108 research outputs found

    Scene relighting and editing for improved object insertion

    Get PDF
    Abstract. The goal of this thesis is to develop a scene relighting and object insertion pipeline using Neural Radiance Fields (NeRF) to incorporate one or more objects into an outdoor environment scene. The output is a 3D mesh that embodies decomposed bidirectional reflectance distribution function (BRDF) characteristics, which interact with varying light source positions and strengths. To achieve this objective, the thesis is divided into two sub-tasks. The first sub-task involves extracting visual information about the outdoor environment from a sparse set of corresponding images. A neural representation is constructed, providing a comprehensive understanding of the constituent elements, such as materials, geometry, illumination, and shadows. The second sub-task involves generating a neural representation of the inserted object using either real-world images or synthetic data. To accomplish these objectives, the thesis draws on existing literature in computer vision and computer graphics. Different approaches are assessed to identify their advantages and disadvantages, with detailed descriptions of the chosen techniques provided, highlighting their functioning to produce the ultimate outcome. Overall, this thesis aims to provide a framework for compositing and relighting that is grounded in NeRF and allows for the seamless integration of objects into outdoor environments. The outcome of this work has potential applications in various domains, such as visual effects, gaming, and virtual reality

    Free-viewpoint Indoor Neural Relighting from Multi-view Stereo

    Get PDF
    We introduce a neural relighting algorithm for captured indoors scenes, that allows interactive free-viewpoint navigation. Our method allows illumination to be changed synthetically, while coherently rendering cast shadows and complex glossy materials. We start with multiple images of the scene and a 3D mesh obtained by multi-view stereo (MVS) reconstruction. We assume that lighting is well-explained as the sum of a view-independent diffuse component and a view-dependent glossy term concentrated around the mirror reflection direction. We design a convolutional network around input feature maps that facilitate learning of an implicit representation of scene materials and illumination, enabling both relighting and free-viewpoint navigation. We generate these input maps by exploiting the best elements of both image-based and physically-based rendering. We sample the input views to estimate diffuse scene irradiance, and compute the new illumination caused by user-specified light sources using path tracing. To facilitate the network's understanding of materials and synthesize plausible glossy reflections, we reproject the views and compute mirror images. We train the network on a synthetic dataset where each scene is also reconstructed with MVS. We show results of our algorithm relighting real indoor scenes and performing free-viewpoint navigation with complex and realistic glossy reflections, which so far remained out of reach for view-synthesis techniques

    Neural Free-Viewpoint Relighting for Glossy Indirect Illumination

    Full text link
    Precomputed Radiance Transfer (PRT) remains an attractive solution for real-time rendering of complex light transport effects such as glossy global illumination. After precomputation, we can relight the scene with new environment maps while changing viewpoint in real-time. However, practical PRT methods are usually limited to low-frequency spherical harmonic lighting. All-frequency techniques using wavelets are promising but have so far had little practical impact. The curse of dimensionality and much higher data requirements have typically limited them to relighting with fixed view or only direct lighting with triple product integrals. In this paper, we demonstrate a hybrid neural-wavelet PRT solution to high-frequency indirect illumination, including glossy reflection, for relighting with changing view. Specifically, we seek to represent the light transport function in the Haar wavelet basis. For global illumination, we learn the wavelet transport using a small multi-layer perceptron (MLP) applied to a feature field as a function of spatial location and wavelet index, with reflected direction and material parameters being other MLP inputs. We optimize/learn the feature field (compactly represented by a tensor decomposition) and MLP parameters from multiple images of the scene under different lighting and viewing conditions. We demonstrate real-time (512 x 512 at 24 FPS, 800 x 600 at 13 FPS) precomputed rendering of challenging scenes involving view-dependent reflections and even caustics.Comment: 13 pages, 9 figures, to appear in cgf proceedings of egsr 202

    The delta radiance field

    Get PDF
    The wide availability of mobile devices capable of computing high fidelity graphics in real-time has sparked a renewed interest in the development and research of Augmented Reality applications. Within the large spectrum of mixed real and virtual elements one specific area is dedicated to produce realistic augmentations with the aim of presenting virtual copies of real existing objects or soon to be produced products. Surprisingly though, the current state of this area leaves much to be desired: Augmenting objects in current systems are often presented without any reconstructed lighting whatsoever and therefore transfer an impression of being glued over a camera image rather than augmenting reality. In light of the advances in the movie industry, which has handled cases of mixed realities from one extreme end to another, it is a legitimate question to ask why such advances did not fully reflect onto Augmented Reality simulations as well. Generally understood to be real-time applications which reconstruct the spatial relation of real world elements and virtual objects, Augmented Reality has to deal with several uncertainties. Among them, unknown illumination and real scene conditions are the most important. Any kind of reconstruction of real world properties in an ad-hoc manner must likewise be incorporated into an algorithm responsible for shading virtual objects and transferring virtual light to real surfaces in an ad-hoc fashion. The immersiveness of an Augmented Reality simulation is, next to its realism and accuracy, primarily dependent on its responsiveness. Any computation affecting the final image must be computed in real-time. This condition rules out many of the methods used for movie production. The remaining real-time options face three problems: The shading of virtual surfaces under real natural illumination, the relighting of real surfaces according to the change in illumination due to the introduction of a new object into a scene, and the believable global interaction of real and virtual light. This dissertation presents contributions to answer the problems at hand. Current state-of-the-art methods build on Differential Rendering techniques to fuse global illumination algorithms into AR environments. This simple approach has a computationally costly downside, which limits the options for believable light transfer even further. This dissertation explores new shading and relighting algorithms built on a mathematical foundation replacing Differential Rendering. The result not only presents a more efficient competitor to the current state-of-the-art in global illumination relighting, but also advances the field with the ability to simulate effects which have not been demonstrated by contemporary publications until now

    Multi-View Intrinsic Images of Outdoors Scenes with an Application to Relighting

    Get PDF
    International audienceInria We introduce a method to compute intrinsic images for a multi-view set of outdoor photos with cast shadows, taken under the same lighting. We use an automatic 3D reconstruction from these photos and the sun direction as input and decompose each image into reflectance and shading layers, despite the inaccuracies and missing data of the 3D model. Our approach is based on two key ideas. First, we progressively improve the accuracy of the parameters of our image formation model by performing iterative estimation and combining 3D lighting simulation with 2D image optimization methods. Second we use the image formation model to express reflectance as a function of discrete visibility values for shadow and light, which allows us to introduce a robust visibility classifier for pairs of points in a scene. This classifier is used for shadow labelling, allowing us to compute high quality reflectance and shading layers. Our multi-view intrinsic decomposition is of sufficient quality to allow relighting of the input images. We create shadow-caster geometry which preserves shadow silhouettes and using the intrinsic layers, we can perform multi-view relighting with moving cast shadows. We present results on several multi-view datasets, and show how it is now possible to perform image-based rendering with changing illumination conditions

    Real-time Illumination and Visual Coherence for Photorealistic Augmented/Mixed Reality

    Get PDF
    A realistically inserted virtual object in the real-time physical environment is a desirable feature in augmented reality (AR) applications and mixed reality (MR) in general. This problem is considered a vital research area in computer graphics, a field that is experiencing ongoing discovery. The algorithms and methods used to obtain dynamic and real-time illumination measurement, estimating, and rendering of augmented reality scenes are utilized in many applications to achieve a realistic perception by humans. We cannot deny the powerful impact of the continuous development of computer vision and machine learning techniques accompanied by the original computer graphics and image processing methods to provide a significant range of novel AR/MR techniques. These techniques include methods for light source acquisition through image-based lighting or sampling, registering and estimating the lighting conditions, and composition of global illumination. In this review, we discussed the pipeline stages with the details elaborated about the methods and techniques that contributed to the development of providing a photo-realistic rendering, visual coherence, and interactive real-time illumination results in AR/MR

    Capturing and Reconstructing the Appearance of Complex {3D} Scenes

    No full text
    In this thesis, we present our research on new acquisition methods for reflectance properties of real-world objects. Specifically, we first show a method for acquiring spatially varying densities in volumes of translucent, gaseous material with just a single image. This makes the method applicable to constantly changing phenomena like smoke without the use of high-speed camera equipment. Furthermore, we investigated how two well known techniques -- synthetic aperture confocal imaging and algorithmic descattering -- can be combined to help looking through a translucent medium like fog or murky water. We show that the depth at which we can still see an object embedded in the scattering medium is increased. In a related publication, we show how polarization and descattering based on phase-shifting can be combined for efficient 3D~scanning of translucent objects. Normally, subsurface scattering hinders the range estimation by offsetting the peak intensity beneath the surface away from the point of incidence. With our method, the subsurface scattering is reduced to a minimum and therefore reliable 3D~scanning is made possible. Finally, we present a system which recovers surface geometry, reflectance properties of opaque objects, and prevailing lighting conditions at the time of image capture from just a small number of input photographs. While there exist previous approaches to recover reflectance properties, our system is the first to work on images taken under almost arbitrary, changing lighting conditions. This enables us to use images we took from a community photo collection website

    Illumination Invariant Outdoor Perception

    Get PDF
    This thesis proposes the use of a multi-modal sensor approach to achieve illumination invariance in images taken in outdoor environments. The approach is automatic in that it does not require user input for initialisation, and is not reliant on the input of atmospheric radiative transfer models. While it is common to use pixel colour and intensity as features in high level vision algorithms, their performance is severely limited by the uncontrolled lighting and complex geometric structure of outdoor scenes. The appearance of a material is dependent on the incident illumination, which can vary due to spatial and temporal factors. This variability causes identical materials to appear differently depending on their location. Illumination invariant representations of the scene can potentially improve the performance of high level vision algorithms as they allow discrimination between pixels to occur based on the underlying material characteristics. The proposed approach to obtaining illumination invariance utilises fused image and geometric data. An approximation of the outdoor illumination is used to derive per-pixel scaling factors. This has the effect of relighting the entire scene using a single illuminant that is common in terms of colour and intensity for all pixels. The approach is extended to radiometric normalisation and the multi-image scenario, meaning that the resultant dataset is both spatially and temporally illumination invariant. The proposed illumination invariance approach is evaluated on several datasets and shows that spatial and temporal invariance can be achieved without loss of spectral dimensionality. The system requires very few tuning parameters, meaning that expert knowledge is not required in order for its operation. This has potential implications for robotics and remote sensing applications where perception systems play an integral role in developing a rich understanding of the scene

    Depicting shape, materials and lighting: observation, formulation and implementation of artistic principles

    Get PDF
    The appearance of a scene results from complex interactions between the geometry, materials and lights that compose that scene. While Computer Graphics algorithms are now capable of simulating these interactions, it comes at the cost of tedious 3D modeling of a virtual scene, which only well-trained artists can do. In contrast, photographs allow the instantaneous capture of a scene, but shape, materials and lighting are difficult to manipulate directly in the image. Drawings can also suggest real or imaginary scenes with a few lines but creating convincing illustrations requires significant artistic skills.The goal of my research is to facilitate the creation and manipulation of shape, materials and lighting in drawings and photographs, for laymen and professional artists alike. This document first presents my work on computer-assisted drawing where I proposed algorithms to automate the depiction of materials in line drawings as well as to estimate a 3D model from design sketches. I also worked on user interfaces to assist beginners in learning traditional drawing techniques. Through the development of these projects I have formalized a general methodology to observe how artists work, deduce artistic principles from these observations, and implement these principles as algorithms. In the second part of this document I present my work on relighting multiple photographs of a scene, for which we first need to estimate the materials and lighting that compose that scene. The main novelty of our approach is to combine image analysis and lighting simulation in order to reason about the scene despite the lack of an accurate 3D model
    • …
    corecore