116 research outputs found

    Cross-Layer Optimization and Dynamic Spectrum Access for Distributed Wireless Networks

    Get PDF
    We proposed a novel spectrum allocation approach for distributed cognitive radio networks. Cognitive radio systems are capable of sensing the prevailing environmental conditions and automatically adapting its operating parameters in order to enhance system and network performance. Using this technology, our proposed approach optimizes each individual wireless device and its single-hop communication links using the partial operating parameter and environmental information from adjacent devices within the wireless network. Assuming stationary wireless nodes, all wireless communication links employ non-contiguous orthogonal frequency division multiplexing (NC-OFDM) in order to enable dynamic spectrum access (DSA). The proposed approach will attempt to simultaneously minimize the bit error rate, minimize out-of-band (OOB) interference, and maximize overall throughput using a multi-objective fitness function. Without loss in generality, genetic algorithms are employed to perform the actual optimization. Two generic optimization approaches, subcarrier-wise approach and block-wise approach, were proposed to access spectrum. We also proposed and analyzed several approaches implemented via genetic algorithms (GA), such as quantizing variables, using adaptive variable ranges, and Multi-Objective Genetic Algorithms, for increasing the speed and improving the results of combined spectrum utilization/cross-layer optimization approaches proposed, together with several assisting processes and modifications devised to make the optimization to improve efficiency and execution time

    FPGA based technical solutions for high throughput data processing and encryption for 5G communication: A review

    Get PDF
    The field programmable gate array (FPGA) devices are ideal solutions for high-speed processing applications, given their flexibility, parallel processing capability, and power efficiency. In this review paper, at first, an overview of the key applications of FPGA-based platforms in 5G networks/systems is presented, exploiting the improved performances offered by such devices. FPGA-based implementations of cloud radio access network (C-RAN) accelerators, network function virtualization (NFV)-based network slicers, cognitive radio systems, and multiple input multiple output (MIMO) channel characterizers are the main considered applications that can benefit from the high processing rate, power efficiency and flexibility of FPGAs. Furthermore, the implementations of encryption/decryption algorithms by employing the Xilinx Zynq Ultrascale+MPSoC ZCU102 FPGA platform are discussed, and then we introduce our high-speed and lightweight implementation of the well-known AES-128 algorithm, developed on the same FPGA platform, and comparing it with similar solutions already published in the literature. The comparison results indicate that our AES-128 implementation enables efficient hardware usage for a given data-rate (up to 28.16 Gbit/s), resulting in higher efficiency (8.64 Mbps/slice) than other considered solutions. Finally, the applications of the ZCU102 platform for high-speed processing are explored, such as image and signal processing, visual recognition, and hardware resource management

    DYNAMIC SMART GRID COMMUNICATION PARAMETERS BASED COGNITIVE RADIO NETWORK

    Get PDF
    The demand for more spectrums in a smart grid communication network is a significant challenge in originally scarce spectrum resources. Cognitive radio (CR) is a powerful technique for solving the spectrum scarcity problem by adapting the transmission parameters according to predefined objectives in an active wireless communication network. This paper presents a cognitive radio decision engine that dynamically selects optimal radio transmission parameters for wireless home area networks (HAN) of smart grid applications via the multi-objective differential evolution (MODE) optimization method. The proposed system helps to drive optimal communication parameters to realize power saving, maximum throughput and minimum bit error rate communication modes. A differential evolution algorithm is used to select the optimal transmission parameters for given communication modes based on a fitness function that combines multiple objectives based on appropriate weights. Simulation results highlight the superiority of the proposed system in terms of accuracy and convergence as compared with other evolution algorithms (genetic optimization, particle swarm optimization, and ant colony optimization) for different communication modes (power saving mode, high throughput mode, emergency communication mode, and balanced mode)

    Population adaptation for genetic algorithm-based cognitive radios

    Get PDF
    Abstract — Genetic algorithms are best suited for optimization problems involving large search spaces. The problem space encountered when optimizing the transmission parameters of an agile or cognitive radio for a given wireless environment and set of performance objectives can become prohibitively large due to the high number of parameters and their many possible values. Recent research has demonstrated that genetic algorithms are a viable implementation technique for cognitive radio engines. However, the time required for the genetic algorithms to come to a solution substantionally increases as the system complexity grows. In this paper, we present a population adaptation technique for genetic algorithms that takes advantage of the information from previous cognition cycles in order to reduce the time required to reach an optimal decision. Our simulation results demonstrate that the amount of information from the previous cognition cycle can be determined from the environmental variation factor (EVF), which represents the amount of change in the environment parameters since the previous cognition cycle. I

    Design and Development of HiperLAN/2 WLANs Based Multiwavelet Signals using Adaptive Antennas Algorithm

    Get PDF
    In this paper a simple adaptive antenna idea, consisting of multiple independent omni directional receiver antennas and the ZF (Zero Forcing) algorithm for the adaptive signal processing, is applied to the HiperLAN/2 WLANs based Orthogonal Frequency-Division Multiplexing OFDM, Discrete Multiwavelet Transform (DMWT) and its performance is evaluated at link level. MATLAB modeling demonstrated that the performance with adaptive receiver antennas has a remarkable degradation in the packet (PDU or PSDU) error rate (PER) compared to without using adaptive receiver antennas due to the considerable channel models. With adaptive receiver antennas, Carrier-to-Noise Ratio (C/N) improvement compared to without using adaptive receiver antennas is achieved. The performance of the system can more improve by increasing the number of antennas at receiver. Keywords: Network, HiperLAN/2, Adaptive, OFDM, DMWT, IDMWT

    Green radios systems

    Get PDF
    Essential overview of GRS implementation scenarios. The needs of GRS and some concrete cases exampleope
    corecore