9 research outputs found

    Cognitive visual tracking and camera control

    Get PDF
    Cognitive visual tracking is the process of observing and understanding the behaviour of a moving person. This paper presents an efficient solution to extract, in real-time, high-level information from an observed scene, and generate the most appropriate commands for a set of pan-tilt-zoom (PTZ) cameras in a surveillance scenario. Such a high-level feedback control loop, which is the main novelty of our work, will serve to reduce uncertainties in the observed scene and to maximize the amount of information extracted from it. It is implemented with a distributed camera system using SQL tables as virtual communication channels, and Situation Graph Trees for knowledge representation, inference and high-level camera control. A set of experiments in a surveillance scenario show the effectiveness of our approach and its potential for real applications of cognitive vision

    Robot control based on qualitative representation of human trajectories

    Get PDF
    A major challenge for future social robots is the high-level interpretation of human motion, and the consequent generation of appropriate robot actions. This paper describes some fundamental steps towards the real-time implementation of a system that allows a mobile robot to transform quantitative information about human trajectories (i.e. coordinates and speed) into qualitative concepts, and from these to generate appropriate control commands. The problem is formulated using a simple version of qualitative trajectory calculus, then solved using an inference engine based on fuzzy temporal logic and situation graph trees. Preliminary results are discussed and future directions of the current research are drawn

    From sequence to trajectory and vice versa: solving the inverse QTC problem and coping with real-world trajectories

    Get PDF
    Spatial interactions between agents carry information of high value to human observers, as exemplified by the high-level interpretations that humans make when watching the Heider and Simmel movie, or other such videos which just contain motions of simple objects, such as points, lines and triangles. However, not all the information contained in a pair of continuous trajectories is important; and thus the need for qualitative descriptions of interaction trajectories arises. Towards that purpose, Qualitative Trajectory Calculus (QTC) has been proposed in (Van de Weghe, 2004). However, the original definition of QTC handles uncorrupted continuous-time trajectories, while real-world signals are noisy and sampled in discrete-time. Also, although QTC presents a method for transforming trajectories to qualitative descriptions, the inverse problem has not yet been studied. Thus, in this paper, after discussing several aspects of the transition from ideal QTC to discrete-time noisy QTC, we introduce a novel algorithm for solving the QTC inverse problem; i.e. transforming qualitative descriptions to archetypal trajectories that satisfy them. Both of these problems are particularly important for the successful application of qualitative trajectory calculus to Human-Robot Interaction

    The Robot@Home2 dataset: A new release with improved usability tools

    Get PDF
    Released in 2017, Robot@Home is a dataset captured by a mobile robot during indoor navigation sessions in apartments. This paper presents Robot@Home2, an enhanced version of the Robot@Home dataset, aimed at improving usability and functionality for developing and testing mobile robotics and computer vision algorithms. Robot@Home2 consists of three main components. Firstly, a relational database that states the contextual information and data links, compatible with Standard Query Language. Secondly,a Python package for managing the database, including downloading, querying, and interfacing functions. Finally, learning resources in the form of Jupyter notebooks, runnable locally or on the Google Colab platform, enabling users to explore the dataset without local installations. These freely available tools are expected to enhance the ease of exploiting the Robot@Home dataset and accelerate research in computer vision and robotics.Partial funding for open access charges: Universidad de Málaga / CBU

    Interaction Analysis in Smart Work Environments through Fuzzy Temporal Logic

    Get PDF
    Interaction analysis is defined as the generation of situation descriptions from machine perception. World models created through machine perception are used by a reasoning engine based on fuzzy metric temporal logic and situation graph trees, with optional parameter learning and clustering as preprocessing, to deduce knowledge about the observed scene. The system is evaluated in a case study on automatic behavior report generation for staff training purposes in crisis response control rooms

    Interaction Analysis in Smart Work Environments through Fuzzy Temporal Logic

    Get PDF
    Interaction analysis is defined as the generation of situation descriptions from machine perception. World models created through machine perception are used by a reasoning engine based on fuzzy metric temporal logic and situation graph trees, with optional parameter learning and clustering as preprocessing, to deduce knowledge about the observed scene. The system is evaluated in a case study on automatic behavior report generation for staff training purposes in crisis response control rooms

    Begriffliche Situationsanalyse aus Videodaten bei unvollständiger und fehlerhafter Information

    Get PDF
    Diese Arbeit beschäftigt sich mit der automatischen Erkennung komplexer Situationen in Bildfolgen im Videoüberwachungskontext. Bei der Behandlung von Daten aus natürlichen Umgebungen ergeben sich Schwierigkeiten. Diese Arbeit erweitert dazu den verwendeten Formalismus um die Behandlung von Unschärfe, fehlender Information und Komplexität, zeigt die Robustheit der Situationserkennung bei natürlichen Szenarien und stellt die generische Anwendbarkeit auch über Diskursbereichsgrenzen hinaus heraus

    Cognitive visual tracking and camera control

    No full text
    Cognitive visual tracking is the process of observing and understanding the behavior of a moving person. This paper presents an efficient solution to extract, in real-time, high-level information from an observed scene, and generate the most appropriate commands for a set of pan-tilt-zoom (PTZ) cameras in a surveillance scenario. Such a high-level feedback control loop, which is the main novelty of our work, will serve to reduce uncertainties in the observed scene and to maximize the amount of information extracted from it. It is implemented with a distributed camera system using SQL tables as virtual communication channels, and Situation Graph Trees for knowledge representation, inference and high-level camera control. A set of experiments in a surveillance scenario show the effectiveness of our approach and its potential for real applications of cognitive vision. © 2011 Elsevier Inc. All rights reserved
    corecore