
HAL Id: inria-00309010
https://hal.inria.fr/inria-00309010

Submitted on 5 Aug 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Coinductive big-step operational semantics
Xavier Leroy, Hervé Grall

To cite this version:
Xavier Leroy, Hervé Grall. Coinductive big-step operational semantics. Information and Computation,
Elsevier, 2009, 207 (2), pp.284-304. �10.1016/j.ic.2007.12.004�. �inria-00309010�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50237863?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00309010
https://hal.archives-ouvertes.fr

Coinductive big-step operational semantics

Xavier Leroy a,∗ Hervé Grall b

aINRIA Paris-Rocquencourt

Domaine de Voluceau, B.P. 105, 78153 Le Chesnay, France

bÉcole des Mines de Nantes

La Chantrerie, 4, rue Alfred Kastler, B.P. 20722, 44307 Nantes, France

Abstract

Using a call-by-value functional language as an example, this article illustrates the
use of coinductive definitions and proofs in big-step operational semantics, enabling
it to describe diverging evaluations in addition to terminating evaluations. We for-
malize the connections between the coinductive big-step semantics and the standard
small-step semantics, proving that both semantics are equivalent. We then study
the use of coinductive big-step semantics in proofs of type soundness and proofs
of semantic preservation for compilers. A methodological originality of this paper
is that all results have been proved using the Coq proof assistant. We explain the
proof-theoretic presentation of coinductive definitions and proofs offered by Coq,
and show that it facilitates the discovery and the presentation of the results.

Key words: Coinduction, Operational semantics, Big-step semantics, Natural
semantics, Small-step semantics, Reduction semantics, Type soundness, Compiler
correctness, Mechanized proofs, The Coq proof assistant

1 Introduction

There exist two widely-used styles of operational semantics: big-step seman-
tics, popularized by Kahn [1] under the name natural semantics, relates pro-
grams to the final results of their evaluations; small-step semantics, popu-
larized by Plotkin [2,3] under the name structural operational semantics, re-
peatedly applies a one-step reduction relation to form reduction sequences.
Small-step semantics is more expressive since it can describe the evaluation

∗ Corresponding author
Email address: Xavier.Leroy@inria.fr (Xavier Leroy).

Preprint submitted to Elsevier 5 August 2008

of both terminating and non-terminating programs, as finite or infinite re-
duction sequences, respectively. In contrast, big-step semantics describes only
the evaluation of terminating programs, and fails to distinguish between non-
terminating programs and programs that “go wrong”. For this reason, small-
step semantics is generally preferred, in particular for proving the soundness
of type systems.

However, big-step semantics is more convenient than small-step semantics for
some applications. One that is dear to our heart is proving the correctness
(preservation of program behaviours) of program transformations, especially
compilation of a high-level programming language down to a lower-level lan-
guage. The first author’s experience and that of others [4,5,6] is that fairly
complex, optimizing compilation passes can be proved correct (for terminating
source programs) relatively easily using big-step semantics and inductions on
the structure of big-step evaluation derivations. In contrast, compiler correct-
ness proofs using small-step semantics can address both terminating and di-
verging source programs, but are more difficult even for simple, non-optimizing
compilation schemes [7].

In this article, we illustrate how coinductive definitions and proofs enable big-
step semantics to describe both terminating and diverging evaluations. The
target of our study is a simple call-by-value functional language. We study
two approaches: the first, initially proposed by Cousot and Cousot [8], com-
plements the normal inductive big-step evaluation rules for terminating eval-
uations with coinductive big-step rules describing diverging evaluations; the
second simply interprets coinductively the normal big-step evaluation rules,
thus enabling them to describe both terminating and non-terminating evalu-
ations. These semantics are defined in sections 3 and 7, respectively.

The main technical results of this article are of two kinds. First, we prove
that the coinductive big-step definition of divergence is equivalent to the more
familiar definitions using either small-step semantics (section 4) or a simple
form of denotational semantics (section 5). We also extend these equivalence
results to trace semantics (section 6). Then, we study two applications of the
big-step definition of divergence: a novel approach to stating and proving the
soundness of type systems (section 8), and proofs of semantic preservation for
compilation down to an abstract machine (section 9).

An originality of this article is that all results were not only proved using
a proof assistant (the Coq system), but even developed in interaction with
this tool, and only then transcribed to standard mathematical notations. The
Coq proof assistant [9,10] provides built-in support for coinductive definitions
and proofs by coinduction. This support follows a proof-theoretic approach to
induction and coinduction that we present in section 2 and relate with the
standard approach using fixed points. The proof-theoretic approach leads to

2

proofs by coinduction that are simpler than the standard arguments based
on F -consistent relations [11,12]. Our use of Coq has therefore been doubly
beneficial: it facilitated the discovery and presentation of the results in this
article, while at the same time generating strong confidence in them.

2 Induction and coinduction: A proof-theoretic approach

Following the classical presentation of Aczel [13], an inference system over a
set U of judgments is a set of inference rules. An inference rule is an ordered
pair (A, c), where c ∈ U is the conclusion of the rule and A ⊆ U is the set of
its premises or antecedents. A rule is usually written as follows:

A

c

The intuitive interpretation of this rule is that the judgment c can be inferred
from the set of judgments A.

2.1 Fixed-point approach

One way to give meaning to an inference system is to consider the fixed points
of the associated inference operator. If Φ is an inference system over U , we
define the operator FΦ : ℘(U)→ ℘(U) as

FΦ(S) = {c ∈ U | ∃A ⊆ S, (A, c) ∈ Φ}.

In other terms, FΦ(S) is the set of judgments that can be inferred in one step
from the judgments in S by using the inference rules.

A set S is said to be closed if FΦ(S) ⊆ S, and consistent if S ⊆ FΦ(S). A closed
set S is such that no new judgments can be inferred from S. A consistent set S
is such that all judgments that cannot be inferred from S are not in S.

The inference operator is monotone: FΦ(S) ⊆ FΦ(S ′) if S ⊆ S ′. By Tarski’s
fixed point theorem for complete lattices [14, p. 286], it follows that the in-
ference operator possesses both a least fixed point and a greatest fixed point,
which are the smallest FΦ-closed set and the largest FΦ-consistent set, respec-
tively.

lfp(FΦ) =
⋂

{S | FΦ(S) ⊆ S}

gfp(FΦ) =
⋃

{S | S ⊆ FΦ(S)}

3

The least fixed point lfp(FΦ) is the inductive interpretation of the inference
system Φ, and the greatest fixed point gfp(FΦ) is its coinductive interpretation.
These interpretations lead to the following two proof principles:

• Induction principle: to prove that all judgments in the inductive interpre-
tation belong to a set S, show that S is FΦ-closed.
• Coinduction principle: to prove that all judgments in a set S belong to the

coinductive interpretation, show that S is FΦ-consistent.

2.2 Proof-theoretic approach

In contrast with the fixed point approach, the proof-theoretic approach starts
from the proofs admissible in an inference system. These proofs naturally
correspond to derivations, also called proof trees. These are trees whose nodes
are labeled with judgments c ∈ U and such that for all nodes n, the label c
of n and the labels A of the children of n correspond to an inference rule:
(A, c) ∈ Φ. The conclusion of a derivation is the label of its root node.

A derivation d is well-founded if it has no infinite branch; d is ill-founded oth-
erwise. If every rule in Φ has a finite set of premises, well-founded derivations
are finite while ill-founded derivations are infinite.

In the proof-theoretic approach, the inductive interpretation of the inference
system Φ is the set ∆(Φ) of conclusions of well-founded derivations, while the
coinductive interpretation is the set ∇(Φ) of conclusions of arbitrary deriva-
tions (ill-founded or well-founded). These interpretations come with the fol-
lowing proof principles:

• Induction principle: to prove that all judgments in the inductive interpre-
tation belong to a set S, proceed by structural induction over well-founded
derivations. That is, show that c ∈ S if c is the conclusion of a derivation d,
assuming that j ∈ S for all conclusions j of the strict subderivations of d.
• Coinduction principle: to prove that all judgments in a set S are in the

coinductive interpretation, build a system of recursive equations between
derivations, with unknowns (xj)j∈S. Each equation is of the form

xj =
xj1 xj2 . . .

j

and must be justified by an inference rule: ({j1, j2, . . .}, j) ∈ Φ. These equa-
tions are guarded, meaning that there are no trivial equations xj = xj′ . It
follows that the system has a unique solution [15], and this solution σ is
such that for all j ∈ S, σ(xj) is a valid derivation that proves j. Therefore,
all j ∈ S are also in ∇(Φ).

4

2.3 Equivalence between the two approaches

The following theorem shows that the interpretations defined using fixed
points and using derivations coincide.

Theorem 1 For all inference systems Φ, lfp(FΦ) = ∆(Φ) and gfp(FΦ) =
∇(Φ).

Proof. It is easy to show that ∆(Φ) is FΦ-closed and that ∇(Φ) is FΦ-
consistent. Therefore, lfp(FΦ) ⊆ ∆(Φ) and ∇(Φ) ⊆ gfp(FΦ).

Consider a FΦ-closed set S. A structural induction over well-founded deriva-
tions d shows that the conclusion of d is in S. Therefore, ∆(Φ) ⊆ S. Since
lfp(FΦ) is FΦ-closed, the inclusion ∆(Φ) ⊆ lfp(FΦ) follows.

Finally, consider a FΦ-consistent set S. For any judgment j in S, there exists
a rule (Kj, j) in Φ, where Kj ⊆ S. We define a system of guarded recursive
equations, with variables (xj)j∈S.

xj =
(xk)k∈Kj

j

The solution σ of this system is such that for all j ∈ S, the derivation σ(xj) is
valid in Φ and proves j. Therefore, S ⊆ ∇(Φ). Since gfp(FΦ) is FΦ-consistent,
the inclusion gfp(FΦ) ⊆ ∇(Φ) follows. 2

The equality lfp(FΦ) = ∆(Φ) is proved by Aczel [13]. The equality gfp(FΦ) =
∇(Φ) is proved in the second author’s PhD dissertation [16, p. 77], but to our
knowledge there is no other published proof. This is, however, a well-known
result. For instance, it has recently been used to extend logic programming
with coinductive terms and derivations [17].

2.4 Induction and coinduction in the Coq proof assistant

The Coq proof assistant that we use to develop the present work follows the
proof-theoretic formulation of induction and coinduction. In accordance with
the propositions-as-types, proofs-as-programs paradigm, inference systems are
presented as inductively or coinductively-defined predicates, resembling data
type definitions in ML or Haskell. Such a predicate is defined by a set of
constructors, corresponding to inference rules. Applied to terms representing
proofs for its premises, a constructor returns a proof term for its conclusion.

Proofs by induction and by coinduction are both represented as recursive

5

functions. For a proof by induction, the Coq type system demands that the
recursive function be structural : the arguments to recursive calls are strict
subterms of the recursive parameter. For a proof by coinduction, the Coq
type system demands that the recursive function be productive: its result is
a constructor application, and the results of recursive calls are only used as
arguments to this constructor. Such productive recursive functions correspond
closely to the systems of guarded equations used above.

While proof terms can be provided explicitly by the user, most of the time
they are built incrementally by the Coq proof assistant in response to tactics
entered by the user. When using tactics, proofs by coinduction are as easy to
conduct as proofs by induction: in response to the cofix tactic, the system
provides the expected result as an additional hypothesis, then makes sure
that this hypothesis is only used in positions permitted by productive recursive
functions. (See [18] and [10, chap. 13] for more details, and the proof of lemma 5
below for a concrete example.) The proof sketches we give in the remainder of
this article are written in the same proof style, and play fast and loose with
coinduction. In particular, except for the very first proofs, we do not exhibit
FΦ-consistent sets nor systems of guarded equations between derivations. The
skeptical reader is referred to the corresponding Coq development [19] for full
details.

Coq is based on a constructive logic (the Calculus of Constructions), but proofs
in classical logic can be expressed in Coq by adding axioms that are known
to be consistent with Coq’s logic. The majority of our proofs are constructive,
but some use the axiom of excluded middle. The proofs that use this axiom
are marked “(classical)”.

3 The language and its big-step semantics

The language we consider in this article is the λ-calculus extended with con-
stants: the simplest functional language that exhibits run-time errors (terms
that “go wrong”). Its syntax is as follows:

Variables: x, y, z, . . .
Constants: c ::= 0 | 1 | . . .
Terms: a, b, v ::= x | c | λx.a | a b

We write a[x ← b] for the capture-avoiding substitution 1 of b for all free
occurrences of x in a. We say that a term v is a value, and write v ∈ Values,

1 The Coq development does not treat terms modulo α-conversion, therefore the
substitution a[x ← b] can capture variables. However, it is capture-avoiding if b is
closed, and this suffices to define evaluation and reduction of closed source terms.

6

if v is either a constant c or an abstraction λx.b.

The standard call-by-value semantics in big-step style for this language is
defined by the inductive interpretation of the following inference rules. They
define the relation a⇒ v (read: “a evaluates to v”).

c⇒ c (⇒-const) λx.a⇒ λx.a (⇒-fun)

a1 ⇒ λx.b a2 ⇒ v2 b[x← v2]⇒ v

a1 a2 ⇒ v
(⇒-app)

Lemma 2 If a⇒ v, then v ∈ Values.

Proof. Induction on a derivation of a⇒ v. 2

Lemma 3 The⇒ relation is deterministic: if a⇒ v and a⇒ v′, then v = v′.

Proof. By induction on the derivation of a ⇒ v and case analysis over that
of a⇒ v′. 2

The rules above capture only terminating evaluations. Writing δ = λx. x x
and ω = δ δ, we have for instance:

Lemma 4 ω ⇒ v is false for all terms v.

Proof. We show that a⇒ v implies a 6= ω by induction on the derivation of
a⇒ v. 2

Following Cousot and Cousot [8] and the second author’s PhD work [16], we
define divergence (infinite evaluations) by the coinductive interpretation 2 of
the following inference rules. They define the relation a

∞
⇒ (read: “a di-

verges”).

a1

∞
⇒

a1 a2

∞
⇒

(
∞
⇒-app-l)

a1 ⇒ v a2

∞
⇒

a1 a2

∞
⇒

(
∞
⇒-app-r)

a1 ⇒ λx.b a2 ⇒ v b[x← v]
∞
⇒

a1 a2

∞
⇒

(
∞
⇒-app-f)

Note that we have imposed (arbitrarily) a left-to-right evaluation order for
applications.

2 Throughout this article, double horizontal lines in inference rules denote inference
rules that are to be interpreted coinductively; single horizontal lines denote the
inductive interpretation.

7

Lemma 5 ω
∞
⇒ holds.

Proof. The proof is by coinduction. Assume ω
∞
⇒ as coinduction hypothesis.

We can derive ω
∞
⇒ with rule (

∞
⇒-app-f), using the coinduction hypothesis as

third premise.

Since this is the first proof by coinduction in this article, we now detail the
proof sketch given above using the various approaches outlined in section 2.

Greatest fixed point. Consider the inference operator F associated with the
rules defining

∞
⇒, namely

F (S) = {a1 a2 | a1 ∈ S}
∪ {a1 a2 | ∃v, a1 ⇒ v ∧ a2 ∈ S}
∪ {a1 a2 | ∃x, b, v, a1 ⇒ λx.b ∧ a2 ⇒ v ∧ b[x← v] ∈ S}

The set S = {ω} is F -consistent. Indeed, ω ∈ F ({ω}) by the third line of the
definition of F . Therefore, S ⊆ gfp(F), implying that ω

∞
⇒ holds.

Systems of guarded recursive equations. Consider the following equation with
unknown d (a derivation):

d =
δ ⇒ λx. x x δ ⇒ δ d

δ δ
∞
⇒

Since (x x)[x ← δ] = δ δ, this equation is justified by rule (
∞
⇒-app-f). More-

over, it is guarded. Therefore, its solution is a valid derivation that proves
δ δ

∞
⇒ . It follows that this judgment holds.

Coq proof term. Consider the Coq proof term evalinf_omega defined by the
following corecursion:

CoFixpoint evalinf_omega : evalinf omega :=

let eval_delta : eval delta delta :=

eval_fun x (App (Var x) (Var x)) in

evalinf_app_f delta delta x (App (Var x) (Var x)) delta

eval_delta

eval_delta

evalinf_omega.

The two constructor functions eval_fun and evalinf_app_f correspond to
the inference rules (⇒-fun) and (

∞
⇒-app-f), respectively. They receive as argu-

ments instantiations for the free variables of the rules (x and a for (⇒-fun); a1,
a2, x, b, v for (

∞
⇒-app-f)), followed by proof terms for their premises (proofs

of δ ⇒ δ, δ ⇒ δ and ω
∞
⇒ for (

∞
⇒-app-f)). The term evalinf_omega has type

evalinf omega, which proves that this proposition representing ω
∞
⇒ is true.

8

Coq proof script. The following commented sequence of tactics builds the proof
term above in an interactive manner.

Lemma evalinf_omega: evalinf omega.

Proof.

cofix COINDHYP.

Prepare a proof by coinduction. The current goal ω
∞
⇒

becomes an hypothesis named COINDHYP

unfold omega. eapply evalinf_app_f.

Apply the constructor for rule
∞
⇒-app-f

unfold delta. apply eval_fun.

Prove the first premise (evaluation of δ)
unfold delta. apply eval_fun.

Prove the second premise (evaluation of δ)
simpl. fold delta. fold omega.

Replace (x x)[x← δ] by ω.
apply COINDHYP.

Prove the third premise by invoking the coinduction hypothesis.
Qed.

2

Lemma 6 a⇒ v and a
∞
⇒ are mutually exclusive.

Proof. By induction on the derivation of a ⇒ v, case analysis on that of
a

∞
⇒ , and lemma 3. 2

Programs that neither evaluate nor diverge according to the rules above are
said to “go wrong”. For instance, the program 0 0 goes wrong since neither
0 0⇒ v nor 0 0

∞
⇒ hold for any v.

4 Relation with small-step semantics

The one-step reduction relation→ is defined by the call-by-value β-reduction
axiom plus two context rules for reducing under applications, assuming left-
to-right evaluation order.

v ∈ Values

(λx.a) v → a[x← v]
(→-β)

a1 → a2

a1 b→ a2 b
(→-app-l)

a ∈ Values b1 → b2

a b1 → a b2

(→-app-r)

9

Lemma 7 The → relation is deterministic: if a → a′ and a → a′′, then
a′ = a′′.

Proof. By induction on the derivation of a→ a′ and case analysis over that
of a→ a′′. 2

There are three kinds of reduction sequences of interest. The first, written
a

∗
→ b (“a reduces to b in zero, one or several steps”), is the standard reflexive

transitive closure of→; it captures finite reductions. The second, written a
∞
→

(“a reduces infinitely”), captures infinite reductions. The third, written a
co∗
→ b

(“a reduces to b in zero, one, several or infinitely many steps”), is the coin-
ductive interpretation of the rules for reflexive transitive closure; it captures
both finite and infinite reductions. These relations are defined by the following
rules, interpreted inductively for

∗
→ and coinductively for

∞
→ and

co∗
→.

a
∗
→ a a

co∗
→ a

a→ a′ a′ ∗
→ b

a
∗
→ b

a→ a′ a′ ∞
→

a
∞
→

a→ a′ a′ co∗
→ b

a
co∗
→ b

It is true that
co∗
→ is the union of

∗
→ and

∞
→, in the following sense.

Lemma 8 a
co∗
→ b if and only if a

∗
→ b or a

∞
→ .

Proof (classical). For the “if” part, we show that a
∗
→ b =⇒ a

co∗
→ b by

induction on a
∗
→ b, and that a

∞
→ =⇒ a

co∗
→ b by coinduction. For the “only

if” part, we show that a
co∗
→ b ∧ ¬(a

∗
→ b) =⇒ a

∞
→ by coinduction. The result

follows by excluded middle over a
∗
→ b. 2

We now turn to relating the reduction relations (small-step) and the evaluation
relations (big-step). It is well known that normal evaluation is equivalent to
finite reduction to a value.

Theorem 9 a⇒ v if and only if a
∗
→ v and v ∈ Values.

Proof. The “only if” part is an easy induction on a ⇒ v. For the “if” part,
we first show the following two lemmas: (1) v ⇒ v if v ∈ Values, and (2) a⇒ v
if a→ b and b⇒ v. The result follows by induction on the proof of a

∗
→ v. 2

Similarly, divergence (
∞
⇒) is equivalent to infinite reduction (

∞
→). The proof

uses the following lemma.

Lemma 10 For all terms a, either a
∞
→ , or there exists b such that a

∗
→ b

and b 6→, that is, ∀b′, ¬(b→ b′).

Proof (classical). We first show that ∀b, a
∗
→ b =⇒ ∃b′, b → b′ implies

10

a
∞
→ by coinduction. We then argue by excluded middle on a

∞
→ . 2

Theorem 11 a
∞
⇒ if and only if a

∞
→ .

Proof (classical). For the “only if” part, we first show that a
∞
⇒ implies

∃b, a→ b ∧ b
∞
⇒ by structural induction on a, then conclude by coinduction.

For the “if” part, we proceed by coinduction and case analysis over a. The
only non-trivial case is a = a1 a2. Using lemma 10, we distinguish three cases:
(1) a1 reduces infinitely; (2) a1 reduces to a value but a2 reduces infinitely;
(3) a1 and a2 reduce to values λx.b and v respectively, and b[x ← v] reduces
infinitely. We conclude a

∞
⇒ by applying the appropriate inference rule for

each case, the coinduction hypothesis for the
∞
⇒ premise, and theorem 9 for

the ⇒ premises. 2

5 Relation with denotational semantics

Denotational semantics is an alternate way to characterize divergent and con-
vergent terms. In this section, we develop a simple denotational semantics for
call-by-value λ-calculus and prove that it captures the same notions of con-
vergence and divergence as our big-step operational semantics. To facilitate
the mechanization of these results in the Coq theorem prover, we adopt an
elementary presentation of the denotational semantics that does not require
the full generality of Scott domains.

We define the computation Cn(a) of a term a at maximal recursion depth
n ∈ IN by recursion over n, as follows.

C0(a) =⊥

Cn+1(x) = err

Cn+1(c)= c

Cn+1(λx.a) =λx.a

Cn+1(a1 a2) = Cn(a1) � (v1 7→

Cn(a2) � (v2 7→

if v1 = λx.b then Cn(b[x← v2]) else err))

The monadic composition operator � used in the application case is defined
by

⊥ � f = ⊥ err � f = err v � f = f(v).

The result of Cn(a), or in other terms the outcome of executing a at depth n,
is one of the following three possibilities: (1) a value v, denoting normal termi-
nation with v as final value; (2) the symbol err, denoting abrupt termination
on a run-time error (such as encountering a free variable or an application of a

11

constant); (3) the symbol ⊥, indicating that the computation cannot complete
within n recursive steps.

The flat ordering ≤ over results is defined by ⊥ ≤ r and r ≤ r for all r. The
C function is monotone with respect to this ordering:

Lemma 12 If n ≤ m, then Cn(a) ≤ Cm(a).

Proof. By induction over n and case analysis over a. 2

We say that a term a executes with result r, or in other terms that r is the
denotation of a, and we write D(a, r), if Cn(a) = r for almost all n:

D(a, r)
def
= ∃p, ∀n, n ≥ p =⇒ Cn(a) = r.

Since C is monotone, the following properties hold trivially:

Lemma 13 If D(a, r), then for all n, either Cn(a) = ⊥ or Cn(a) = r.

Lemma 14 If r 6= ⊥ and Cn(a) = r for some n, then D(a, r).

Lemma 15 D(a,⊥) if and only if Cn(a) = ⊥ for all n.

It follows that every term has one and exactly one denotation.

Lemma 16 For all terms a, there exists a result r such that D(a, r).

Proof (classical). By excluded middle, either ∀n, Cn(a) = ⊥ or ∃n, Cn(a) 6=
⊥. In the former case, we obviously have D(a,⊥). In the latter case, pick n
such that Cn(a) 6= ⊥ and take r = Cn(a). By lemma 14, we have D(a, r). 2

Lemma 17 If D(a, r1) and D(a, r2), then r1 = r2.

Proof. Notice that r1 = Cn(a) = r2 for sufficiently large n. 2

We now relate this denotational semantics with the big-step operational se-
mantics of section 3, starting with the terminating case.

Theorem 18 a⇒ v if and only if D(a, v).

Proof. For the “if” part, we show that Cn(a) = v implies a ⇒ v by in-
duction over n and case analysis over a and over the results of the recursive
computations. The case a = x contradicts the hypothesis Cn(a) = v. For the
cases a = c or a = λx.b, we have v = a by definition of C and the result
follows by rules (⇒-const) or (⇒-fun). Finally, if a = a1 a2, the exploitation
of the hypothesis Cn(a) = v leads to Cn−1(a1) = λx.b and Cn−1(a2) = v2 and
Cn−1(b[x ← v2]) = v. The result follows from the induction hypothesis and
rule (⇒-app).

12

For the “only if” part, we proceed by induction over the derivation of a⇒ v
and exhibit an n such that Cn(a) = v. From this, D(a, v) follows by lemma 14.
The cases where a is a constant or a function are trivial, since C1(a) = v
in these cases. For the application case a = a1 a2, the induction hypothesis
leads to Cn1

(a1) = λx.b and Cn2
(a2) = v2 and Cn3

(b[x ← v2]) = v for some
n1, n2, n3. Taking n = 1 + max(n1, n2, n3), we have Cn(a) = v by definition
and monotonicity of C, and the result follows. 2

Theorem 19 a
∞
⇒ if and only if D(a,⊥).

Proof. For the “only if” part, we show that a
∞
⇒ implies Cn(a) = ⊥ by

induction over n and case analysis on the last rule used in the derivation of
a

∞
⇒ . In all three cases, a = a1 a2. If a1

∞
⇒ , Cn(a) = Cn−1(a1) = ⊥ by

induction hypothesis. If a1 ⇒ v1 and a2

∞
⇒ , we have D(a, v1) by theorem 18.

By induction hypothesis, Cn−1(a2) = ⊥. By lemma 13, either Cn−1(a1) = ⊥ or
Cn−1(a1) = v1. In both cases, Cn(a) = ⊥. The third and last case (a1 ⇒ λx.b
and a2 ⇒ v2 and b[x← v2]

∞
⇒) is similar.

The “if” part is proved by coinduction and case analysis over a. The cases a =
x, a = c and a = λx.b trivially contradict the hypothesis D(a,⊥). Therefore,
it must be the case that a = a1 a2. Let r1 and r2 be the denotations of a1 and
a2. (They exist by lemma 16.) We argue by case over r1 and r2, exploiting the
definition of C for sufficiently large values of n. There are only three cases that
do not contradict the hypothesis D(a,⊥): (1) r1 = ⊥; (2) r1 is a value v1 and
r2 = ⊥; (3) r1 is a value λx.b and r2 is a value v2 and D(b[x ← v2],⊥). We
conclude a

∞
⇒ by applying the appropriate inference rule for each case, the

coinduction hypothesis for the
∞
⇒ premise, and theorem 18 for the⇒ premises.

2

6 Extension to trace semantics

Besides expressing both terminating and diverging executions, small-step se-
mantics have another advantage over big-step semantics: reduction sequences
contain all intermediate reducts of the source term in addition to its final value,
therefore providing a complete trace of the execution. Such execution traces
are useful both for static analysis (by abstract interpretation of collecting se-
mantics) and to state and prove stronger semantic preservation properties for
program transformations. In particular, when the input language is impera-
tive and features observable actions such as input/output, traces of observable
events are crucial to state and prove observational equivalence results.

In this section, following the second author’s work [16], we show how to extend
the big-step semantics of section 3 so that they produce not only the outcome

13

of an evaluation (final value or divergence), but also a (possibly infinite) exe-
cution trace.

6.1 Traces

The traces we consider are finite or infinite sequences of terms representing
the intermediate reducts of the source program.

Finite traces: t ::= ǫ | a.t (inductive interpretation)
Infinite traces: T ::= a.T (coinductive interpretation)

By abuse of notation, we write t.t′ and t.T for the concatenation of a finite
trace t and a finite or infinite trace. Concatenation is associative and ǫ is a
neutral element for concatenation.

If t = a1.a2 . . . an is a finite trace, we define the left application t b of this trace
to a term b and the right application v t of a value v to this trace as follows:

t b = (a1 b).(a2 b) . . . (an b)

v t = (v a1).(v a2) . . . (v an)

We similarly define the applications T b and v T where T is an infinite trace.

We define bisimilarity between infinite traces, written T1
∼= T2, by the following

coinductive rule:
T1
∼= T2

a.T1
∼= a.T2

Concatenation and application of traces are compatible with bisimilarity.

In set theory, bisimilarity is equivalent to equality. In Coq’s constructive logic,
bisimilarity is coarser than equality: there exists infinite traces that are bisim-
ilar but cannot be proved equal [10, chap. 13]. Some of the following results
require the use of bisimilarity instead of equality in definitions and statements,
in order to be provable in Coq.

6.2 Small-step semantics with traces

While our objective is to instrument big-step semantics to produce execution
traces, we start by doing this for the small-step semantics, which is easier and
helps us define precisely the traces we expect for an execution. For a finite
reduction sequence a1 → a2 → · · · → an−1 → an, the expected (finite) trace

14

is t = a1.a2 . . . an−1, that is, the initial term and its intermediate reducts but
not the final term. Equivalently, the trace comprises the source terms for all
reduction steps performed in the sequence. This is formalized by the following
rules for the predicate a

∗
→ a′ / t (read: “a reduces in zero, one or several steps

to a′ with trace t”).

a
∗
→ a / ǫ

a→ a′ a′ ∗
→ b / t

a
∗
→ b / a.t

For an infinite reduction sequence a1 → . . .→ an → . . ., the expected (infinite)
trace is T = a1 . . . an . . . This is captured by the following coinductive rule
defining the predicate a

∞
→ / T (read: “a reduces infinitely with trace T”).

a→ b b
∞
→ / T

a
∞
→ / a.T

It is intuitively clear that the small-step semantics with traces is a refinement
of that without traces. We now formalize this intuition, which is not obvious
to prove constructively in the case of infinite reductions.

Lemma 20 a
∗
→ b if and only if ∃t, a

∗
→ b / t.

Proof. Straightforward by induction over the reduction sequences a
∗
→ b and

a
∗
→ b / t. 2

Lemma 21 a
∞
→ if and only if ∃T, a

∞
→ / T .

Proof. The “if” part is an easy proof by coinduction. The “only if” part
is more involved: since the conclusion ∃T, a

∞
→ / T is not a coinductively-

defined predicate, we cannot reason directly by coinduction. Instead, we must
construct explicitly a suitable infinite trace T . To this end, we first define a
reduction function R from terms to optional terms that is equivalent to the
one-step reduction predicate, that is

R(a) =
{

Some(b), if a→ b;
None, if a 6→.

This function is total (by induction over a), therefore proving that one-step
reduction is decidable. Next, to every term a we associate an infinite trace T (a)
of all the successive reducts of a. This trace is defined, by guarded corecursion,
as

T (a) =
{

a.T (b), if R(a) = Some(b);
a.T (a), if R(a) = None.

We then show that a
∞
→ implies a

∞
→ / T (a). This follows by coinduction

from the fact that T (a) = a.T (b) whenever a→ b. 2

15

As a corollary, we obtain the following analogue of lemma 10.

Lemma 22 For all terms a, either there exist a term b and a trace t such
that a

∗
→ b / t and b 6→, or there exists an infinite trace T such that a

∞
→ / T .

Proof (classical). Follows from lemmas 10, 20 and 21. 2

Additionally, the trace-based reduction relations are deterministic up to bisim-
ilarity between infinite traces. This is an immediate consequence of the deter-
minism of one-step reductions (lemma 7).

Lemma 23 If a
∗
→ v1 / t1 and a

∗
→ v2 / t2, then t1 = t2 and v1 = v2.

Lemma 24 If a
∞
→ / T1 and a

∞
→ / T2, then T1

∼= T2.

Note that the stronger conclusion T1 = T2 is not provable in Coq. Another
consequence of the determinism of one-step reductions is the following obvious
decomposition property for infinite reductions.

Lemma 25 If a
∞
→ / T and a

∗
→ b / t, there exists T ′ such that b

∞
→ / T ′ and

T = t.T ′.

6.3 Big-step semantics with traces

We now add traces to the big-step definitions of evaluation and divergence.
The corresponding predicates are a⇒ v / t (“a evaluates to v with finite trace
t”) and a

∞
⇒ / T (“a diverges with infinite trace T”).

c⇒ c / ǫ (⇒-const) λx.a⇒ λx.a / ǫ (⇒-fun)

a1 ⇒ λx.b / t1 a2 ⇒ v2 / t2 b[x← v2]⇒ v / t3
t = (t1 a2).((λx.b) t2).((λx.b) v2).t3

a1 a2 ⇒ v / t

(⇒-app)

a1

∞
⇒ / T1 T ∼= T1 a2

a1 a2

∞
⇒ / T

(
∞
⇒-app-l)

a1 ⇒ v / t1 a2

∞
⇒ / T2 T ∼= (t1 a2).(v T2)

a1 a2

∞
⇒ / T

(
∞
⇒-app-r)

a1 ⇒ λx.b / t1 a2 ⇒ v2 / t2 b[x← v2]
∞
⇒ / T3

T ∼= (t1 a2).((λx.b) t2).((λx.b) v2).T3

a1 a2

∞
⇒ / T

(
∞
⇒-app-f)

16

The construction of the trace in the rules for applications is justified as follows.
Assume, for instance, a1 ⇒ λx.b / t1 and a2 ⇒ v2 / t2. The application a1 a2

performs one β-reduction (λx.b) v2 → b[x ← v2] in addition to those coming
from the evaluations of the premises of the rule. The source term for this
reduction, (λx.b) v2, is therefore added to the trace. It is preceded by t1 a2

(the trace for a1 put into a left application context [] a2) and by (λx.b) t2 (the
trace for a2 put into a right application context (λx.b) []). The source of the
β-reduction is then followed by the trace corresponding to the evaluation of
the function body b[x← v2].

Another point to note is the use of bisimilarity T ∼= . . . instead of equality
T = . . . in the coinductive rules defining

∞
⇒. This allows traces to be replaced

by bisimilar traces at every inference step, therefore enabling us to prove
more statements about

∞
⇒ within the limits of Coq’s coinductive proofs. (For

instance, the proof of theorem 31 no longer goes through if
∞
⇒ is defined with

equalities between traces instead of bisimilarities.) This subtle point is moot
in set theory, where bisimilarity is equivalent to equality.

Lemma 26 ω
∞
⇒ / T holds where T is the infinite trace ω.ω.ω . . .

Proof. By coinduction, using rule (
∞
⇒-app-f). 2

6.4 Equivalence between the trace semantics

We now show the equivalence between the big-step and small-step semantics
with traces, extending the results of section 4.

Theorem 27 a⇒ v / t if and only if a
∗
→ v / t and v ∈ Values.

Proof. The “only if” part is an easy induction on the derivation of a⇒ v / t.
For the “if” part, we first show the following two lemmas: (1) v ⇒ v / ǫ if
v ∈ Values, and (2) a ⇒ v / a.t if a → b and b ⇒ v / t. The result follows by
induction on the derivation of a

∗
→ v / t. 2

Theorem 28 a
∞
⇒ / T implies a

∞
→ / T .

Proof. We first show by induction on a that a
∞
⇒ / T implies the existence

of b and T ′ such that a → b and b
∞
⇒ / T ′ and T ∼= a.T ′. We then define the

following variant
∞,∼=
−→ of the infinite reduction predicate, by the coinductive

inference rule
a→ b b

∞,∼=
−→ / T ′ T ∼= a.T ′

a
∞,∼=
−→ / T

This variant enables us to replace the infinite trace T by a bisimilar one at

17

every proof step, while remaining within the subset of proofs that Coq accepts
as productively coinductive. We can therefore show that a

∞
⇒ / T implies

a
∞,∼=
−→ / T by coinduction, using the decomposition property stated earlier.

We conclude by proving that a
∞,∼=
−→ /T implies a

∞
→ /T , again by coinduction.

2

As a corollary of theorem 28, the big-step divergence relation
∞
⇒ is determin-

istic up to bisimilarity of the traces. It is interesting to note that we could not
find a more direct Coq proof of this fact.

Lemma 29 If a
∞
⇒ / T1 and a

∞
⇒ / T2, then T1

∼= T2.

Proof. Follows from lemma 24 and theorem 28. 2

The converse of theorem 28 relies on the following inversion lemma for infinite
reduction sequences starting with an application.

Lemma 30 Assume a b
∞
→ / T .

(1) If a
∞
→ / T ′, then T ∼= T ′ b.

(2) If a ∈ Values and b
∞
→ / T ′, then T ∼= a T ′.

(3) If a
∗
→ a′ / t, then there exists T ′ such that a′ b

∞
→ / T ′ and T = (t b).T ′.

(4) If a ∈ Values and b
∗
→ b′ / t, then there exists T ′ such that a b′

∞
→ / T ′

and T = (a t).T ′.

Proof. For (1) and (2), we show by coinduction that a b
∞
→ / T ′ b and

a b
∞
→ / a T ′, respectively, then conclude by lemma 24.

Property (3) follows from the decomposition lemma 25 and the fact that
a b

∗
→ a′ b / t b whenever a

∗
→ a′ / t. Similarly, property (4) follows from

the decomposition lemma 25 and the fact that a b
∗
→ a b′ / a t if a ∈ Values

and b
∗
→ b′ / t. 2

Theorem 31 a
∞
→ / T implies a

∞
⇒ / T .

Proof (classical). The proof proceeds by coinduction and case analysis over
a. It must be the case that a = a1 a2, otherwise a cannot reduce infinitely.
Using lemma 22, we distinguish three cases:

(1) a1

∞
→ / T1. This implies a1

∞
⇒ / T1 by coinduction hypothesis. Moreover,

we have T ∼= T1 a2 by case (1) of lemma 30, which implies the expected
result by rule (

∞
⇒-app-l).

(2) a1

∗
→ v / t1 and v 6→ and a2

∞
→ / T2. By case (3) of lemma 30, we have

v a2

∞
→ / T ′ for some T ′ such that T = (t1 a2).T

′. This implies that
v ∈ Values. Moreover, T ′ ∼= v T2 by case (2) of lemma 30. Theorem 27
gives a1 ⇒ v / t and the coinduction hypothesis gives a2

∞
⇒ T2. The result

18

follows from rule (
∞
⇒-app-r).

(3) a1

∗
→ v1 / t1 and v1 6→ and a2

∗
→ v2 / t2 and v2 6→. Using cases (3) and (4)

of lemma 30, it follows that v1 = λx.b for some x, b, that v2 ∈ Values, and
that (λx.b) v2

∞
→ / T ′ for some T ′ such that T = (t1 a2).((λx.b) t2).T

′.
By inversion, we deduce b[x ← v2]

∞
→ / T3 for some T3 such that

T ′ ∼= ((λx.b) v2).T3. The result follows by rule (
∞
⇒-app-f), the coinduction

hypothesis, and theorem 27.

2

7 Coevaluation

7.1 Definition and properties

So far, we have described terminating and non-terminating evaluations using
two separate sets of inference rules, one interpreted inductively and the other
coinductively. An attempt to describe both kinds of evaluations at the same
time, in a more concise way, is to interpret coinductively the standard evalu-
ation rules for terminating evaluations. This defines the relation a

co
⇒ b (read:

“a coevaluates to b”).

c
co
⇒ c (

co
⇒-const) λx.a

co
⇒ λx.a (

co
⇒-fun)

a1

co
⇒ λx.b a2

co
⇒ v2 b[x← v2]

co
⇒ v

a1 a2

co
⇒ v

(
co
⇒-app)

It is clear from the definition of
co
⇒ that coevaluation includes all terminating

evaluations, plus some diverging ones.

Lemma 32 If a⇒ v, then a
co
⇒ v.

Proof. By induction on the derivation of a⇒ v. 2

Lemma 33 ω
co
⇒ v for all terms v.

Proof. By coinduction, using rule (
co
⇒-app) with the coinduction hypothesis

as third premise. 2

Naively, we could expect that
co
⇒ is equivalent to the union of the ⇒ and

∞
⇒

relations. This equivalence holds in one direction only, from coevaluation to
evaluation.

Lemma 34 If a
co
⇒ v, then either a⇒ v or a

∞
⇒ .

19

Proof (classical). We show that a
co
⇒ v and ¬(a ⇒ v) implies a

∞
⇒ . The

result then follows by excluded middle on a ⇒ v. The auxiliary property is
proved by coinduction and case analysis on a. The cases for variables, constants
and abstractions trivially contradict one of the hypotheses. If a = a1 a2, an
inversion on the hypothesis a

co
⇒ v shows that a1

co
⇒ λx.b and a2

co
⇒ v2 and

b[x ← v2]
co
⇒ v. Using excluded middle, it must be that at least one of these

three terms does not evaluate, otherwise, a⇒ v would hold. The result follows
by applying the rule for

∞
⇒ that matches the term that does not evaluate, and

using the coinduction hypothesis. 2

However, the reverse implication from evaluation to coevaluation does not
hold: there exists terms that diverge but do not coevaluate. Consider for in-
stance a = ω (0 0). It is true that a

∞
⇒ , but there is no term v such that

a
co
⇒ v, because the coevaluation of the argument 0 0 goes wrong (there is no

v such that 0 0
co
⇒ v). Section 8.2 shows another example of a diverging term

that does not coevaluate, this time involving no subterm that goes wrong.

Another unusual feature of coevaluation is that it is not deterministic. For
instance, ω

co
⇒ v for any term v. However,

co
⇒ is deterministic for terminating

terms, in the following sense:

Lemma 35 If a⇒ v and a
co
⇒ v′, then v′ = v.

Proof. By induction on the derivation of a⇒ v and inversion on a
co
⇒ v′. 2

Moreover, there exists diverging terms that coevaluate to only one value. An
example is (λx.0) ω, which coevaluates to 0 but not to any other term.

7.2 Connection with small-step semantics

Concerning the connections between coevaluation (big-step) and coreduction
(small-step) in the style of section 4, the expected equivalence between

co
⇒ and

co∗
→ holds in one direction only.

Lemma 36 a
co
⇒ v implies a

co∗
→ v.

Proof. Using classical logic, this follows from lemmas 34 and equivalence
theorems 9, 11 and 8. However, the result can be proved directly in constructive
logic. We first show that a

co
⇒ v =⇒ a ∈ Values ∨ ∃b, a → b ∧ b

co
⇒ v by

induction on a. The result follows by coinduction. 2

The reverse implication obviously does not hold for terms a that diverge but
do not coevaluate, such as the term a = ω (0 0) mentioned previously: if a

∞
⇒ ,

we have a
∞
→ and therefore a

co∗
→ v for any v, but a

co
⇒ v does not hold. Another

20

counterexample to the reverse implication is a = (λx. 0) ω and v = 1. Since
a

∞
→ , we have a

co∗
→ v. However, a

co
⇒ v does not hold since the only term to

which a coevaluates is 0.

7.3 Coevaluation for CPS terms

Notwithstanding the negative results of sections 7.1 and 7.2, there exists a
class of terms for which coevaluation correctly captures both terminating and
diverging evaluations: terms that are in continuation-passing style (CPS). A
distinguishing feature of these terms is that function arguments are always
values. CPS terms are defined by the following grammar:

a ∈ Atoms ::= x | c | λx.b
b ∈ CPS-terms ::= a | b a

Less formally, CPS terms are built from atoms (variables, constants and func-
tion abstractions) using multiple applications in tail-call position.

It is well known that CPS terms are stable by substitution of atoms for vari-
ables.

Lemma 37 If a ∈ Atoms and b ∈ CPS-terms, then b[x← a] ∈ CPS-terms.

Consequently, the value of a CPS term is an atom.

Lemma 38 If b ∈ CPS-terms and b ⇒ v, then v ∈ Atoms. As a corollary, if
b ∈ CPS-terms and b⇒ λx.b′, then b′ ∈ CPS-terms.

Proof. By induction on the derivation of b ⇒ v, using lemma 37 for the
application case. 2

The main result of this section is that a closed CPS term coevaluates to a
value if and only if it evaluates or it diverges. The restriction to closed terms
is important since, for instance, the CPS term ω x diverges but its coevaluation
goes wrong on the free variable x.

The following lemma lists useful properties of CPS atoms.

Lemma 39 Let a ∈ Atoms.

(1) a⇒ a if a is closed.
(2) It is not the case that a

∞
⇒ .

(3) If a⇒ v, then v = a.

21

The key technical lemma below shows that diverging, closed CPS terms co-
evaluate to a well-chosen value.

Lemma 40 Define Ω = λx.ω. If b ∈ CPS-terms, b is closed and b
∞
⇒ , then

b
co
⇒ Ω.

Proof. By coinduction. The CPS term b cannot be an atom (this would con-
tradict the divergence hypothesis), therefore b = b′ a with b′ a closed CPS term
and a a closed CPS atom. Analysis on the last rule used in the derivation of
b

∞
⇒ reveals three cases. In the first case, b′

∞
⇒ . By coinduction hypothe-

sis, b′
co
⇒ Ω = λx.ω. By lemmas 39 and 32, a

co
⇒ a. Finally, ω[x ← a] = ω

coevaluates to Ω by lemma 33. Applying rule (
co
⇒-app), it follows that b

co
⇒ Ω.

The second case, a
∞
⇒ , is impossible by lemma 39. This leaves the third

case: b′ ⇒ λx.b′′ and a ⇒ v and b′′[x ← v]
∞
⇒ . By lemma 38, b′′ is a CPS

term. By lemma 39, v = a and therefore v is a CPS atom. It follows that
b′′[x← v] is a CPS term (lemma 37). Moreover, this term is closed because of
the usual properties of free variables w.r.t. evaluation and substitution. Using
lemma 32 and the coinduction hypothesis, we obtain b′

co
⇒ λx.b′′ and a

co
⇒ v

and b′′[x← v]
co
⇒ Ω, from which b

co
⇒ Ω follows by rule (

co
⇒-app). 2

The claimed equivalence result follows as a corollary.

Theorem 41 Let b be a closed CPS term. We have ∃v, b
co
⇒ v if and only if

b
∞
⇒ or ∃v, b⇒ v.

Proof. Follows from lemmas 32, 34 and 40. 2

8 Type soundness proofs

We now turn to using our coinductive evaluation and reduction relations for
proving the soundness of type systems. To be more specific, we will use the
simply-typed λ-calculus with recursive types as our type system. We obtain
recursive types by interpreting the type algebra τ ::= int | τ1 → τ2 coin-
ductively, as in [12]. The typing rules are recalled below. Type environments,
written E, are finite maps from variables to types.

E(x) = τ

E ⊢ x : τ
E ⊢ c : int

E + {x : τ ′} ⊢ a : τ

E ⊢ λx.a : τ ′ → τ

E ⊢ a1 : τ ′ → τ E ⊢ a2 : τ ′

E ⊢ a1 a2 : τ

22

Enabling recursive types makes the type system non-normalizing and makes it
possible to write interesting programs. In particular, the call-by-value fixpoint
operator Y = λf. (λx. f (x x)) (λx. f (λy. (x x) y)) is well-typed, with types
((τ → τ ′) → τ → τ ′) → τ → τ ′ for all types τ and τ ′. (The self-applications
x x are well-typed under the assumption x : σ, where the recursive type σ is
defined by the equation σ = σ → τ → τ ′.)

8.1 Type soundness proofs using small-step semantics

Wright and Felleisen [20] introduced a proof technique for showing type sound-
ness that relies on small-step semantics and is standard nowadays. The proof
relies on the twin properties of type preservation (also called subject reduction)
and progress:

Lemma 42 (Preservation) If a→ b and ∅ ⊢ a : τ , then ∅ ⊢ b : τ

Lemma 43 (Progress) If ∅ ⊢ a : τ , then either a ∈ Values or there exists b
such that a→ b.

The formal statement of type soundness in Felleisen and Wright’s approach is
the following:

Theorem 44 (Type soundness, 1) If ∅ ⊢ a : τ and a
∗
→ b, then either

b ∈ Values or b reduces.

Proof. We first show that ∅ ⊢ b : τ by induction over a
∗
→ b, using the

preservation lemma. We then conclude with the progress lemma. 2

The authors that follow this approach then conclude that well-typed closed
terms either reduce to a value or reduce infinitely. However, this conclusion is
generally neither expressed nor proved formally. In our approach, it is easy to
do so:

Theorem 45 (Type soundness, 2) If ∅ ⊢ a : τ , then either a
∞
→ , or there

exists v such that a
∗
→ v and v ∈ Values.

Proof (classical). By lemma 10, either a
∞
→ or ∃b, a

∗
→ b ∧ b 6→. The

result is obvious in the first case. In the second case, we note that ∅ ⊢ b : τ
as a consequence of the preservation lemma, then use the progress lemma to
conclude that b ∈ Values. 2

An alternate, equivalent formulation of this theorem uses the coreduction re-
lation

co∗
→.

Theorem 46 (Type soundness, 3) If ∅ ⊢ a : τ , then there exists v such

23

that a
co∗
→ v and v ∈ Values.

Proof. Follows from theorem 45 and lemma 8. 2

An arguably nicer characterisation of “programs that do not go wrong” is

given by the relation a
safe
→ (read: “a reduces safely”), defined coinductively

by the following rules:

v ∈ Values

v
safe
→

a→ b b
safe
→

a
safe
→

These rules are interpreted coinductively so that a
safe
→ holds if a reduces

infinitely. We can then state and show type soundness without recourse to
classical logic:

Theorem 47 (Type soundness, 4) If ∅ ⊢ a : τ , then a
safe
→ .

Proof. By coinduction. Applying the progress lemma, either a ∈ Values and
we are done, or a→ b for some b. In the latter case, ∅ ⊢ b : τ by the preservation
property, and the result follows from the coinduction hypothesis. 2

8.2 Type soundness proofs using big-step semantics

The standard big-step semantics (defined by the ⇒ relation) is awkward for
proving type soundness because it does not distinguish between terms that
diverge and terms that go wrong: in both cases, there is no value v such that
a⇒ v. Consequently, the obvious type soundness statement “if ∅ ⊢ a : τ , there
exists v such that a ⇒ v” is false for all type systems that do not guarantee
normalization. The best result we can prove, then, is the following big-step
equivalent to the preservation lemma:

Lemma 48 (Preservation, big-step style) If a ⇒ v and ∅ ⊢ a : τ , then
∅ ⊢ v : τ .

Proof. Easy induction on the derivation of a⇒ v, using the fact that typing
is stable by substitution: if {x : τ ′} ⊢ a : τ and ∅ ⊢ b : τ ′, then ∅ ⊢ a[x← b] : τ .

2

The standard approach for proving type soundness using big-step semantics is
to provide inductive inference rules to define a predicate a⇒ err characterizing
terms that go wrong because of a type error, and prove the statement “if
∅ ⊢ a : τ , then it is not the case that a ⇒ err” [21]. This approach is not

24

fully satisfactory for two reasons: (1) extra rules must be provided to define
a⇒ err, which increases the size of the semantics; (2) there is a risk that the
rules for a ⇒ err are incomplete and miss some cases of “going wrong”, in
which case the type soundness statement does not guarantee that well-typed
terms either evaluate to a value or diverge.

Let us revisit these trade-offs in the light of our characterizations of divergence
and coevaluation. We can now formally state what it means for a term to
evaluate or to diverge. This leads to the following alternate statement of type
soundness:

Theorem 49 (Type soundness, 5) If ∅ ⊢ a : τ , then either a
∞
⇒ or there

exists v such that a⇒ v.

By excluded middle, either ∃v. a⇒ v or ∀v, ¬(a⇒ v). Theorem 49 therefore
follows from lemma 50 below, which is a big-step analogue to the progress
lemma.

Lemma 50 (Progress, big-step style) If ∅ ⊢ a : τ and ∀v, ¬(a ⇒ v),
then a

∞
⇒ .

Proof (classical). The proof is by coinduction and case analysis over a. The
cases a = x, a = c and a = λx.b lead to contradictions: variables have no types
in the empty environment; constants and abstractions evaluate to themselves.
The interesting case is therefore a = a1 a2. By excluded middle, either a1

evaluates to some value v1, or not. In the latter case, a
∞
⇒ follows from rule

(
∞
⇒-app-l) and from a1

∞
⇒ , which we obtain by coinduction hypothesis. In

the former case, v1 has a function type τ ′ → τ by lemma 48, and therefore
v1 = λx.b for some x and b. Moreover, {x : τ ′} ⊢ b : τ . Using excluded middle
again, either a2 evaluates to some value v2, or not. In the latter case, a

∞
⇒

follows from rule (
∞
⇒-app-r) and the coinduction hypothesis. In the former

case, ∅ ⊢ v2 : τ ′. Since typing is stable by substitution, ∅ ⊢ b[x← v2] : τ . Using
excluded middle for the third time, it must be that ∀v. ¬(b[x ← v2] ⇒ v),
otherwise a would evaluate to some value. The result a

∞
⇒ then follows from

rule (
∞
⇒-app-f) and the coinduction hypothesis. 2

The proof above is an original alternative to the standard approach of showing
¬(a⇒ err) for all well-typed terms a. From a methodological standpoint, our
proof addresses one of the shortcomings of the standard approach, namely the
risk of not putting in enough error rules. If we forget some divergence rules,
the proof of lemma 50 will, in all likelihood, not go through. Therefore, this
novel approach to proving type soundness using big-step semantics appears
rather robust with respect to mistakes in the specification of the semantics.

The other methodological shortcoming remains, however: just like the “not
goes wrong” approach, our approach requires more evaluation rules than just

25

those for normal evaluations, namely the rules for divergence. This can easily
double the size of the specification of a dynamic semantics, which is a concern
for realistic languages where the normal evaluation rules number in dozens.

The coevaluation relation
co
⇒ is attractive for this pragmatic reason, as it has

the same number of rules as normal evaluation. Of course, we have seen that
a

co
⇒ v is not equivalent to a⇒ v ∨ a

∞
⇒ , but the example we gave was for a

diverging term a that is not typeable and where an early diverging evaluation
“hides” a later evaluation that goes wrong. Since type systems ensure that
all subterms of a term do not go wrong, we could hope that the following
conjecture holds:

Conjecture 1 (Type soundness, 6) If ∅ ⊢ a : τ , there exists v such that
a

co
⇒ v.

We were able to prove this conjecture for some uninteresting but nonetheless
non-normalizing type systems, such as simply-typed λ-calculus without recur-
sive types, but with a predefined constant of type int → int that diverges
when applied. However, the conjecture is false for simply-typed λ-calculus
with recursive types, and probably for all type systems with a general fixpoint
operator. Andrzej Filinski provided the following counterexample. Consider

Y F 0 where F = λf.λx. (λg.λy. g y) (f x)

or, in more readable ML notation

let rec f x = (let g = f x in fun y -> g y) in f 0

The term Y F 0 is well-typed with type τ → τ ′, yet it fails to coevaluate:
the only possible value v such that Y F 0

co
⇒ v would be an infinite term,

λy. (λy. (λy. . . . y) y) y.

9 Compiler correctness proofs

We now return to the original motivation of this work: proving that compilers
preserve the semantics of source programs (including diverging ones), using
big-step semantics. We demonstrate this approach on the compilation of call-
by-value λ-calculus down to a simple abstract machine.

26

9.1 Big-step semantics with environments and closures

Our abstract machine uses closures and environments indexed by de Bruijn
indices. It is therefore convenient to reformulate the big-step evaluation predi-
cates in these terms. Variables, written xn, are now identified by their de Bruijn
indices n. Values (which are no longer a subset of terms) and environments
are defined as:

Values: v ::= c integer values
| (λa)[e] function closures

Environments: e ::= ǫ | v.e sequences of values

As in section 3, we define three evaluation relations by the inference rules
given below.

e ⊢ a⇒ v finite evaluations (inductive)

e ⊢ a
∞
⇒ infinite evaluations (coinductive)

e ⊢ a
co
⇒ v coevaluations (coinductive)

e = v1 . . . vn . . .

e ⊢ xn ⇒ vn

e ⊢ c⇒ c e ⊢ λa⇒ (λa)[e]

e ⊢ a1 ⇒ (λb)[e′] e ⊢ a2 ⇒ v2 v2.e
′ ⊢ b⇒ v

e ⊢ a1 a2 ⇒ v

e ⊢ a1

∞
⇒

e ⊢ a1 a2

∞
⇒

e ⊢ a1 ⇒ v e ⊢ a2

∞
⇒

e ⊢ a1 a2

∞
⇒

e ⊢ a1 ⇒ (λb)[e′] e ⊢ a2 ⇒ v v.e′ ⊢ b
∞
⇒

e ⊢ a1 a2

∞
⇒

e = v1 . . . vn . . .

e ⊢ xn
co
⇒ vn

e ⊢ c
co
⇒ c e ⊢ λa

co
⇒ (λa)[e]

e ⊢ a1

co
⇒ (λb)[e′] e ⊢ a2

co
⇒ v2 v2.e

′ ⊢ b
co
⇒ v

e ⊢ a1 a2

co
⇒ v

We will not formally study these relations, but note that they enjoy the same
properties as the environment-less relations studied in section 3.

27

9.2 The abstract machine and its compilation scheme

The abstract machine we use as target of compilation follows the call-by-value
strategy and the “eval-apply” model [22]. It is close in spirit to the SECD,
CAM, FAM and CEK machines [23,24,25,26]. The machine state has three
components: a code sequence, a stack and an environment. The syntax for
these components is as follows.

Instructions: I ::= Var(n) push the value of variable number n
| Const(c) push the constant c
| Clos(C) push a closure for code C
| App perform a function application
| Ret return to calling function

Code: C ::= ǫ | I, C instruction sequences
Values: V ::= c constant values

| C[E] code closures
Environments: E ::= ǫ | V.E
Stacks: S ::= ǫ empty stack

| V.S pushing a value
| (C, E).S pushing a return frame

The behaviour of the abstract machine is defined as a transition relation
C; S; E → C ′; S ′; E ′ that relates the machine states (C; S; E) and (C ′; S ′; E ′)
respectively before and after the execution of the first instruction of the
code C. The transitions are as follows.

State before transition State after transition

Code Stack Env. Code Stack Env.

Var(n), C S E C Vn.S E if E = V1 . . . Vn . . .

Const(c), C S E C c.S E

Clos(C ′), C S E C C ′[E].S E

App, C V.C ′[E ′].S E C ′ (C, E).S V.E ′

Ret, C V.(C ′, E ′).S E C ′ V.S E ′

28

As in section 4, we consider the following closures of the one-step transition
relation:

C; S; E
∗
→ C ′; S ′; E ′ zero, one or several transitions (inductive)

C; S; E
+
→ C ′; S ′; E ′ one or several transitions (inductive)

C; S; E
∞
→ infinitely many transitions (coinductive)

C; S; E
co∗
→ C ′; S ′; E ′ zero, one, several or infinitely many

transitions (coinductive)

The compilation scheme from terms to code is straightforward:

[[xn]] = Var(n)

[[c]] = Const(c)

[[λa]] = Clos([[a]], Ret)

[[a1 a2]] = [[a1]], [[a2]], App

The intended effect for the code [[a]] is to evaluate the term a and push its
value at the top of the machine stack, leaving the rest of the stack and the
environment unchanged.

9.3 Proofs of semantic preservation

We expect the compilation to abstract machine code to preserve the behaviour
of the source term, in the following general sense. Consider a closed term a and
start the abstract machine in the initial state corresponding to a. If a diverges,
the machine should perform infinitely many transitions. If a evaluates to the
value v, the machine should reach a final state corresponding to v in a finite
number of transitions. Here, the initial state corresponding to a is [[a]]; ǫ; ǫ.
The final state corresponding to the result value v is ǫ; [[v]].ǫ; ǫ, that is, the
code has been entirely consumed and the machine value [[v]] corresponding
to the source-level value v is left on top of the stack. The correspondence
between source-level values and machine values, as well as between source-
level environments and machine environments, is defined by:

[[c]] = c [[(λa)[e]]] = ([[a]], Ret)[[[e]]] [[v1 . . . vn]] = [[v1]] . . . [[vn]]

Semantic preservation is easy to show for terminating terms a using the big-
step semantics. We just need to strengthen the statement of preservation so
that it lends itself to induction over the derivation of e ⊢ a⇒ v.

Theorem 51 If e ⊢ a ⇒ v, then ([[a]], C); S; [[e]]
+
→ C; [[v]].S; [[e]] for all

codes C and stacks S.

29

Proof. By induction on the derivation of e ⊢ a⇒ v. The base cases where a
is a variable, a constant or an abstraction are straightforward. The inductive
case is a = a1 a2 with e ⊢ a1 ⇒ (λb)[e′] and e ⊢ a2 ⇒ v2 and v2.e

′ ⊢ b ⇒ v.
We build the following sequence of machine transitions:

([[a1]], [[a2]], App, C); S; [[e]]
(induction hypothesis applied to the evaluation of a1)

+
→ ([[a2]], App, C); [[(λb)[e′]]].S; [[e]]

(induction hypothesis applied to the evaluation of a2)
+
→ (App, C); [[v2]].[[(λb)[e′]]].S; [[e]]

(App transition, since [[(λb)[e′]]] = ([[b]], Ret)[[[e′]]])
→ ([[b]], Ret); (C, [[e]]).S; [[v2]].[[e

′]]
(induction hypothesis applied to the evaluation of b)

+
→ Ret; [[v]].(C, [[e]]).S; [[v2]].[[e

′]]
(Ret transition)

→ C; [[v]].S; [[e]]

The result follows by transitivity of
+
→. 2

It is impossible, however, to prove semantic preservation for diverging terms
using only the standard big-step semantics, since it does not describe diver-
gence. This led several authors to prove semantic preservation for compilation
to abstract machines using small-step semantics with explicit substitutions
[27,7]. To this end, they prove a simulation result between machine tran-
sitions and source-level reductions: every machine transition corresponds to
zero or one source-level reductions. To make the correspondence precise, they
need to define a decompilation relation that maps intermediate machine states
back to source-level terms. However, decompilation relations are difficult to
define, especially for optimizing compilation schemes; see [28, section 4.3] for
an example.

The coinductive big-step semantics studied in this article provide a simpler
way to prove semantic preservation for non-terminating terms. Namely, the
following two theorems hold, showing that compilation preserves divergence
and coevaluation as characterized by the

∞
⇒ and

co
⇒ predicates.

Theorem 52 If e ⊢ a
∞
⇒ , then ([[a]], C); S; [[e]]

∞
→ for all codes C and

stacks S.

Theorem 53 If e ⊢ a
co
⇒ v, then ([[a]], C); S; [[e]]

co∗
→ C; [[v]].S; [[e]] for all

codes C and stacks S.

Both theorems cannot be proved directly by coinduction and case analysis
over a. The problem is in the application case a = a1 a2, where the code
component of the initial machine state is of the form [[a1]], [[a2]], App, C. It is

30

not possible to invoke the coinduction hypothesis to reason over the execu-
tion of [[a1]], because this use of the coinduction hypothesis is not guarded
by an inference rule for the

∞
→ relation, or in other terms because no ma-

chine instruction is executed before invoking the hypothesis. In the approach
to coinduction based on systems of equations presented in section 2.2, the
problem manifests itself as a non-guarded equation xj = xj′ when j is the
judgment ([[a1 a2]], C); S; [[e]]

∞
→ associated with the state e ⊢ a1 a2

co
⇒ v,

C and S, while j′ is the equivalent judgment ([[a1]], ([[a2]], App, C)); S; [[e]]
∞
→

associated with the state e ⊢ a1

co
⇒ v, ([[a2]], App, C) and S.

There are two ways to address this issue. The first is to modify the compilation
scheme for applications, in order to insert a “no operation” instruction in
front of the generated sequence: [[a1 a2]] = Nop, [[a1]], [[a2]]. The Nop operation
has the obvious machine transition (Nop, C); S; E → C; S; E. With this
modification, the coinductive proof for lemma 52 performs a Nop transition
before invoking the coinduction hypothesis to deal with the evaluation of [[a1]].
This makes the coinductive proof properly guarded.

Of course, it is inelegant to pepper the generated code with Nop instructions
just to make one proof go through. We therefore use an alternate approach
where the compilation scheme for applications is unchanged, but we exploit
the fact that the number of such recursive calls that do not perform a ma-
chine transition is necessarily finite, because our term algebra is finite. More
precisely, this number is the left application height ‖a‖ of the term a being
compiled, where ‖a‖ is defined by

‖a1 a2‖ = ‖a1‖+ 1 ‖x‖ = ‖c‖ = ‖λa‖ = 0

To prove theorem 52, we follow the approach described by Bertot [29] in his
coinductive presentation and proof of Eratosthenes’ sieve algorithm. We first
define the coinductive relation

∞
→
n

where n is a nonnegative integer:

C; S; E
∞
→
n

C; S; E
∞
→
n+1

(
∞
→
n

-sleep)

C; S; E
+
→ C ′; S ′; E ′ C ′; S ′; E ′ ∞

→
n′

C; S; E
∞
→
n

(
∞
→
n

-perform)

The relation
∞
→
n

is similar to
∞
→, but allows the abstract machine to remain in

the same state, not performing any transitions, for at most n steps (rule
∞
→
n

-

sleep). If n drops to zero, one or several transitions must be performed (rule

31

∞
→
n

-perform). In exchange for performing at least one transition, the count

n can be reset to any value n′, allowing an arbitrary but finite number of
non-transitions to be taken afterwards.

A proof by coinduction shows the following variant of theorem 52, using
∞
→
n

with n equal to the left application height of the term under consideration.

Lemma 54 If e ⊢ a
∞
⇒ , then ([[a]], C); S; [[e]]

∞
→
‖a‖

Proof. By coinduction and case analysis on the last rule used to derive e ⊢
a

∞
⇒ . In the first case, a = a1 a2 and e ⊢ a1

∞
⇒ . Applying the coinduction

hypothesis, we obtain ([[a1]], [[a2]], App, C); S; [[e]]
∞
→
‖a1‖

and the result follows by

one application of rule (
∞
→
n

-sleep), noticing that ‖a‖ = ‖a1‖+ 1.

In the second case, a = a1 a2, e ⊢ a1 ⇒ v and e ⊢ a2

∞
⇒ . By lemma 51,

we obtain ([[a1]], [[a2]], App, C); S; [[e]]
+
→ ([[a2]], App, C); [[v1]].S; [[e]]. Using the

coinduction hypothesis, we also have ([[a2]], App, C); [[v1]].S; [[e]]
∞
→
‖a2‖

. The result

follows by rule (
∞
→
n

-perform). The third case of divergence is similar and we

omit it. 2

We then show the following implication between
∞
→
n

and
∞
→.

Lemma 55 If C; S; E
∞
→
n

, then C; S; E
∞
→ .

Proof. We first show that C; S; E
∞
→
n

implies the existence of n′, C ′, S ′ and

E ′ such that C; S; E → C ′; S ′; E ′ and C ′; S ′; E ′ ∞
→
n′

by Peano induction over n.

The result then follows by coinduction. 2

Theorem 52 then follows from lemmas 54 and 55. We omit the proof of theo-
rem 53, which is similar.

10 Related work

There are few instances of coinductive definitions and proofs for big-step se-
mantics in the literature. Cousot and Cousot [8] proposed the coinductive
big-step characterization of divergence that we use in this article and studied
its applicability for abstract interpretation, as pursued later by Schmidt [30].
This approach was applied to call-by-name λ-calculus by Hughes and Moran
[31] and by Crole [32], and to call-by-value λ-calculus by Grall [16].

Following up on [8], Cousot and Cousot recently introduced bi-inductive se-

32

mantics and applied it to the call-by-value λ-calculus [33]. Bi-inductive seman-
tics are defined in terms of smallest fixed points with respect to a nonstandard
ordering. This approach captures both terminating and diverging executions
using a common set of inference rules. For instance, in the case of the call-by-
value λ-calculus, a single inference rule replaces the two rules (⇒-app) and
(
∞
⇒-app-f) of our presentation. It is not entirely clear yet how the bi-inductive

approach could be mechanized in a proof assistant. Another difference with
the present article is that Cousot and Cousot [33] start from a big-step trace
semantics, then systematically derive the other semantics (big-step and small-
step) by abstraction: this is an interesting alternative to our approach that
separately deals with each semantics.

Gunter and Rémy [34] and Stoughton [35] have the same initial goal as us,
namely describe both terminating and diverging computations with big-step
semantics, but use increasing sequences of finite, incomplete derivations to do
so, instead of infinite derivations. We do not know yet how their approach
relates to our

∞
⇒ and

co
⇒ relations.

Milner and Tofte [11] and later Leroy and Rouaix [36] used coinduction in the
context of big-step semantics for functional and imperative languages, not to
describe diverging evaluations, but to capture safety properties over possibly
cyclic memory stores.

Of course, coinductive techniques are routinely used in the context of small-
step semantics, especially for the labeled transition systems arising from pro-
cess calculi. The flavours of coinduction used there, especially proofs by bisim-
ulations, are quite different from the present work. These techniques closely
resemble the way coinduction can be used for defining the contextual equiva-
lence in an operational setting [37] and the approximation order in the recur-
sively defined domains involved in denotational semantics [38].

The infinitary λ-calculus [39,40] studies diverging computations from a very
different angle: not only the authors use reduction semantics, but their terms
are also infinite, and they use topological techniques (metrics, convergence,
etc) instead of coinduction.

11 Conclusions

We investigated two coinductive approaches to giving big-step semantics for
non-terminating computations. The first, based on [8] and using separate eval-
uation rules for terminating terms and diverging terms, appears very well-
behaved: it corresponds exactly to finite and infinite reduction sequences, and
lends itself well to type soundness proofs and to compiler correctness proofs.

33

The second approach, consisting in a coinductive interpretation of the stan-
dard evaluation rules, is less satisfactory: while amenable to compiler correct-
ness proofs as well, it captures only a subset of the diverging computations of
interest — and it is not yet clear which subset exactly.

To evaluate the applicability of the coinductive techniques presented here
to languages other than small functional languages, we developed coinduc-
tive big-step semantics for three low-level imperative languages used in the
Compcert verified compiler [41]: the source language Clight (a large subset
of the C language) and the two intermediate languages C#minor and Cmi-
nor. These semantics characterize non-terminating programs and the traces
of input/output events they perform. These semantics were used to mechan-
ically prove that the first four passes of the Compcert compiler preserve the
semantics of diverging programs. Some of the proofs use techniques similar to
those presented in section 9.3 to combine co-inductive and inductive reason-
ing. The results of this experiment are encouraging. In particular, the addition
of coinductive rules for divergence increases the size of the semantics by 40%
only.

Acknowledgments

Andrzej Filinski disproved the conjecture from section 8.2 very shortly after
it was stated. We thank Eduardo Bonelli, the anonymous reviewers for the
ESOP 2006 conference, the participants of the 22nd meeting of IFIP Working
Group 2.8 (Functional Programming), and the anonymous reviewers of this
special issue for their feedback.

References

[1] G. Kahn, Natural semantics, in: STACS 87, 4th Annual Symposium on
Theoretical Aspects of Computer Science, Vol. 247 of Lecture Notes in
Computer Science, Springer, 1987, pp. 22–39.

[2] G. D. Plotkin, A structural approach to operational semantics, Tech. Rep.
DAIMI FN-19, Aarhus University (1981).

[3] G. D. Plotkin, A structural approach to operational semantics, Journal of Logic
and Algebraic Programming 60-61 (2004) 17–139.

[4] X. Leroy, Formal certification of a compiler back-end, or: programming a
compiler with a proof assistant, in: 33rd symposium Principles of Programming
Languages, ACM Press, 2006, pp. 42–54.

34

[5] G. Klein, T. Nipkow, A machine-checked model for a Java-like language, virtual
machine and compiler, ACM Transactions on Programming Languages and
Systems 28 (4) (2006) 619–695.

[6] M. Strecker, Compiler verification for C0, Tech. rep., Université Paul Sabatier,
Toulouse (April 2005).

[7] T. Hardin, L. Maranget, B. Pagano, Functional runtimes within the lambda-
sigma calculus, Journal of Functional Programming 8 (2) (1998) 131–176.

[8] P. Cousot, R. Cousot, Inductive definitions, semantics and abstract
interpretation, in: 19th symposium Principles of Programming Languages, ACM
Press, 1992, pp. 83–94.

[9] Coq development team, The Coq proof assistant, software and documentation
available from http://coq.inria.fr/ (1989–2008).

[10] Y. Bertot, P. Castéran, Interactive Theorem Proving and Program Development
– Coq’Art: The Calculus of Inductive Constructions, EATCS Texts in
Theoretical Computer Science, Springer, 2004.

[11] R. Milner, M. Tofte, Co-induction in relational semantics, Theoretical
Computer Science 87 (1991) 209–220.

[12] V. Gapeyev, M. Levin, B. Pierce, Recursive subtyping revealed, Journal of
Functional Programming 12 (6) (2003) 511–548.

[13] P. Aczel, An introduction to inductive definitions, in: J. Barwise (Ed.),
Handbook of Mathematical Logic, Vol. 90 of Studies in Logics and the
Foundations of Mathematics, North-Holland, 1977, pp. 739–782.

[14] A. Tarski, A lattice-theoretical fixpoint theorem and its applications, Pacific
Journal of Mathematics 5 (2) (1955) 285–309.

[15] B. Courcelle, Arbres infinis et systèmes d’équations, R.A.I.R.O. Informatique
Théorique 13 (1979) 31–48.

[16] H. Grall, Deux critères de sécurité pour l’exécution de code mobile, Ph.D. thesis,
École Nationale des Ponts et Chaussées (Dec. 2003).

[17] L. Simon, A. Mallya, A. Bansal, G. Gupta, Coinductive logic programming, in:
Logic Programming, 22nd International Conference, ICLP 2006, Vol. 4079 of
Lecture Notes in Computer Science, Springer, 2006, pp. 330–345.

[18] E. Giménez, Codifying guarded definitions with recursive schemes, in: Types for
Proofs and Programs. International Workshop TYPES ’94, Vol. 996 of Lecture
Notes in Computer Science, Springer, 1994, pp. 39–59.

[19] X. Leroy, H. Grall, Coinductive big-step operational semantics – the Coq
development, available from http://gallium.inria.fr/~xleroy/coindsem

(Feb. 2007).

[20] A. K. Wright, M. Felleisen, A syntactic approach to type soundness, Information
and Computation 115 (1) (1994) 38–94.

35

[21] M. Tofte, Operational semantics and polymorphic type inference, PhD thesis
CST-52-88, University of Edinburgh (1988).

[22] S. Marlow, S. Peyton Jones, Making a fast curry: push/enter vs. eval/apply
for higher-order languages, Journal of Functional Programming 16 (4–5) (2006)
375–414.

[23] P. J. Landin, The mechanical evaluation of expressions, The Computer Journal
6 (1964) 308–320.

[24] G. Cousineau, P.-L. Curien, M. Mauny, The categorical abstract machine,
Science of Computer Programming 8 (2) (1987) 173–202.

[25] L. Cardelli, The functional abstract machine, Polymorphism Newsletter 1 (1).

[26] M. Felleisen, D. P. Friedman, Control operators, the SECD machine and the λ-
calculus, in: Formal Description of Programming Concepts III, North-Holland,
1986, pp. 131–141.

[27] M. Rittri, Proving the correctness of a virtual machine by a bisimulation,
Licentiate thesis, Göteborg University (1988).

[28] B. Grégoire, Compilation des termes de preuves: un (nouveau) mariage entre
Coq et OCaml, Ph.D. thesis, University Paris 7 (2003).

[29] Y. Bertot, Filters on coinductive streams, an application to Eratosthenes’ sieve,
in: Typed Lambda Calculi and Applications (TLCA’05), Vol. 3461 of Lecture
Notes in Computer Science, Springer, 2005, pp. 102–115.

[30] D. A. Schmidt, Trace-based abstract interpretation of operational semantics,
Lisp and Symbolic Computation 10 (3) (1998) 237–271.

[31] J. Hughes, A. Moran, Making choices lazily, in: Functional Programming
Languages and Computer Architecture 1995, ACM Press, 1995, pp. 108–119.

[32] R. L. Crole, Lectures on [Co]Induction and [Co]Algebras, Tech. Rep. 1998/12,
Department of Mathematics and Computer Science, University of Leicester
(1998).

[33] P. Cousot, R. Cousot, Bi-inductive structural semantics (extended abstract), in:
Workshop on Structural Operational Semantics 2007, Vol. 192 (1) of Electronic
Notes in Theoretical Computer Science, Elsevier, 2007, pp. 29–44.

[34] C. A. Gunter, D. Rémy, A proof-theoretic assessment of runtime type errors,
Research Report 11261-921230-43TM, AT&T Bell Laboratories (1993).

[35] A. Stoughton, An operational semantics framework supporting the incremental
construction of derivation trees, in: Second Workshop on Higher-Order
Operational Techniques in Semantics (HOOTS II), Vol. 10 of Electronic Notes
in Theoretical Computer Science, Elsevier, 1998, pp. 122–133.

[36] X. Leroy, F. Rouaix, Security properties of typed applets, in: J. Vitek,
C. Jensen (Eds.), Secure Internet Programming – Security issues for Mobile and
Distributed Objects, Vol. 1603 of Lecture Notes in Computer Science, Springer,
1999, pp. 147–182.

36

[37] A. M. Pitts, Operationally-based theories of program equivalence, in: P. Dybjer,
A. M. Pitts (Eds.), Semantics and Logics of Computation, Publications of the
Newton Institute, Cambridge University Press, 1997, pp. 241–298.

[38] A. M. Pitts, A co-induction principle for recursively defined domains,
Theoretical Computer Science 124 (2) (1994) 195–219.

[39] R. Kennaway, J. W. Klop, M. R. Sleep, F.-J. de Vries, Infinitary lambda
calculus., Theoretical Computer Science 175 (1) (1997) 93–125.

[40] A. Berarducci, M. Dezani-Ciancaglini, Infinite lambda-calculus and types,
Theoretical Computer Science 212 (1-2) (1999) 29–75.

[41] X. Leroy, The Compcert verified compiler: commented Coq development,
Available at http://compcert.inria.fr/doc/ (Mar. 2008).

37

