the FEEL
setting.

1) General FEEL solution
Given the wide range of applications that can benefit from FEEL, there is no
one-size-fits-all solution. However, in general, a FEEL solution needs to act
on the following aspects:

Device selection: Participant selection refers to the selection of devices to
receive and train the model in each training round. Ideally, a set of partic-
ipants is randomly selected by the server to participate. Then, the server
has to aggregate parameter updates from all participants in the round before
taking a weighted average of the models. However, due to the communication
bottlenecks and the desire to tame the training latency, the device selection
should be optimized in terms of resources [67] and data criteria.
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Resource allocation: Device selection should not be considered indepen-
dently from resource allocation, especially computation and bandwidth. We
refer to the joint selection and resource allocation as a scheduling algorithm.
Indeed, the number of scheduled devices is limited by the available band-
width that can be allocated. Additionally, for an optimal learning round du-
ration and energy consumption, both bandwidth and computation resources
should be adapted based on the number of local iterations at each device,
and the number of global iterations (i.e., learning rounds) [35]. Due to the
fast-changing aspect of the FEEL environment, the computational complex-
ity of scheduling algorithms should be especially low. Therefore, the use of
meta-heuristics and heuristics should be encouraged.

Updates aggregation: This aspect of the solution design refers to how
the updates are aggregated and how frequently they are aggregated. For in-
stance, the frequency of the communication and aggregation can be reduced
with more local computation [35], or reduced through selective communica-
tion of gradients [49]. For instance, FedAvg [65] is one of the most used meth-
ods in aggregation which uses weighted average Stochastic Gradient Descent
updates, where the corresponding weights are decided by the volume of the
training dataset. While FedAvg uses synchronous aggregation, in FedAsync
[107] algorithm, newly received local updates are weighted according to their
staleness, where stale updates received from stragglers are weighted less based
on how many rounds elapsed. It should also be noted that proposing new ag-
gregation methods requires theoretical and empirical convergence analysis to
guarantee that the learning loss function will converge to a global optimum.
Updates aggregation should also be communication-efficient [7, 49] and secure
by the means of techniques such as differential privacy [115].

2) Optimization axes
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Figure 3.1 FEEL algorithms, challenges and optimization axes

In addressing FEEL challenges, three optimization axes are often considered:
Time, Energy and Learning. In many cases, the FEEL algorithm can be
viewed as a Pareto optimal problem [116]. The relation between the three
axes and the challenges is illustrated in Figure 3.1.

Time optimization: Accelerating the learning time can be evaluated with
different lenses: learning round duration and time until learning convergence.
Due to the synchronous model aggregation of FEEL, the total duration of a
round is determined by the slowest device among all the scheduled devices
[48]. For this reason, more bandwidth should be allocated for transmission by
stragglers and less for faster devices. This to some extent can equalize their
total update time (computing plus communication time). Furthermore, to
avoid squandering bandwidth on extremely slow devices, scheduling (i.e., joint
selection and resource allocation) should exclude slowest devices by applying
thresholds on their expected completion time, which can be inferred using
their computing capacities and channel states. From a learning perspective,
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the learning latency is determined by the number of rounds until convergence.
The optimization techniques centered on this aspect mainly focus either on
the selective upload of updates, or on maximizing the participating devices
in each round.

Energy optimization: Optimizing the energy consumption across the net-
work is necessary to reduce the rate of drop-out devices because of battery
drainage. In fact, training and transmission of large-scale models are energy
consuming, while most edge and end devices have limited battery lives. Ad-
ditionally, using the maximum capacity of the devices would make the users
less-likely willing to participate in the training. A design goal of a scheduling
algorithm (i.e., joint selection and resource allocation) would be to allocate
bandwidth based on the devices’ channel states and battery levels. As a re-
sult, more bandwidth should be allocated to devices with weaker channels or
poorer power states, to maximize the collected updates [50].

Learning optimization: In contrast to centralized learning, optimizing the
learning in the FEEL setting cannot be seen independently from time and en-
ergy optimization. However, capturing the optimization of time, energy and
the learning goal in the same optimization problem is hard, because there
is no direct relation between the objective function of the learning (i.e., the
loss function) and the time and energy minimization goal. A manageable
approach used is to minimize time and energy under a certain convergence
speed guarantee. For instance, some works argue that the number of collected
updates in each round is inversely proportional to the convergence speed, and
therefore is used as a guarantee [50]. Indeed, multi-user diversity (i.e., collect-
ing a maximum of updates) can yield a high convergence speed, especially
in IID environments, however there is a significant chance of choosing the
same sets of devices repeatedly. To avoid this issue, a goal of the FEEL al-
gorithm can be to maximize the fairness in terms of the number of collected
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updates among devices [69]. The fairness measure maximizes the chance of
more diverse data sources, thus achieving gradient diversity. Nonetheless, the
number of collected updates in this setting might be low. The fairness is also
considered in the aggregation by q-Fair FL (q-FFL) [72], which reweighs the
objective function in FedAvg to assign higher weights in the loss function to
devices with higher loss. Another approach is to use data size priority, which
maximizes the size of data used in the training, by using a probability of
selection inversely proportional to the available dataset’s size. In the back-
ground, these scheduling algorithms all share the same idea : if the size of the
training data is large then the training would converge faster. However, IoT
data is highly redundant and inherently unbalanced. Thus, many of the pro-
posed algorithms witness a drop in performance in non-IID and unbalanced
experiments. Therefore, the data properties should be considered throughout
the FEEL algorithm.

3.4 Data-aware FEEL design: Future Direction

Even if FL was first proposed with data as a central aspect, it has been
overlooked in the design of proposed FEEL scheduling algorithms. With
the significant drop of accuracy of models trained with resource-aware FEEL
algorithms in non-IID and unbalanced settings, it becomes clear that the
data aspect should be considered. Henceforth, we propose a new possible
data-aware end-to-end FEEL solution based on the diversity properties of
the different datasets. In general, diversity consists of two aspects, namely,
richness and uncertainty. Richness quantifies the size of the data, while the
uncertainty quantifies the information contained in the data. In fact, it has
been long proven in Active Learning that by choosing highly uncertain data
samples, a model can be trained using fewer labelled data samples. This fact
suggests that data uncertainty should be incorporated into the design of FL
scheduling algorithms. Nonetheless, the uncertainty measures used in Ac-
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tive Learning targets individual samples from unlabeled data in a centralized
setting, thus, these measures cannot be directly integrated in FEEL. In the
FEEL setting, the updates’ scheduling can be either before the training or
after it, therefore the diversity measures should be selected depending on the
time of scheduling. If the scheduling before the training is preferred, then
the datasets’ diversity is to be considered. Otherwise, if the scheduling is set
after the training is over, the diversity to be considered is model diversity,
as the diversity of the dataset can be reflected by the resulting model. In
both cases, in addition to maximizing the diversity through careful selection
of participating devices, the scheduling algorithm can focus on minimizing
the consumed resources in terms of completion time of FL and transmission
energy of participating devices. For the pre-training scheduling, local compu-
tation energy can also be optimized. Furthermore, the scheduling problems’
constraints are to be derived from the environment’s properties concerning
resources and data.
In this section, and to better illustrate the data-aware solutions, we consider
the architecture illustrated in Figure 3.2. The architecture is a cellular net-
work composed of one base station (BS) equipped with a parameter server,
and N devices that collaboratively train a shared model. In the following, we
discuss different constraints related to the scheduling algorithms in this set-
ting. Then, we present pre-training and post-training algorithms guidelines,
where we detail the key criteria for the design of data-aware FEEL solutions,
and we present some potential measures and methods to enable a variety of
data-aware FEEL applications, which are summarized in Figure 3.3.

3.4.1 Scheduling Constraints

The scheduling algorithms’ must consider the following constraints that arise
from the FEEL environment’s properties: Energy consumption: Due to the
limited energy level and the high computational requirements of training al-
gorithms, it is necessary to evaluate a device’s battery level before scheduling
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Figure 3.2 The proposed FEEL system model

it for a training round. When first FL was proposed, the selected devices
were limited to the ones plugged for charging. However, this criterion limits
the number of devices that can be selected, leading to a slow convergence of
the learning.

Radio Channel State: It is important to consider the radio channel state
changes in the scheduling. The quality of the communication is critical for
both the device selection and resource allocation.

Expected completion time: The available computation resources, alongside
data size, can be used to estimate the completion time of the device. Potential
stragglers can be discarded even before the training process.

Number of participants: A communication round cannot be considered valid
unless a minimum number of updates is obtained. Therefore, a training round
can be dropped if there are not enough devices to schedule.
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Data size: The available data in the device is smaller in size than a required
minimum, it can be immediately discarded from the selection process. For
instance, if the number of samples is less than the selected mini-batch size,
the device should be excluded.

3.4.2 Pre-training scheduling: Dataset Diversity

The pre-training scheduling that we propose uses dataset diversity to choose
devices that will conduct the training and send the updates. Scheduling the
devices before the training allows to eliminate potential stragglers, and adapt
the number of epochs based on the battery levels available at the participat-
ing devices.

1) Scheduling algorithm:
In this algorithm, the global model is initialized by the BS. Afterwards,
the following steps are repeated until the model converges or a maximum
of rounds is attained:

– Step 1: At the beginning of each training round, the devices send their
diversity indicators and battery levels to the server.

– Step 2: Based on the received information, alongside with the evaluated
channel state indicator, the server schedules a subset of devices and sends
them the current global model.

– Step 3: Each device in the subset uses its local data to train the model.

– Step 4: The updated models are sent to the server to be aggregated.

– Step 5: The PS aggregates the updates and created the new model.

2) Datasets Diversity Measures:
In the pre-training scheduling, dataset diversity will serve essentially as a
lead for device selection, where it should prioritize devices that have poten-
tially informative datasets with less redundancy, to speed up the learning
process. While the richness of datasets can be easily quantified through the
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total number of samples, the uncertainty of the dataset depends strongly on
the application. For supervised learning, the uncertainty can be evaluated
through the evenness of the dataset (i.e., the degree of balance between the
classes in classification problems), which can be calculated through entropy
measures. For sequence data, the uncertainty is reflected by the regularity of
the series. Moreover, for unsupervised learning, local dissimilarity between
pseudo-classes or randomly sampled data points can be considered. Further-
more, it is essential to consider the privacy as a component of the used index.
Sending the number of samples from each class for instance is a violation of
the privacy principle of FEEL. In the following, we introduce some potential
methods to evaluate datasets diversity.

Diversity measures for classification: The measures of diversity have
long been used in Active learning. In fact, uncertainty is used to choose
the samples that should be labeled as this task is costly. However, in FL,
the client selection does not concern independent samples, instead the di-
versity should be evaluated at the level of the entire dataset. Moreover, in
the premise of supervised FL, the labels are already known, which gives the
possibility to use more informed measures. For instance, Shannon Entropy or
Gini-Simpson index are suitable measures for datasets’ uncertainty in clas-
sification problems. Shannon Entropy and Gini-Simpson index both favor
IID partitions, where the maximum for both indexes is obtained for balanced
distributions and the datasets with a single class has the minimum possible
value. The Shannon entropy quantifies the uncertainty (entropy or degree of
surprise) of a prediction. It was first proposed to quantify the information
content in strings of text. The underlying idea is that when a text contains
more different letters, with almost equal proportional abundances, it will be
more difficult to correctly predict which letter will be the next one in the
string. However, Shannon Entropy is not defined for the case of classes with
no representative samples. Therefore, it may not practical in scenarios with
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high unbalance. Another possible measure is the Gini-Simpson index. The
Simpson index λ measures the probability that two samples taken at random
from the dataset of interest are from the same class. The Gini–Simpson in-
dex is its transformation 1−λ, which represents the probability that the two
samples belong to different classes. Nonetheless, if the number of classes is
large, the distinction using this index will be hard.

Diversity measures for time-series forecasting: In time series prob-
lems, other methods can be used, such as Approximate Entropy (ApEn) and
Sample Entropy (SampEn). In sequential data, statistical measures such as
the mean and the variance are not enough to illustrate the regularity, as they
are influenced by system noise. ApEn is proposed to quantify the amount
of regularity and the unpredictability of time-series data. It is based on the
comparison between values of data in successive vectors, by quantifying how
many data points vary more than a defined threshold. SampEn was proposed
as a modification of ApEn. It is used for assessing the complexity of time-
series data, with the advantage of being independent from the length of the
vectors.

Diversity measures for clustering tasks: For clustering tasks, a simi-
larity measure between data points from a randomly sampled subset should
be considered. The measure can be distance based (e.g., Euclidean distance,
Heat Kernel) or angular based (e.g., cosine similarity). A higher value is ob-
tained if most of the data points in the sample are dissimilar, and thus the
dataset should be considered as more diverse. It should be noted that angular
based measures are invariant to scale, translation, rotation, and orientation,
which makes them suitable for a wide range of applications, particularly mul-
tivariate datasets.
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Figure 3.3 Diversity measures that can be used in pre-training and post-
training scheduling

3.4.3 Post-training scheduling: Model Diversity

The post-training setting uses model diversity to choose devices that will send
the updates. The model diversity is evaluated on two different aspects: 1)
by comparing the dissimilarity between the local model’s parameters and the
previous global model’s parameters. 2) by comparing the diversity within the
model’s parameters. In fact, choosing the local models that are divergent from
the previous global model will possibly improve the representational ability of
the global model directly, by aggregating updates that have potentially new
information. Furthermore, if a dataset is highly unbalanced and limited in
size, the model’s parameters would be very similar. The redundancy within
parameters negatively affects the model’s representational ability. It is there-
fore necessary to prioritize updates with high diversity. In the following, we
detail the post-training scheduling algorithm, then we present some possible
measures for model diversity.

1) Scheduling algorithm:
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Similarly to pre-training scheduling, the global model is initialized by the BS.
Afterwards, the following steps are repeated until the model converges or a
maximum of rounds is attained:

– Step 1: At the beginning of each training round, devices receive the
current model.

– Step 2: Each device in the subset uses its local data to train the model.

– Step 3: The server sends an update request to the devices, to which
each device responds by sending its model diversity index.

– Step 4: Based on the received information, alongside with the evaluated
channel state indicator, the server schedules a subset of devices to upload
their models. Then, the updated models are sent to the server to be
aggregated.

– Step 5: The PS aggregates the updates and created the new global
model.

2) Model Diversity Measures:
While the richness aspect of the diversity is irrelevant in models diversity due
to fixed model size among devices, the information contained in the models
can be quantified through how the local model’s vary compared to the global
model, and how the parameters within the same model repulse from each
other. Some possible measures are as follows:

Local and global models’ dissimilarity: Choosing the local models that
are divergent from the previous global model will possible improve the rep-
resentational ability of the global model directly [49]. Pairwise similarity
measures such as cosine similarity and Euclidean distance can be used to
evaluate the similarity of the new local parameters and the global parame-
ters. Moreover, Divergence, a Bayesian method used to measure the difference
between different data distributions, can be used to evaluate diversity of the
learned model compared to the global model. Nonetheless, relying on model’s
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dissimilarity might lead to collecting updates from outliers. It is thereby nec-
essary to regulate these diversity measures through the use of thresholds in
particular.

Parameters Dissimilarity: To evaluate the redundancy within the model’s
parameters, the same similarity measures used for clustering can also be ap-
plied to the parameters. Additionally, the L2,1 norm can be used to obtain
a group-wise sparse representation of the dissimilarity [117]. The internal
L1 norm encourages different parameters to be sparse, while the external L2

norm is used to control the complexity of entire model.

3.5 Conclusion
Federated Learning is a promising machine learning technique by virtue of its
privacy-preserving aspect and ability to handle unbalanced and non-IID data.
However, deploying federated learning based solutions at the edge of the net-
work is subject to several challenges. In fact, FEEL is a multi-disciplinary
problem that requires optimization over both the resources and the data.
Nonetheless, the data properties are overlooked in many parts of the pro-
posed algorithms, despite being the essence of federated learning. Several
FEEL design challenges and issues are introduced and discussed in terms of
trade-offs. Furthermore, a new research direction is presented in an effort to
incorporate the datasets’ diversity properties into the design of FEEL algo-
rithms. Our proposed method supposes that the data quality and veracity are
guaranteed, which requires leveraging other techniques such as the blockchain
as a trusted third-party for data verification.
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est donc nécessaire de plrogrammer soigneusement un sous-ensemble de dis-
positifs pour l’entraînement et le téléchargement de modèles. Contrairement
aux travaux antérieurs concernant l’apprentissage fédéré à la périphérie du
réseau où les aspects liés aux données sont peu explorés, nous considérons
les propriétés des données au cœur de l’algorithme d’ordonnancement pro-
posé. Ainsi, nous proposons un nouveau schéma d’ordonnancement tenant
en compte la nature des distributions de données locale des dispositifs.

Compte tenu du fait que les données sont l’élément clé de l’apprentissage, nous
proposons un nouvel ensemble de considérations pour les caractéristiques des
données dans les algorithmes d’ordonnancement dans les réseaux sans fil. En
fait, les données collectées par les appareils dépendent de l’environnement
local et du modèle d’utilisation. Ainsi, les ensembles de données varient
en taille et en distribution entre les appareils. En effet, les ensembles de
données sont souvent non indépendantes et non distribuées de manière iden-
tique et non équilibrées. Dans l’algorithme proposé, nous tenons compte à la
fois des perspectives des données et des ressources. En plus de minimiser le
temps d’exécution de l’algorithme d’apprentissage fédéré ainsi que l’énergie
de transmission des dispositifs participants, l’algorithme donne la priorité
aux dispositifs possédant des ensembles de données riches et diversifiés. Nous
définissons d’abord un cadre général pour l’ordonnancement axé sur la nature
des données et les principales exigences pour l’évaluation de la diversité. En-
suite, nous discutons des aspects de la diversité et de certaines techniques et
mesures exploitables selon les cas d’usage. Ensuite, nous formulons le prob-
lème et présentons notre algorithme d’ordonnancement. Des évaluations dans
différents scénarios montrent que notre algorithme peut aider à atteindre une
haute précision en quelques itérations avec un coût réduit.
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CHAPTER 4

Data-Aware Device Scheduling for Federated
Edge Learning

4.1 Abstract

Federated Edge Learning (FEEL) involves the collaborative training of ma-
chine learning models among edge devices, with the orchestration of a server
in a wireless edge network. Due to frequent model updates, FEEL needs to
be adapted to the limited communication bandwidth, scarce energy of edge
devices, and the statistical heterogeneity of edge devices’ data distributions.
Therefore, a careful scheduling of a subset of devices for training and upload-
ing models is necessary. In contrast to previous work in FEEL where the
data aspects are under-explored, we consider data properties at the heart of
the proposed scheduling algorithm. To this end, we propose a new scheduling
scheme for non-independent and-identically-distributed (non-IID) and unbal-
anced datasets in FEEL. As the data is the key component of the learning, we
propose a new set of considerations for data characteristics in wireless schedul-
ing algorithms in FEEL. In fact, the data collected by the devices depends
on the local environment and usage pattern. Thus, the datasets vary in size
and distributions among the devices. In the proposed algorithm, we consider
both data and resource perspectives. In addition to minimizing the comple-
tion time of FEEL as well as the transmission energy of the participating
devices, the algorithm prioritizes devices with rich and diverse datasets. We
first define a general framework for the data-aware scheduling and the main
axes and requirements for diversity evaluation. Then, we discuss diversity
aspects and some exploitable techniques and metrics. Next, we formulate the
problem and present our data-aware scheduling (DAS) algorithm for FEEL.

55
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Evaluations in different scenarios show that DAS algorithm can help achieve
high accuracy in few rounds with a reduced cost.

4.2 Introduction

Machine learning (ML) models require large and rich sets of data for training.
Nonetheless, the collection of large volumes of data generated by connected
devices over wireless networks raises concerns related to data privacy and
network congestion [118, 119]. Federated edge learning (FEEL) [74, 120] was
proposed to tackle these concerns, by implementing distributed ML at the
edge of the network. In addition to preserving privacy by keeping the data
locally, FEEL benefits from rapid access to the data generated by end devices
and leveraging their computational resources. In FEEL, the model training
is performed on edge devices with the orchestration of a multi-access edge
computing (MEC) server. Each device trains the model using its local data,
and only the resultant model parameters or stochastic gradients are sent to
the MEC server for aggregation.

The scarce resources, especially the communication bandwidth, limit the effi-
cacy of FEEL operations, particularly for the transmission of large size mod-
els. Consequently, most of the existing works in FEEL focus on designing
scheduling algorithms with optimal resource usage. Several proposed works
aim, for instance, to minimize the completion time of FEEL [67], local com-
putation energy [121], or transmission energy of participating devices [50].
As a result, the number of scheduled devices is often restricted as a means to
meet latency and energy constraints. This restriction often slows down the
convergence of training [122, 50]. Therefore, scheduling algorithms aim to
maximize the number of collected updates in each round, but this scheduling
goal can be biased towards powerful devices with smaller datasets. Thus,
the collected updates might not be representative, as they are not trained on
richer data. To avoid this issue, scheduling algorithms should also aim to di-
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versify the participating devices through the use of fairness measures [69, 70].
But, the amount of connected devices grows faster than the network capaci-
ties, which will make scaling these algorithms harder in practice. Moreover,
Internet of things data is highly redundant and inherently unbalanced, given
that the data collected by the devices depend on the local environment and
the device’s usage pattern. Therefore, the size and the statistical properties of
local datasets distributions vary among devices [47]. Thus, a careful selection
of participating devices imposes the consideration of their data properties,
which motivates this work.

The main idea we advocate in this paper finds its roots in active learning
[123, 124], where models are trained using fewer data points provided that the
chosen samples are required to be diverse and informative. While in active
learning, the selection concerns single unlabelled data points, the selection
in FEEL concerns complete datasets with already labelled data points, and
therefore requires a different evaluation of diversity. Additionally, the incor-
poration of the diversity measures in FEEL requires different considerations
in regards of privacy and the properties of the FEEL setting [125]. In this
paper, we consider diversity as the baseline criterion for choosing participat-
ing devices in FEEL. The diversity evaluation is applied on datasets, where
the priority is given to devices with potentially more informative datasets to
speed up the training process. To this end, we propose a method for incorpo-
rating datasets’ diversity properties in FEEL scheduling, by identifying a set
of dataset diversity measures, and designing a data-aware scheduling (DAS)
algorithm.

The contributions of this paper can be summarized as follows:

1) we design a suitable diversity indicator, which serves as a priority crite-
rion for the selection of devices;
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2) we formulate a joint device selection and bandwidth allocation problem
taking into account data diversity;

3) we prove that the formulated problem is NP-hard and we propose a
data-aware scheduling algorithm based on an iterative decomposition
technique to solve it; and

4) we evaluate the proposed diversity indicator and the DAS algorithm
through extensive simulations.

The remainder of this paper is organized as follows. In Section II, we present
the background for FEEL and related work. In Section III, we present the
design of the proposed diversity measure, starting with the used uncertainty
measures and their integration in FEEL. In Section IV, we integrate the
proposed measure in the design of the joint selection and bandwidth allocation
algorithm. Simulation results are presented in Section V. At last, conclusions
and final remarks are presented in Section VI.

4.3 Background and related work
In this section, we start by briefly introducing the main concepts of FEEL.
Then, we describe the existing challenges in deploying FL in wireless edge
networks. Next, we discuss the related work, illustrate the existing research
gaps and motivate the need for a new scheduling scheme for FEEL.

4.3.1 Federated Edge Learning

In contrast to centralized training, FL keeps the training data at each device
and learns a shared global model through the federation of distributed con-
nected devices. Keeping data locally yields many benefits, namely preserved
privacy [126], reduced bandwidth use, and rapid access to data. Applying FL
to wireless edge networks forms the so-called concept of federated edge learn-
ing or simply FEEL. FEEL involves a multi-access edge computing (MEC)
[12] server that performs aggregation and edge devices that perform collab-
orative learning. The MEC server that is equipped with a parameter server
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(PS) can be a next generation nodeB (gNB), or simply a base station (BS),
in a wireless edge cellular network in which there are N edge devices that
collaboratively train a shared model.

Each device k has a local dataset Dk with a data size of |Dk|. The goal is to
find the optimal global model parameters w ∈ Rl that minimizes the average
prediction loss f(w):

min
w∈Rl

f(w) =
1

D

N∑
k=1

fk(w), (4.1)

where w is the model parameter vector to be optimized with dimension l,
fk(w) is the loss value function computed by device k based on its local
training data, and D is the total number of data points across all devices
(i.e., D =

∑N
k=1 |Dk|). Several models’ loss functions can be trained using

FEEL, such as linear and logistic regression, support vector machines, and
artificial neural networks.

Ideally, all the devices independently train their local models using their lo-
cal training data. Then, each one uploads its gradient updates to the server
for aggregation. The server aggregates the received local updates, typically
by averaging, to obtain a global model. Afterwards, the server sends the
global model to the edge devices, and a new iteration begins where each
device computes the gradient updates and uploads it to the server. Nonethe-
less, the constrained edge resources and limited communication bandwidth
in wireless (edge) networks result in significant delays for FEEL. The fed-
erated averaging (FedAvg) [74] algorithm was therefore proposed to perform
FEEL in a communication-efficient way. FedAvg is perhaps the most adopted
communication-efficient FEEL algorithm. The main idea behind FedAvg is
to select a small subset of devices and to run local epochs, in parallel, using
stochastic gradient descent (SGD) on the local datasets of the selected de-
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vices. Next, all devices’ resulting model updates are averaged to obtain the
global model. In contrast to the naive application of SGD, which requires
sending updates very often , FedAvg performs more local computation and
less frequent communication updates. Since FedAvg assumes synchronous
updates collection, this may result in large communication delays. In fact,
the computation, storage, and communication capabilities among participat-
ing devices might be very different. Further, devices are frequently offline or
unavailable either due to low battery levels, or because their resources are
fully or partially used by other applications. Thus, due to the synchronous
nature of FedAvg, straggler devices, i.e., devices with low performances, will
cause large delays to the whole learning process.

Despite the promising theoretical results attained using FedAvg, deploying it
or other FEEL algorithms in wireless edge networks is still not clear and chal-
lenging due to the fast changing nature of the network, limited resources and
statistical heterogeneity. Statistical heterogeneity is a very important aspect
in FEEL. In fact, most use cases of FEEL suppose that the system does not
have control over participating devices and their training data. Furthermore,
data distributions in user equipment depend heavily on the users’ behaviour.
As a result, any particular user’s local dataset will not be representative of the
population distribution. Additionally, the datasets are massively distributed,
statistically heterogeneous, i.e., non-independent and identically distributed
(non-IID) and unbalanced, and highly redundant. Moreover, the raw gener-
ated data is often privacy-sensitive as it can reveal personal and confidential
information.

The wireless edge environment is composed of heterogeneous and limited
capabilities of the devices [127], as well as of heterogeneous data distributions.
As a result, many new considerations related to communication resources
and edge devices’ data should be reflected in the design and deployment of
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FEEL algorithms. This motivates several works in FEEL to adapt to the
communication-restrained edge environment.

4.3.2 Related Work

Several prior works investigated the communication-constrained FEEL sys-
tems from different perspectives. In addition to several compression [87]
and partial participation [7] techniques, several mechanisms were proposed
to adapt the federated training to the constrained resources. For instance,
authors in [35] propose an accommodation mechanism where the numbers
of global and local iterations are changed depending on the available com-
munication and computation resources. Another suggested approach relays
on collecting the updates in an asynchronous manner [107], which allows a
smooth adaptation to heterogeneous resources and a flexible updates collec-
tion. However, due to stale updates’ effect on learning, synchronous updates
collection remains the preferred method. As a result, a common approach is
to selectively schedule a subset of devices to send their updates in each com-
munication round. For example, authors in [67] proposed a client selection
algorithm to reduce the latency of the model training, where only the end
devices with good communication and computation capabilities are chosen,
thus avoiding the straggler’s problem. Nevertheless, this method is biased
toward powerful devices with better channel states, which discards devices
with potentially more informative or important updates, and might lead to
models that cannot generalize to a wide range of devices. To diversify the
sources of updates, several works adopted scheduling algorithms that aim to
maximize the number of participating devices. For instance, authors in [50]
proposed an energy-efficient joint bandwidth allocation and scheduling algo-
rithm, which ensures the training speed by collecting the maximum amount of
updates possible. Nonetheless, this method does not guarantee the diversity
of updates sources. Consequently, fairness measures [69, 70] were adopted in
scheduling policies to ensure gradient diversity. For instance, an age-based
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scheduling (ABS) algorithm was proposed in [69], where higher priority is
given to devices that were not selected in several previous rounds. However,
relying on strict fairness-based policy may yield a low number of collected
updates within a round.

Another approach for selective scheduling relies on evaluating the resulting
model in an attempt to reduce the number of collected updates by removing
the irrelevant ones [49]. This is achieved through measuring the significance of
a local update relative to the current global model, and whether this update
aligns with the collaborative convergence trend. Nonetheless, this approach
may not be energy efficient, as it is applied post-training. Computing up-
dates is an energy consuming operation, as a result, disregarded updates are
synonymous with wasted energy.

Despite the variety of research progresses, the resource-efficient FEEL schedul-
ing algorithm design with highly heterogeneous dataset distributions remains
a topic that is not well addressed. This motivates our work, in which we
investigate a possible direction to evaluate the potential significance of the
updates through local dataset characteristics, namely size and diversity.

4.4 Diversity in Federated Learning

Our idea comes from the fact that many prior works in ML have imposed the
diversity on the construction of training batches to improve the efficiency of
the learning process [128]. Furthermore, active learning [124, 123] is premised
on the idea that models can be trained with fewer data points, provided that
the selected samples are diverse and more informative. In active learning, the
diversity is used as a criterion for choosing informative data points for efficient
ML training. However, to the best of our knowledge, this premise has never
been used in FEEL prior to this work. Thus, we investigate the possibility
of exploiting the different dataset properties to carefully select devices with
potentially more informative datasets with less redundancy, by measuring



4.4. DIVERSITY IN FEDERATED LEARNING 63

their size and diversity. Therefore, we propose data-aware scheduling (DAS)
algorithm for FEEL where these aspects are the heart of the devices selection.

The first question to be asked is what would be a good diversity measure for
FEEL? Various measures of diversity are used in active learning to choose
the samples that should be labeled. For instance, in an image classification
problem, images that are hard to classify with high certainty are considered
more informative and are selected to be labelled, and the chosen samples are
selected from different classes in order to form a diverse dataset [129]. In
FEEL, the device selection does not concern independent samples, and the
dataset construction is not possible due to on-device processing. As a result,
the diversity must be evaluated at the level of the entire dataset. Moreover, in
the premise of FEEL, the labels are already known which gives the possibility
to use more informed measures. For instance, we can use Shannon entropy
[130] or Gini-Simpson index [131] for classification problems, to see whether
a dataset has diverse examples from several classes. If a classification dataset
has samples from one class only, it should be discarded during training. Ad-
ditionally, sequence prediction models are sensitive to data-quality, especially
missing data and null values [132, 133, 134]. Consequently, the diversity (i.e.,
variations of the sequence data) should be evaluated using methods such as
approximate entropy (ApEn) and sample entropy (SampEn) [135].

The Gini-simpson index is a modification of the Simpson index. The Simpson
index measures the probability that two samples taken at random from the
dataset of interest are from the same class, it is calculated as follows:

λ =
C∑
c=1

p2c , (4.2)

where C is the total number of classes, and pc is the probability of the class
c. The original Simpson index λ represents the probability that two samples
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Figure 4.1 The FEEL system model. Based on the received devices’ informa-
tion, a subset of devices are scheduled for training the model and uploading
their updates.

taken at random from the dataset are of the same type (i.e., are within the
same class). The Gini–Simpson index is its transformation 1 − λ, which
represents the probability that the two samples belong to different classes.
The Gini-Simpson index is used in different applications such as financial
markets [136] and analyzing ECG signal [137].
The Shannon entropy also quantifies the uncertainty of a prediction, and was
used in several applications such as text prediction and image classification
[138]. In the context of FEEL, it can be used as follows:

H = −
C∑
c=1

pc log2(pc), (4.3)
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where C is the total number of classes, and pc is the probability of the class c.
Shannon Entropy is not defined for the extreme case of 0 samples in a class,
which can be problematic in some highly unbalanced classification problems.

In sequence data, statistical measures such as the mean and the variance
are not enough to illustrate the regularity, as they are influenced by system
noise. ApEn was proposed to quantify the amount of regularity and the un-
predictability of time-series data [139]. It is based on the comparison between
values of data in successive vectors, by quantifying how many successive data
points vary more than a defined threshold. A random time series with fewer
data points can have a lower ApEn than a more regular time series, whereas,
a longer random time series will have a higher ApEn. SampEn [140] was
proposed as a modification of ApEn. It can be used for assessing the com-
plexity of time-series data, with the advantage of being independent from
the length of the vectors. Both these measures can help eliminate outliers,
however, it should be noted that measuring ApEn and SampEn is a com-
putationally heavy task, therefore it should be evaluated on a small sample
rather than the entire dataset. To sum up, several diversity measures can be
applied on datasets for different applications. Dataset diversity will allow a
more informed participant selection in FEEL. Choosing devices with diversi-
fied datasets can accelerate the training and avoid overfitting, as the datasets
contain more information.

4.5 System Model

Having discussed several diversity measures that can be used in various FEEL
applications, let us introduce how such diversity measures can be used in the
overall design of the FEEL algorithm. Hereinafter, we consider a FEEL
system with multi-device and a single MEC server. The system model is
illustrated in Fig. 4.1. In this section, we introduce the different elements of
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the system model, then we formulate a joint device selection and bandwidth
allocation problem.

To study the suitability of the proposed selection criteria in the context of
FEEL, we consider a wireless edge network composed of a MEC server and
K devices collaboratively training a shared model. Each device k is charac-
terized by a local dataset Dk with a data size |Dk|.

4.5.1 Learning Model

First, the global model’s architecture and weights are initialized by the MEC
server. At the beginning of each training round r , the devices send their in-
formation and dataset diversity indicators to the MEC server. Based on the
received information, alongside with the evaluated channel state information,
the server selects a subset Sr of the devices and allocates the necessary band-
width to each scheduled device in order to receive the global model g . The
scheduling of the devices, presented in Algorithm 2, is based on the trade-off
between the datasets diversity and the required time and energy, under the
constraint of a minimum number of devices that should be scheduled in each
round. In fact, given synchronous aggregation, the MEC server requires a
minimum number K of updates to be collected to consider a round complete.
Then, each device k in the chosen subset Sr uses |Dk| examples from its lo-
cal dataset. SGD is then used by each device k to compute its local update
for some period of E local epochs. The updated models wk are sent to the
MEC server for aggregation. Ideally, all devices transmit their trained local
models to the MEC server simultaneously. The FEEL process is repeated
over rmax communication rounds and we use Dr =

∑
k∈Sr
|Dk| to denote

the total size of the datasets of all selected devices. In order to aggregate
the client updates, the MEC server uses the weighted average technique of
the FedAvg algorithm proposed in [74]. The MEC server aggregates the up-
dates and sends the resulting parameters to a new subset of selected devices.
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This process is repeated until the desired prediction accuracy is reached or a
maximum number of rounds is attained. In the considered architecture, the
considered FEEL procedure is detailed in Algorithm 1.

Algorithm 1 FEEL Procedure
1: while r < rmax or accuracy < desired accuracy do
2: if r = 0 then
3: initialize the model’s parameters at the MEC server
4: end if
5: Receive devices information (transmit power, available data size, dataset diversity

index)
6: Schedule a subset Sr of devices with at least N devices using Algorithm 2
7: for device k ∈ Sr do
8: k receives model g
9: k trains on local data Dk for E epochs

10: k sends updated model wk to MEC server
11: end for
12: MEC server computes new global model using weighted average: g ←

∑
k∈Sr

Dk

Dr
wk

13: start next round r ← r + 1
14: end while

4.5.2 Dataset Diversity Index Design

Due to the unbalance and non-IID nature of the distributions, and under high
bandwidth constraints, the dataset size and diversity need to be considered
in the device selection.

Additionally, we consider a second aspect which can be viewed at the system
level which is the diversity of sources. This goal can be achieved through
maximizing the fairness in terms of the number of updates collected from
each device is used to guarantee the diversity of the data sources.

Therefore, the goals of the devices’ selection are twofold: 1) select devices
with potentially informative datasets, which is achieved through evaluating
the size and diversity of the datasets; and 2) guarantee that the selected
devices are diversified, which will be attained by adding age-of-update to the
designed diversity index.
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Since our scheduling problem can consider multiple criteria, namely dataset
diversity and fairness of the selection, and each measure is calculated with
a function that has an output on different scales, the function should be
designed to output a weighted rank value bounded in [0, γi], where i ∈
{dataset diversity, dataset size, age}. The value of this function is given as
follows: vi× γi, where γi is the adjustable weight for each metric assigned by
the server and vi is the normalized value of the metric i calculated as follows:

vi =
measured value of metric i

maximum for metric i
.

We define the diversity index of dataset k as:

Ik =
∑
i

vi,kγi,k, (4.4)

where vi,k is calculated for specific dataset k.

Note that this measure is in line with federated learning principles, as it can be
evaluated on-device, and it does not reveal any privacy-sensitive information
about the dataset. If fact, by combining several measures into one weighted
index, it is hard for an eavesdropper to extract information about the dataset’s
raw elements if they intercept the index.

We formulate the first goal of the device selection problem as:

max
x

K∑
k=1

Ikxk, (4.5)

where x = [x1, ..., xK ] and xk, for k = 1, 2, . . . , K, is a binary variable that
indicates whether or not device k is scheduled to send an update, and Ik is
the diversity index.
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4.5.3 Transmission Model

As presented in Algorithm 1, the transmission aspect is also considered during
the devices scheduling. Given that the bandwidth is the bottleneck of FEEL,
it is essential to estimate the required transmission time and energy during
the scheduling, as a means to avoid stragglers and device drop out due to
low energy. Henceforth, we consider orthogonal frequency-division multiple
access (OFDMA) for local model uploading from the devices to the MEC
server, with total available bandwidth of B Hz. We define α = [α1, ..., αK ],
where for each device k , αk ∈ [0, 1] is the bandwidth allocation ratio. The
channel gain between device k and the BS is denoted by hk. Due to limited
bandwidth of the system, the bandwidth allocation ration should respect the
constraints

∑K
k=1 αk ≤ 1. The achievable rate of device k when transmitting

to the BS is given by:

rk = αkB log2(1 +
gkPk

αkBN0
), ∀k ∈ [1, K], (4.6)

where Pk is the transmit power of device k , and N0 is the power spectral den-
sity of the Gaussian noise. Based on the synchronous aggregation assumption,
the duration of a communication round depends on the last scheduled device
to finish uploading. The round duration is therefore given by:

T = max((ttraink + tupk )xk), ∀k ∈ [1, K], (4.7)

where ttraink and tupk are, respectively, the training time and transmission time
of device k . The training time ttraink depends on device k’s dataset properties
as well as on the model to be trained. It can be estimated using Eq.4.8:

ttraink = E |Dk|
Ck

fk
, (4.8)

where Ck(cycles/bit) is the number of CPU cycles required for computing
one sample data at device k and fk is its computation capacity. To send an
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update of size s within a transmission time of tupk , we must have:

tupk =
s

rk
. (4.9)

Finally, the wireless transmit energy of device k is given by:

Ek = Pkt
up
k . (4.10)

4.5.4 Device Scheduling Problem Formulation

Considering the collaborative aspect of FEEL, and the communication bottle-
neck, we define the following goals for the device scheduling algorithm: From
the perspective of devices, it is desirable to consume the least amount of en-
ergy to carry the training and uploading tasks. Given that the participating
devices are responsible for the training, the aspect that can be adjusted is the
upload energy. Therefore, the first goal is to minimize the consumed upload
energy of the scheduled devices :

min
x,α

K∑
k=1

xkEk. (4.11)

Due to the heterogeneous device capabilities and the largely varying data
sizes, it is hard to estimate a suitable deadline for each round. To avoid
stragglers’ problem, it is desirable for the MEC server to have short round
duration. Thus, a part of the objective is the minimization of the communi-
cation round.

min
x,α

T. (4.12)

From the perspective of accelerating learning, we adopt the goal defined in
Subsection 4.5.2 in Eq 4.5.
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By combining these three goals, the problem is formulated as a multi-objective
optimization problem as follows:

minimize
x, α

{
K∑
k=1

xkEk, T,−
K∑
k=1

xkIk

}
(4.13a)

subject to

(ttraink + tupk )xk ≤ T, ∀k ∈ [1, K], (4.13b)
K∑
k=1

αk ≤ 1, ∀k ∈ [1, K], (4.13c)

0 ≤ αk ≤ 1, ∀k ∈ [1, K], (4.13d)
K∑
k=1

xk ≥ N, ∀k ∈ [1, K], (4.13e)

xk ∈ {0, 1}, ∀k ∈ [1, K]. (4.13f)

where the constraints are defined as follows. Constraint (4.13b) guarantees
that the scheduled devices finish training and uploading the models before
the deadline. Constraints (4.13d) and (4.13c) ensure that the allocated band-
width fractions are between 0 and 1 and that their sum does not exceed
the bandwidth budget. Constraint (4.13e) guarantees that the number of
selected devices is at least equal to the minimum required, with constraint
(4.13f) setting xk as a binary variable.

4.5.5 NP-hardness

Problem 4.13a is a multi-objective problem that is non-linear. Thus, it is very
challenging to solve. Even worse, we show in the following that the problem
is NP-hard even for a single objective case. Indeed, a restricted version of
problem 4.13a is shown to be equivalent to a knapsack problem and thus it
is NP-hard. The main difficulty of the problem comes from maximizing the
weighted sum of the devices while allocating the bandwidth. In this regard,
when we fix the transmit power and assume that each device is allocated
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a certain amount of bandwidth, then the multi-objective function in (13a)
reduces to, for fixed transmit powers pk and fixed αk, the problem of maxi-
mizing the weighted number of devices, i.e.,

∑
k Ikxk subject to a knapsack

capacity given by
∑

k αkxk ≤ 1. Constraint (4.13b) can be verified for each
device to filter out the devices that do not respect them since it depends only
on the fixed power. Thus, the problem is equivalent to a knapsack problem
and since the latter is NP-hard, so is problem 4.13a.

4.6 Scheduling algorithm

In this section, we present our data-aware FEEL scheduling algorithm to
solve the multi-objective problem 4.13a defined in section 4.5. Besides being
NP-hard, problem 4.13a is a mixed integer non-linear multi-objective program
that is hard to solve. The proposed FEEL scheduling algorithm to solve 4.13a
proceeds in two main steps as follows. First, problem 4.13a is decomposed
into two subproblems. Next, the proposed algorithm optimizes iteratively
both subproblems.

The first sub-problem (Sub1) is a selection problem in which we select the
devices in order to optimize a weighted linear combination of the different
objectives. The selection sub-problem is formulated as follows:

minimize
x

λE

K∑
k=1

xkEk + λTT − λI

K∑
k=1

xkIk (4.14a)

subject to

xk ∈ {0, 1} ∀k ∈ [1, K] , (4.14b)
K∑
k=1

xk ≥ K ∀k ∈ [1, K] (4.14c)

where λE, λT , and λI are positive scaling constants used first to scale the
value of the objective function and second to combine the different conflicting
objectives into a linear single one.
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The second sub-problem (Sub2) is a bandwidth allocation problem in which
the device selection decision is fixed through solving the previous selection
sub-problem. The objective of the bandwidth allocation problem consists of
linear combination, using a positive constant ρ, of the consumed energy and
the round’s completion time. This problem is formulated as follows:

minimize
α

ρ

K∑
k=1

xkEk + (1− ρ)T (4.15a)

subject to
K∑
k=1

αk ≤ 1, ∀k ∈ [1, K], (4.15b)

0 ≤ αk ≤ 1, ∀k ∈ [1, K] (4.15c)

To solve Sub1, we use relaxation and rounding. Specifically, we relax the
integer constraint xk ∈ {0, 1} as the real-value constraint 0 ≤ xk ≤ 1,
and then the integer solution is determined using rounding after solving the
relaxed problem, then verifying whether the condition (4.14c) is satisfied.
The relaxed problem can be written as:

minimize
x

λE

K∑
k=1

xkEk + λTT − λI

K∑
k=1

xkIk (4.16a)

subject to

0 ≤ xk ≤ 1 ∀k ∈ [1, K] (4.16b)

The continuous value of xk can be viewed as the selection priority of the
device k, therefore, if the condition (4.14c) is not satisfied, we set xk = 1 for
the N devices with highest priorities. To solve Sub2, we applied off-the-shelf
solvers in order to obtain the optimal bandwidth allocation ratios.

The proposed FEEL algorithm is an iterative algorithm that solves each sub-
problem sequentially as discussed previously and updates the solution in each
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iteration. The pseudo-code of the data-aware scheduling (DAS) algorithm is
given in Algorithm 2. The algorithm iterates until convergence or until a
maximum number of iterations is reached, whichever appears first. The con-
vergence happens when the values of x and α does not undergo a large change,
e.g., when their values are almost the same as in the previous iteration, the
loop is terminated. The number of iterations is set to iterationsmax and is
used to guarantee the algorithm termination.

Algorithm 2 DAS algorithm for FEEL
1: initialize xk = 1∀k ∈ [1, K];
2: uniformly allocate the bandwidth;
3: iterations← 1;
4: while iterations < iterationsmax and not convergence do
5: Solve Sub1 : Return x;
6: Round x;
7: if condition(4.14c) is satisfied then
8: continue
9: select K devices with the highest priorities

10: end if
11: Solve Sub2 : Return α
12: iterations← iterations+ 1
13: end while

4.7 Simulation and results

In this section, we present the performance evaluation of the DAS algorithm.
The experiments we conducted consist of two parts: 1) an evaluation for
the proposed diversity index; and 2) an evaluation of the performance of the
proposed DAS algorithm.

We first present in Section 4.7.1 the simulation environment and parameters
including the wireless edge environment and the datasets and trained models.
Next, we evaluate our proposed diversity index in Section 4.7.2. We compare
the diversity index’ impact in the selection of participant devices in compar-
ison to random selection. Then, we evaluate DAS algorithm under different
settings by comparing it to other scheduling approaches in Sections 4.7.3 and
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4.7.4. As communication is the bottleneck of FEEL, sending large models
over wireless networks limits the number of participants. Thus, we mainly
evaluate the performance of DAS algorithm by varying the model size in Sec-
tion 4.7.3. Furthermore, since trading communication rounds with more local
computation is one of the key enablers of FEEL, we also study the effect of
varying the number of local epochs in Section 4.7.4.

In the experiments, in order to evaluate the possible gain from using our
proposed algorithm, we compare DAS to two scheduling strategies: 1) a
baseline scheduling where all the devices participate in the training with opti-
mized time and energy following problem Sub2. We compare to this baseline
scheduling in order to evaluate the scalability of the algorithm in terms of
the consumed energy and time. 2) an age-of-update based scheduling (ABS)
algorithm [70, 69], specifically we used the age-based priority function pro-
posed in [70] with α = 1, f(k) = log(1 + T (k)) with T (k) the number of
rounds since last selection of device k. This algorithm considers both the va-
riety of participants. In fact, using ABS, the devices that did not participate
in the past few rounds have more priority. Therefore, by comparing DAS to
ABS, we are able to measure the importance of the dataset diversity in the
algorithm, in contrast to ABS approach that only considers the diversity of
participants.

4.7.1 Simulation Environment and Parameters

The simulations were conducted on a desktop computer with a 2,6 GHz Intel
i7 processor and 16 GB of memory and NVIDIA GeForce RTX 2070 Su-
per graphic card. We used Pytorch [141] for the machine learning library,
and Scipy Optimize [142] for the optimization modeling and solver. In the
numerical results, each presented value is the average of 50 independent runs.

1) Wireless Edge Environment:
We consider a cellular network modelled as a square of side 500 meters and
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composed of one BS located in the center of the square. The K edge de-
vices are randomly deployed inside the square following uniform distribution.
Unless specified otherwise, the simulation parameters are as follows. We con-
sider K = 100 edge devices, and N = 1 the minimum number of devices to
be scheduled. The OFDMA bandwidth is B = 1 MHz. The channel gains
gk between edge device k and the BS includes large-scale pathloss and small-
scale fading following Rayleigh distribution, i.e., |gk|2 = d−αk |hk|2 where hk

is a Rayleigh random variable and α is the pathloss exponent and dk is the
distance between edge device k and the BS. We set the parameters of problem
Sub1 as λE = λT = 1

4 , λI = 1
2 and the parameters of Sub2 as ρ = 1

2 . The
remainder of the used parameters are summarized in Table I.

Table 4.1 Generated Values
Devices CPU frequency [ 1,3 ] Ghz

Cycle /bit [ 10,30 ] (cycles/bit)
Transmit Power [1,5]

Model Size 100 kbits
Bandwidth 1MHz

Number of shards per device [1,30]

2) Dataset and Trained Models:
Dataset: We used benchmark image classification dataset MNIST [84],
which we distribute randomly among the simulated devices. The data distri-
bution we adopted is as follows: We first sort the data by digit label, then
we form 1200 shards composed of 50 images each. Each shard is composed of
images from one class, i.e. images of the same digit. In the beginning of every
simulation run, we randomly allocate a minimum of 1 shard and a maximum
of 30 shards to each of the 100 devices considered in this simulation. This
method of allocation allows us to create an unbalanced and non-IID distri-
bution of the dataset. We keep 10% of the distributed data for test, and use
the remaining for training.
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Models: convolutional neural networks (CNNs) and multi-layer perceptrons
(MLPs) are widely used in classification problems. More specifically, MLPs
are used for classification problems in general, while CNNs are especially pow-
erful for image classification as they allow scale independence. We used these
two different models in order to show the effect of the proposed algorithm in
different models’ convergence. The CNN model is given with two 5x5 convolu-
tion layers (the first with 10 channels, the second with 20, each followed with
2x2 max pooling), two fully connected layers with 50 units and ReLu activa-
tion, and a final softmax output layer. We also train a simpler MLP model
with two fully connected layers. Since our goal through using these models
is to evaluate our scheduling algorithm and not to achieve state-of-the-art
accuracy on MNIST, therefore they are sufficient for our goal. Furthermore,
the selected models are fairly small, thus they can be realistically trained on
resource-constrained and legacy devices, using reasonable amounts of energy
in short time windows.

We first evaluate the diversity index through several experiments. Then we
evaluate DAS over wireless networks by varying the model size and the num-
ber of local epochs.

Figure 4.2 Average test accuracy by varying number of selected devices
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Figure 4.3 Average test accuracy by varying number of local epochs with fixed
number of devices

Figure 4.4 The impact of the model size on the required number of rounds to
achieve the desired accuracy using the CNN model.

4.7.2 Diversity Index Evaluation

To test the proposed index, we train both models (i.e., CNN and MLP), us-
ing the FedAvg algorithm [74] over a total of 15 rounds. Since MNIST is
essentially an image classification task, and we have generated highly unbal-
anced datasets where several devices only have a subset of the target classes,
we used Gini-Simpson index to evaluate the datasets diversity. We set the
weights of the index equally to 1/3. We compare DAS performance to random
selection-based scheduling.

To clearly illustrate the efficiency of the diversity index in devices’ selection,
we stress-test the selection by limiting the number of selected devices. Fur-



4.7. SIMULATION AND RESULTS 79

Figure 4.5 The impact of the model size on the required number of rounds to
achieve the desired accuracy using the MLP model.

Figure 4.6 Energy per device and completion time for training the CNN model
for a goal accuracy of 92%.

thermore, the trade-off between local update and global aggregation imposes
the evaluation of the performance when varying the number of local iterations.

As a first experiment, we limited the number of selected devices to 3, 5 and
7. Fig. 4.2 shows the obtained accuracy throughout training rounds. The
average accuracy obtained using DAS is significantly higher across different
simulations. Thus, it is clear that using the diversity index as a criteria for
scheduling devices allows to accelerate the learning significantly, especially
when the number of devices that can be scheduled is low.
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Figure 4.7 Energy per device and completion time for training the MLP model
for a goal accuracy of 77%.

Figure 4.8 The impact of the number of local epochs on the required number
of rounds to achieve the desired accuracy using the CNN model.

In a second experiment, in Fig. 4.3, we fix the number of selected devices to 7,
and we vary the number of local epochs E ∈ {1, 2, 3} while choosing a random
scheduling algorithm or DAS algorithm. Fig. 4.3 illustrates the obtained
results for the CNN and the MLP models. Adding more local computations
allows significant gains in communication and in accuracy, especially for the
MLP model. We notice that the data-aware device selection still surpasses
random selection in these simulations when adding more local computation.
All in all, these results validate our hypothesis involving the importance of
dataset diversity.
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Figure 4.9 The impact of the number of local epochs on the required number
of rounds to achieve the desired accuracy using the MLP model.

Figure 4.10 Energy per device and completion time for training the CNN model
for a goal accuracy of 92%.

4.7.3 Effect of Model Size

Fig. 4.4 and Fig.4.5 show that using DAS algorithm, the number of required
communication rounds to reach the desired accuracy is always lower than (or
at least equal to) the one needed using ABS. For both models, the size can
affect the convergence speed of the learning. It should be noted that ABS
tends to select more devices in early communication rounds, which can yield
higher accuracy than DAS similarly to what is shown in Fig.4.4.a. Nonethe-
less, ABS gives higher priority to devices that did not participate, which leads
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Figure 4.11 Energy per device and completion time for training the MLP model
for a goal accuracy of 77%

to a decrease in the number of devices that can be selected, and thus a slower
convergence over the following rounds.

Indeed, the baseline scenario requires less rounds to reach high accuracy levels,
nonetheless, it is hard to scale for large number of devices in rapidly changing
environments. In fact, while Fig. 4.7 and Fig.4.6 show that the ABS and
DAS are comparable in terms of energy and completion time, the consumed
energy and time only represent a fraction of those of the baseline scenario
requirements. This is mainly due to scheduling only a fraction of the devices,
which for both algorithms did not exceed 20%.

Considering a goal accuracy of 77% for the MLP model and 92% for the
CNN, the values in Fig.4.6 and Fig.4.7, represent gains in energy compared
to the baseline as follows: On total, the consumed energy per device for the
ABS represents a gain of 68,85% on average for training the MLP model and
76,56% for the CNN model. Even higher gains are achieved for DAS, where
a gain of 78,86% is reached when training the MLP model and 84,96% CNN.
In terms of completion time, the required time across different experiments
for DAS is significantly less than the required time for ABS. These results are
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consistent with the number of required rounds for training presented in Fig.
4.4 and Fig.4.5. Additionally, the ABS algorithm selects more devices in the
first few rounds, and much less devices in the later rounds, thus leading to
longer rounds in the beginning of the training, and shorter rounds later.

These results show that the careful selection of participating devices jointly
with the optimized bandwidth allocation, make DAS scalable in terms of time
and energy when training large models.

4.7.4 Local Computation

In this section, we study the effect of increasing the computation per device.
We fix s = 100kbits, and add more local computation per client on each
round.

By increasing the number of local epochs E, we take full advantage of available
parallelism on the client hardware, which leads to higher accuracy on the test
set with less communication rounds. However, in previous work [47, 74], long
local computation may lead to the divergence training loss. Furthermore, due
to the changing environment due to the mobility of the devices, it is hard to
plan ahead the communication rounds for large E. Therefore, we limit the
experiments to (1, 2, 3) local epochs.

Fig. 4.8 and Fig. 4.9 show that adding more local epochs per round can
produce a dramatic decrease in communication costs. We see that increasing
the number of local epochs E can benefit largely from DAS, as it achieves a
closer behaviour to the baseline, especially for the less powerful MLP model.

Fig. 4.10 and Fig. 4.11 show how trading frequent communication with more
local computation has several benefits, as it reduces the required transmission
energy, as well as the FEEL completion time. Similarly to the previous ex-
periments, we considered a goal accuracy of 77% for the MLP model and 92%
for the CNN, the gains in energy compared to the baseline when increasing
the number of local epochs are as follows: On total, the consumed energy per
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device for the ABS represents gains of 83.5% and 95.97% for the MLP when
training for 2 epochs and 3 epochs respectively 88.19%, 96,95% on average
for training the CNN model. Even higher gains are achieved for DAS, where
a gain of 86.65% and 96.54% is reached when training the MLP model and
90% and 96,54% for the CNN model. These results are consistent with the
fraction of selected devices which does not exceed 20% on average.

We noticed that when increasing the number of local epochs, the required
completion time using DAS becomes slightly higher than the required com-
pletion time for ABS. This is mainly due to prioritizing devices that have
larger datasets, which leads to longer training duration. Nevertheless, the
difference can be seen as marginal when considering the gain in energy.

These results show that the careful selection of participating devices and the
resource allocation, make the DAS scalable.

4.8 Conclusion

In this paper, we have investigated the problem of devices scheduling in fed-
erated edge learning by formulating the following question: Can the use of a
suitable diversity index help achieve a better accuracy in fewer rounds? To
answer this question, we consider data properties as the key motor of the
selection of devices, as we designed a diversity index which can be adapted to
a wide variety of use-cases. Additionally, we integrated the diversity index in
a novel scheduling strategy in wireless networks, where the completion time
and energy efficiency of the transmission are also of high importance. To this
end, we derived the time and energy consumption models for FEEL based
on devices and channels properties. With these models, we have formulated
a joint selection and bandwidth allocation problem, aiming to minimize a
multi-objective function of the completion time and the total transmission
energy, while balancing with a goal to maximizing the diversity of the se-
lected devices. We have proposed to solve this problem through an iterative
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algorithm that starts with the selection of the devices and then allocates the
bandwidth. Through extensive evaluations, we proved the importance of the
data properties in FEEL and the efficacy of the diversity index. Furthermore,
we showed that our proposed scheduling algorithm can effectively reduce the
number of required rounds to achieve high accuracy levels especially for large
models, which results also in savings in time and energy.
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l’évaluation de la qualité des données. Ensuite, nous formulons le problème
de la sélection des dispositifs et de l’allocation de la bande passante. En-
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CHAPTER 5

Data-Quality Based Scheduling for Federated
Edge Learning

5.1 Abstract

FEderated Edge Learning (FEEL) has emerged as a leading technique for
privacy-preserving distributed training in wireless edge networks, where edge
devices collaboratively train machine learning (ML) models with the orches-
tration of a server. However, due to frequent communication, FEEL needs
to be adapted to the limited communication bandwidth. Furthermore, the
statistical heterogeneity of local datasets’ distributions, and the uncertainty
about the data quality pose important challenges to the training’s conver-
gence. Therefore, a meticulous selection of the participating devices and an
analogous bandwidth allocation are necessary. In this paper, we propose a
data-quality based scheduling (DQS) algorithm for FEEL. DQS prioritizes
reliable devices with rich and diverse datasets. In this paper, we define the
different components of the learning algorithm and the data-quality evalua-
tion. Then, we formulate the device selection and the bandwidth allocation
problem. Finally, we present our DQS algorithm for FEEL, and we evaluate
it in different data poisoning scenarios.

5.2 Introduction

Training centralized machine learning (ML) models requires the collection of
large datasets from sparse and highly distributed sources. Nonetheless, in
addition to the communication overheads, data collection raises an increas-
ing concern about sharing private information. FEderated Edge Learning
(FEEL) [143, 144] is a ML setting that utilizes multi-access edge computing

89
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(MEC) to tackle these concerns. In contrast to centralized ML, FEEL consists
of training the model on the user equipment (UE) under the orchestration
of a MEC server, where only the resulting parameters are sent to the edge
servers to be aggregated.

The predominant FEEL system model is a synchronous time-division resource
allocation system [145]. This means that the MEC server waits for all UEs
to send their updates before aggregating them. However, in reality, not all
updates can be aggregated. In fact, updates from UEs who do not report
before a fixed deadline are cancelled. A real deployment of FEEL is therefore
subject to the following challenges:

Limited Resources: In a contrast to cloud servers, the computing and
storage resources at the edge are rather limited [146, 114]. The gap in com-
putational resources of the UEs causes significant delays due to stragglers.
Furthermore, to run the iterative FEEL learning, the Base Station (BS) gen-
erally needs to connect a large number of UEs across a resource-limited spec-
trum and therefore can only support a limited number of UEs sending their
model updates over unreliable channels for global aggregation. Additionally,
the size of the updates can be very large in the case of deep neural networks.
As a result, the communication overhead becomes a bottleneck for FEEL.

Unbalanced and non-IID: Unlike traditional ML systems, in which an al-
gorithm operates on a large data set distributed homogeneously over several
servers in the cloud, FEEL is typically trained on a large, often unbalanced,
and non-identically distributed (non-IID) dataset that is generated by sepa-
rate distributions across different UEs. A large number of UEs participate
in the training, where several own small datasets, which makes local models
prone to overfitting. Moreover, the dataset of a given UE is usually based
on a particular user’s usage pattern, and thus a particular user’s local data
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set will likely be redundant and not representative of the remainder of the
population distribution.

Unreliable and malicious devices: Although FEEL has improved privacy
protection, it still suffers from several problems. First, all devices involved in
the FEEL process are expected to contribute their resources unconditionally,
which is not accepted by all UEs. Without reward, only a small fraction of
the devices are willing to participate in the training process. On the other
hand, the UEs involved in the training are unreliable and may act maliciously,
intentionally, or unintentionally, which may affect the overall model and lead
to erroneous model updates.

Most existing work on FEEL proposed scheduling algorithms aiming to opti-
mize resource utilization. The considered resources are time [147], transmis-
sion energy of participating UEs [148], and local computation energy [149].
Consequently, the number of scheduled UEs is often restricted in order to meet
latency and energy constraints. However, optimization should consider learn-
ing related aspects, especially data distributions and quality [147, 150, 151].
Furthermore, providing a reliable device selection is a necessary stepping
stone for enabling efficient and useful updates [152].

The main motivation behind this paper is to design a scheduling algorithm for
FEEL that considers UEs datasets’ different properties at its heart. In fact,
while datasets are unbalanced and non-IID, but a UE with a large dataset is
not necessarily in possession of useful data. Furthermore, malicious UEs can
train the model on poisoned datasets, which requires additional mechanisms
to reduce their damages to the training process. In this paper, we consider
diversity of the datasets and the reliability of the UEs as the baseline cri-
terion for choosing participating devices in FEEL. The diversity evaluation
allows to give priority to UEs with potentially more informative datasets to
speed up the training process, and the reputation mechanism sanctions ma-
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licious UEs with poisoned datasets. Accordingly, we propose a method for
incorporating datasets’ properties in FEEL scheduling, by designing a novel
data-quality value measure, and designing a data-quality based scheduling
algorithm (DQS).

The contributions of this paper can be summarized as follows:

1) we design a suitable priority indicator for the selection of participating
UEs;

2) we formulate a joint device selection and bandwidth allocation problem
taking into account data properties;

3) we prove that the formulated problem is NP-hard and we propose a DQS
scheduling algorithm based on greedy knapsack; and

4) we evaluate the proposed data-quality value measure and the DQS al-
gorithm through insightful simulations.

The remainder of this paper is organized as follows. In Section II, we present
the background for FEEL and related work. In Section III, we present the
design of the proposed diversity measure, starting with the used uncertainty
measures and their integration in FEEL. In Section IV, we integrate the
proposed measure in the design of the joint selection and bandwidth allocation
algorithm. Simulation results are presented in Section V. At last, conclusions
and final remarks are presented in Section VI.

5.3 Related work
In this section, first we discuss the related work regarding device scheduling
and data quality in FEEL. Next, we illustrate the existing research gaps and
motivate the need for designing a data-quality based scheduling algorithm for
FEEL.

Among the first works to explore device selection is work in [67], where au-
thors mitigated the straggler problem by giving priority to end devices with
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good communication and computation capabilities. However, this method is
not suitable in FEEL context, where datasets’ distributions vary, as it dis-
cards UEs with larger and potentially more informative datasets. Several
works proposed scheduling algorithms that aim to maximize the number of
participating devices while optimizing used resources [153, 154]. For instance,
authors in [50] proposed an energy-efficient scheduling algorithm aiming to
collect the maximum number of updates possible as a guarantee for the train-
ing speed. Another example is in [69], where authors study different schedul-
ing strategies based on the wireless channel’s state. Other works focus on the
staleness of updates to calculate the priority [69, 155], where higher prior-
ity is given to UEs that did not participate in previous rounds or have stale
updates. Despite the variety of the scheduling algorithms in the literature,
the design and evaluation of FEEL scheduling under heterogeneous and un-
certain dataset distributions remains a topic that is not well addressed, as
data-quality issues are overlooked and under-explored.

To overcome the reliability problem, several FL works use reputation systems
for UEs selection, as UEs with high reputation are more likely to provide high
quality data for the learning procedure. For instance, the authors in [156]
proposed a decentralized peer-to-peer approach to overcome the problem of
unreliable UEs, where poisoning is prevented by verifying peer contributions
to the model. However, due to stastical heterogeneity and high communica-
tion costs, P2P verification may not always be suitable. In [157] and [158], the
authors presented a blockchain-based reputation system for FL, where a UE’s
reputation is traceable. In [158], the authors presented a reputation-based
UE selection using subjective logic. This solution evaluates the reputation of
UEs based on their past interactions with other task publishers in the net-
work. Nonetheless, such approach relies on the willingness of several other
similar task publishers to share their opinions. Based on our analysis of these
works, we found that most of them did not consider the data heterogeneity
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when evaluating device reputation, and might not be suitable for realistic
FEEL scenarios. Consequently, we found it necessary to build a scheduling
algorithm for FEEL that considers UEs datasets’ different properties (i.e.,
limited bandwidth, unbalanced/ non-IID data) alongside UEs reliability.

5.4 System Model

Figure 5.1 Illustration of a communication round of FEEL with K UEs. UE2

launches a poisoning attack which will affect the learning.

In this section, we introduce the different components of the system model.
The system’s main components are the learning model, the data-quality
model, and the communication model. Based on these components, we for-
mulate a joint UE selection and bandwidth allocation problem for FEEL.

5.4.1 Learning Model

In contrast to centralized training, FEEL keeps the training data locally, and
learns a global model through the shared parameters sent by a federation of
participants (e.g., individual users, organizations). By keeping data locally,
the training can use ephemeral data and leverage the computing resources
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of the sparse UEs. FEEL is an iterative process that starts with the model
and parameters initialization. In our proposed framework, in each round, the
procedure in Algorithm 3 is repeated. Fig. 5.1 illustrates the different steps
in the procedure taking into account the statistical heterogeneity of the data
distributions alongside the possibility that malicious devices may launch data
poisoning attacks. In the figure, UE2 launches a label-flipping attack. Due
to the local nature of the training, this attack is hard to detect. As a result,
in our proposed process, each training round t starts by the UEs sending
their information to the MEC server (i.e., dataset information). With the
evaluated channel state information, and the dataset information, the MEC
server schedules a set of UEs using Algorithm 4 and sends them the global
model g . Upon receiving the updates, the MEC server evaluates the quality
of each model Ωk by testing it on publicly available data. UEs also report
local accuracy of their models. These evaluations are then used to update the
perceived reputation of the UEs at the MEC server level. The last step is the
model aggregation, which is typically achieved using weighted aggregation
[143].

5.4.2 Data Quality and Data Poisoning

1) Data Poisoning in FEEL In FEEL, UE data may include personal in-
formation (e.g., home address, credit card number, etc.). The disclosure of
this data is not only harmful to the UE, but the intentional/unintentional
alteration of the data can also cause security problems [159]. One of the
main types of attacks that can affect model severally is poisoning attack. A
poisoning attack occurs when the attacker is capable of injecting false data
or altering the training samples of the FEEL model’s learning pool, and thus
causing it to learn on wrong or erroneous data. Poisoning attacks can occur
during the training period and are primarily aimed at availability or integrity
of the data. Generally, there are two main approaches to generate poisoned
attacks, namely: label-flipping [160] and backdoor [161]. In this paper, we
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mainly focus on label-flipping where an adversary modifies a small number
of examples/training data and maintains the characteristics of the data un-
changed to degrade the performance of the model.

2) Reputation evaluation: At each communication round t , each participating
UE k reports the local accuracy acclocalk and sends its newly computed model
Ωk. The model is then evaluated on a test-set to evaluate its quality, alongside
the UE’s honesty. A UE’s reputation decreases when it uploads a malicious or
bad-quality model, or when it declares a very high local accuracy compared
to the obtained accuracy on the test-set. This reputation measure allows to
detect not only malicious UEs, but also UEs with overfitting models and low
quality dataset. We update the value of the reputation of UE k in each round
t , as follows:

Rt
k = Rt−1

k − η(β1(acc
local
k − avg(acc)) + β2(acc

local
k − acctestk )) (5.1)

where η ∈ [0.1] is the reputation rate with which we decrease the reputation
value.

3) Dataset diversity evaluation:

Each dataset can be characterized by how diverse its elements are (i.e., diver-
sity of the elements), their number(i.e., dataset size) and how many times the
model was trained on it (i.e., age). We set the value of each metric as [151]:
viγi, where γi is the adjustable weight for each metric assigned by the server
and vi is the normalized value of the metric i . Using the aforementioned
characteristics, the diversity index of dataset k can be defined as:

Ik =
∑
i

vi,kγi, (5.2)

with i ∈ {elements diversity, dataset size, age} Depending on the application,
other quality measures can also be used. For instance, in image classification,
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measures regarding image quality (e.g., blur) can heavily affect the learn-
ing [110, 44]. Such measures can be evaluated on a subset of images and
normalized for a seamless integration in the index.

4) Data-Quality measure The data-quality value can be inferred from the
reputation of UE k ’s reputation and dataset diversity index. We define the
value for each UE as:

Vk = ω1Rk + ω2Ik (5.3)

with ω1, ω2 ∈ [0, 1] are weighted values for each metric.

5.4.3 Communication and Computation Models

As communication is the bottleneck of synchronous FEEL, it is crucial to judi-
ciously allocate the bandwidth. Hereinafter, we consider orthogonal frequency-
division multiple access (OFDMA) for local model uploading from the UEs
to the MEC server, with total available bandwidth of B Hz. We define
α = [α1, ..., αK ], where each UE k is allocated a fraction αk ∈ [0, 1] from the
total bandwidth B . Additionally, we denote the channel gain between UE k

and the BS by hk. The achievable rate of UE k when transmitting the model
to the BS is given by:

rk = αkB log2(1 +
gkPk

αkBN0
), ∀k ∈ [1, K], (5.4)

where Pk is the transmit power of UE k , and N0 is the power spectral density
of the Gaussian noise.

Based on the synchronous aggregation assumption with a fixed deadline, the
scheduled UEs in a communication round must upload before a deadline T .
For all UEs, the time constraint is defined as follows:

(ttraink + tupk )xk ≤ T, ∀k ∈ [1, K], (5.5)
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Table 5.1 List of Notations.

Notations Description
T Communication round’s deadline
B Bandwidth
s Model size
ϵ Number or local epochs
g Global model
Ωk Model update of UE k
ttraink Training time for UE k
rk Achievable data rate of UE k
tupk Upload time for UE k
Pk Transmit power of UE k
αk Bandwidth fraction allocated to UE k
N0 Power spectral density of the Gaussian noise
|Dk| UE k’s dataset size
ζk(cycles/bit) The number of CPU cycles
fk The computation capacity
Rt

k Reputation of UE k at round t
Ik Dataset diversity index of UE k
Vk Data-quality value of UE k
η Reputation rate
βi, ωi, γi Weights of different measures

where ttraink and tupk are, respectively, the training time and upload time of
UE k . The training time ttraink depends on UE k’s dataset size as well as on
the model. It can be estimated using Eq.5.6:

ttraink = ϵ |Dk|
ζk
fk
, (5.6)

where ζk(cycles/bit) is the number of CPU cycles required for computing one
sample data at UE k and fk is its computation capacity.
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In order to send an update of size s within a transmission time of tupk , we
must have:

tupk =
s

rk
. (5.7)

5.4.4 Joint UE selection and bandwidth allocation problem

Considering the data-quality aspect at the key selection criterion, and tak-
ing into account the communication bottleneck of FEEL, we formulate the
following problem:

maximize
x, α

K∑
k=1

xkVk (5.8a)

subject to

(ttraink + tupk )xk ≤ T, ∀k ∈ [1, K], (5.8b)
K∑
k=1

αk ≤ 1, ∀k ∈ [1, K], (5.8c)

0 ≤ αk ≤ 1, ∀k ∈ [1, K], (5.8d)

xk ∈ {0, 1}, ∀k ∈ [1, K]. (5.8e)

The goal of the problem 5.8a is to select UEs to participate in a training round,
and allocate the bandwidth to these UEs so as they upload their models before
the deadline. The goal is therefore to maximize the weighted sum of the
selected UEs under time and bandwidth constraints. In fact, constraint (5.8b)
guarantees that the selected UEs will finish training and uploading before
the deadline T . Due to limited bandwidth budget, the bandwidth allocation
ratio should respect the constraint (5.8c). Constraints (5.8d) determines the
bounds for the bandwidth allocation ratios and constraint (5.8e) defines xk

as a binary value for each UE.

Problem 5.8a is mixed integer non-linear problem, which makes it very chal-
lenging to solve. Indeed, a restricted version of the problem 5.8a can be shown
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to be equivalent to a knapsack problem and thus it is NP-hard. In fact, the
problem of maximizing the weighted number of devices, i.e.,

∑
k Vkxk is sub-

ject to a knapsack capacity (i.e., limited bandwidth) given by
∑

k αkxk ≤ 1.
Hence, the problem is equivalent to a knapsack problem, and since the latter
is NP-hard, so is the problem 5.8a.

Algorithm 3 Data-quality based training procedure
1: for t ∈ [1 . . . tmax ] do
2: if t = 0 then
3: initialize the model’s parameters at the MEC server
4: initialize the reputation values as 1 for each UE.
5: end if
6: Receive UEs information (transmit power, available data size, dataset diversity in-

dex)
7: Schedule a subset St of UEs with at least N UEs using Algorithm 4
8: for UE k ∈ St do
9: k receives model g

10: k trains on local data Dk for ϵ epochs
11: k sends updated model Ωk to MEC server and reports local accuracy acclocalk

12: end for
13: MEC server computes new global model using weighted average: g ←

∑
k∈St

Dk

Dt
Ωk

14: MEC server updates the reputation values using the received models using a test-set
and the average reported accuracies.

15: start next round t ← t + 1
16: end for

5.5 Data-Quality based Scheduling

In this section, we present our proposed solution for data-quality based schedul-
ing to solve 5.8a. As problem 5.8a can be transformed into a knapsack
problem, we chose to follow a greedy knapsack algorithm to solve it. A
greedy knapsack algorithm has low complexity and will allow fast and effi-
cient scheduling under the rapidly changing wireless edge environment. In
fact, while the ranked list solution of the knapsack approach might enhance
scheduling performance in terms of overall data quality, it is not efficient in
defining the optimal bandwidth allocation decision. Moreover, selecting the
highest ranked UE with the best data-quality value without considering the
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extent of bandwidth required by each UE does not lead to an optimized per-
formance benefit. Consequently, it is preferable to follow a greedy algorithm
that iteratively selects a UE with better ratio Vk

αk
[162].

As the required bandwidth is not a fixed value, we calculate the minimum
required bandwidth for each UE to be able to send the update by the deadline
T . In order for a UE k to upload the model before the deadline T , each
selected UE must respect tupk ≤ T − ttraink . The corresponding minimum
data rate is therefore rk,min = s

T−ttraink
for each UE k . Calculating the value

of αk from this expression is not possible. Thus, we estimate the cost of
allocating a fraction of the bandwidth to UE, by calculating the required
number of fractions needed if we were to uniformly allocate the bandwidth.
More specifically, we define

rk(c) =
c

K
B log2(1 +

gkPk
c
KBN0

), c ∈ N ∩ [1, K] (5.9)

As a result, we define the cost for bandwidth allocation for UE k ck =

min{rk(c) ≥ rk,min, c ∈ N ∩ [1, K]}. The cost is then used to order the
UEs based on a new ratio Vk/ck, as well as to allocate the bandwidth. The
DQS is presented in Algorithm4.

5.6 Numerical results

5.6.1 Experimental Setup

We conduct the simulations on a desktop computer with a 2,6 GHz Intel
i7 processor and 16 GB of memory and NVIDIA GeForce RTX 2070 Super
graphic card. We used Pytorch [141] for the ML library. The presented
numerical results are the average of 10 independent runs in each setting.

Dataset and Data poisoning: We evaluate the efficiency of DQS on
MNIST [84], a handwritten digit images dataset. The dataset contains 50,000
training samples and 10,000 test samples labeled as 0-9.
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Algorithm 4 Data-quality based scheduling algorithm
Input A queue of K UEs waiting for scheduling total available bandwidth B ;

Output Array α, Scheduling decision of the UEs x =
[x1, . . . , xK ];
1: // Cost Evaluation
2: for k = 1, . . . , K do
3: rk = 0, c = 1;
4: while rk(c) ≤ rk,min and c ≤ K do
5: c← c+ 1;
6: ck ← c;
7: end while
8: end for
9: return C = [c1, . . . , cK ]

10: // Bandwidth Allocation
11: order UEs according to their ratio (Vk

ck
) decreasingly and index them from 1 to K;

12: for k = 1 . . . K do
13: xk ← 0;
14: end for
15: A← K;
16: k ← 1;
17: while A ≥ 0 do
18: if A− ck ≥ 0 then
19: xk ← 1;
20: A← A− ck;
21: αk ← ck/K;
22: k ← k + 1;
23: end if
24: end while
25: return x and α

Data distribution: In order to simulate non-iid and unbalanced datasets, after
keeping 10% of the data for test, the data distribution we adopted for training
is as follows: We first sort the data by digit label, then we form 1200 groups
of 50 images. Each group contains images of the same digit. In the beginning
of every simulation run, we randomly allocate a minimum of 1 group and a
maximum of 30 groups to each of the 50 UEs.

Data poisoning: According to work in [163, 160], when launching targeted
poisoning attacks (i.e., label flipping attack) on a handwritten digits classifier,
the easiest and hardest source and target label pairs are (6,2) and (8,4),
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Figure 5.2 Model accuracy depending on the targeted label following different
selection strategies

respectively. Accordingly, we study both targeted labels. In fact, in each run,
5 UEs chosen at random will display a malicious behaviour by poisoning data
through label flipping.

Model: We train a simple multi-layer perceptron (MLP) model with two
fully connected layers using the FedAvg algorithm [74] over a total of 15
rounds. This model is lightweight, thus it can be realistically trained on
resource-constrained and legacy UEs. The model size is S = 100Ko, and each
communication round lasts T = 300s. The training time for each simulated
UE is inferred from its training time on our setup.

5.6.2 Evaluation and Discussion

1) Data-quality evaluation In this part of the evaluation, we focus on the
data-quality aspect independently from the wireless environment. We weight
the value of dataset diversity indicator I and the reputation R under the two
label flipping attacks. In each round, we select 5 UEs with the highest values
for Vk.

Since MNIST is essentially an image classification task, and we have generated
highly unbalanced datasets where several UEs only have a subset of the digits,
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we used Gini-Simpson index to evaluate the datasets’ elements diversity [151].
We set the weights of the diversity index equally to γi = 1/3 and η = 1. We
evaluate the different parts of the data-quality aspects by setting different
values of ω1 and ω2.

Fig 5.2 shows the results for both label flipping attacks. While in both simu-
lations, considering both aspects by setting ω1 = ω2 yielded better accuracy,
we noticed different response to each aspect. For the tuple (6,2), Fig 5.2.a
shows that following a selection strategy based on data-diversity can be a
good strategy, while for the harder task (8,4), as shown in Fig 5.2.b, it sel-
dom fails to converge.

2) DQS evaluation: In this part of the evaluation, we evaluate DQS under
the two label flipping attacks. We model the cellular network as a square of
side 500 meters with one BS located in the center of the square. The K = 50

UEs are randomly deployed inside the square following uniform distribution.
The OFDMA bandwidth is B = 1 MHz. We set Pk = −23dBm for all UEs.
The channel gains gk between UE k and the BS includes large-scale pathloss
and small-scale fading following Rayleigh distribution, i.e., |gk|2 = d−αk |hk|2

where hk is a Rayleigh random variable and α is the pathloss exponent and
dk is the distance between UE k and the BS.

While the results using DQS in Fig.5.3.a are in concordance with the results
in Fig 5.2.a, Fig.5.3.b revealed different results. It is likely due to the varying
number of participating UEs in each iteration that the results are different.
Interestingly, through the results in both Fig.5.3.a and Fig.5.3.b, we noticed
the long-term importance of the reputation aspect, on the contrast to the
importance of dataset diversity in the early training rounds. This observation
becomes clear with the pair (8,4), as it makes the learning harder. The role of
reputation is far clearer at later rounds as the model becomes more sensitive
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to changes. As a result, an adaptive change of the weights ω1 and ω2 should
be considered when using DQS.

Figure 5.3 Model accuracy depending on the targeted label using DQS

5.7 Limitations and Future Work
Through our work on this paper, we have identified several future directions
and open issues that need further investigation:

– Use-case specific measures: While our proposed approach is general,
it remains necessary to choose the adequate data-quality measures for
optimal results in each use-case.

– Outliers: Outliers in the context of FEEL might be wrongfully consid-
ered as malicious. A tractable solution can be combining the proposed
approach with clustering techniques.

– Other poisoning attacks: Our proposed algorithm can be extended to
handle other attacks such as model poisoning and multi-task poisoning
attacks.

5.8 Conclusion
FEEL is the future of distributed training in wireless edge networks by virtue
of its privacy preserving aspect. In this paper, we investigated scheduling of
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participant UEs in the collaborative training based on data-quality aspects.
To this end, we proposed a data-quality based scheduling (DQS) algorithm for
FEEL. DQS prioritizes devices with rich and diverse datasets, and punishes
devices with poisoned datasets. We first defined the different components of
the learning algorithm and the data-quality evaluation, namely dataset di-
versity and UE reputation. Then, we formulated a joint UE selection and
bandwidth allocation problem, which we proved to be NP-hard. We pre-
sented our DQS algorithm for FEEL, which solves the problem in a greedy
fashion. Finally, we evaluated the algorithm in different data poisoning sce-
narios, which showed the importance of data-quality evaluation components
in scheduling UEs. In the future, we will enhance our proposed algorithm
to handle other attacks such as model poisoning and multi-task poisoning
attacks. Furthermore, we will run evaluations on larger scale by testing on
other datasets and larger number of UEs.
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statistique des distributions de données. En effet, une utilisation judicieuse
des ressources de communication et de nouvelles méthodes d’apprentissage
perceptif sont essentielles. À cette fin, nous proposons une nouvelle architec-
ture pour les FL véhiculaires et les processus d’apprentissage et d’ordonnancement
correspondants. L’architecture utilise les ressources de véhicule à véhicule
(V2V) pour contourner le goulot d’étranglement de la communication où des
grappes de véhicules forment des modèles simultanément et où seul l’agrégat
de chaque grappe est envoyé au serveur du bord à accès multiple (MEC). La
formation des clusters est adaptée à l’apprentissage mono et multi-tâches, et
prend en compte les aspects de communication et d’apprentissage. Nous mon-
trons par des simulations que le processus proposé est capable d’améliorer la
précision de l’apprentissage dans plusieurs distributions d’ensembles de don-
nées non indépendantes et distribuées de manière identique (non-i.i.d) et non
équilibrées, sous des contraintes de mobilité, en comparaison avec le FL stan-
dard.
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CHAPTER 6

Clustered Vehicular Federated Learning: Pro-
cess and Optimization

6.1 Abstract

FL involves the collaborative training of a single ML model among edge
devices on their distributed datasets while keeping data locally. While FL
requires less communication compared to classical distributed learning, it re-
mains hard to scale for large models. In vehicular networks, FL must be
adapted to the limited communication resources, the mobility of the edge
nodes, and the statistical heterogeneity of data distributions. Indeed, a ju-
dicious utilization of the communication resources alongside new perceptive
learning-oriented methods are vital. To this end, we propose a new architec-
ture for vehicular FL and corresponding learning and scheduling processes.
The architecture utilizes vehicular-to-vehicular(V2V) resources to bypass the
communication bottleneck where clusters of vehicles train models simulta-
neously and only the aggregate of each cluster is sent to the multi-access
edge (MEC) server. The cluster formation is adapted for single and multi-
task learning, and takes into account both communication and learning as-
pects. We show through simulations that the proposed process is capable of
improving the learning accuracy in several non-independent and-identically-
distributed (non-i.i.d) and unbalanced datasets distributions, under mobility
constraints, in comparison to standard FL.

6.2 Introduction

Autonomous driving (AD) requires little-to-no human interactions to build an
intelligent transportation system (ITS). Consequently, AD helps in reducing

111
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accidents caused by human driving errors. Artificial intelligence (AI) plays
an essential role in AD by empowering several applications such as object
detection and tracking through machine learning (ML) techniques [164, 10].

With the raise of AI research and deployment over the last decade, the devel-
opment of autonomous vehicles has seen significant advancements. Indeed,
vehicle manufacturers put a lot of effort to deploy AI schemes aiming to
achieve human-level situational awareness. However, owing to technical dif-
ficulties and several ethical and legal challenges, it is still challenging for
vehicles to achieve full autonomy. In fact, autonomous vehicles need to ful-
fill strict requirements of reliability and efficiency, and achieve high levels of
situational awareness. Vehicle manufacturers are deploying efforts to achieve
these goals. Autonomous vehicles will be capable of sensing their network
environment using embedded sensors and share information with other vehi-
cles and equipment through wireless communication. Autonomous vehicles
can be equipped with LiDAR sensors, camera sensors, and radar sensors that
collect important amounts of data to share with the vehicular network.

With the prevalence of connected vehicles and the transition toward auton-
omy, it is expected that vehicles will no longer rely only on locally collected
data for localization and operation. Instead, enhanced situational awareness
can be attained through exchanging raw and processed sensor data among
large networks of interconnected vehicles [54]. In contrast to status data
sharing, sensor data sharing becomes a pivotal operation for different safety
applications, such as HD map building [165] and extended perception [166].
These data are also necessary to produce or enhance ML models that will be
capable of performing AD tasks, such as dynamically adjusting the vehicle’s
speed, braking, and steering, by observing their surrounding environment.

Nonetheless, extensive sensor data sharing raises alarming privacy issues since
vehicle sensor sharing involves sharing raw and processed data among vehi-
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cles. These data expose sensitive information about the vehicle, the driver,
and the passengers, and could be used in a harmful way by a malicious entity.
While privacy in vehicle status sharing has been already been extensively ad-
dressed and regulated by vehicle manufacturers—through a dynamic change
of media access control (MAC) address and data anonymization, these regula-
tions have not been extended to sensor data sharing. Moreover, to attain fully
AD and enhance the overall ML models’ performance, the deployed ML/AI
models in the vehicle need to be updated and improved periodically by orig-
inal equipment manufacturers (OEM). This requires the vehicles to upload
the collected data to the OEMs, which further violates data privacy. Indeed,
when data is uploaded to multi-access edge computing (MEC) servers, or to
the cloud, it may be subject to be malicious interception and misuse.

Federated learning (FL)[143] has emerged as an attractive solution for privacy-
preserving ML. FL consists of the collaborative training of ML models among
edge devices without data-sharing, which makes it a promising solution for
the continuous improvement of ML models in AD. Indeed, with FL, edge
devices share their models parameters instead of their private data and then
the models are aggregated at MEC servers to obtain a global accurate model.

When FL is used in a vehicular network context, a centralized entity (e.g., a
MEC server) initializes a model and distributes it among participant vehicles.
Each vehicle then trains the model using local data and sends the resulting
model parameters to the central entity for aggregation.

The predominant FL training scheme is a synchronous aggregation. Accord-
ingly, the MEC server waits for all vehicles to send their updates before
aggregating them.

The assumption of FL is that the goal for participating end devices (also called
end users throughout the article) is to approximate the same global function.
Nevertheless, this is not the case for non-i.i.d data, particularly in the case
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of competing objectives, where a single joint model cannot be optimal for all
end devices simultaneously. Consequently, clustering [78, 77] was proposed to
group users with similar objectives and build multiple versions of the trained
model. However, these works suppose the availability of all the end users and
require their participation in the training for cluster-formation. Therefore,
even if vehicle clustering for FL is interesting for the above mentioned reasons,
due to the high-speed mobility, Doppler effect, and frequent handover (short
inter-connection times), not all vehicle updates can be collected at the MEC
servers. Further, due to the different mobility patterns, not all vehicles can
have strong signal quality with the MEC servers. As a result, participating
vehicles should be carefully selected and communication must be efficiently
scheduled.

Vehicle-to-vehicle (V2V) communication offers a new opportunity for FL de-
ployment that bypasses the communication bottleneck with the MEC server.
A cluster of vehicles can collaboratively train models and a chosen cluster-
head can aggregate their updates so as only one model is sent to the MEC
server. To achieve this, two main questions need to be addressed: how to
adequately form FL clusters under mobility constraints; and how to select
the cluster-heads in such settings.

In this article, we propose a cluster-based scheme for FL in vehicular net-
works. The clustering scheme consists of grouping vehicles with common
characteristics, not only in terms of direction and velocity, but also from a
learning perspective through the evaluation of the updates’ similarity. Thus,
the proposed scheme allows to accelerate the models’ training through ensur-
ing (i) a larger number of participants (ii) possibility to train several models
to adapt to non-i.i.d and unbalanced data distributions.

The main contributions of this article can be summarized as follows:
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1) we design an architecture and corresponding FL process for clustered FL
in vehicular environments;

2) we formulate a joint cluster-head selection and resource block allocation
problem taking into account mobility and data properties;

3) we formulate a matching problem for cluster formation taking into ac-
count mobility and model preferences;

4) we prove that the cluster-head problem is NP-hard and we propose a
greedy algorithm to solve it;

6) we evaluate the proposed scheme through extensive simulations.

The remainder of this article is organized as follows: In Section II, we present
the background for FL and related work. In Section III, we present the design
of the learning process and considered system model components. In Section
IV, we formulate the cluster-head selection and vehicle association problems,
and we present the proposed solution. Simulation results are presented in
Section V. At last, conclusions and future work are presented in Section VI.

6.3 Background
In this section, we first present a background on FL and challenges tackled
in this paper, then we present related work that enables and motivates our
work.

6.3.1 Federated Learning

FL is a privacy-preserving distributed training framework, which consists of
the collaborative training of a single ML model among different participants
(e.g.,IoT devices) on their local datasets. The training is an iterative process
that starts with the global model initialization by a centralized entity (e.g., a
server). In every communication round i , a selected subset of N participants
receive the latest global model θt. Then, every participant k trains the model
by performing multiple iterations of stochastic gradient descent (SGD) on
minibatches from its local dataset Dk. The local training results in a several
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Table 6.1 List of Notations.
Notations Description
Tk Rate of stay of vehicle k
TotalRB Total available resource blocks
s Model size
ϵ Number or local epochs
g Global model
θk Model update of vehicle k
ttraink Training time for vehicle k
rk Achievable data rate of vehicle k
tupk Upload time for vehicle k
Pk Transmit power of vehicle k
N0 Power spectral density of the Gaussian

noise
|Dk| vehicle k’s dataset size
Ik Data-diversity of vehicle k
Rk,h Relationship of vehicles k and h

weight-update vectors ∆θt+1
k , which are sent to the server. The last step is the

model aggregation at the server, which is typically achieved using weighted
aggregation [143] following Eq.6.1. The process is then repeated until the
model converges.

θt+1 = θt +
N∑
k=1

|Dk|
|D|

∆θt+1
k (6.1)

While this aggregation method takes into account the unbalanced aspect of
datasets’ size, it is not always suitable for non-i.i.d distributions. Further-
more, FL in wireless networks in general, and in vehicular networks in par-
ticular, is subject to the following challenges:
Statistical heterogeneity: One of the underlying challenges for training
a single joint model in FL settings is the presence of non-i.i.d data. For
instance, some nodes only have access to data from a subset of all possible
labels for a given task, while other nodes may have access to different input
features. Furthermore, varying preferences for instance can lead to concept
shift (i.e., nodes classify same features under different labels, or vice-versa).
In practice, these non-i.i.d settings are highly likely to be present in a given
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massively distributed dataset. Thus, training models under these settings
requires new sets of considerations.

Partial Participation: Given the scarcity of the communication resources,
the number of participating nodes is limited. In fact, the generated traffic
grows linearly with the number of participating nodes and the model size.
Moreover, the heterogeneity of the nodes in terms of computational capabili-
ties and mobility (i.e., velocity and direction) introduces stringent constraints
on the communication. Hence, enabling FL on the road in a communication-
efficient way is far from an easy task.

6.3.2 Related Work

Several works consider FL as a key enabler for vehicular networks in general,
and AD in particular [167], such as secure data sharing [54], Autonomous
Controllers [168], caching [169], and travel mode identification from non-i.i.d
GPS trajectories [170]. Nonetheless, deploying FL on the road remains a
challenging task due to uncertainties related to mobility and communication
overhead. To overcome the communication bottleneck, works [171, 172, 173]
have proposed judicious node selection and resource allocation for efficient
training. However, these schemes are specifically designed for the topology
and dynamics of standard wireless/cellular networks with high node density
but relatively low mobility. In contrast, vehicular networks have rather low
node density and very high node mobility [63]. As a result, new schemes
are required for FL on the road. Meanwhile, V2V communication offers a
new possibility for FL deployment that bypasses the bottleneck of communi-
cation with the MEC server. In vehicular networks, some vehicles serve as
edge nodes to which neighboring nodes offload computation and data analysis
tasks [174]. Edge vehicles are also used to provide a gateway functionality
by ensuring continuous availability of diversified services such as multimedia
content sharing [175]. A common practice among such works is creating clus-
ters of vehicles where the edge vehicle acts as a cluster head. The clusters are
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formed based on several metrics such as the distance between the vehicles,
their velocity and direction. Yet, these clustering schemes cannot be directly
exploited in the context of FL. Recent VANET clustering works principally
design algorithms based on their primary application [176, 177]. This is a
logical approach since the design of a clustering algorithm highly influences
the performance of the application for which it is used. A popular approach
for cluster head selection widely used in the literature [177, 178, 179] requires
each vehicle to calculate an index quantifying its fitness to act as a cluster
head for its neighbours. Vehicles wishing to affiliate with a cluster head rank
all neighbours in their neighbour table and request association with the most
highly-ranked candidate node. The index is calculated as a weighted sum
of several metrics, such as the degree of connectivity and link stability, with
weights chosen depending on the importance of the considered metrics. How-
ever, due to the nature of FL applications, metrics related to learning/data
should also be considered.

Furthermore, clustering is already used in FL as a means to accelerate the
training by grouping nodes with similar optimization goals, which train dif-
ferent versions of the model instead of one global model [78, 180, 77, 181].
In fact, one of the fundamental challenges in FL is the presence of non-i.i.d
and unbalanced data distributions [182, 144]. These challenges go against the
premise of FL which aims to train one global model. Such settings require
new mechanisms to be put in place in order to ensure models’ convergence.
Clustered FL has attracted several research efforts, as it has generalization
[183] and convergence [181] guarantees under non-i.i.d settings. By creating
different models to adapt to different end users’ distributions, clustered FL
allows better model performance in the case of concept-shift. Concept-shift
[77] occurs when different inputs do not have the same label across users as
preferences vary. Moreover, in clustered FL, training becomes resilient to poi-
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soning attacks [184] such as label flipping [185] (i.e., nodes misclassify some
inputs under erroneous labels).

For instance, authors in [78], develop a clustered FL procedure. Their work
allows to find an optimal bipartitioning of the users based on cosine similar-
ity for the purpose of producing personalized models for each cluster. The
bipartitioning is repeated whenever FL has converged to a stationary point.
In [77], a single clustering step, in a predetermined communication round, is
introduced. In this step, all the users are required to participate and the sim-
ilarity of the updates is used to form clusters using hierarchical clustering.
Nonetheless, the proposed approach requires knowing a distance threshold
on the similarity values between the updates to form the clusters. Further-
more, cluster-based approaches assume that all the users participate, which
is unfeasible under dynamic and uncertain vehicular networks.

To the best of our knowledge, our work is the first to address the problem of
clustered FL in hierarchical mobile architectures, while considering the users’
data distributions, wireless communication characteristics, and resource allo-
cation constraints. Specifically, unlike other studies, we consider the learning
aspect (i.e., nodes dataset characteristics and model dissimilarities), in addi-
tion to communication constraints (i.e., wireless channel quality, mobility, and
communication latency). Henceforth, we propose a practical way to deploy
FL in vehicular environments.

6.4 System Model

We consider a vehicular network composed of a set V of K vehicles and a
set U of N gNodeBs. Both the communication among vehicles and with the
gNodeBs are through wireless links. Additionally, gNodeBs are connected to
the Internet via a reliable backhaul link. The vehicles have enough computing
and storage resources for the training, and the gNodeBs are equipped with
MEC servers. MEC servers are used to schedule the vehicles nearby, aggre-
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Figure 6.1 Illustration of the different steps in clustered vehicular federated
learning

gate the updates and manage the clusters. In the following, we explain the
proposed cluster-based training process and the different components of the
considered system model (i.e., communication and computation) in a vehic-
ular environment.

6.4.1 Process Overview

FL in vehicular networks is subject to several challenges related to data,
mobility, and communication and computation resources. In this paper, we
consider these aspects in the design and optimization of the FL process in
vehicular networks.

The first set of challenges are related to data, where the learning process
should be adapted to take into account data heterogeneity in order to accel-
erate the model convergence. Data generated across different applications in
vehicular networks depend on the specific vehicle sensors and these sensors’
data acquisition activities which often leads to heterogeneous data distribu-
tions among FL participants (i.e., different dataset sizes and different data
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distributions). Furthermore, the dependence on data acquisition activities
from vehicles with similar sensing capabilities makes the collected data highly
redundant. As a result, local datasets cannot be regarded the same in terms
of information richness, as some datasets may have more diverse and larger
datasets than other participants. Furthermore, communication resources in
this context are limited. In fact, in addition to the bandwidth’s scarcity,
the possible time for communication with the MEC server is limited by the
time where a vehicle is in the area covered by the base station. For all these
reasons, the participant selection and the bandwidth allocation mechanisms
should be carefully designed for FL in vehicular networks. Hence, in this
article, we use the data properties to guide the participants’ selection in the
training and communication process.

Furthermore, the model convergence speed is highly dependent on the number
of collected updates. Vehicle-to-vehicle (V2V) communication offers a great
alternative to bypass the communication bottleneck in vehicular networks by
allowing some select vehicles to act as mediators between other vehicles and
the MEC server. We propose to use V2V in order to maximize the collected
updates under the communication uncertainty.

In these perspectives, we propose to prioritize the vehicles with the most
informative datasets and use them as cluster heads, while the remainder of
the vehicles are associated with them. In this setting, each cluster-head ag-
gregates the models of the vehicles in its cluster and uploads the resulting
model. In fact, instead of sending all the collected updates, the cluster-head
will aggregate the updates and send one aggregated model which is more
communication-efficient. In this case, hierarchical FL is used as a means to
optimize the communication in vehicular networks, where the MEC server
will do a second round of aggregation.
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Another aspect that needs to be considered is mobility and how it affects
the communication among vehicles and with the MEC server. In order for
the cluster-heads to successfully upload their models to the MEC server, the
upload should be completed before the vehicles leave the coverage area of
the BS. Furthermore, for the vehicles to be able to send their models to the
cluster-head, their link lifetime (LLT) should be longer than the required time
for training and uploading the models.

In order to adapt this approach to the case where multiple models need
to be trained, other considerations need to be taken into account in this
approach. In fact, in the case where data distributions are subject to concept-
shift, a single model is not enough. Concept-shift is another kind of data
heterogeneity that arises in cases where data is subjective and depends on
the preferences of end users, or in the presence of adversaries. In classification
problems for instance, concept shift is when similar inputs have different labels
depending on the end user. In the case of vehicles, the latter could simply
not share the same model if they are not from the same OEM. The presence
of different perspectives from different vehicles makes one model hard to fit
all. In our paper, we use hierarchical clustering through evaluating the model
updates and their cosine similarity. The clustering can be executed on a
predetermined communication round or when the model’s convergence slows
down. The newly created models will be used to associate each vehicle to the
most adequate cluster-head. The same model can be trained among several
clusters as such redundancy is worthwhile when it comes to system robustness
in the case of user dropout, and it also helps the model’s convergence through
collecting more updates.

All in all, to address the challenges linked to mobility and data heterogeneity,
we design a mobility-aware scheme for clustered FL, that takes into account
the data and model heterogeneity. The data heterogeneity is mainly consid-
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ered in the selection of cluster-heads, while the model heterogeneity is used
to create new models and in matching vehicles to cluster-heads. In the fol-
lowing subsections, we start with detailing the overall learning model, then
we present the mathematical formulation of its different aspects. We detail
the steps of the clustered vehicular FL training procedure, then we give the
formulations of the different metrics used in the procedure.

6.4.2 Learning Model

A summary of the process is given in Algorithm 5, and more details of the
scheme are given as follows:

– Step 1 (Publish FL model and requirements, and receive feedback ) :
A global model is published by the MEC server, alongside its data and
computation resource requirements (e.g., data types, data sizes, and
CPU cycles). Each vehicle k satisfying the requirements sends positive
feedback, in addition to other information such as its data diversity index
Ik (see Eq. 6.2) and current velocity vk.

– Step 2 (Select and schedule cluster-heads H ): The MEC server chooses
the cluster-heads according to the received information. The selection
is based on the dataset characteristics (i.e., quality of the dataset and
the quantity of the samples), defined in subsection 6.4.2, in addition
to the state of the wireless channel and the projected duration of the
communication reflected by the rate of stay (See Eq. 6.5). In fact, the
quality of local dataset directly determines the quality and the impor-
tance of model updates, while the velocity and the state of the wireless
channels determine whether the model update can be received during
the communication round. The details about the data evaluation are
given in subsection 6.4.2 , and the algorithm (Algorithm 4) is explained
in Section 6.5.1.

– Step 3 (Clusters formation): After cluster-head selection, the set of
the remaining vehicles NH are matched to cluster-heads (set H ). The
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matching requires that the sum of training and upload time of vehicle
k is less than the Link Lifetime (LLT) (defined in Eq. 6.8) between k

and h ∈ H if they are to be matched. Furthermore, the matching aims
to maximize the weighted sum of Rk,h. Rk,h symbolizes the relationship
between k and h, and its definition changes depending on whether there
is only one global model or several versions (See Eq.6.4). In the simple
case of a single joint model, the clustering depends only on the mobility
and accordingly for all the pairs k ∈ NH, h ∈ H the value of Rk,h = 1.
Otherwise, each vehicle should train its preferred model. The preference
is defined as the accuracy of the model trained by h on the local data of
k . This definition is due to the fact that not all vehicles can participate
in the updates clustering step (See Step 5).

– Step 4 (Model broadcast and training) : The model is broadcasted to
the participants, where each vehicle trains on its local data for ϵ local
epochs, before sending the update to the corresponding cluster-head.
Each cluster-head then aggregates the received models and sends the
update to the MEC server, which in its turn aggregates the global up-
dates of the clusters. Such hierarchical FL aggregation is widely adopted
in the literature of FL [186, 187] and allows for more participation. Ag-
gregating the updates at the MEC server level is required because each
model version can be trained within several clusters, resulting in several
global models. Such redundancy is necessary in the case of vehicular
networks, as it allows more robustness to client drop-out.

– Step 5 (Updates Clustering and Preference Evaluation): If the global
model does not converge after several communication rounds, or the goal
accuracy is not attained, we perform a communication round (or several
communication rounds) involving a large fraction of the vehicles on the
global joint model. This step requires the collection of the updates at the
MEC server without prior aggregation by cluster-heads as the aggregated
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models would mask the divergence of the different models. The updates
are used to judge the similarity (defined in Eq.6.3) between participants
using the hierarchical clustering algorithm. It is employed to iteratively
merge the most similar clusters of participants up to a maximum num-
ber of clusters defined by the OEM. Fixing the maximum number of
clusters allows to create clusters without prior knowledge of the possible
distances between updates, while controlling the number of models in
circulation. Once the clusters are created, new models are generated
through aggregation. The models are broadcasted to the available vehi-
cles. Each vehicle evaluates the models on its local data and send them
back to the MEC server. These values are later used to evaluate Rk,h

for each vehicle k . The resulting models are then trained independently
but simultaneously using the same process. This preferences’ evaluation
makes the difference between our work and previous work in clustered
FL, as these works necessitate the participation of all the nodes, while
in our work we tolerate partial participation.

The iterations and the steps’ order are illustrated in Fig.6.1. Next, we present
the formulations of the different elements in the system model, starting with
the learning aspects (i.e., dataset charasteristics and models similarity), to
the different mobility and communication aspects considered throughout the
proposed approach.

Dataset characteristics

Considering the fact that datasets are non-i.i.d and unbalanced, a judicious
cluster-head selection (Step 2) is necessary. In fact, each dataset can be
characterized by how diverse its elements are, its size and how many times the
model was trained on it (i.e., age of update). In this paper, we focus on the
non-i.i.d and unbalanced aspect, however, other metrics can be considered
depending on the learned task, including the quality of the datasets and
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their reliability. We set the value of each metric as [151]: φjγj, where γj is
the adjustable weight for each metric assigned by the server and φj is the
normalized value of the metric j . Using the aforementioned characteristics,
the diversity index of dataset at node k can be defined as:

Ik =
∑
j

φj,kγj, (6.2)

with j ∈ {elements diversity, dataset size, age}. The metric can be easily ad-
justed to include other task-specific considerations.

Updates similarity

In order to handle the non-i.i.d aspect, the updates’ similarity is evaluated
using cosine similarity [78, 77] in Step 5 of the algorithm, and new models are
created by aggregating the most similar models. Given two model updates
∆θk and ∆θl, the similarity is calculated according to:

sim(k, l) =
⟨∆θk,∆θl⟩
∥θk∥ ∥θl∥

(6.3)

where ⟨., .⟩ is the dot product of two vectors. The dot product is divided
by the product of the two vectors’ lengths (or magnitudes). The values of
sim(.) are between 0 and 1, and the dissimilarity (i.e., cosine distance metric)
1 − sim(.) is used to cluster the updates. The cosine distance metric is in-
variant to scaling effects and therefore indicates how closely two vectors (and
in our case updates) point in the same direction. The models’ similarity is
then used to created clusters using the hierarchical clustering algorithm [77],
and the most similar models are aggregated to create new models.

Vehicles Relationships

During the cluster formation in Step 3, each cluster is created based on the
relationship between the vehicles. The definition of this relationship depends
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on whether only one global model is trained, or there are several versions of
the model that are created. In the case of multiple models, we define the
preference of a model through its accuracy on the kth vehicle’s dataset. We
define the relationship between two vehicles Rk,h as follows:

Rk,h =

{
accuracy of h if more than 1 model

1 otherwise
(6.4)

6.4.3 Communication Model

In Step 2, due to mobility and communication constraints, the RB allocation
is jointly executed with the cluster-head selection. In fact, the mobility im-
poses a deadline for the upload based on the standing time of the vehicle.
Additionally, in Step 3, the cluster formation must also consider the relation-
ship between the vehicles in terms of mobility, which is modelled through the
link lifetime (LLT). The different aspects of the communication model are
formulated as follows:
Standing time

While typically in FL, the duration of a communication round is fixed by the
centralized entity (e.g., MEC server), the latency in FL in vehicular networks
is dictated by the standing time of participating nodes. Let the diameter of
coverage area of a gNodeB be denoted as D . For each vehicle k , the standing
time in the coverage area of current gNodeB is defined by Eq. 6.5 [169]:

Tk =
D − xk

vk
(6.5)

To ensure the communication with the gNodeB, the rate of standing time of a
vehicle k selected as cluster-head should respect (ttraink + tupk +Tagg+ δ) ≤ Tk.
Where ttraink and tupk are the estimated training time and upload time of
vehicled k respectively, Tagg is the time required for aggregation and δ is
a waiting time for the updates’ collection. We can notice that what varies
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the most among the vehicles are ttraink and tupk , as ttraink depends on the size
of the dataset, and tupk depends on the channel gain and the resource block
allocation.

Resource Blocks

For each vehicle k , we can infer the maximum tupk by setting (ttraink + tupk +

Tagg + δ) = Tk. As a result, we can determine the minimum required data
rate rk,min to send an update of size s within a transmission time of tupk as
follows:

tupk =
s

rk,min
. (6.6)

The achievable data rate of a node k over the RB q is defined as follows:

rqk = B log2(1 +
PkGk,q

N0
) (6.7)

where B is the bandwidth of a RB, Pk is the transmit power of node k , and
N0 is the power spectral density of the Gaussian noise. The data rate of a
vehicle is the sum of the datarates on all the RBs assigned to it.

Link Lifetime

In Step 3, in order to associate a vehicle k ∈ NH to a cluster-head h ∈ H,
it is necessary to evaluate the sustainability of the communication link, so as
to ensure that the update of the node k will be successfully sent to h. Link
Lifetime (LLT) [188] defines the link sustainability as the duration of time
where two vehicles remain connected. LLT is defined in [188, 189, 190] by
Eq. 6.8, for two vehicles k and h moving in the same or opposite directions.
Assuming that the trajectory of all vehicular nodes to be a straight line, as
the lane width is small, the y-coordinate can be ignored. We denote the
positions of k and h by xk and xh , respectively.

LLTk,h =
−∆vkh ×Dkh + |∆vkh| × TR

(∆vkh)2
(6.8)
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with ∆vkh = vk − vh and Dkh = xk − xh and TR denotes the transmission
range. Accordingly, the training time of k and upload time from k to h must
be less or equal to LLTkh (i.e., (ttraink + tup,hk ) ≤ LLTkh.

6.5 Problem formulation & Proposed Solution

6.5.1 Problem Formulation

Considering the collaborative aspect of FL and the communication bottle-
neck, we define the following goals for the cluster-head selection and cluster
association:

– From the perspective of accelerating learning and maximizing the rep-
resentation, the scheduled cluster-heads must have diverse and large
datasets, as a result the goal of cluster-head selection is:

max
h,α

K∑
k=1

hkIk. (6.9)

– In order to guarantee that each vehicle trains its preferred model, the
cluster assignment can be defined as a matching problem where we aim
to maximize the relationship Rk,h.

max
m

∑
h∈H

∑
v∈NH

Rv,hmv,h (6.10)

Several constraints related to communication are imposed by the vehicular
environment. Consequently, the first problem considered is a joint cluster-
head selection and RB allocation. For each vehicle k and RB q we define αk,q

as:

αk,q =

{
1 if q is assigned to k
0 otherwise

(6.11)
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The cluster-head selection and RB allocation problem is formulated as follows:

maximize
h, α

K∑
k=1

hkIk (6.12a)

subject to

(ttraink + δ + tupk + Tagg)hk ≤ Tk, ∀k ∈ [1, K], (6.12b)
K∑
k=1

αk ≤ TotalRB, ∀k ∈ [1, K], (6.12c)

hk ∈ {0, 1}, ∀k ∈ [1, K]. (6.12d)

Taking into account the results from the previous problem, we define H =

{k, hk = 1} (i.e., the cluster-heads) and NH = {k, hk = 0} (i.e., the re-
mainder of the vehicles). The next step is matching the set of vehicles NH

to selected cluster-heads H. We consider that a maximum capacity Nmax is
fixed for each cluster in order to reasonably allocate the V2V communication
resources. Additionally, if a vehicle v is to be matched with a cluster-head,
it needs to respect the time constraints, where it should be able to finish
training and uploading before a deadline Th = ttrainh + δ, and the LLTv, h

should at least outlast the training and upload. We define mv,h as a binary
variable equal to 1 if v is matched with h and 0 otherwise. Accordingly, we
define the second problem as follows:
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maximize
m

∑
h∈H

∑
v∈NH

Rv,hmv,h (6.13a)

subject to∑
h∈H

mv,h ≤ 1, ∀v ∈ NS, (6.13b)∑
v∈NH

mv,h ≤ Nmax, ∀v ∈ NS, (6.13c)

(ttrainv + tupv )mv, h ≤ LLTv,h, ∀v ∈ NH, (6.13d)

(ttrainv + tupv )mv, h ≤ Th, ∀v ∈ NH, (6.13e)

mv,h ∈ {0, 1}, ∀v ∈ NH. (6.13f)

6.5.2 Proposed Algorithm

In this section, we present our proposed solution for cluster-head selection
and RB allocation alongside the matching algorithm to solve 6.12a and 6.13a.
The challenging aspect of the problem 6.12a is that it requires maximizing
the weighted sum of the selected vehicles and jointly allocating the band-
width. A restricted version of problem 6.12a can be shown to be equivalent
to a knapsack problem and thus it is NP-hard [191]. In fact, the problem
aims to select vehicles that maximize the weighted sum

∑
k Ikhk subject to

a knapsack capacity given by
∑

k αk ≤ TotalRB in constraint (12c), which
can be transformed to

∑
k αkhk ≤ TotalRB where αk represent the weight of

item k (fixed for this restricted version) and TotalRB represents the knapsack
capacity. Thus, the problem is equivalent to a knapsack problem and since
the latter is NP-hard, so is problem 6.12a. Constraint (12b) can be verified
for each vehicle to filter out the ones that cannot upload the updates in time.

We chose to follow a greedy knapsack algorithm to solve the problem. In fact,
we chose the greedy approach because it will allow us to select the best can-
didates with an optimal RB cost, unlike the ranked list solution, which would
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have optimized the sum of Ik only [162]. Furthermore, the greedy knapsack
algorithm has low complexity and will allow fast and efficient scheduling un-
der the rapidly changing vehicular environment. We calculate the minimum
required RBs for each vehicle k to be able to send the update by the deadline
Tk, which we consider the cost of the scheduling ck =

∑
q∈RBs αk,q. The main

time consuming step is the sorting of all vehicles in a decreasing order based
on their diversity value / cost in RBs ratio. After the vehicles are arranged
as an ordered list, the following loop takes O(n) time. Taking into account
that the worst-case time complexity of sorting can is O(n log n), the total
time complexity of the proposed greedy algorithm is O(n log n).

The second formulated problem 6.13a is a maximum weighted bipartite match-
ing problem [192, 193], where each h ∈ H has a maximum capacity Nmax and
each v ∈ NH has a capacity of 1.

In order to include the remainder of the constraints, we define ζv,h as a binary
value, where ζv,h = 0 if constraint (13d) cannot be satisfied if mv,h = 1, and
ζv,h = 1 otherwise. The goal is redefined so as to maximize a weighted sum
of Rv,h × ζv,h. The problem becomes an integer linear program (ILP) and
solved using an off-the-shelf ILP solver (e.g., Python’s PulP [142]).

To illustrate the problem, we consider the example in Fig.6.2. The vehi-
cles and their relationships can be considered as a graph, where the vehicles
represent the edges and their relationship is represented through the ver-
tices, which are weighted with Rv,h × ζv,h. The goal is to find a subgraph
where the selected vertices have an optimal (in our case maximum) sum.
The remaining constraints are the maximum capacities of the vehicles (in
red). The cluster-heads (in yellow, on the right) have a maximum capacity
Nmax = 3 each (Constraint 6.13c), and the other vehicles have capacity of
1 (Constraint 6.13b). In the illustrated problem, the pairs v2, h2 and v3, h1

cannot be matched since the edges ( in dashes lines ) have null values, which
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can be either due to possible disconnection or of poor model performance.
The choice of the optimal matching is then left among the remaining pairs.
The optimal solution for the illustrated problem in yellow lines has a sum of
3.0.

We define our Algorithm 6, Clustered Vehicular FL (CVFL) that iteratively
selects nodes with best ratio Ik

ck
to be cluster heads, and then matches the

rest of the vehicles to them after verifying the time constraints by creating
clusters that maximize

∑
h∈H

∑
v∈NH Rv,h × ζv,h.

6.6 Performance Evaluation

6.6.1 Simulation Environment and Parameters

The simulations were conducted on a desktop computer with a 2,6 GHz Intel
i7 processor and 16 GB of memory and NVIDIA GeForce RTX 2070 Super
graphic card. We used Pytorch [141] for the machine learning library. In the
following numerical results, each presented value is the average of multiple
independent runs.

Datasets: We used benchmark image classification datasets MNIST [84],a
handwritten digit images, and Fashion-MNIST [85], grayscale fashion prod-
ucts dataset, which we distribute randomly among the simulated devices.
MNIST and FashionMNIST constitute simple yet flexible tasks to test var-
ious clustered settings and data partitions. Each dataset contains 60,000
training examples and 10,000 test examples. The data partition is designed
specifically to illustrate various ways in which data distributions might differ
between vehicles. The data partition we adopted is as follows: We first sort
the data by digit label, then we form 1200 shards composed of 50 images
each. Each shard is composed of images from one class, i.e. images of the
same digit. In the beginning of every simulation run, we randomly allocate a
minimum of 1 shard and a maximum of 30 shards to each of the K vehicles.
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Figure 6.2 Illustration of the Matching problem

This method of allocation allows us to create an unbalanced and non-i.i.d
distribution of the dataset, which is varied in each independent run.
Furthermore, in order to evaluate the updates’ clustering and how adequate
is the preferences’ evaluation, we partition the vehicles’ indexes into Nshifts

groups. For each group two digit labels are swapped. For instance, one group
might swap all digits labelled as 1 to 7 and vice versa. The swapped tuples
are: {(1, 7), (3, 5)} for MNIST and {(1, 3), (6, 0)} for FashionMNIST [194].
Each group is then evenly distributed to K

Nshifts
. This partition allows us to

test the proposed algorithm’s ability to train models in the presence of con-
cept shift and unbalanced data. The test set is divided into Nshifts datasets
and the average accuracy is then reported.

FL Parameters:

We consider K = 30 vehicles collaboratively training multi-layer perceptron
(MLP) model with two hidden layers (64 neurons in each), and a convolutional
neural network (CNN) model with two 5x5 convolution layers (the first with
10 channels, the second with 20, each followed with 2x2 max pooling), two
fully connected layers with 50 units and ReLu activation, and a final softmax
output layer. We use lightweight models as they can be realistically trained
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on end-devices in rapidly changing environments. For each participant, due
to the mobility of the vehicles and in order to collect a maximum number of
updates, it is more practical to choose a small number of local epochs, as a
result, in the following simulations, the number of local epochs is set to ϵ =

1. In the preliminary evaluations, the maximum number of communication
rounds is imax = 30. The clustering is set in round 25. tk,train for each vehicle
is calculated locally using our configuration.

6.6.2 Preliminary evaluations: Parking Lot Scenario

In this part of the evaluations, we focus on the learning aspect by studying
the proposed algorithm in less constrained environment.
Simple unbalanced and non-i.i.d distribution

In this part of the simulation, we ignore the constraint of LLT in problem
(13) as the velocities are set to 0. The results in Fig.6.3 show that a signifi-
cant improvement is reached through the use of V2V communication. With
more participation, we also noticed that the training tends to be more stable
with the loss function steadily declining in comparison to standard FL. Fur-
thermore, higher accuracy scores are achieved by our proposed method.While
the average local accuracy after the end of the training the MLP on MNIST
is 80% ± 10%for vanilla FL, it reaches and average of 82% ± 9% for our
proposed approach. Similarly, on FashionMNIST the results 66.79% ± 10%

with vanilla FL and 68.74% ± 9%. Owing to its high suitability for image
processing tasks, the CNN model yielded higher results as the vanilla FL
reached 94.58%± 7% and our proposed method achieved 95.5%± 5%. Such
results can be considered as a baseline values in perfect conditions for the
subsequent experiments as we can reflect on the robustness of CVFL under
mobility and concept-shift. Based on these preliminary results, we expect to
see more differences and variance in the results for the MLP model compared
to the CNN model. We also can expect a better performance for the MLP
model on the MNIST dataset compared to FashionMNIST.
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Figure 6.3 Preliminary results on non-i.i.d and unbalanced data without
concept-shift

Unbalanced and non-i.i.d distribution with concept shift

The presence of concept-shift requires the clustering phase in order to improve
the final results. In these simulations, we fixed the number of maximum
clusters to 2, and studied the effect of partial participation on the clustering.
Given the presence of concept shift for 4 out of 10 digits, we expect the
accuracy to be around 60%.

To study the effect of the fraction of participants in the partial clustering
phase , we run multiple independent runs for each fraction in {20%, 60%, 100%}.
The results are shown in Fig.6.4. For both vanilla FL and the proposed par-
tial clustering approach, the number of participants in each round is 6. For
the standard FL, the average accuracy is 65%, while For 20% the average
68% (+3%) and for 60% the average is 69% (+5%). It should be noted that
the dissimilarity of the updates is harder to detect as only 2 out of 10 digits
are swapped for each group.

6.6.3 Freeway scenario

We consider that the K = 30 vehicles are randomly distributed on 6 lanes
on a radius D = 2km. The vehicular communication model parameters
and mobility are based on parameters in [195] and are summarized in Ta-
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Figure 6.4 The importance of the fraction of the participants in the clustering
step under concept-shift

Figure 6.5 Evaluation of CVFL when the relationship is defined through mo-
bility only

ble 6.2. The velocities of vehicles are assumed to be i.i.d, and they are
generated by a truncated Gaussian distribution. In contrast to the normal
Gaussian distribution or constant values, the truncated Gaussian distribu-
tion is more realistic for modelling vehicles’ speed as it can generate differ-
ent values in a certain limited range. This assumption is widely adopted in
many state-of-the-art works of vehicular networks [169]. The lower and upper
bounds for the velocity values on the 3 lanes going in the same direction are
(60, 80), (80, 100), (100, 120)km/h.
Key Performance results

In this part of the evaluation, we vary the model size and the number of RBs
in order to evaluate how the CVFL algorithms adapts to different training
and upload requirements. We evaluated how the number of selected cluster-
heads and how the total number of participants change in each scenario. We
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Figure 6.6 Evaluation of CVFL under concept shift

Table 6.2 Generated Values
Vehicle Antenna height 1.5m
Vehicle antenna again 3dBi
Shadowing distribution Log-normal

Shadowing standard deviation 3 db
Noise power N0 -114 dBm

Fast fading Rayleigh fading
Transmit Power 0.1 Watt

Vehicles generation model Spatial Poisson Process
Velocities generation model Truncated Gaussian

Model Size 160 kbits
Bandwidth/ RB 180 Khz

Nmax 2
Total RBs 4

δ 2s

also evaluated how the average running time of the matching algorithm when
the number of participants varies.

Table-6.3 shows the average number of cluster-heads selected in each com-
munication round and Table-6.4 shows the average number of participants in
each communication round. It is clear from the results that the number of
RBs is the defining factor of the number of cluster-heads and consequently
the number of participants. The results also show that the proposed algo-
rithm can safely scale up to handle large models or more local epochs in the
case of small models.
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Table 6.3 Average Number of cluster heads in each communication round
Model Size in Kbits

Number of RBs 160 320 640
2 2.43± 0.26 2.39± 0.30 2.39± 0.24
3 4.13± 0.57 4.056± 0.51 4.216± 0.48
4 5.565± 0.69 5.504± 0.71 5.568± 0.54

Table 6.4 Average Number of participants in each run
Model Size in Kbits

Number of RBs 160 320 640
2 7.28± 0.80 7.16± 0.91 7.168± 0.74
3 12.26± 12.05 1.36± 0.51 12.44± 1.39
4 16.00± 1.46 15.81± 1.47 16.04± 1.24

Calculating the analytical expression of time complexity of the ILP-based
algorithm used for the matching is not obvious since the low-level implemen-
tation details of the solver are not available to us. However, we evaluated the
running time in different settings with varying the number of nodes to see
how it scales with large number of participants. The average running time
values in seconds on our machine are summarized in Table-6.5. In general,
the matching algorithm can easily handle large pools of participants without
high impact on the execution time.
Effect on the accuracy

To study the proposed approach in a mobility scenario, we first studied a
simple case of unbalanced and non-i.i.d distribution, then we stress tested
CVFL under concept-shift. The number of available RBs in each communi-
cation round is limited to 4, and the simulations were conducted for imax = 50

communication rounds.

Table 6.5 Average Running time of the matching algorithm
Number of vehicles Average CPU time (s)

25 0.02
50 0.03
75 0.03
100 0.03
125 0.04
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Fig. 6.5 shows the results for unbalanced and non-i.i.d distribution in the
mobility scenario.

Owing to larger numbers of participants (see Table 6.4), higher accuracy
values are obtained across the experimnents. CVFL achieves accuracy of
87% ± 4% in contrast to 85% ± 5% for the standard FL under the same
settings training MLP model on MNIST, and the CNN model achieves similar
results for both CVFL (95% ± 5%) and vanilla FL (94% ± 7.5%). The
average accuracy values on FashionMNIST is 69.66% ± 9% for CVFL and
66.46%± 10% for vanilla FL. The larger values of the standard deviation of
the results in vanilla FL across the experiments in this case is possibly due to
the smaller number of participants in each round compared to CVFL where
almost half of the vehicles train their models which provides more consistency
throughout the experiments.

The second set of simulation runs are on unbalanced and non-i.i.d distribu-
tion with concept shift. Fig.6.6 shows how the models performed under these
conditions in a freeway setting. Overall, accuracy values are significantly
less than the obtained values in datasets where there is not concept shift.
More specifically, the average accuracy of the MLP model achieved in the
50th round on MNIST dataset is 68% ± 9% in contrast to 65% ± 7% for
vanilla FL. The CNN model yielded identical results for CVFL (80% ± 9%)
and vanilla FL (80%± 5%). The larger values of the standard deviations in
CVFL are due to the fact that resulting models after clustering often perform
differently on the test sets. The concept-shift appears to affect the accuracy
on FashionMNIST in a higher level, as the accuracy drops to around 55%

for both CVFL and vanilla FL. In contrast to the previous experiments, the
difference is low in later rounds because only a small fraction of users partic-
ipate in the clustering step. This can be overcome though the introduction
of more communication rounds on the same version of the model in order to
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collect more updates. Additionally, the gaps in accuracy values are high in
the earlier rounds of communication before the clustering round. The reason
for the gap’s narrowing is that new models are created and a smaller number
of clients train the same model. As the number of clients training the models
in each round constitutes a key factor for the convergence speed, we suspect
that it might be the reason.

6.7 Limitations and future work
Through this work, we have identified several potential future research direc-
tions and open issues that are worthwhile being explored.

– Large-scale collaboration: Extending the proposed model to take
into account handover between base stations etc in order to enable con-
tinuous training throughout vehicles’ trips and reduce lost updates. Fur-
thermore, fully decentralized training can be implemented for areas with
low coverage, while also taking into consideration model convergence.

– Adversarial attacks and outliers: The updates’ clustering is useful
to detect local models that diverge from the majority of the received
updates. This step can be furthered exploited to eliminate outliers and
adversaries. Additionally, due to the collaborative and hierarchical na-
ture of the proposed approach, trust among vehicles and reliability of
their models can be further enhanced through traceability and incen-
tive/punishment mechanisms.

– Experimental values: Set thresholds concerning LLT and rate of stay
through experimental/ real data traces. Other values related to training
can also be adjusted dynamically, such as the number of local epochs
and the batch size.

– Enhance Privacy: While FL can provide some privacy concerning the
raw data of each user, the model updates can be reverse-engineered to
reveal sensitive information about the users. Several techniques such as
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Differential privacy can be used to enhance the privacy-preservation in
FL in vehicular environments.

6.8 Conclusion
In this paper, we have investigated the problem of clustered FL in vehicular
networks. We aimed to fill the gap between clustering in vehicular networks
and clustering in FL by designing a mobility-aware learning process for clus-
tered FL. In the proposed architecture, we consider the v2v communication
as an asset to overcome the communication bottleneck of FL in vehicular net-
works. Accordingly, in each communication round, a subset of vehicles are
selected to act as cluster-heads, and the remainder of vehicles are matched
with them. The selection favors vehicles with diverse datasets and good wire-
less communication channels with the gNodeB. Furthermore, clustering based
on the similarity of the updates is introduced to subdue the slow convergence
of single joint FL model in non-i.i.d settings, especially in the presence of
concept-shift. This step leads to the creation of new models which are sent
to the non-participants and newly joint vehicles, who will evaluate them and
score their preferences of these models. The resulting preference values are
used to match each vehicle to their preferred model (cluster-head). Both the
cluster-head selection and cluster matching are formulated as optimization
problems with learning goals and mobility constraints. We have proposed a
greedy algorithm for the selection and RB allocation of cluster-heads, and a
maximum weighted bipartite matching algorithm for the cluster formation.
Simulations show the efficacy of using V2V communication to accelerate the
learning as well as the importance of clustering based on updates to control
concept shift. In the future, we aim to make the proposed approach resilient
to outliers and malicious attacks such as false data injection.
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Algorithm 5 Clustered Vehicular Training procedure
1: for i ∈ [1 . . . imax ] do
2: if i = 1 then
3: Step 1:
4: initialize or download the newest model’s parameters at the MEC server
5: initialize the number of models with 1
6: Publish model and training requirements
7: end if
8:
9: Step 2: Receive vehicles information (transmit power, available data size, dataset

diversity, CSI, velocity, preferred model)
10: Schedule cluster-heads H using Algorithm 1
11: Step 3: Assign the remainder of vehicles (i.e., NH) to clusters using Algorithm 2
12: Step 4:
13: for vehicle k ∈ NH do
14: k receives model θt
15: k trains on local data Dk for ϵ epochs
16: k sends updated model θt+1

k to MEC server
17: end for
18: for cluster head h ∈ H do
19: h trains on local data Dh for ϵ epochs
20: h receives model updates from vehicles in its cluster
21: h aggregates the model and sends new global model to MEC server
22: end for

Step 5:
23: if i = tc then
24: At step i = tc MEC server evaluates the similarities of the received models
25: MEC server creates clusters based on the similarities and computes new global

models using weighted average
26: nodes receive new global models and evaluate their preferences
27: end if
28: aggregate updates
29: start next round i ← i + 1
30: end for
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Algorithm 6 Clustered Vehicular Federated Learning (CVFL)
Input A queue of K vehicles total available resource blocks TotalRB;
Output α, h = [h1, . . . , hK ];

1: // Cost Evaluation
2: for k = 1, . . . , K do
3: rk = 0, c = 1;
4: order the RBs using rk, q;
5: while rk ≤ rk,min and c ≤ TotalRB do
6: q∗ ← argmaxq∈Z Gk,q;
7: rk ← rk + rk,q;
8: c← c+ 1;
9: ck ← c;

10: end while
11: end for
12: return C = [c1, . . . , cK ]
13: // RB Allocation
14: order vehicles according to their ratio (L = [ Ik

ck
∀k]) decreasingly;

15: for k = 1 . . . K do
16: hk ← 0;
17: end for
18: A← Z;
19: k ← argmax(L);
20: while A ̸= ⊘ do
21: order the RBs using rk, q;
22: while rk ≤ rk,min and c ≤ TotalRB do
23: q∗ ← argmaxq∈A Gk,q;
24: rk ← rk + rk,q;
25: αk,q ← 1;
26: A← A \ {q};
27: end while
28: hk ← 1;
29: end while
30: return h and α
31: // Matching
32: Use h to form H and NH sets;
33: Infer values of Rk,h∀k ∈ NH, h ∈ H;
34: Estimate LLTk,h∀k ∈ NH, h ∈ H;
35: verify time constraints and calculate ζ;
36: Solve matching problem using Maximum weight bi-partite matching algorithm [192]

using off the shelf solver such as Python’s PulP [142].
37: Uniformly allocate the RBs of V2V links to the associated vehicles.
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Résumé français:

La croissance exponentielle des ressources énergétiques distribuées permet la
transformation des consommateurs traditionnels du réseau électrique intelli-
gent en prosommateurs. Cette transition offre une opportunité prometteuse
pour le négoce d’énergie durable. Cependant, l’intégration des prosomma-
teurs dans le marché de l’énergie impose de nouvelles considérations dans
la conception de cadres unifiés et durables pour une utilisation efficace de
l’infrastructure électrique ainsi que les ressources de communication. En
outre, plusieurs problèmes doivent être résolus pour promouvoir de manière
adéquate l’adoption de systèmes décentralisés orientés vers les énergies renou-
velables, tels que le coût de communication, la confidentialité des données,
l’évolutivité et la durabilité. Dans cet article, nous présentons les différents
aspects et défis à relever pour construire des marchés de négoce d’énergie
efficaces par rapport à la communication et la prise de décision intelligente.
En tenant compte de ces défis, nous proposons un cadre de décisions proac-
tives dans les communautés de prosommateurs afin d’atteindre des objectifs
individuels et collectifs. Les décisions individuelles des prosommateurs sont
d’abord motivées par des objectifs d’autosuffisance individuelle. C’est ainsi
que le cadre donne la priorité aux décisions individuelles des prosommateurs
et s’appuie sur le réseau sans fil 5G pour une coordination rapide entre les
membres de la communauté. En fait, chaque prosommateur prédit la pro-
duction et la consommation d’énergie pour prendre des décisions proactives
en réponse aux demandes au niveau collectif. De plus, la collaboration de la
communauté est étendue en incluant l’entraînement collaboratif des modèles
de prédiction à l’aide de l’apprentissage fédéré (en anglais Federated Learning
FL), assisté par des serveurs à la périphérie du réseau (en anglais multi-access
edge computing MEC) et des équipements domestiques des prosommateurs.
En plus de préserver les données privées des consommateurs, nous montrons
par des évaluations que l’entraînement des modèles de prédiction à l’aide
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de l’apprentissage fédéré permet d’obtenir une meilleure précision pour dif-
férentes ressources énergétiques tout en réduisant le coût de communication
par rapport aux modèles centralisés.
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CHAPTER 7

Empowering Prosumer Communities in Smart
Grid with Wireless Communications and Fed-
erated Edge Learning

7.1 Abstract

The exponential growth of distributed energy resources is enabling the trans-
formation of traditional consumers in the smart grid into prosumers. Such
transition presents a promising opportunity for sustainable energy trading.
Yet, the integration of prosumers in the energy market imposes new consider-
ations in designing unified and sustainable frameworks for efficient use of the
power and communication infrastructure. Furthermore, several issues need
to be tackled to adequately promote the adoption of decentralized renewable-
oriented systems, such as communication overhead, data privacy, scalability,
and sustainability. In this article, we present the different aspects and chal-
lenges to be addressed for building efficient energy trading markets in relation
to communication and smart decision-making. Accordingly, we propose a
multi-level pro-decision framework for prosumer communities to achieve col-
lective goals. Since the individual decisions of prosumers are mainly driven by
individual self-sufficiency goals, the framework prioritizes the individual pro-
sumers’ decisions and relies on the 5G wireless network for fast coordination
among community members. In fact, each prosumer predicts energy pro-
duction and consumption to make proactive trading decisions as a response
to collective-level requests. Moreover, the collaboration of the community is
further extended by including the collaborative training of prediction models
using Federated Learning, assisted by edge servers and prosumer home-area
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equipment. In addition to preserving prosumers’ privacy, we show through
evaluations that training prediction models using Federated Learning yields
high accuracy for different energy resources while reducing the communica-
tion overhead.

7.2 Introduction

The smart grid is an evolved power system with an integrated two-way flow
of energy and information whose purpose is to enhance the efficiency of the
system. The ubiquity of wireless communications has broadly promoted the
deployment of sustainable power systems and helped monitor and control var-
ious operations of smart grids [196]. The higher performance and improved
efficiency of fifth-generation (5G) communication networks are expected to
reinforce this trend by delivering the ultra-low latency, the massive connec-
tivity, and ultra-reliability required by smart grid services.

Communication technologies have not only changed the nature of the power
system in terms of monitoring and operating processes, but they have also en-
abled the emergence of new behaviors and market models. In particular, the
emergence of prosumers (i.e., users that can produce and consume energy)
is one of the strongest trends in the field of renewable energy in the smart
grid. Multiple prosumers can now collectively create a Prosumer Community
Group (PCG). PCG aims to producing and sharing energy in large amounts
between users and utilities, providing a unified platform for information trad-
ing among neighbors within the local community, as well as interfacing with
external prosumers and other energy entities. Indeed, PCG can effectively
supply distributed generation, storage, and demand response [197]. Never-
theless, with the new opportunities offered by the advent of prosumers, un-
precedented challenges are emerging in the management of energy production
and demand in the grid. Indeed, the relationship between energy consump-
tion and production is not always equiponderant. Hence, many techniques,
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including machine learning (ML), have been integrated to predict energy con-
sumption, and adjust the available capacity accordingly. With the emergence
of PCGs, there is also a need to forecasting energy production, which is be-
coming as important as predicting energy consumption, in order to adjust
available resources effectively.

Current prediction systems in smart grids are based on collecting demand/production
information and analyzing data at cloud servers, where the value chain relies
on access to data. In 5G enabled smart grids, it is expected that prosumer
systems will involve massive machine type communication (mMTC) where
downlink communication is used for power control and uplink communica-
tion is used for data collection [198]. However, this data collection model
results in considerably large datasets to be fed into the prediction system.
More importantly, in many jurisdictions, privacy and data protection legisla-
tion requires the development of new operating models in which there is no
personal data collection.

Federated Learning (FL) [199], an extension of machine learning, enables
multiple devices/servers to collaboratively learn a prediction model in a dis-
tributed manner while keeping all training data locally on the device, thus
decoupling machine learning capability from the need to store data in a cen-
tralized entity. In Federated Edge Learning (FEEL) [200], the global model
training is performed at the Edge of the network. FEEL is particularly use-
ful for delay-sensitive applications or congested backhaul networks, and it
has been proposed as an interesting tool for household electrical load forcast-
ing [201]. It provides a promising paradigm to enable decentralized learning
without compromising data privacy.

The motivation behind this work is not only to design a privacy-aware in-
tegration mechanism for prosumers in 5G-enabled smart grid architectures
but also to enable prosumers to make optimal decisions using short-term
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and long-term predictions, as well as allow PCGs to build reliable decision
processes collaboratively that maximize the length of the energy production-
consumption relationships. Coupling the reliable wireless communications
provided by 5G networks with intelligent learning supported by FEEL will
help maximize stakeholder’s profits in the energy market.

The purpose of this work is twofold:

– To enable a multi-level decision process at the aggregator and the indi-
vidual prosumer levels.

– To collaboratively build prediction models through federated learning
and preserve the eco-system data privacy.

Specifically, the contribution of this work can be summarized as follows:
(1) we discuss key elements for 5G empowered energy markets and high-
light challenges related to their design, (2) we design a multi-stage energy
forecasting framework and a decision process for PCGs empowered with FL
using edge equipment, and (3) using real datasets, we evaluate the accuracy
of load forecasts and the potential network load gain through simulations.

The remainder of this paper is structured as follows. The next section
overviews prosumers’ integration in the smart grid along with existing is-
sues and challenges. Then, we present the proposed architecture and detail
the decision process framework using FEEL. Later, we discuss the simulation
and obtained results. Finally, we conclude the paper and present some future
work.

7.3 Prosumers in Smart Grid: An Overview

In this section, we present the key elements for prosumers’ integration in
smart grids. We focus on the integration models, communication, and deci-
sions and planning. Then, we present the existing issues and challenges in
relation to these elements.
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7.3.1 Key Elements in 5G Empowered Prosumers Markets

The increase in population and industrial/commercial sectors drives an un-
precedented growth in energy demand. This expansion leads to peak times
when most users are simultaneously using electricity.

To overcome the electricity shortages, users may contribute to energy produc-
tion and feed the network when needed. A user that simultaneously produces
and consumes energy is known as a prosumer. A prosumer can produce energy
using small renewable energy sources and store it in battery banks or Electric
Vehicles (EVs) [202]. In fact, an ever-increasing number of customers have
local generation capability (i.e., Distributed Energy Resources – DERs), in
addition to several adaptable loads, such as thermostatically-controlled loads
and distributed energy storage devices. Moreover, EVs are also appealing
as controllable loads because they can be restricted for significant periods of
time with no significant impact on end-use function.

The emergence of prosumers imposes new considerations for seamless smart
grid integration. These considerations can be labeled into three levels: (i) in-
tegration and control model (e.g., market model), (ii) communication (e.g.,
requests, coordination), and (iii) pro-active decision making (e.g., forecast-
ing).

Prosumers Integration Models: The increasing number of prosumers
imposes significant changes on the electricity market and provides various
opportunities for exchanging and balancing electricity production and de-
mand. Future strategies require an efficient integration of prosumers into the
competitive electricity market. In fact, several promising approaches have
been proposed, such as peer-to-peer models, indirect customer-to-customer
trading, and prosumer community groups.
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– Peer-to-Peer (P2P): In this model, prosumers are interconnected directly
with each other in a completely decentralized manner. While this ap-
proach offers high flexibility and total autonomy, it comes with a high
communication overhead underlying the search for suitable trading pro-
sumers. Furthermore, an individual prosumer may not be able to pro-
duce energy that sufficient to match the fluctuating demand of a peer.

– Indirect Trading: Due to the nature of P2P networks, the search for
suitable trading prosumers may be challenging and time-consuming. A
potential solution to overcome this issue is energy brokers. The latter
can be used to create a match between producers and consumers. How-
ever, relying on a central entity to manage the trading operations is
not a scalable solution, as the broker will be overwhelmed when all the
individual prosumers send the trading requests simultaneously.

– Prosumer Community Groups: On account of the freedom offered by
the P2P paradigm and the organizational aspect of energy brokers, a
group of prosumers can collectively – based on their behavior profiles
and geographical structures, form a community known as PCG. The
goals of a PCG are: (i) achieve a sustainable energy exchange, (ii) fulfill
the energy demands for external customers, (iii) increase the income,
and (iv) reduce the costs.

The integration of various DERs and EVs provides further opportunities for
the development of innovative business models and energy ecosystems. How-
ever, the heterogeneous nature of energy sources [196] and their requirements
urge novel approaches for prosumers’ market design. Determining the inte-
gration model of the prosumers is indispensable to determine the required
infrastructure for power distribution and communication.

Communication: Given the high uncertainties of consumption patterns,
modern measurement units support fast monitoring with data refresh up to
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50 times per second. Such updated frequencies open up enormous possibilities
for fine-grained network control to support the complex energy markets’ tran-
sition towards more decentralized renewable-oriented systems. Smart grids
change the way energy is stored and delivered through vital information shar-
ing among all the connected components. Home Area Network (HAN), smart
meters, and home energy management systems (HEMSs) are largely used to
prompt behavioral changes in energy consumption and storage, while among
individual prosumers and PCGs, 5G networks facilitate information manage-
ment through, for instance, the broadcast of information (e.g., price signal,
weather data). Therefore, a reliable communication system is critical for the
management of smart grids.

Pro-active Decisions and Planning: Analyzing and predicting prosumers’
behavior profiles are crucial during energy trading planning and future mar-
ket design. Load forecasting is a key element for proactive decision-making,
as it allows to measure the projected energy supply and the future consump-
tion and thus change the operation strategy accordingly. Different horizon
forecasts are subject to several studies in smart grids, as each serves a spe-
cific purpose according to the length of the forecast duration. For prosumer
markets, the following forecast horizons are considered:

– Very short-term forecasting (seconds to minutes ahead) can be used for
storage control for Vehicle-to-Grid (V2G), which are used to adjust small
fluctuations. It is also necessary for electricity market clearing.

– Short-term forecasting (24 to 72 hours ahead) is crucial for key decision-
making problems involved in the electricity market, such as economic
dispatch and unit commitment.

– Medium and long-term forecasting (weeks to years ahead) are useful for
maintenance scheduling in future systems and market planning.
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An overall understanding of the factors that dominate prosumers’ behaviors
and their interactions within the smart grid enables designing an efficient
decision-making framework. While ML techniques enable designing intel-
ligent and responsive energy markets, many challenges still lack extensive
studies.

7.3.2 Issues and Challenges

The proliferation of DERs yields many challenges to market design for proac-
tive distribution systems. The limitations of existing work are not essentially
based on their working principle; instead, they are more related to security,
privacy, with seamless integration into 5G networks.

In the following, we dissect the existing challenges and explore the technical
requirements for an optimal solution.

Heterogeneous DERs: Heterogeneous DERs, such as wind power and
photo-voltaic (PV) are affected by different external conditions. For instance,
solar radiation and solar altitude have substantial effects on PV, while wind
power is directly related to wind speed. Since accurate predictions of these
weather factors are challenging to obtain, their uncertainties inevitably lead
to large errors when predicting DER production. Moreover, the topology
information is often unavailable due to frequent changes at the individual
prosumers level. For instance, EVs can appear once every few hours per day,
making it hard for an aggregator to forecast EVs’ willingness to share energy.
Besides, these individual prosumers are unable to compete with traditional
energy generators, as their energy supply is small and often unpredictable.
The high fluctuations in the consumption and generation profiles are due to
the volatility of the production and consumption profiles, which motivates co-
ordination among prosumers on a shorter time scale and personalized level to
attain more accurate results. The coordinated control of heterogeneous DERs
can provide further opportunities for achieving better energy regulation.
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Consumption Load Forecasting: While energy production depends heav-
ily on uncertain weather conditions, consumption, on the other hand, is af-
fected by the users’ habits and behavior. Several prediction methods (e.g.,
Support Vector Regression, Long Short-Term Memory) [201, 203] have been
widely used in the literature to predict consumption profiles. Hybrid ap-
proaches combining time-series forecasting with other methods, such as de-
cision trees and consumer clustering help improve the forecasting results.
Nonetheless, the individual short-term load profiles remain uncertain and
hard to predict compared to an aggregate prediction. Therefore, a PCG sell-
ing energy to the grid is more reliable in providing a more sustainable energy
supply in contrast to individual prosumers.

Communication Overhead: As system operators need to assess the relia-
bility of DERs and measure their participation to maintain the market equi-
librium, reliable communication is a crucial enabler for smart energy markets.
Moreover, the rapid growth of EVs adoption is paving the way for the deploy-
ment of at-scale smart EV chargers offering new ways to communicate with
prosumers and near-real-time interfacing with the EV battery management
system. However, due to the shift towards decentralized models and the rapid
changes in the demand, the energy market imposes extreme communication
requirements as metering and decision processes should be performed at very
high frequencies. Several solutions have been designed to reduce the com-
munication overhead, such as relying on reinforcement learning [203] and
federated learning [201]. Prosumer Group Formation: The formation

of stable PCGs is essential for sustainable energy sharing [204, 205] [206].
Therefore, it is essential to design strategies for optimal formation, growth,
and management of PCGs. The first approach towards the formation of pro-
sumer groups that can be considered is geographical proximity. As the trading
market evolves, the similarity of prosumers’ energy-sharing behaviors can be
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used to form stable coalitions. Additionally, the efficiency of PCGs can be
further enhanced through unified goals, such as fulfilling the energy demands
for external customers, maximizing profits, and reducing costs [205].

User & Data Privacy: One of the critical operations in energy market
planning is knowledge extraction from historical consumption data. Nonethe-
less, these data contain sensitive information about users (e.g., device usage,
household occupancy), which imposes new requirements related to data pri-
vacy and necessitates the design of knowledge extraction methods immune to
malicious interception and misuse. The centralized management paradigm is
inadequate for the privacy-sensitive power distribution market. In contrast,
the decentralized structure for the energy market has become an essential sub-
ject in smart grid literature. Additional techniques, such as Battery-based
Data Masking, authentication and authorization, and Federated Learning,
have been used in this setting to enhance privacy [207].

An inadequately planned prosumer market and poorly designed decision pro-
cesses will severely impact consumer empowerment and the sustainability of
energy markets. It is, therefore, crucial to take into account different issues
when designing architectures and mechanisms for energy markets.

7.4 Smart Grid Prosumer Community Empowered Fed-

erated Edge Learning

7.4.1 System Architecture

Figure 7.1 illustrates a reference architecture for a smart grid. A smart grid is
mainly built upon a bi-directional communication between users and utilities.
The underlying connectivity between smart grid elements is ensured by a
wireless 5G network via base stations and gNodeB. A centralized controller
(e.g., at the gNodeB level) is employed for traffic monitoring.
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Figure 7.1 Prosumers in smart grid: overview and use-cases.

To ensure a sustainable energy infrastructure, the grid utilizes a Distributed
Generator (DG) and incorporates heterogeneous DERs and produces a time-
varying capacity. The integration of DERs requires controlling and monitor-
ing, which can be achieved through computing and communication capabil-
ities of edge and local devices. For instance, smart buildings integrate an
agent CPU connected to HAN’s sensors/actuators which allows a seamless
management of the appliances.

A set of prosumers within the same administrative domain can collectively
form a PCG. A PCG aggregates heterogeneous DERs’ capacities and enables
energy sharing among prosumers and with external entities, either for profit
or for free [205]. However, due to the heterogeneity of the DERs, price fluc-
tuations, the automation of energy sharing is rather challenging and requires
a high level of coordination among different entities. As a result, information
(e.g., weather data, pricing data) and commands flow between the utility, the
controller, and prosumers.

The main objective is to efficiently utilize each energy source. For example,
during the day, PV can be considered the primary source of energy, while
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Figure 7.2 Training and decision processes of the proposed scheme.

batteries, more specifically the V2G model, can help regulate the needs dur-
ing the day and be the most relied on at night. In doing so, a PCG utilizes
forecasted consumption and production values to determine whether the pro-
duction goals can be met and make trading decisions accordingly.

In this article, we design a multi-stage framework for collaborative and sus-
tainable energy sharing for PCGs.

Figure 7.2 shows in detail the two processes of the proposed framework:
Training and Decision. The training is performed using FEEL, which is
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mainly privacy-preserving collaborative training of the load forecasting mod-
els. While in the decision process, individual prosumers use the resulting
models to make predictions to make optimal decisions.

7.4.2 Training Process: FEEL-based Short-term Load Forecasting

Current energy trading markets use one-day ahead predictions. However,
these predictions are often inaccurate, which in consequence leads to un-
matched energy production. By leveraging the HAN edge equipment and the
rapid 5G communication, decisions can be taken in near-real-time to match
the unpredictable demand [208]. For instance, EVs charging loads are small
and unpredictable in the long-term [209], making them inadequate for one-day
ahead planning in the V2G context. In contrast, the solar power production
curve over a day is usually bell-shaped and can be easily predicted based on
weather data. Consequently, prediction horizons should be chosen depending
on the predictability of each DER type and the required data to make the
prediction. Values related to residents’ behaviors should have shorter predic-
tion horizons (e.g., a few seconds or minutes ahead ) compared to values that
depend on the weather (e.g., up to several hours ahead).

For each prosumer, the prediction model takes as an input a series of sur-
plus power data for the last few intervals and produces an estimation of the
surplus or shortage power in the next interval. Targeting more accurate pre-
dictions, we use separate models for production and consumption to calculate
the estimate. Energy production depends mostly on weather conditions. The
required meteorological data for forecasting can be easily obtained by local
weather stations and broadcasted by the PCG aggregator. DER power pre-
diction uses models that map historical data to output power through mining
the potential rules and relationships of the training data. For instance, the
PV production curve is usually bell-shaped with fluctuations during the day
depending on solar irradiance, whereas wind energy depends on wind speed
and direction. While these factors can be forecasted accurately a few hours
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ahead, load profiles for EVs and consumption can only be forecasted up to a
few minutes ahead due to individual behaviors’ uncertainty.

Moreover, the model should be adapted for each individual prosumer. In fact,
the consumption load depends on the individual prosumer’s habits, whereas
for energy, there are additional factors that affect production, such as the
direction solar panels are facing and their position. Due to the scarcity of
local data, collaboration among PCG members, in addition to energy shar-
ing, involves a distributed training of the prediction models. FEEL allows
training models among the PCG members at the edge of the network while
preserving the privacy of the prosumers by keeping data locally [201]. Train-
ing models using FEEL ensures that the obtained model is not overfitting as
it is trained on a large dataset. In FL, the training of the model takes sev-
eral communication rounds before converging. Typically, a global model is
initialized by the PCG aggregator and sent to a subset of the prosumers who
independently train the model using their local historical data and upload
their gradient updates to the PCG aggregator. The participating subset is
ideally selected at random, however, due to the communication bottleneck in
wireless edge networks, the selection is based on the wireless channel state,
the computing resources, and the amount and quality of the training data.
The received local updates are aggregated by averaging, and a global model is
obtained. Afterward, the aggregator sends the global model to a new subset
of prosumers, and a new iteration begins where each device computes the
gradient updates and uploads it, until the model converges. The final model
is then broadcasted to the community. To make the model personalized for
each prosumer, the obtained model is retrained locally for each prosumer.
The FEEL process is repeated periodically to adapt the models to different
changes in the prosumers’ side (e.g., new appliances, different habits) and the
external conditions.
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7.4.3 Multi-stage Decision Process

As mentioned above, the PCG leverages communication and energy stor-
age to achieve collective values and goals. However, individual decisions of
prosumers are based first on individual self-sufficiency goals. To maintain
PCG stability, the trading decisions should take into account the individual
prosumers’ decisions. As a result, the decision process for energy trading
comprises two distinct levels:

At the aggregator level: Based on the overall predicted values of pro-
duction and consumption, the aggregator decides the next action regarding
energy trade: (i) sell energy if the local production is higher than the overall
consumption, (ii) buy energy from external parties if the local production
is less than the overall consumption, and/or (iii) request V2G to regulate
small fluctuations in the demand. Regardless of the preliminary decision, the
aggregator requests local decisions made by individual prosumers.

At the individual prosumer level: By using local prediction models, each
prosumer estimates the difference between short-term local production and
overall consumption. The predicted value serves as a basis for the prosumer’s
participation or to signal a projected shortage. These values are then sent
to the aggregator for finalizing the trading decisions. Individual prosumers
may develop different decisions processes depending on their goals and pref-
erences. For instance, a prosumer with altruistic values would use the energy
infrastructure to share electricity with the community rather than selling it.
In contrast, a prosumer with monetary goals would use it to sell electricity
rather and gain revenue than share it.

Forecasting the difference between consumption and production has a sig-
nificant influence over prosumer decisions for a subsequent period, which is
indeed a fundamental operation for all decisions. For production, and for each
type of DERs, different factors can be considered in the decision process. For
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example, each prosumer in V2G may take into account the battery level and
estimate the length of time the vehicle will still be charging.

7.5 Numerical Results

This section first introduces the used dataset and then describes the prediction
model and implementation details. Later, we discuss the evaluation results.

Dataset: This research was conducted using real data from the Pecan Street
Inc. [210]. We used circuit-level electricity use data at 15 minutes intervals
for a PCG, with PV generation and EV charging data for a subset of the
PCG. The PCG is simulated by a subset of 18 prosumers who have similar
properties from this dataset. A subset of 5 prosumers has EV data, and com-
prises the same kind of houses (detached-family homes), located in the same
areas (i.e., Austin, Texas). The dataset is composed of records between May
2018 and August 2018, with 15 minutes resolution data for PV and overall
consumption. We also used one-minute resolution data of EV consumption
over a period of two weeks.

Prediction Models: We used identical models for consumption and solar
energy production (Model 1 ), where each has two Long-Short Term Memory
(LSTM) hidden layers composed of 128 neurons each. We used the Mean
Squared Error as the Loss function and Adam as the optimizer. The models
are trained using normalized data, transformed into sliding windows using
48-time steps to predict the next value. For the EVs, we trained a similar
model (Model 2 ) with 200 LSTM cells in each layer, using 15 past minutes
to predict the next 5 minutes.

We used 90% of data for training and 10% for testing. Each model is trained
over 25 rounds and retrained using 8 epochs locally, with a subset of 5 pro-
sumers chosen randomly in each round. The simulations were conducted on
a Laptop with a 2.6 GHz Intel i7 Processor, 16GB of RAM memory, and
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NVIDIA GeForce RTX 2070 graphic card. We used Tensorflow Federated
0.4.0 with Tensorflow 1.13.1 backend.

Results:

1) Aggregator level models: The aggregator has access to the overall con-
sumption of the PCG and the production of the DERs. In our case, it uses
the prediction of the consumption alongside the forecasted PV power to make
decisions. Figure 7.3 shows the prediction and the actual power for the PCG
for the first 24 hours in the test set. The Root Mean Square Error (RMSE)
of the PV power is negligible 3.99 W , whereas the overall consumption can
be predicted with an RMSE of 4.71 W .

2) Prosumer level models: In order to evaluate the models obtained using
FEEL, we compared the average RMSE of these models to the average RMSE
of a centrally trained model. Table 7.1 summarizes the obtained RMSE for
different models. In our case, the load forecast is on a granular level (single
house) and on a very short term (i.e., 15 minutes or less); therefore, the values
of RMSE are achieved in Table 7.1 for various models are reasonable. The
error margin is anticipated as similar values have been reported by previous
work including ours [201].

Table 7.1 Average Power RMSE for the PCG.
Central Model Personalized Models

PV 0.25± 0.05 0.18± 0.04
Consumption 0.84± 0.28 0.65± 0.23
EV (1min) 0.13± 0.04 0.12± 0.04
EV (5min) 0.265± 0.04 0.277± 0.04

Figure 7.4 illustrates the improvements on predictions using personalization
with FEEL for a prosumer from the PCG. Both models (PV and consump-
tion) fit the actual data of the prosumer. As energy trading has high accuracy
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Figure 7.3 Overall prediction of production and consumption of the PCG at
the aggregator level.

requirements, the improvement in the precision of the prediction will have a
significant impact.

3) Communication and Computation Overhead: Figure 7.5 shows the total
data size sent over wireless networks when using FEEL compared to send-
ing the data in one-minute resolution. While scheduling a larger number of
prosumers in each round is preferable, more updates are exchanged over the
network leading to costly communication (e.g., in terms of bandwidth, delay,
and quality of experience). By adopting FEEL, where training is performed
at the edge level, data exchange is less costly than frequent data uploads to a
central server. With the growth of the need of more granular data, the gain
when it comes to communication will be even more significant. Additionally,
several compression and partial participation techniques can be explored to
further reduce the communication overhead [199].

For the computation overhead, our configuration is able to predict the next
step for PV and consumption using Model 1 just by taking an average of
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Figure 7.4 Prediction of production and consumption of the first 24 hours in
the test set for a sample prosumer.

0.37 ms, while predicting the next 5 steps using Model 2 for EV power takes
an average of 38 ms. The multi-step prediction is a costly operation and
requires deeper and more powerful models. Nonetheless, it remains necessary
to maintain a sustainable prosumer participation.

7.6 Open Issues and Future Research Directions

Through this work, we have identified different open issues and interesting
research directions that deserve further investigation:

Prosumers Regrouping: Individual prosumer behavior is impacted by the
community’s organization, norms, and goals. A sustainable PCG can be
extended through virtualization techniques to make a match among a wider
number of prosumers who share similar goals and preferences.

Peer to Peer trading: To achieve a fully decentralized collaboration, Peer-
to-Peer FL can be leveraged in the context of smart grid and energy markets.
This approach removes the single point of failure that can be inherent in a
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Figure 7.5 Total size of data exchanged over wireless networks when training
models using FEEL vs. centralized training.

PCG aggregator-based system. Furthermore, blockchain technology can be
used for reliable transactions [206].

Privacy and Security: Although FEEL is designed with privacy in mind,
it is still vulnerable to several attacks such as Backdoor attacks and Poisoning
attacks. It is, therefore, necessary to investigate mechanisms for more reliable
and resilient FEEL in smart grid environments.

7.7 Conclusion

Managing prosumers over wireless networks in smart grids is a challeng-
ing task that requires proactive decisions and optimal planning. Given the
stochastic nature of consumption and production load profiles and the privacy-
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sensitive aspect of these data, building predictive models for energy trading
automation becomes a challenging operation. In this article, we presented
the key enablers for integrating prosumers in the energy market. We dis-
cussed several challenges and issues concerning communication, privacy, and
planning. Keeping these issues in mind, we designed a multi-stage energy
forecasting framework using decentralized decisions based on short-term pre-
dictions. By leveraging edge equipment, we show that FEEL is a promising
solution for tackling privacy challenges related to model training in PCGs.
Furthermore, we proposed the integration of individual prosumers in the en-
ergy trading decisions as a key factor for a sustainable PCG.
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CHAPTER 8

Conclusions and Future Work

In this thesis, we set several objectives related to paving the last mile of EI.
Accordingly, we presented several approaches to enable FL in wireless edge
networks under challenges related to data and resources, and demonstrated
the potential of FEEL in and IoT scenarios. This chapter concludes the thesis
and suggests new research directions for future work.

8.1 Conclusions
The first goal of this thesis was to design a suitable metric to evaluate how
informative and rich a local dataset is, without revealing sensitive information
about the data. In chapter 3, several diversity metrics were identified, and
a general framework for FEEL was proposed. In chapter 4, we investigated
how to select clients with potentially more informative datasets while also
optimizing the communication round’s time and total required energy. This
is captured through a multi-objective optimization problem that was solved
with an iterative algorithm which we evaluated through extensive experi-
ments. The proposed diversity indicator is then extended with a reputation
score, thus avoiding malicious clients launching data poisoning attacks.

The second goal was to enhance the FL process to handle use-cases with high
mobility, namely FL in vehicular networks, and data concept-shift, where a
single model might not be enough. To tackle these challenges, we proposed in
chapter 6, a clustered process for vehicular FL. The process consists of an op-
timized cluster formation, starting with cluster-head selection, then matching
the remainder of vehicles to the selected cluster-heads. The matching algo-
rithm takes into consideration the velocity of the vehicles and their direction,
and can be adapted in the presence of more than one model.

171
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Lastly, since most of the work in FL was simulated using synthetically dis-
tributed datasets, and work on FEEL deployments is still in its infancy, it is
necessary to evaluate the potential of FEEL in real use-cases. Accordingly,
we designed a pro-active and collaborative decision process for energy trade
in smart grid. The decision is based on energy consumption and production
forecasts which we train using FEEL and enhance with personalization. The
gains in accuracy and communication costs make it appealing to adopt FEEL
in smart grid scenarios in particular, and smart city in general.

8.2 Future Work
The work presented in this thesis can enable several future research directions
but also let us raise new research questions. We list in the following some
perspectives for future work.

• In chapter 4, the designed diversity index is a weighted sum of several
measures and can be easily modified to include other metrics depending
on the use-case. A dynamic and adaptive way to choose the weights can
be envisioned for an optimal client selection.

• In chapter 5, we studied the case of malicious clients launching data
poisoning attacks. However, this approach might wrongfully consider
an outlier as a malicious entity. In the case of the establishment of an
incentive or punishment mechanism, it becomes critical to make this
distinction. Additional mechanisms should be implemented to handle
outliers in this case.

• In chapter 6, we studied FL in vehicular networks in the case of one BS.
The proposed process can be extended for continuous training through
handovers, and include a larger scale collaboration using cloud based
orchestration. Additionally, some parameters can be chosen using ex-
perimental values, such as the training deadlines and the number of
local epochs.
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• In chapter 7, we leveraged the geographical grouping of the clients in
the smart grid and the similarity of the type of the building to create a
community training the model collaboratively. Other clustering features
can be used in future work to enhance the quality of the resulting models.
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CHAPTER 9

Conclusions et travail futur

Dans cette thèse, nous avons fixé plusieurs objectifs liés à FL comme étant la
dernière pièce du puzzle qui parachève l’intelligence artificielle à la périphérie
du réseau. En conséquence, nous avons présenté plusieurs approches pour
faciliter FL dans les réseaux périphériques sans fil, en tant compte des défis
liés aux données et aux ressources. Nous avons démontré le potentiel de FEEL
dans et les scénarios liés à l’internet des objets. Ce chapitre conclut la thèse
et suggère de nouvelles directions de recherche pour les travaux futurs.

9.1 Conclusions
Le premier objectif de cette thèse était de concevoir une métrique appropriée
pour évaluer le degré d’information et de richesse d’un ensemble de don-
nées locales, sans révéler d’information sensible sur les données. Ainsi, dans
le chapitre 3, plusieurs métriques de diversité ont été identifiées, et un cadre
général pour FEEL a été proposé. Dans le chapitre 4, nous avons étudié com-
ment sélectionner les clients avec des ensembles de données potentiellement
plus informatifs tout en optimisant la durée de chaque itération et l’énergie
totale requise. Ceci est formulé sous forme d’un problème d’optimisation
multi-objectif qui a été résolu avec un algorithme itératif que nous avons
évalué par des simulations approfondies. Nous avons ensuite, dans le chapitre
5, combiné l’indicateur de diversité proposé avec un score de réputation, ce
qui permet d’éviter les clients malveillants qui ont des données empoisonnées.

Le second objectif était d’améliorer le processus FL pour gérer les cas d’utilisation
à forte mobilité, à savoir le FL dans les réseaux véhiculaires, et le changement
de concept des données, où un seul modèle peut ne pas suffire. Pour relever
ces défis, nous avons proposé dans le chapitre 6, un processus en grappes
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pour le FL véhiculaire. Le processus consiste en une formation optimisée de
groupes, en commençant par la sélection de nœuds agissant comme coordi-
nateurs de groupes, puis en faisant correspondre le reste des véhicules aux
coordinateurs sélectionnées. L’algorithme d’appariement prend en compte la
vitesse des véhicules et leur direction, et peut être adapté en présence de plus
d’un modèle.

Enfin, étant donné que la plupart des travaux sur FEEL ont été simulés à
l’aide d’ensembles de données distribuées de manière synthétique et que les
travaux sur les déploiements de FEEL en sont encore à leurs débuts, nous
avons jugé essentiel d’évaluer le potentiel de FEEL dans un cas d’utilisation
réel. Plus précisément, nous avons conçu un processus de décision proactif
et collaboratif pour le négoce d’énergie dans un réseau électrique intelligent.
La décision est basée sur les prévisions de consommation et de production
d’énergie que nous formons à l’aide de FEEL et que nous améliorons par
la personnalisation. FEEL permet de renforcer la collaboration entre les
membres des groupes de clients dans le réseau électrique intélligent. Les
gains en précision et en coûts de communication rendent attrayante l’adoption
de FEEL dans les scénarios de réseau intelligent en particulier, et de ville
intelligente en général.

9.2 Directions futures

Le travail présenté dans cette thèse nous a permis d’identifier plusieurs di-
rections de recherche potentielles et de soulever de nouvelles questions de
recherche. Nous énumérons dans ce qui suit quelques perspectives de travaux
futurs.

• Dans le chapitre 4, l’indice de diversité conçu est une somme pondérée de
plusieurs mesures et peut être facilement modifié pour inclure d’autres
mesures en fonction du cas d’utilisation. Une manière dynamique et
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adaptative de choisir les poids peut être envisagée pour une sélection
optimale des clients.

• Dans le chapitre 5, nous avons étudié le cas de clients malveillants lançant
des attaques par empoisonnement des données. Cependant, cette ap-
proche pourrait considérer à tort des clients possédant des données aber-
rantes comme une entité malveillante. Dans le cas de la mise en place
d’un mécanisme d’incitation ou de punition, il devient critique de faire
cette distinction. Des mécanismes supplémentaires devraient être mis en
œuvre pour traiter les données aberrantes dans ce cas.

• Dans le chapitre 6, nous avons étudié FL dans les réseaux véhiculaires
dans le cas d’une seule station de base. Le processus proposé peut être
étendu pour maintenir l’apprentissage entre plusieurs stations de base
par le biais de transferts, ainsi que l’orchestration basée sur l’infonuagique.
De plus, certains paramètres, tel que le nombre d’itérations locales, pour-
ront être choisis dynamiquement en se basant sur des valeurs expérimen-
tales.

• Au chapitre 7, nous avons tiré parti du regroupement géographique des
clients du réseau électrique intelligent et la similarité du type de bâ-
timent pour créer une communauté collaborative. D’autres caractéris-
tiques de regroupement peuvent être utilisées dans des travaux futurs
pour améliorer la qualité des modèles obtenus.
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