77 research outputs found

    Coinductive big-step operational semantics

    Get PDF
    Using a call-by-value functional language as an example, this article illustrates the use of coinductive definitions and proofs in big-step operational semantics, enabling it to describe diverging evaluations in addition to terminating evaluations. We formalize the connections between the coinductive big-step semantics and the standard small-step semantics, proving that both semantics are equivalent. We then study the use of coinductive big-step semantics in proofs of type soundness and proofs of semantic preservation for compilers. A methodological originality of this paper is that all results have been proved using the Coq proof assistant. We explain the proof-theoretic presentation of coinductive definitions and proofs offered by Coq, and show that it facilitates the discovery and the presentation of the results

    Coinductive Big-Step Semantics for Concurrency

    Full text link
    In a paper presented at SOS 2010, we developed a framework for big-step semantics for interactive input-output in combination with divergence, based on coinductive and mixed inductive-coinductive notions of resumptions, evaluation and termination-sensitive weak bisimilarity. In contrast to standard inductively defined big-step semantics, this framework handles divergence properly; in particular, runs that produce some observable effects and then diverge, are not "lost". Here we scale this approach for shared-variable concurrency on a simple example language. We develop the metatheory of our semantics in a constructive logic.Comment: In Proceedings PLACES 2013, arXiv:1312.221

    Compiler verification meets cross-language linking via data abstraction

    Get PDF
    Many real programs are written in multiple different programming languages, and supporting this pattern creates challenges for formal compiler verification. We describe our Coq verification of a compiler for a high-level language, such that the compiler correctness theorem allows us to derive partial-correctness Hoare-logic theorems for programs built by linking the assembly code output by our compiler and assembly code produced by other means. Our compiler supports such tricky features as storable cross-language function pointers, without giving up the usual benefits of being able to verify different compiler phases (including, in our case, two classic optimizations) independently. The key technical innovation is a mixed operational and axiomatic semantics for the source language, with a built-in notion of abstract data types, such that compiled code interfaces with other languages only through axiomatically specified methods that mutate encapsulated private data, represented in whatever formats are most natural for those languages.National Science Foundation (U.S.) (Grant CCF-1253229)United States. Defense Advanced Research Projects Agency (Agreement FA8750-12-2-0293)United States. Dept. of Energy. Office of Science (Award DE-SC0008923

    Formal Semantics of a Subset of the Paderborn's BSPlib

    Full text link
    PUB (Paderborn University BSPLib) is a C library supporting the development of Bulk-Synchronous Parallel (BSP) algorithms. The BSP model allows an estimation of the execution time, avoids deadlocks and indeterminism. This paper presents a formal operational semantics for a C+PUB subset language using the Coq proof assistant and a certified N-body computation as example of using this for-mal semantics. 1

    Resumptions, Weak Bisimilarity and Big-Step Semantics for While with Interactive I/O: An Exercise in Mixed Induction-Coinduction

    Full text link
    We look at the operational semantics of languages with interactive I/O through the glasses of constructive type theory. Following on from our earlier work on coinductive trace-based semantics for While, we define several big-step semantics for While with interactive I/O, based on resumptions and termination-sensitive weak bisimilarity. These require nesting inductive definitions in coinductive definitions, which is interesting both mathematically and from the point-of-view of implementation in a proof assistant. After first defining a basic semantics of statements in terms of resumptions with explicit internal actions (delays), we introduce a semantics in terms of delay-free resumptions that essentially removes finite sequences of delays on the fly from those resumptions that are responsive. Finally, we also look at a semantics in terms of delay-free resumptions supplemented with a silent divergence option. This semantics hinges on decisions between convergence and divergence and is only equivalent to the basic one classically. We have fully formalized our development in Coq.Comment: In Proceedings SOS 2010, arXiv:1008.190

    A static cost analysis for a higher-order language

    Full text link
    We develop a static complexity analysis for a higher-order functional language with structural list recursion. The complexity of an expression is a pair consisting of a cost and a potential. The former is defined to be the size of the expression's evaluation derivation in a standard big-step operational semantics. The latter is a measure of the "future" cost of using the value of that expression. A translation function tr maps target expressions to complexities. Our main result is the following Soundness Theorem: If t is a term in the target language, then the cost component of tr(t) is an upper bound on the cost of evaluating t. The proof of the Soundness Theorem is formalized in Coq, providing certified upper bounds on the cost of any expression in the target language.Comment: Final versio

    Equality of Corecursive Streams Defined by Finitary Equational Systems

    Get PDF
    In recent work, non-regular streams have been defined corecursively, by representing them with finitary equational systems built on top of various operators, besides the standard constructor. With finitary equational systems based only on the stream constructor, one can use the free theory of regular (a.k.a. rational) trees to get a sound and complete procedure to decide whether two streams are equal. However, this is not the case if one allows other operators in equations, since the underlying equational theory becomes non-trivial, hence equality of regular trees is too strong to guarantee termination of corecursive functions defined even only with the constructor and tail operators. To overcome this problem, we provide a weaker definition of equality between streams denoted by finitary equational systems built on different stream operators, including tail operator and constructor, and prove its soundness

    Pretty-Big-Step Semantics

    Get PDF
    International audienceIn spite of the popularity of small-step semantics, big-step semantics remain used by many researchers. However, big-step semantics suffer from a serious duplication problem, which appears as soon as the semantics account for exceptions and/or divergence. In particular, many premises need to be copy-pasted across several evaluation rules. This duplication problem, which is particularly visible when scaling up to full-blown languages, results in formal definitions growing far bigger than necessary. Moreover, it leads to unsatisfactory redundancy in proofs. In this paper, we address the problem by introducing pretty-big-step semantics. Pretty-big-step semantics preserve the spirit of big-step semantics, in the sense that terms are directly related to their results, but they eliminate the duplication associated with big-step semantics

    Mechanized semantics

    Get PDF
    The goal of this lecture is to show how modern theorem provers---in this case, the Coq proof assistant---can be used to mechanize the specification of programming languages and their semantics, and to reason over individual programs and over generic program transformations, as typically found in compilers. The topics covered include: operational semantics (small-step, big-step, definitional interpreters); a simple form of denotational semantics; axiomatic semantics and Hoare logic; generation of verification conditions, with application to program proof; compilation to virtual machine code and its proof of correctness; an example of an optimizing program transformation (dead code elimination) and its proof of correctness

    Comment gagner confiance en C ?

    Get PDF
    National audiencevoir article (cette communication est une chronique et ne contient pas de résumé)
    • …
    corecore