
HAL Id: inria-00529848
https://hal.inria.fr/inria-00529848

Submitted on 26 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mechanized semantics
Xavier Leroy

To cite this version:
Xavier Leroy. Mechanized semantics. J. Esparza and B. Spanfelner and O. Grumberg. Logics and
languages for reliability and security, 25, IOS Press, pp.195-224, 2010, NATO Science for Peace and
Security Series D: Information and Communication Security, �10.3233/978-1-60750-100-8-195�. �inria-
00529848�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50046041?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00529848
https://hal.archives-ouvertes.fr

Mechanized semantics

with applications to program proof and compiler verification

Xavier LEROY

INRIA Paris-Rocquencourt

Abstract. The goal of this lecture is to show how modern theorem
provers—in this case, the Coq proof assistant—can be used to mech-
anize the specification of programming languages and their semantics,
and to reason over individual programs and over generic program trans-

formations, as typically found in compilers. The topics covered include:
operational semantics (small-step, big-step, definitional interpreters); a
simple form of denotational semantics; axiomatic semantics and Hoare
logic; generation of verification conditions, with application to program
proof; compilation to virtual machine code and its proof of correctness;
an example of an optimizing program transformation (dead code elimi-
nation) and its proof of correctness.

Introduction

The semantics of a programming language describe mathematically the meaning
of programs written in this language. An example of use of semantics is to define
a programming language with much greater precision than standard language
specifications written in English. (See for example the definition of Standard ML
[38].) In turn, semantics enable us to formally verify some programs, proving that
they satisfy their specifications. Finally, semantics are also necessary to establish
the correctness of algorithms and implementations that operate over programs:
interpreters, compilers, static analyzers (including type-checkers and bytecode
verifiers), program provers, refactoring tools, etc.

Semantics for nontrivial programming languages can be quite large and
complex, making traditional, on-paper proofs using these semantics increasingly
painful and unreliable. Automatic theorem provers and especially interactive proof
assistants have great potential to alleviate these problems and scale semantic-
based techniques all the way to realistic programming languages and tools. Pop-
ular proof assistants that have been successfully used in this area include ACL2,
Coq, HOL4, Isabelle/HOL, PVS and Twelf.

The purpose of this lecture is to introduce students to this booming field
of mechanized semantics and its applications to program proof and formal ver-
ification of programming tools such as compilers. Using the prototypical IMP
imperative language as a concrete example, we will:

• mechanize various forms of operational and denotational semantics for this
language and prove their equivalence (sections 1 and 2);

reduction
semantics

natural
semantics

axiomatic
semantics

definitional
interpreter

denotational
semantics

compiler optimization
program

proof

Figure 1. The various styles of semantics considered in this lecture and their uses. A double
arrow denotes a semantic equivalence result. A single arrow from A to B means that semantics
A is used to justify the correctness of B.

• introduce axiomatic semantics (Hoare logic) and show how to provide ma-

chine assistance for proving IMP programs using a verification condition

generator (section 3);

• define a non-optimizing compiler from IMP to a virtual machine (a small

subset of the Java virtual machine) and prove the correctness of this com-

piler via a semantic preservation argument (section 4);

• illustrate optimizing compilation through the development and proof of

correctness of a dead code elimination pass (section 5).

We finish with examples of recent achievements and ongoing challenges in this

area (section 6).

We use the Coq proof assistant to specify semantics and program transforma-

tions, and conduct all proofs. The best reference on Coq is Bertot and Castéran’s

book [13], but for the purposes of this lecture, Bertot’s short tutorial [11] is largely

sufficient. The Coq software and documentation is available as free software at

http://coq.inria.fr/. By lack of time, we will not attempt to teach how to

conduct interactive proofs in Coq (but see the two references above). However,

we hope that by the end of this lecture, students will be familiar enough with

Coq’s specification language to be able to read the Coq development underlying

this lecture, and to write Coq specifications for problems of their own interest.

The reference material for this lecture is the Coq development available

at http://gallium.inria.fr/~xleroy/courses/Marktoberdorf-2009/. These

notes explain and recapitulate the definitions and main results using ordinary

mathematical syntax, and provides bibliographical references. To help readers

make the connection with the Coq development, the Coq names for the defini-

tions and theorems are given as bracketed notes, [like this]. In the PDF version of

the present document, available at the Web site above, these notes are hyper-

links pointing directly to the corresponding Coq definitions and theorems in the

development.

1. Symbolic expressions

1.1. Syntax

As a warm-up exercise, we start by formalizing the syntax and semantics of a
simple language of expressions comprising variables (x, y, . . .), integer constants
n, and two operators + and −.

Expressions: [expr]
e ::= x | n | e1 + e2 | e1 − e2

The Coq representation of expressions is as a inductive type, similar to an
ML or Haskell datatype.

Definition ident := nat.

Inductive expr : Type :=

| Evar: ident -> expr

| Econst: Z -> expr

| Eadd: expr -> expr -> expr

| Esub: expr -> expr -> expr.

nat and Z are predefined types for natural numbers and integers, respectively.
Each case of the inductive type is a function that constructs terms of type expr.
For instance, Evar applied to the name of a variable produces the representation
of the corresponding expression; and Eadd applied to the representations of two
subexpressions e1 and e2 returns the representation of the expression e1 + e2.
Moreover, all terms of type expr are finitely generated by repeated applications
of the 4 constructor functions; this enables definitions by pattern matching and
reasoning by case analysis and induction.

1.2. Denotational semantics

The simplest and perhaps most natural way to specify the semantics of this lan-
guage is as a function [[e]] s that associates an integer value to the expression e in
the state s. States associate values to variables.

[[x]] s = s(x) [[n]] s = n

[[e1 + e2]] s = [[e1]] s+ [[e2]] s [[e1 − e2]] s = [[e1]] s− [[e2]] s

In Coq, this denotational semantics is presented as a recursive function
[eval expr].

Definition state := ident -> Z.

Fixpoint eval_expr (s: state) (e: expr) {struct e} : Z :=

match e with

| Evar x => s x

| Econst n => n

| Eadd e1 e2 => eval_expr s e1 + eval_expr s e2

| Esub e1 e2 => eval_expr s e1 - eval_expr s e2

end.

Fixpoint marks a recursive function definition. The struct e annotation states
that it is structurally recursive on its e parameter, and therefore guaranteed
to terminate. The match...with construct represents pattern-matching on the
shape of the expression e.

1.3. Using the denotational semantics

The eval_expr function can be used as an interpreter, to evaluate expressions in
a known environment. For example:

Eval compute in (

let x : ident := O in

let s : state := fun y => if eq_ident y x then 12 else 0 in

eval_expr s (Eadd (Evar x) (Econst 1))).

Coq prints “13 : Z”. For additional performance, efficient executable Caml code
can also be generated automatically from the Coq definition of eval_expr using
the extraction mechanism of Coq.

Another use of eval_expr is to reason symbolically over expressions in arbi-
trary states. Consider the following claim:

Remark expr_add_pos:

forall s x,

s x >= 0 -> eval_expr s (Eadd (Evar x) (Econst 1)) > 0.

Using the simpl tactic of Coq, the goal reduces to a purely arithmetic statement:

forall s x, s x >= 0 -> s x + 1 > 0.

which can be proved by standard arithmetic (the omega tactic).
Finally, the denotation function eval_expr can also be used to prove “meta”

properties of the semantics. For example, we can easily show that the denotation of
an expression is insensitive to values of variables not mentioned in the expression.

Lemma eval_expr_domain:

forall s1 s2 e,

(forall x, is_free x e -> s1 x = s2 x) ->

eval_expr s1 e = eval_expr s2 e.

The proof is a simple induction on the structure of e. The predicate is_free,
stating whether a variable occurs in an expression, is itself defined as a recursive
function:

Fixpoint is_free (x: ident) (e: expr) {struct e} : Prop :=

match e with

| Evar y => x = y

| Econst n => False

| Eadd e1 e2 => is_free x e1 \/ is_free x e2

| Esub e1 e2 => is_free x e1 \/ is_free x e2

end.

As the Prop annotation indicates, the result of this function is not a data type
but a logical formula.

1.4. Variants

The denotational semantics we gave above interprets the + and - operators as
arithmetic over mathematical integer. We can easily interpret them differently,
for instance as signed, modulo 232 arithmetic (as in Java):

Fixpoint eval_expr (s: state) (e: expr) {struct e} : Z :=

match e with

| Evar x => s x

| Econst n => normalize n

| Eadd e1 e2 => normalize (eval_expr s e1 + eval_expr s e2)

| Esub e1 e2 => normalize (eval_expr s e1 - eval_expr s e2)

end.

Here, normalize n is n reduced modulo 232 to the interval [−231, 231).
We can also account for undefined expressions. In practical programming

languages, the value of an expression can be undefined for several reasons: if it
mentions a variable that was not previously defined; in case of overflow during
an arithmetic operation; in case of an integer division by 0; etc. A simple way to
account for undefinedness is to use the option type, as defined in Coq’s standard
library. This is a two-constructor inductive type with None meaning “undefined”
and Some n meaning “defined and having value n”.

Definition state := ident -> option Z.

Fixpoint eval_expr (s: state) (e: expr) {struct e} : option Z :=

match e with

| Evar x => s x

| Econst n => Some n

| Eadd e1 e2 =>

match eval_expr s e1, eval_expr s e2 with

| Some n1, Some n2 => Some (n1 + n2)

| _, _ => None

end

| Esub e1 e2 =>

match eval_expr s e1, eval_expr s e2 with

| Some n1, Some n2 => Some (n1 - n2)

| _, _ => None

end

end.

1.5. Summary

The approach we followed in this section—denotational semantics represented as
a Coq recursive function—is natural and convenient, but limited by a fundamen-
tal aspect of Coq: all functions must be terminating, so that they are defined
everywhere by construction. The termination guarantee can come either by the
fact that they are structurally recursive (recursive calls are only done on strict
sub-terms of the argument, as in the case of eval_expr), or by Noetherian re-
cursion on a well-founded ordering. Consequently, the approach followed in this
section cannot be used to give semantics to languages featuring general loops or

general recursion. As we now illustrate with the IMP language, we need to move
away from functional presentations of the semantics (where a function computes a
result given a state and a term) and adopt relational presentations instead (where
a ternary predicate relates a state, a term, and a result).

2. The IMP language and its semantics

2.1. Syntax

The IMP language is a very simple imperative language with structured control.
Syntactically, it extends the language of expressions from section 1 with boolean
expressions (conditions) and commands (statements):

Expressions: [expr]
e ::= x | n | e1 + e2 | e1 − e2

Boolean expressions: [bool expr]
b ::= e1 = e2 | e1 < e2

Commands: [cmd]

c ::= skip | x := e | c1; c2 | if b then c1 else c2 | while b do c done

The semantics of boolean expressions is given in the denotational style of section 1,
as a function from states to booleans [eval bool expr].

[[e1 = e2]] s =
{

true if [[e1]] s = [[e2]] s;
false otherwise.

[[e1 < e2]] s =
{

true if [[e1]] s < [[e2]] s;
false otherwise.

2.2. Reduction semantics

A standard way to give semantics to languages such as IMP, where programs may
not terminate, is reduction semantics, popularized by Plotkin under the name
“structural operational semantics” [49], and also called “small-step semantics”.
It builds on a reduction relation (c, s) → (c′, s′), meaning: in initial state s, the
command c performs one elementary step of computation, resulting in modified
state s′ and residual computations c′. [red]

(x := e, s)→ (skip, s[x← [[e]] s]) (red assign)

(c1, s)→ (c′1, s) (red seq left)
((c1; c2), s)→ ((c′1; c2), s′)

((skip; c), s)→ (c, s) (red seq skip)

[[b]] s = true
(red if true)

((if b then c1 else c2), s)→ (c1, s)

[[b]] s = false
(red if false)

((if b then c1 else c2), s)→ (c2, s)

[[b]] s = true
(red while true)

((while b do c done), s)→ ((c; while b do c done), s)

[[b]] s = false
(red while false)

((while b do c done), s)→ (skip, s)

The Coq translation of such a definition by inference rules is called an induc-
tive predicate. Such predicates build on the same inductive definition mechanisms
that we already use to represent abstract syntax trees, but the resulting logical
object is a proposition (sort Prop) instead of a data type (sort Type).

The general recipe for translating inference rules to an inductive predicate
is as follows. First, write each axiom and rule as a proper logical formula, using
implications and universal quantification over free variables. For example, the rule
red_seq_left becomes

forall c1 c2 s c1’ s’,

red (c1, s) (c1’, s’) ->

red (Cseq c1 c2, s) (Cseq c1’ c2, s’)

Second, give a name to each rule. (These names are called “constructors”, by anal-
ogy with data type constructors.) Last, wrap these named rules in an inductive
predicate definition like the following.

Inductive red: (cmd * state) -> (cmd * state) -> Prop :=

| red_assign: forall x e s,

red (Cassign x e, s) (Cskip, update s x (eval_expr s e))

| red_seq_left: forall c1 c2 s c1’ s’,

red (c1, s) (c1’, s’) ->

red (Cseq c1 c2, s) (Cseq c1’ c2, s’)

| red_seq_skip: forall c s,

red (Cseq Cskip c, s) (c, s)

| red_if_true: forall s b c1 c2,

eval_bool_expr s b = true ->

red (Cifthenelse b c1 c2, s) (c1, s)

| red_if_false: forall s b c1 c2,

eval_bool_expr s b = false ->

red (Cifthenelse b c1 c2, s) (c2, s)

| red_while_true: forall s b c,

eval_bool_expr s b = true ->

red (Cwhile b c, s) (Cseq c (Cwhile b c), s)

| red_while_false: forall b c s,

eval_bool_expr s b = false ->

red (Cwhile b c, s) (Cskip, s).

Each constructor of the definition is a theorem that lets us conclude
red (c, s) (c′, s′) when the corresponding premises hold. Moreover, the propo-
sition red (c, s) (c′, s′) holds only if it was derived by applying these theorems

a finite number of times (smallest fixpoint). This provides us with powerful
reasoning principles: by case analysis on the last rule used, and by induction on
a derivation. Consider for example the determinism of the reduction relation:

Lemma red_deterministic:

forall cs cs1, red cs cs1 -> forall cs2, red cs cs2 -> cs1 = cs2.

It is easily proved by induction on a derivation of red cs cs1 and a case analysis
on the last rule used to conclude red cs cs2.

From the one-step reduction relation, we can define the the behavior of a
command c in an initial state s is obtained by forming sequences of reductions
starting at c, s:

• Termination with final state s′, written (c, s) ⇓ s′: finite sequence of reduc-
tions to skip. [terminates]

(c, s)
∗

→ (skip, s′)

• Divergence, written (c, s) ⇑ : infinite sequence of reductions. [diverges]

∀c′, foralls′, (c, s)
∗

→ (c′, s′)⇒ ∃c′′, ∃s′′, (c′, s′)→ (c′′, s′′)

• Going wrong, written (c, s) ⇓ wrong: finite sequence of reductions to an
irreducible state that is not skip. [goes wrong]

(c, s)→ · · · → (c′, s′) 6→ with c 6= skip

2.3. Natural semantics

An alternative to structured operational semantics is Kahn’s natural semantics
[26], also called big-step semantics. Instead of describing terminating executions as
sequences of reductions, natural semantics aims at giving a direct axiomatization
of executions using inference rules.

To build intuitions for natural semantics, consider a terminating reduction
sequence for the command c; c′.

((c; c′), s→ ((c1; c
′), s1)→ · · · → ((skip; c′), s2)→ (c′, s2)→ · · · → (skip, s3)

It contains a terminating reduction sequence for c, of the form (c, s)
∗

→ (skip, s2),
followed by another terminating sequence for (c′, s2).

The idea of natural semantics is to write inference rules that follow this struc-
ture and define a predicate c, s⇒ s′, meaning “in initial state s, the command c
terminates with final state s′ ”. [exec]

skip, s⇒ s (exec skip) x := e, s⇒ s[x← [[e]] s] (exec assign)

c1, s⇒ s1 c2, s1 ⇒ s2
(exec seq)

c1; c2, s⇒ s2

c1, s⇒ s′ if [[b]] s = true

c2, s⇒ s′ if [[b]] s = false
(exec if)

(if b then c1 else c2), s⇒ s′

[[b]] s = false
(exec while stop)

while b do c done, s⇒ s

[[b]] s = true c, s⇒ s1 while b do c done, s1 ⇒ s2
(exec while loop)

while b do c done, s⇒ s2

We now have two different semantics for the same language. A legitimate
question to ask is whether they are equivalent: do both semantics predict the
same “terminates / diverges / goes wrong” behaviors for any given program?
Such an equivalence result strengthens the confidence we have in both semantics.
Moreover, it enables us to use whichever semantics is more convenient to prove
a property of interest. We first show an implication from natural semantics to
terminating reduction sequences.

Theorem 1 [exec terminates] If c, s⇒ s′, then (c, s)
∗

→ (skip, s′).

The proof is a straightforward induction on a derivation of c, s ⇒ s′ and
case analysis on the last rule used. Here is a representative case: c = c1; c2. By
hypothesis, c1; c2, s⇒ s′. By inversion, we know that c1, s⇒ s1 and c2, s1 ⇒ s′ for
some intermediate state s1. Applying the induction hypothesis twice, we obtain
(c1, s)

∗

→ (skip, s1) and (c2, s1)
∗

→ (skip, s′). A context lemma (proved separately

by induction) shows that ((c1; c2), s)
∗

→ ((skip; c2), s1). To obtain the expected
result, all we need to do is to assemble the reduction sequences together, using
the transitivity of

∗

→:

((c1; c2), s)
∗

→ ((skip; c2), s1)→ (c2, s1)
∗

→ (skip, s′)

The converse implication (from terminating reduction sequences to natural
semantics) is more difficult. The idea is to consider mixed executions that start
with some reduction steps and finish in one big step using the natural semantics:

(c1, s1)→ · · · → (ci, si)⇒ s′

We first show that the last reduction step can always be “absorbed” by the final
big step:

Lemma 2 [red preserves exec] If (c, s)→ (c′, s′) and c′, s′ ⇒ s′′, then c, s⇒ s′′.

Combining this lemma with an induction on the sequence of reduction, we
obtain the desired semantic implication:

Theorem 3 [terminates exec] If (c, s)
∗

→ (skip, s′), then c, s⇒ s′.

2.4. Natural semantics for divergence

Kahn-style natural semantics correctly characterize programs that terminate, ei-
ther normally (as in section 2.3) or by going wrong (through the addition of so-
called error rules). For a long time it was believed that natural semantics is un-

able to account for divergence. As observed by Grall and Leroy [32], this is not
true: diverging executions can also be described in the style of natural semantics,
provided a coinductive definition (greatest fixpoint) is used. Define the infinite
execution relation c, s⇒∞ (from initial state s, the command c diverges). [execinf]

c1, s⇒∞
(execinf seq left)

c1; c2, s⇒∞

c1, s⇒ s1 c2, s1 ⇒∞
(execinf seq right)

c1; c2, s⇒∞

c1, s⇒∞ if [[b]] s = true

c2, s⇒∞ if [[b]] s = false
(execinf if)

if b then c1 else c2, s⇒∞

[[b]] s = true c, s⇒∞
(execinf while body)

while b do c done, s⇒∞

[[b]] s = true c, s⇒ s1 while b do c done, s1 ⇒∞
(execinf while loop)

while b do c done, s⇒∞

As denoted by the double horizontal bars, these rules must be interpreted
coinductively as a greatest fixpoint [32, section 2]. Equivalently, the coinductive
interpretation corresponds to conclusions of possibly infinite derivation trees, while
the inductive interpretation corresponds to finite derivation trees. Coq provides
built-in support for coinductive definitions of data types and predicates.

As in section 2.3 and perhaps even more so here, we need to prove an equiv-
alence between the c, s ⇒ ∞ predicate and the existence of infinite reduction
sequences. One implication follows from the decomposition lemma below:

Lemma 4 [execinf red step] If c, s ⇒ ∞, there exists c′ and s′ such that (c, s) →
(c′, s′) and c′, s′ ⇒∞.

A simple argument by coinduction, detailed in [32], then concludes the ex-
pected implication:

Theorem 5 [execinf diverges] If c, s⇒∞, then (c, s) ⇑ .

The reverse implication uses two inversion lemmas:

• If ((c1; c2), s) ⇑ , either (c1, s) ⇑ or there exists s′ such that (c1, s)
∗

→
(skip, s′) and (c2, s

′) ⇑ .
• If (while b do c done, s) ⇑ , then [[b]] s = true and either (c, s) ⇑ or there

exists s′ such that (c, s)
∗

→ (skip, s′) and (while b do c done, s′) ⇑

These lemmas follow from determinism of the → relation and the seemingly
obvious fact that any reduction sequence is either infinite or stops, after finitely
many reductions, on an irreducible configuration:

∀c, s, (c, s) ⇑ ∨ ∃c′, ∃s′, (c, s)
∗

→ (c′, s′) ∧ (c′, s′) 6→

The property above cannot be proved in Coq’s constructive logic: such a con-
structive proof would be, in essence, a program that decides the halting problem.
However, we can add the law of excluded middle (∀P, P ∨ ¬P) to Coq as an
axiom, without breaking logical consistency. The fact above can easily be proved
from the law of excluded middle.

Theorem 6 [diverges execinf] If (c, s) ⇑ , then c, s⇒∞.

2.5. Definitional interpreter

As mentioned at the end of section 1, we cannot write a Coq function with type
cmd→ state→ state that would execute a command and return its final state
whenever the command terminates: this function would not be total. We can,
however, define a Coq function I(n, c, s) that executes c in initial state s, taking
as extra argument a natural number n used to bound the amount of computation
performed. This function returns either ⌊s′⌋ (termination with state s′) or ⊥
(insufficient recursion depth). [interp]

I(0, c, s) = ⊥

I(n+ 1, skip, s) = ⌊s⌋

I(n+ 1, x := e, s) = ⌊s[x← [[e]] s] ⌋

I(n+ 1, (c1; c2), s) = I(n, c1, s)� (λs′. I(n, c2, s
′))

I(n+ 1, (if b then c1 else c2), s) = I(n, c1, s) if [[b]] s = true

I(n+ 1, (if b then c1 else c2), s) = I(n, c2, s) if [[b]] s = false

I(n+ 1, (while b do c done), s) = ⌊s⌋ if [[b]] s = false

I(n+ 1, (while b do c done), s) = I(n, c, s)� (λs′. I(n, while b do c done, s′))

if [[b]] s = true

The “bind” operator �, reminiscent of monads in functional programming, is
defined by ⊥� f = ⊥ and ⌊s⌋� f = f(s).

A crucial property of this definitional interpreter is that it is monotone with
respect to the maximal recursion depth n. Evaluation results are ordered by taking
⊥ ≤ ⌊s⌋ [res le].

Lemma 7 [interp mon] (Monotonicity of I.) If n ≤ m, then I(n, c, s) ≤ I(m, c, s).

Exploiting this property, we can show partial correctness results of the defi-
nitional interpreter with respect to the natural semantics:

Lemma 8 [interp exec] If I(n, c, s) = ⌊s′⌋, then c, s⇒ s′.

Lemma 9 [exec interp] If c, s⇒ s′, there exists an n such that I(n, c, s) = ⌊s′⌋.

Lemma 10 [execinf interp] If c, s⇒∞, then I(n, c, s) = ⊥ for all n.

2.6. Denotational semantics

A simple form of denotational semantics [41] can be obtained by “letting n goes
to infinity” in the definitional interpreter.

Lemma 11 [interp limit dep] For every c, there exists a function [[c]] from states to
evaluation results such that ∀s, ∃m, ∀n ≥ m, I(n, c, s) = [[c]] s.

Again, this result cannot be proved in Coq’s constructive logic and requires
the axiom of excluded middle and an axiom of description.

This denotation function [[c]] satisfies the equations of denotational semantics:

[[skip]] s= ⌊s⌋

[[x := e]] s= ⌊s[x← [[e]] s]⌋

[[c1; c2]] s= [[c1]] s� (λs′. [[c2]] s
′)

[[if b then c1 else c2]] s= [[c1]] s if [[b]] s = true

[[if b then c1 else c2]] s= [[c2]] s if [[b]] s = false

[[while b do c done]] s= ⌊s⌋ if [[b]] s = false

[[while b do c done]] s= [[c]] s� (λs′. [[while b do c done]] s′) if [[b]] s = true

Moreover, [[while b do c done]] is the smallest function from states to results that
satisfies the last two equations.

Using these properties of [[c]], we can show full equivalence between the deno-
tational and natural semantics.

Theorem 12 [denot exec] [exec denot] c, s⇒ s′ if and only if [[c]] s = ⌊s′⌋.

Theorem 13 [denot execinf] [execinf denot] c, s⇒∞ if and only if [[c]] s = ⊥.

2.7. Further reading

The material presented in this section is inspired by Nipkow [44] (in Isabelle/HOL,
for the IMP language) and by Grall and Leroy [32] (in Coq, for the call-by-value
λ-calculus).

We followed Plotkin’s “SOS” presentation [49] of reduction semantics, char-
acterized by structural inductive rules such as [red seq left]. An alternate presen-
tation, based on reduction contexts, was introduced by Wright and Felleisen [54]
and is very popular to reason about type systems [48].

Definitions and proofs by coinduction can be formalized in two ways: as great-
est fixpoints in a set-theoretic presentation [1] or as infinite derivation trees in
proof theory [13, chap. 13]. Grall and Leroy [32] connect the two approaches.

The definitional interpreter approach was identified by Reynolds in 1972. See
[50] for a historical perspective.

The presentation of denotational semantics we followed avoids the complexity
of Scott domains. Mechanizations of domain theory with applications to denota-
tional semantics include Agerholm [2] (in HOL), Paulin [46] (in Coq) and Benton
et al. [9] (in Coq).

3. Axiomatic semantics and program verification

Operational semantics as in section 2 focuses on describing actual executions of
programs. In contrast, axiomatic semantics (also called Hoare logic) focuses on
verifying logical assertions between the values of programs at various program
points. It is the most popular approach to proving the correctness of imperative
programs.

3.1. Weak Hoare triples and their rules

Following Hoare’s seminal work [24], we consider logical formulas of the form
{P } c {Q }, meaning “if precondition P holds, the command c does not go wrong,
and if it terminates, the postcondition Q holds”. Here, P and Q are arbitrary
predicates over states. A formula {P } c {Q } is called a weak Hoare triple (by
opposition with strong Hoare triples discussed in section 3.4, which guarantee
termination as well). We first define some useful operations over predicates:

P [x← e]
def
= λs. P (s[x← [[e]] s]) P ∧Q

def
= λs. P (s) ∧Q(s)

b true
def
= λs. [[b]] s = true P ∨Q

def
= λs. P (s) ∨Q(s)

b false
def
= λs. [[b]] s = false P =⇒ Q

def
= ∀s, P (s)⇒ Q(s)

The axiomatic semantics, that is, the set of legal triples {P } c {Q }, is defined
by the following inference rules: [triple]

{P } skip {P } (triple skip) {P [x← e] } x := e {P } (triple assign)

{P } c1 {Q } {Q } c2 {R }
(triple seq)

{P } c1; c2 {R }

{ b true ∧ P } c1 {Q } { b false∧ P } c2 {Q }
(triple if)

{P } if b then c1 else c2 {Q }

{ b true ∧ P } c {P }
(triple while)

{P } while b do c done { b false ∧ P }

P =⇒ P ′ {P ′ } c {Q′ } Q′ =⇒ Q
(triple consequence)

{P } c {Q }

Example. The triple { a = bq+ r } r := r− b; q := q+1 { a = bq+ r } is derivable
from rules triple_assign, triple_seq and triple_consequence because the
following logical equivalences hold:

(a = bq + r)[q ← q + 1]⇐⇒ a = b(q + 1) + r

(a = b(q + 1) + r)[r ← r − b]⇐⇒ a = b(q + 1) + (r − b) = bq + r

3.2. Soundness of the axiomatic semantics

Intuitively, a weak Hoare triple {P } c {Q } is valid if for all initial states s such
that P s holds, either (c, s) diverges or it terminates in a state s′ such that Q s′

holds. We capture the latter condition by the predicate (c, s) finally Q, defined
coinductively as: [finally]

Q(s)
(finally done)

(skip, s) finally Q

(c, s)→ (c′, s′) (c′, s′) finally Q
(finally step)

(c, s) finally Q

In an inductive interpretation, rule finally_step could only be applied
a finite number of steps, and therefore (c, s) finally Q would be equivalent

to ∃s′, (c, s)
∗

→ (skip, s′) ∧ Q(s′). In the coinductive interpretation, rule
finally_step can also be applied infinitely many times, capturing diverging ex-
ecutions as well.

The semantic interpretation [[{P } c {Q }]] of a triple is, then, the proposition

∀s, P s =⇒ (c, s) finally Q [sem triple]

We now proceed to show that if {P } c {Q } is derivable, the proposition
[[{P } c {Q }]] above holds. We start by some lemmas about the finally predi-
cate.

Lemma 14 [finally seq] If (c1, s) finally Q and [[{Q } c2 {R }]], then
((c1; c2), s) finally R.

Lemma 15 [finally while] If [[{ b true∧ P } c {P }]] then
[[{P } while b do c done { b false∧ P }]].

Lemma 16 [finally consequence] If (c, s) finally Q and Q =⇒ Q′, then
(c, s) finally Q′.

We can then prove the expected soundness result by a straightforward induc-
tion on a derivation of {P } c {Q }:

Theorem 17 [triple correct] If {P } c {Q } can be derived by the rules of axiomatic
semantics, then [[{P } c {Q }]] holds.

3.3. Generation of verification conditions

In this section, we enrich the syntax of IMP commands with an annotation on
while loops (to give the loop invariant) and an assert(P) command to let the
user provide assertions. [acmd]

Annotated commands:
c ::= while b do {P} c done loop with invariant
| assert(P) explicit assertion
| . . . other commands as in IMP

Annotated commands can be viewed as regular commands by erasing the {P}
annotation on loops and turning assert(P) to skip. [erase]

The wp function computes the weakest (liberal) precondition for c given a
postcondition Q. [wp]

wp(skip, Q) = Q

wp(x := e,Q) = Q[x← e]

wp((c1; c2), Q) = wp(c1, wp(c2, Q))

wp((if b then c1 else c2), Q) = (b true ∧ wp(c1, Q)) ∨ (b false ∧ wp(c2, Q))

wp((while b do {P} c done), Q) = P

wp(assert(P), Q) = P

With the same arguments, the vcg function (verification condition gener-
ator) computes a conjunction of implications that must hold for the triple
{ wp(c,Q) } c {Q } to hold. [vcg]

vcg(skip, Q) = T

vcg(x := e,Q) = T

vcg((c1; c2), Q) = vcg(c1, wp(c2, Q)) ∧ vcg(c2, Q)

vcg((if b then c1 else c2), Q) = vcg(c1, Q) ∧ vcg(c2, Q)

vcg((while b do {P} c done), Q) = vcg(c, P)

∧ (b false∧ P =⇒ Q)

∧ (b true∧ P =⇒ wp(c, P))

vcg(assert(P), Q) = P =⇒ Q

Lemma 18 [vcg correct] If vcg(c,Q) holds, then { wp(c,Q) } c {Q } can be derived
by the rules of axiomatic semantics.

The derivation of a Hoare triple {P } c {Q } can therefore be reduced to the
computation of the following vcgen(P, c,Q) logical formula, and its proof. [vcgen]

vcgen(P, c,Q)
def
= (P =⇒ wp(c,Q)) ∧ vcg(c,Q)

Theorem 19 [vcgen correct] If vcgen(P, c,Q) holds, then {P } c {Q } can be derived
by the rules of axiomatic semantics.

Example. Consider the following annotated IMP program c:

r := a; q := 0;

while b < r+1 do {I} r := r - b; q := q + 1 done

and the following precondition P , loop invariant I and postcondition Q:

P
def
= λs. s(a) ≥ 0 ∧ s(b) > 0

I
def
= λs. s(r) ≥ 0 ∧ s(b) > 0 ∧ s(a) = s(b)× s(q) + s(r)

Q
def
= λs. s(q) = s(a)/s(b)

To prove that {P } c {Q }, we apply theorem 19, then ask Coq to compute and
simplify the formula vcgen(P, c,Q). We obtain the conjunction of three implica-
tions:

s(a) ≥ 0 ∧ s(b) > 0 =⇒ s(a) ≥ 0 ∧ s(b) > 0 ∧ s(a) = s(b)× 0 + s(a)

¬(s(b) < s(r) + 1) ∧ s(r) ≥ 0 ∧ s(b) > 0 ∧ s(a) = s(b)× s(q) + s(r)
=⇒ s(q) = s(a)/s(b)

s(b) < s(r) + 1 ∧ s(r) ≥ 0 ∧ s(b) > 0 ∧ s(a) = s(b)× s(q) + s(r)
=⇒ s(r)− s(b) ≥ 0 ∧ s(b) > 0 ∧ s(a) = s(b)× (s(q) + 1) + (s(r)− s(b))

which are easy to prove by purely arithmetic reasoning.

3.4. Strong Hoare triples

The axiomatic semantics we have seen so far enables us to prove partial correctness
properties of programs, but not their termination. To prove termination as well,
we need to use strong Hoare triples [P] c [Q], meaning “if precondition P holds,
the command c terminates and moreover the postcondition Q holds”.

The rules defining valid strong Hoare triples are similar to those for weak
triples, with the exception of the while rule, which contains additional require-
ments that ensure termination of the loop. [Triple]

[P] skip [P] (Triple skip) [P [x← e]] x := e [P] (Triple assign)

[P] c1 [Q] [Q] c2 [R]
(Triple seq)

[P] c1; c2 [R]

[b true ∧ P] c1 [Q] [b false ∧ P] c2 [Q]
(Triple if)

[P] if b then c1 else c2 [Q]

(∀v ∈ Z, [b true ∧ em
.
= v ∧ P] c [0

.

≤ em
.

< v ∧ P])
(Triple while)

[P] while b do c done [b false ∧ P]

P =⇒ P ′ [P ′] c [Q′] Q′ =⇒ Q
(Triple consequence)

[P] c [Q]

In the Triple_while rule, em stands for an expression whose value should
decrease but remain nonnegative at each iteration. The precondition em

.
= v and

the postcondition 0
.

≤ em
.

< v capture this fact:

em
.
= v

def
= λs. [[em]] s = v 0

.

≤ em
.

< v
def
= λs. 0 ≤ [[em]] s < v

The v variable therefore denotes the value of the measure expression at the
beginning of the loop body. Since it is not statically known in general, rule
Triple_while quantifies universally over every possible v ∈ Z. Conceptually, rule
Triple_while has infinitely many premises, one for each possible value of v. Such
infinitely branching inference rules cause no difficulty in Coq.

Note that the Triple_while rule above is not powerful enough to prove
termination for some loops that occur in practice, for example if the termination
argument is based on a lexicographic ordering. A more general version of the rule
could involve an arbitrary well-founded ordering between states.

The semantic interpretation [[[P] c [Q]]] of a strong Hoare triple is the propo-
sition

∀s, P s =⇒ ∃s′, (c, s⇒ s′) ∧Q(s′) [sem Triple]

As previously done for weak triples, we now prove the soundness of the infer-
ence rules for strong triples with respect to this semantic interpretation.

Theorem 20 [Triple correct] If [P] c [Q] can be derived by the rules of axiomatic
semantics, then [[[P] c [Q]]] holds.

The proof is by an outer induction on a derivation of [P] c [Q] followed,
in the while case, by an inner induction on the value of the associated measure
expression.

3.5. Further reading

The material in this section follows Nipkow [44] (in Isabelle/HOL) and Bertot
[12] (in Coq), themselves following Gordon [37].

Separation logic [45,51] extends axiomatic semantics with a notion of local
reasoning: assertions carry a domain (in our case, a set of variable; in pointer
programs, a set of store locations) and the logic enforces that nothing outside the
domain of the triple changes during execution. Examples of mechanized separation
logics include Marti et al. [35] in Coq, Tuch et al. [53] in Isabelle/HOL, Appel
and Blazy [5] in Coq, and Myreen and Gordon [43] in HOL4.

The generation of verification conditions (section 3.3) is an instance of a
more general technique known as “proof by reflection”, which aims at replacing
deduction steps by computations [13, chap. 16]. The derivation of {P } c {Q }
from the rules of section 3.1 (a nonobvious process involving nondeterminstic
proof search) is replaced by the computation of vcgen(P, c,Q) (a trivial evaluation
of a recursive function application). Proofs by reflection can tremendously speed
up the verification of combinatorial properties, as illustrated by Gonthier and
Werner’s mechanized proof of the 4-color theorem [22].

4. Compilation to a virtual machine

There are several ways to execute programs:

• Interpretation: a program (the interpreter) traverses the abstract syntax

tree of the program to be executed, performing the intended computations

on the fly.

• Compilation to native code: before execution, the program is translated to

a sequence of machine instructions. These instructions are those of a real

microprocessor and are executed in hardware.

• Compilation to virtual machine code: before execution, the program is

translated to a sequence of instructions, These instructions are those of a

virtual machine. They do not correspond to that of an existing hardware

processor, but are chosen close to the basic operations of the source lan-

guage. Then, the virtual machine code is either interpreted (more efficiently

than source-level interpretation) or further translated to real machine code.

In this section, we study the compilation of the IMP language to an appropriate

virtual machine.

4.1. The IMP virtual machine

A state of the machine is composed of: [machine state]

• A fixed code C (a list of instructions).

• A variable program counter pc (an integer position in C).

• A variable stack σ (a list of integers).

• A store s (mapping variables to integers).

The instruction set is as follows: [instruction] [code]

i ::= const(n) push n on stack

| var(x) push value of x

| setvar(x) pop value and assign it to x

| add pop two values, push their sum

| sub pop two values, push their difference

| branch(δ) unconditional jump

| bne(δ) pop two values, jump if 6=

| bge(δ) pop two values, jump if ≥

| halt end of program

In branch instructions, δ is an offset relative to the next instruction.

The dynamic semantics of the machine is given by the following one-step

transition relation [transition]. C(pc) is the instruction at position pc in C, if any.

C ⊢ (pc, σ, s)→ (pc+ 1, n.σ, s) if C(pc) = const(n)
C ⊢ (pc, σ, s)→ (pc+ 1, s.(x).σ, s) if C(pc) = var(n)
C ⊢ (pc, n.σ, s)→ (pc+ 1, σ, s[x← n]) if C(pc) = setvar(x)
C ⊢ (pc, n2.n1.σ, s)→ (pc+ 1, (n1 + n2).σ, s) if C(pc) = add

C ⊢ (pc, n2.n1.σ, s)→ (pc+ 1, (n1 − n2).σ, s) if C(pc) = sub

C ⊢ (pc, σ, s)→ (pc+ 1 + δ, σ, s) if C(pc) = branch(δ)
C ⊢ (pc, n2.n1.σ, s)→ (pc+ 1 + δ, σ, s) if C(pc) = bne(δ) and n1 6= n2

C ⊢ (pc, n2.n1.σ, s)→ (pc+ 1, σ, s) if C(pc) = bne(δ) and n1 = n2

C ⊢ (pc, n2.n1.σ, s)→ (pc+ 1 + δ, σ, s) if C(pc) = bge(δ) and n1 ≥ n2

C ⊢ (pc, n2.n1.σ, s)→ (pc+ 1, σ, s) if C(pc) = bge(δ) and n1 < n2

As in section 2.2, the observable behavior of a machine program is defined by
sequences of transitions:

• Termination C ⊢ (pc, σ, s) ⇓ s′ if

C ⊢ (pc, σ, s)
∗

→ (pc′, σ′, s′) and C(pc′) = halt.
• DivergenceC ⊢ (pc, σ, s) ⇑ if the machine makes infinitely many transitions
from (pc, σ, s).
• Going wrong, otherwise.

Example. The table below depicts the first 4 transitions of the execution of the
code var(x); const(1); add; setvar(x); branch(−5).

stack ε 12.ε 1.12.ε 13.ε ε

store x 7→ 12 x 7→ 12 x 7→ 12 x 7→ 12 x 7→ 13

p.c. 0 1 2 3 4

code var(x); const(1); add; setvar(x); branch(−5)

The fifth transition executes the branch(−5) instruction, setting the program
counter back to 0. The overall effect is that of an infinite loop that increments x
by 1 at each iteration.

4.2. The compilation scheme

The code comp(e) for an expression evaluates e and pushes its value on top of
the stack [compile expr]. It executes linearly (no branches) and leaves the store
unchanged. (This is the familiar translation from algebraic notation to reverse
Polish notation.)

comp(x) = var(x)

comp(n) = const(n)

comp(e1 + e2) = comp(e1); comp(e2); add

comp(e1 − e2) = comp(e1); comp(e2); sub

code for e1
code for e2
bne(•)

code for c1
branch(•)
code for c2

code for e1
code for e2
bne(•)

code for c
branch(•)

Figure 2. Shape of generated code for if e1 = e2 then c1 else c2 (left) and
while e1 = e2 do c done (right)

The code comp(b, δ) for a boolean expression falls through if b is true, and branches
to offset δ if b is false. [compile bool expr]

comp(e1 = e2, δ) = comp(e1); comp(e2); bne(δ)

comp(e1 < e2, δ) = comp(e1); comp(e2); bge(δ)

The code comp(c) for a command c updates the state according to the semantics
of c, while leaving the stack unchanged. [compile cmd]

comp(skip) = ε

comp(x := e) = comp(e); setvar(x)

comp(c1; c2) = comp(c1); comp(c2)

comp(if b then c1 else c2) = comp(b, |C1|+ 1);C1; branch(|C2|);C2

where C1 = comp(c1) and C2 = comp(c2)

comp(while b do c done) = B;C; branch(−(|B|+ |C|+ 1))

where C = comp(c) and B = comp(b, |C|+ 1)

|C| is the length of a list of instructions C. The mysterious offsets in branch
instructions are depicted in figure 2.

Finally, the compilation of a program c is compile(c) = comp(c); halt. [com-

pile program]

Combining the compilation scheme with the semantics of the virtual machine,
we obtain a new way to execute a program c in initial state s: start the machine
in code comp(c) and state (0, ε, s) (program counter at first instruction of comp(c);
empty stack; state s), and observe its behavior. Does this behavior agree with the
behavior of c predicted by the semantics of section 2?

4.3. Notions of semantic preservation

Consider two programs P1 and P2, possibly in different languages. (For example,
P1 is an IMP command and P2 a sequence of VM instructions.) Under which
conditions can we say that P2 preserves the semantics of P1?

To make this question precise, we assume given operational semantics for the

two languages that associate to P1, P2 sets B(P1),B(P2) of observable behaviors.

In our case, observable behaviors are: termination on a final state s, divergence,

and “going wrong”. The set B(P) contains exactly one element if P has deter-

ministic semantics, two or more otherwise.

Here are several possible formal characterizations of the informal claim that

P2 preserves the semantics of P1.

• Bisimulation (equivalence): B(P1) = B(P2)

• Backward simulation (refinement): B(P1) ⊇ B(P2)

• Backward simulation for correct source programs: if wrong /∈ B(P1) then

B(P1) ⊇ B(P2)

• Forward simulation: B(P1) ⊆ B(P2)

• Forward simulation for correct source programs: if wrong /∈ B(P1) then

B(P1) ⊆ B(P2)

Bisimulation is the strongest notion of semantic preservation, ensuring that

the two programs are indistinguishable. It is often too strong in practice. For

example, the C language has non-deterministic semantics because the evaluation

order for expressions is not fully specified; yet, C compilers choose one particu-

lar evaluation order while generating deterministic machine code; therefore, the

generated code has fewer behaviors than the source code. This intuition corre-

sponds to the backward simulation property defined above: all behaviors of P2

are possible behaviors of P1, but P1 can have more behaviors.

In addition to reducing nondeterminism, compilers routinely optimize away

“going wrong” behaviors. For instance, the source program P1 contains an integer

division z := x/y that can go wrong if y = 0, but the compiler eliminated this

division because z is not used afterwards, therefore generating a program P2 that

does not go wrong if y = 0. This additional degree of liberty is reflected in the

“backward simulation for correct source programs” above.

Finally, the two “forward simulation” properties reverse the roles of P1 and

P2, expressing the fact that any (non-wrong) behavior of the source program P1

is a possible behavior of the compiled code P2. Such forward simulation proper-

ties are generally much easier to prove than backward simulations, but provide

apparently weaker guarantees: P2 could have additional behaviors, not exhibited

by P1, that are undesirable, such as “going wrong”. This cannot happen, however,

if P2 has deterministic semantics.

Lemma 21 (Simulation and determinism.) If P2 has deterministic semantics, then

“forward simulation for correct programs” implies “backward simulation for cor-

rect programs”.

In conclusion, for deterministic languages such as IMP and IMP virtual ma-

chine code, “forward simulation for correct programs” is an appropriate notion of

semantic preservation to prove the correctness of compilers and program trans-

formations.

4.4. Semantic preservation for the compiler

Recall the informal specification for the code comp(e) generated by the compila-
tion of expression e: it should evaluate e and push its value on top of the stack, ex-
ecute linearly (no branches), and leave the store unchanged. Formally, we should

have comp(e) : (0, σ, s)
∗

→ (|comp(e)|, ([[e]] s).σ, s) for all stacks σ and stores s.
Note that pc = |comp(e)| means that the program counter is one past the last
instruction in the sequence comp(e). To enable a proof by induction, we need to
strengthen this result and consider codes of the form C1; comp(e);C2, where the
code for e is bracketed by two arbitrary code sequences C1 and C2. The program
counter, then, should go from |C1| (pointing to the first instruction of comp(e)) to
|C1|+ |comp(e)| (pointing one past the last instruction of comp(e), or equivalently
to the first instruction of C2).

Lemma 22 [compile expr correct] For all instruction sequences C1, C2, stacks σ and
states s,

C1; comp(e);C2 ⊢ (|C1|, σ, s)
∗

→ (|C1|+ |comp(e)|, [[e]] s.σ, s)

The proof is a simple induction on the structure of e. Here is a represen-
tative case: e = e1 + e2. Write v1 = [[e1]] s and v2 = [[e2]] s. The code C
is C1; comp(e1); comp(e2); add;C2. Viewing C as C1; comp(e1); (comp(e2); add;C2),
we can apply the induction hypothesis to e1, obtaining the transitions

(|C1|, σ, s)
∗

→ (|C1|+ |comp(e1)|, v1.σ, s)

Likewise, viewing C as (C1; comp(e1)); comp(e2); (add;C2), we can apply the in-
duction hypothesis to e2, obtaining

(|C1; comp(e1)|, v1.σ, s)
∗

→ (|C1; comp(e1)|+ |comp(e2)|, v2.v1.σ, s)

Combining these two sequences with an add transition, we obtain

(|C1|, σ, s)
∗

→ (|C1; comp(e1); comp(e2)|+ 1, (v1 + v2).σ, s)

which is the desired result.
The statement and proof of correctness for the compilation of boolean ex-

pressions is similar. Here, the stack and the store are left unchanged, and control
is transferred either to the end of the generated instruction sequence or to the
given offset relative to this end, depending on the truth value of the condition.

Lemma 23 [compile bool expr correct] For all instruction sequences C1, C2, stacks σ
and states s,

C1; comp(b, δ);C2 ⊢ (|C1|, σ, s)
∗

→ (pc, σ, s)

with pc = |C1|+ |comp(b)| if [[b]] s = true and pc = |C1|+ |comp(b)|+ δ otherwise.

To show semantic preservation between an IMP command and its compiled
code, we prove a “forward simulation for correct programs” result. We therefore
have two cases to consider: (1) the command terminates normally, and (2) the
command diverges. In both cases, we use the natural semantics to conduct the
proof, since its compositional nature is a good match for the compositional nature
of the compilation scheme.

Theorem 24 [compile cmd correct terminating] Assume c, s⇒ s′. Then, for all instruc-
tion sequences C1, C2 and stack σ,

C1; comp(c);C2 ⊢ (|C1|, σ, s)
∗

→ (|C1|+ |comp(c)|, σ, s
′)

The proof is by induction on a derivation of c, s ⇒ s′ and uses the same
techniques as that of lemma 22.

For the diverging case, we need the following special-purpose coinduction
principle.

Lemma 25 Let X be a set of (machine code, machine state) pairs such that

∀(C, S) ∈ X, ∃S′, (C, S′) ∈ X ∧ C ⊢ S
+
→ S′.

Then, for all (C, S) ∈ X, we have C ⊢ S ⇑ (there exists an infinite sequence of
transitions starting from S).

The following theorem follows from the coinduction principle above applied to
the set

X = {(C1; comp(c);C2, (|C1|, σ, s)) | c, s⇒∞}.

Theorem 26 [compile cmd correct diverging] Assume c, s ⇒ ∞. Then, for all instruc-
tion sequences C1, C2 and stacks σ,

C1; comp(c);C2 ⊢ (|C1|, σ, s) ⇑

This completes the proof of forward simulation for correct programs.

4.5. Further reading

The virtual machine used in this section matches a small subset of the Java Vir-
tual Machine [34]. Other examples of mechanized verification of nonoptimizing
compilers producing virtual machine code include Bertot [10] (for the IMP lan-
guage), Klein and Nipkow [29] (for a subset of Java), and Grall and Leroy [32] (for
call-by-value λ-calculus). The latter two show forward simulation results; Bertot
shows both forward and backward simulation, and concludes that backward simu-
lation is considerably more difficult to prove. Other examples of difficult backward
simulation arguments (not mechanized) can be found in [23], for call-by-name and
call-by-value λ-calculus.

Lemma 22 (correctness of compilation of arithmetic expression to stack ma-
chine code) is historically important: it is the oldest published compiler correct-
ness proof (McCarthy and Painter [36], in 1967) and the oldest mechanized com-
piler correctness proof (Milner and Weyhrauch, [39], in 1972). Since then, a great
many correctness proofs for compilers and compilation passes have been pub-
lished, some of them being mechanized: Dave’s bibliography [19] lists 99 references
up to 2002.

5. An example of optimizing program transformation: dead code elimination

Compilers are typically structured as a sequence of program transformations,
also called passes. Some passes translate from one language to another, lower-
level language, closer to machine code. The compilation scheme of section 4 is a
representative example. Other passes are optimizations: they rewrite the program
to an equivalent, but more efficient program. For example, the optimized program
runs faster, or is smaller.

In this section, we study a representative optimization: dead code elimination.
The purpose of this optimization, performed on the IMP source language, is to
remove assignments x := e (turning them into skip instructions) such that the
value of x is not used in the remainder of the program. This reduces both the
execution time and the code size.

Example. Consider the command x := 1; y := y + 1; x := 2. The assign-
ment x := 1 can always be eliminated since x is not referenced before being
redefined by x := 2.

To detect the fact that the value of a variable is not used later, we need a
static analysis known as liveness analysis.

5.1. Liveness analysis

A variable is dead at a program point if its value is not used later in the execution
of the program: either the variable is never mentioned again, or it is always
redefined before further use. A variable is live if it is not dead.

Given a set A of variables live “after” a command c, the function live(c, A)
over-approximates the set of variables live “before” the command [live]. It proceeds
by a form of reverse execution of c, conservatively assuming that conditional
branches can go both ways. FV computes the set of variables referenced in an
expression [fv expr] [fv bool expr].

live(skip, A) = A

live(x := e, A) =
{

(A \ {x}) ∪ FV (e) if x ∈ A;
A if x /∈ A.

live((c1; c2), A) = live(c1, live(c2, A))

live((if b then c1 else c2), A) = FV (b) ∪ live(c1, A) ∪ live(c2, A)

live((while b do c done), A) = fix(λX. A ∪ FV (b) ∪ live(c,X))

If F is a function from sets of variables to sets of variables, fix(F) is supposed
to compute a post-fixpoint of F , that is, a set X such that F (X) ⊆ X . Typically,
F is iterated n times, starting from the empty set, until we reach an n such
that Fn+1(∅) ⊆ Fn(∅). Ensuring termination of such an iteration is, in general, a
difficult problem. (See section 5.4 for discussion.) To keep things simple, we bound
arbitrarily to N the number of iterations, and return a default over-approximation
if a post-fixpoint cannot be found within N iterations: [fixpoint]

fix(F, default) =

{

Fn(∅) if ∃n ≤ N, Fn+1(∅) ⊆ Fn(∅);
default otherwise

Here, a suitable default is A ∪ FV (while b do c done), the set of variables live
“after” the loop or referenced within the loop.

live((while b do c done), A) = fix(λX. A ∪ FV (b) ∪ live(c,X),
A ∪ FV (while b do c done))

Lemma 27 [live while charact] Let A′ = live(while b do c done, A). Then:

FV (b) ⊆ A′ A ⊆ A′ live(c, A′) ⊆ A′

5.2. Dead code elimination

The program transformation that eliminates dead code is, then: [dce]

dce(skip, A) = skip

dce(x := e, A) =

{

x := e if x ∈ A;
skip if x /∈ A.

dce((c1; c2), A) = dce(c1, live(c2, A)); dce(c2, A)

dce((if b then c1 else c2), A) = if b then dce(c1, A) else dce(c2, A)

dce(while b do c done, A) = while b do dce(c, A) done

Example. Consider again the “Euclidean division” program c:

r := a; q := 0; while b < r+1 do r := r - b; q := q + 1 done

If q is not live “after” (q /∈ A), it is not live throughout this program either.
Therefore, dce(c, A) produces

r := a; skip; while b < r+1 do r := r - b; skip done

The useless computations of q have been eliminated entirely, in a process similar
to program slicing. In contrast, if q is live “after” (q ∈ A), all computations are
necessary and dce(c, A) returns c unchanged.

5.3. Correctness of the transformation

We show a “forward simulation for correct programs” property:

• If c, s ⇓ s′, then dce(c, A), s ⇓ s′′ for some s′′ related to s′.
• If c, s ⇑ , then dce(c, A), s ⇑ .

However, the program dce(c, A) performs fewer assignments than c, therefore
the final states can differ on the values of dead variables. We define agreement
between two states s, s′ with respect to a set of live variables A. [agree]

s ≈ s′ : A
def
= ∀x ∈ A, s(x) = s′(x)

Lemma 28 [eval expr agree] [eval bool expr agree] Assume s ≈ s′ : A. If FV (e) ⊆ A,
then [[e]] s = [[e]] s′. If FV (b) ⊆ A, then [[b]] s = [[b]] s′.

The following two key lemmas show that agreement is preserved by parallel
assignment to a live variable, or by unilateral assignment to a dead variable. The
latter case corresponds to the replacement of x := e by skip.

Lemma 29 [agree update live] (Assignment to a live variable.) If s ≈ s′ : A \ {x},
then s[x← v] ≈ s′[x← v] : A.

Lemma 30 [agree update dead] (Assignment to a dead variable.) If s ≈ s′ : A and
x /∈ A, then s[x← v] ≈ s′ : A.

Using these lemmas, we can show forward simulation diagrams both for ter-
minating and diverging commands c. In both case, we assume agreement on the
variables live “before” c, namely live(c, A).

Theorem 31 [dce correct terminating] If c, s ⇒ s′ and s ≈ s1 : live(c, A), then there
exists s′1 such that dce(c, A), s1 ⇒ s′1 and s′ ≈ s′1 : A.

Theorem 32 [dce correct diverging] If c, s ⇒ ∞ and s ≈ s1 : live(c, A), then
dce(c, A), s1 ⇒∞.

5.4. Further reading

Dozens of compiler optimizations are known, each targeting a particular class of
inefficiencies. See Appel [3] for an introduction to optimization, and Muchnick
[42] for a catalog of classic optimizations.

The results of liveness analysis can be exploited to perform register allocation
(a crucial optimization performance-wise), following Chaitin’s approach [17] [3,
chap. 11]: coloring of an interference graph. A mechanized proof of correctness for
graph coloring-based register allocation, extending the proof given in this section,
is described by Leroy [31,30].

Liveness analysis is an instance of a more general class of static analyses
called dataflow analyses [3, chap. 17], themselves being a special case of abstract
interpretation. Bertot et al. [14] and Leroy [30] prove, in Coq, the correctness of

several optimizations based on dataflow analyses, such as constant propagation
and common subexpression elimination. Cachera et al. [16] present a reusable Coq
framework for dataflow analyses.

Dataflow analyses are generally carried on an unstructured representation of
the program called the control-flow graph. Dataflow equations are set up between
the nodes of this graph, then solved by one global fixpoint iteration, often based
on Kildall’s worklist algorithm [27]. This is more efficient than the approach we
described (computing a local fixpoint for each loop), which can be exponential
in the nesting degree of loops. Kildall’s worklist algorithm has been mechanically
verified many times [14,18,29].

The effective computation of fixpoints is a central issue in static analysis.
Theorems such as Knaster-Tarski’s show the existence of fixpoints in many cases,
and can be mechanized [47,15], but fail to provide effective algorithms. Noetherian
recursion can be used if the domain of the analysis is well founded (no infinite
chains) [13, chap. 15], but this property is difficult to ensure in practice [16]. The
shortcut we took in this section (bounding arbitrarily the number of iterations)
is inelegant but a reasonable engineering compromise.

6. State of the art and current trends

While this lecture was illustrated using “toy” languages and machines, the tech-
niques we presented, based on operational and axiomatic semantics and on their
mechanization using proof assistants, do scale to realistic programming languages
and systems. Here are some recent achievements using similar techniques, in re-
verse chronological order.

• The verification of the seL4 secure micro-kernel (http://nicta.com.au/
research/projects/l4.verified/) [28].
• The CompCert verified compiler: a realistic, moderately-optimizing com-
piler for a large subset of the C language down to PowerPC and ARM
assembly code. (http://compcert.inria.fr/) [31].
• The Verisoft project (http://www.verisoft.de/), which aims at the end-
to-end formal verification of a complete embedded system, from hardware
to application.
• Formal specifications of the Java / Java Card virtual machines and mech-
anized verifications of the Java bytecode verifier: Ninja [29], Jakarta [7],
Bicolano (http://mobius.inria.fr/twiki/bin/view/Bicolano), and
the Kestrel Institute project (http://www.kestrel.edu/home/projects/
java/).
• Formal verification of the ARM6 processor micro-architecture against the
ARM instruction set specification [21]
• The “foundational” approach to Proof-Carrying Code [4].
• The CLI stack: a formally verified microprocessor and compiler from
an assembly-level language (http://www.cs.utexas.edu/~moore/
best-ideas/piton/index.html) [40].

Here are some active research topics in this area.

Combining static analysis and program proof. Static analysis can be viewed as
the automatic generation of logical assertions, enabling the results of static analy-
sis to be verified a posteriori using a program logic, and facilitating the annotation
of existing code with logical assertions.

Proof-preserving compilation. Given a source program annotated with assertions
and a proof in axiomatic semantics, can we produce machine code annotated with
the corresponding assertions and the corresponding proof? [8,33].

Binders and α-conversion. A major obstacle to the mechanization of rich lan-
guage semantics and advanced type systems is the handling of bound variables
and the fact that terms containing binders are equal modulo α-conversion of
bound variables. The POPLmark challenge explores this issue [6].

Shared-memory concurrency. Shared-memory concurrency raises major seman-
tic difficulties, ranging from formalizing the “weakly-consistent” memory models
implemented by today’s multicore processors [52] to mechanizing program logics
appropriate for proving concurrent programs correct [20,25].

Progressing towards fully-verified development and verification environments for
high-assurance software. Beyond verifying compilers and other code generation
tools, we’d like to gain formal assurance in the correctness of program verification
tools such as static analyzers and program provers.

References

[1] P. Aczel. An introduction to inductive definitions. In J. Barwise, editor, Handbook of
Mathematical Logic, volume 90 of Studies in Logics and the Foundations of Mathematics,
pages 739–782. North-Holland, 1997.

[2] S. Agerholm. Domain theory in HOL. In Higher Order Logic Theorem Proving and its
Applications, Workshop HUG ’93, volume 780 of Lecture Notes in Computer Science,
pages 295–309. Springer, 1994.

[3] A. W. Appel. Modern Compiler Implementation in ML. Cambridge University Press,
1998.

[4] A. W. Appel. Foundational proof-carrying code. In Logic in Computer Science 2001,
pages 247–258. IEEE Computer Society Press, 2001.

[5] A. W. Appel and S. Blazy. Separation logic for small-step Cminor. In Theorem Proving
in Higher Order Logics, 20th Int. Conf. TPHOLs 2007, volume 4732 of Lecture Notes in
Computer Science, pages 5–21. Springer, 2007.

[6] B. E. Aydemir, A. Bohannon, M. Fairbairn, J. N. Foster, B. C. Pierce, P. Sewell, D. Vytin-
iotis, G. Washburn, S. Weirich, and S. Zdancewic. Mechanized metatheory for the masses:
The POPLmark challenge. In Int. Conf. on Theorem Proving in Higher Order Logics
(TPHOLs), volume 3603 of Lecture Notes in Computer Science, pages 50–65. Springer,
2005.

[7] G. Barthe, P. Courtieu, G. Dufay, and S. Melo de Sousa. Tool-Assisted Specification and
Verification of the JavaCard Platform. In Proceedings of AMAST’02, volume 2422 of
Lecture Notes in Computer Science, pages 41–59. Springer, 2002.

[8] G. Barthe, B. Grégoire, C. Kunz, and T. Rezk. Certificate translation for optimizing
compilers. In Static Analysis, 13th Int. Symp., SAS 2006, volume 4134 of Lecture Notes
in Computer Science, pages 301–317. Springer, 2006.

[9] N. Benton, A. Kennedy, and C. Varming. Some domain theory and denotational seman-
tics in Coq. In Theorem Proving in Higher Order Logics, 22nd International Confer-
ence, TPHOLs 2009, volume 5674 of Lecture Notes in Computer Science, pages 115–130.
Springer, 2009.

[10] Y. Bertot. A certified compiler for an imperative language. Research report RR-3488,
INRIA, 1998.

[11] Y. Bertot. Coq in a hurry. Tutorial available at http://cel.archives-ouvertes.fr/

inria-00001173, Oct. 2008.
[12] Y. Bertot. Theorem proving support in programming language semantics. In Y. Bertot,

G. Huet, J.-J. Lévy, and G. Plotkin, editors, From Semantics to Computer Science —
Essays in Honour of Gilles Kahn, pages 337–362. Cambridge University Press, 2009.

[13] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development –
Coq’Art: The Calculus of Inductive Constructions. EATCS Texts in Theoretical Computer
Science. Springer, 2004.

[14] Y. Bertot, B. Grégoire, and X. Leroy. A structured approach to proving compiler op-
timizations based on dataflow analysis. In Types for Proofs and Programs, Workshop
TYPES 2004, volume 3839 of Lecture Notes in Computer Science, pages 66–81. Springer,
2006.

[15] Y. Bertot and V. Komendantsky. Fixed point semantics and partial recursion in Coq.
In 10th int. conf. on Principles and Practice of Declarative Programming (PPDP 2008),
pages 89–96. ACM Press, 2008.

[16] D. Cachera, T. P. Jensen, D. Pichardie, and V. Rusu. Extracting a data flow analyser in
constructive logic. Theoretical Computer Science, 342(1):56–78, 2005.

[17] G. J. Chaitin. Register allocation and spilling via graph coloring. In Symposium on
Compiler Construction, volume 17(6) of SIGPLAN Notices, pages 98–105. ACM Press,
1982.

[18] S. Coupet-Grimal and W. Delobel. A uniform and certified approach for two static anal-

yses. In Types for Proofs and Programs, Workshop TYPES 2004, volume 3839 of Lecture
Notes in Computer Science, pages 115–137. Springer, 2006.

[19] M. A. Dave. Compiler verification: a bibliography. SIGSOFT Software Engineering Notes,
28(6):2–2, 2003.

[20] X. Feng, R. Ferreira, and Z. Shao. On the relationship between concurrent separation logic
and assume-guarantee reasoning. In Programming Languages and Systems, 16th European
Symposium on Programming, ESOP 2007, volume 4421 of Lecture Notes in Computer
Science, pages 173–188. Springer, 2007.

[21] A. C. J. Fox. Formal specification and verification of ARM6. In Theorem Proving in
Higher Order Logics, 16th International Conference, TPHOLs 2003, volume 2758 of Lec-
ture Notes in Computer Science, pages 25–40. Springer, 2003.

[22] G. Gonthier. Formal proof — the four-color theorem. Notices of the American Mathe-
matical Society, 55(11):1382–1393, 2008.

[23] T. Hardin, L. Maranget, and B. Pagano. Functional runtimes within the lambda-sigma
calculus. Journal of Functional Programming, 8(2):131–176, 1998.

[24] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the
ACM, 12(10):576–580, 1969.

[25] A. Hobor, A. W. Appel, and F. Zappa Nardelli. Oracle semantics for concurrent separation
logic. In Programming Languages and Systems, 17th European Symposium on Program-
ming, ESOP 2008, volume 4960 of Lecture Notes in Computer Science, pages 353–367.
Springer, 2008.

[26] G. Kahn. Natural semantics. In K. Fuchi and M. Nivat, editors, Programming of Future
Generation Computers, pages 237–257. Elsevier, 1988.

[27] G. A. Kildall. A unified approach to global program optimization. In 1st symposium
Principles of Programming Languages, pages 194–206. ACM Press, 1973.

[28] G. Klein. Operating system verification — an overview. Sadhana, 34(1):27–69, 2009.
[29] G. Klein and T. Nipkow. A machine-checked model for a Java-like language, virtual

machine and compiler. ACM Transactions on Programming Languages and Systems,
28(4):619–695, 2006.

[30] X. Leroy. A formally verified compiler back-end. arXiv:0902.2137 [cs]. Submitted, July
2008.

[31] X. Leroy. Formal verification of a realistic compiler. Communications of the ACM,
52(7):107–115, 2009.

[32] X. Leroy and H. Grall. Coinductive big-step operational semantics. Information and
Computation, 207(2):284–304, 2009.

[33] G. Li, S. Owens, and K. Slind. Structure of a proof-producing compiler for a subset of
higher order logic. In Programming Languages and Systems, 16th European Symposium
on Programming, ESOP 2007, volume 4421 of Lecture Notes in Computer Science, pages
205–219. Springer, 2007.

[34] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. The Java Series.
Addison-Wesley, 1999. Second edition.

[35] N. Marti, R. Affeldt, and A. Yonezawa. Formal verification of the heap manager of an
operating system using separation logic. In Formal Methods and Software Engineering,
8th Int. Conf. ICFEM 2006, volume 4260 of Lecture Notes in Computer Science, pages
400–419. Springer, 2006.

[36] J. McCarthy and J. Painter. Correctness of a compiler for arithmetical expressions. In
Mathematical Aspects of Computer Science, volume 19 of Proc. of Symposia in Applied
Mathematics, pages 33–41. American Mathematical Society, 1967.

[37] Michael J. C. Gordon. Mechanizing programming logics in higher-order logic. In G.M.
Birtwistle and P.A. Subrahmanyam, editors, Current Trends in Hardware Verification and
Automatic Theorem Proving, pages 387–439. Springer, 1988.

[38] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The definition of Standard ML
(revised). The MIT Press, 1997.

[39] R. Milner and R. Weyhrauch. Proving compiler correctness in a mechanized logic. In
B. Meltzer and D. Michie, editors, Proc. 7th Annual Machine Intelligence Workshop,
volume 7 of Machine Intelligence, pages 51–72. Edinburgh University Press, 1972.

[40] J. S. Moore. Piton: a mechanically verified assembly-language. Kluwer, 1996.
[41] P. D. Mosses. Denotational semantics. In J. van Leeuwen, editor, Handbook of Theoretical

Computer Science, volume B, pages 577–631. The MIT Press/Elsevier, 1990.
[42] S. S. Muchnick. Advanced compiler design and implementation. Morgan Kaufmann, 1997.
[43] M. O. Myreen and M. J. C. Gordon. Hoare logic for realistically modelled machine code.

In Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2007,
volume 4424 of Lecture Notes in Computer Science, pages 568–582. Springer, 2007.

[44] T. Nipkow. Winskel is (almost) right: Towards a mechanized semantics. Formal Aspects
of Computing, 10(2):171–186, 1998.

[45] P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning about programs that alter
data structures. In Computer Science Logic, 15th Int. Workshop, CSL 2001, volume 2142
of Lecture Notes in Computer Science, pages 1–19. Springer, 2001.

[46] C. Paulin-Mohring. A constructive denotational semantics for Kahn networks in Coq. In
Y. Bertot, G. Huet, J.-J. Lévy, and G. Plotkin, editors, From Semantics to Computer
Science — Essays in Honour of Gilles Kahn, pages 383–414. Cambridge University Press,
2009.

[47] L. C. Paulson. Set theory for verification. II: Induction and recursion. Journal of Auto-
mated Reasoning, 15(2):167–215, 1995.

[48] B. C. Pierce. Types and Programming Languages. The MIT Press, 2002.
[49] G. D. Plotkin. A structural approach to operational semantics. Journal of Logic and

Algebraic Programming, 60-61:17–139, 2004.
[50] J. Reynolds. Definitional interpreters revisited. Higher-Order and Symbolic Computation,

11(4):355–361, 1998.
[51] J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In 17th

symposium on Logic in Computer Science (LICS 2002), pages 55–74. IEEE Computer
Society Press, 2002.

[52] S. Sarkar, P. Sewell, F. Zappa Nardelli, S. Owens, T. Ridge, T. Braibant, M. O. Myreen,
and J. Alglave. The semantics of x86-CC multiprocessor machine code. In 36th symposium
Principles of Programming Languages, pages 379–391. ACM Press, 2009.

[53] H. Tuch, G. Klein, and M. Norrish. Types, bytes, and separation logic. In 34th symposium
Principles of Programming Languages, pages 97–108. ACM Press, 2007.

[54] A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Information and
Computation, 115(1):38–94, 1994.

