24,993 research outputs found

    The Metaverse: Survey, Trends, Novel Pipeline Ecosystem & Future Directions

    Full text link
    The Metaverse offers a second world beyond reality, where boundaries are non-existent, and possibilities are endless through engagement and immersive experiences using the virtual reality (VR) technology. Many disciplines can benefit from the advancement of the Metaverse when accurately developed, including the fields of technology, gaming, education, art, and culture. Nevertheless, developing the Metaverse environment to its full potential is an ambiguous task that needs proper guidance and directions. Existing surveys on the Metaverse focus only on a specific aspect and discipline of the Metaverse and lack a holistic view of the entire process. To this end, a more holistic, multi-disciplinary, in-depth, and academic and industry-oriented review is required to provide a thorough study of the Metaverse development pipeline. To address these issues, we present in this survey a novel multi-layered pipeline ecosystem composed of (1) the Metaverse computing, networking, communications and hardware infrastructure, (2) environment digitization, and (3) user interactions. For every layer, we discuss the components that detail the steps of its development. Also, for each of these components, we examine the impact of a set of enabling technologies and empowering domains (e.g., Artificial Intelligence, Security & Privacy, Blockchain, Business, Ethics, and Social) on its advancement. In addition, we explain the importance of these technologies to support decentralization, interoperability, user experiences, interactions, and monetization. Our presented study highlights the existing challenges for each component, followed by research directions and potential solutions. To the best of our knowledge, this survey is the most comprehensive and allows users, scholars, and entrepreneurs to get an in-depth understanding of the Metaverse ecosystem to find their opportunities and potentials for contribution

    One Small Step for Generative AI, One Giant Leap for AGI: A Complete Survey on ChatGPT in AIGC Era

    Full text link
    OpenAI has recently released GPT-4 (a.k.a. ChatGPT plus), which is demonstrated to be one small step for generative AI (GAI), but one giant leap for artificial general intelligence (AGI). Since its official release in November 2022, ChatGPT has quickly attracted numerous users with extensive media coverage. Such unprecedented attention has also motivated numerous researchers to investigate ChatGPT from various aspects. According to Google scholar, there are more than 500 articles with ChatGPT in their titles or mentioning it in their abstracts. Considering this, a review is urgently needed, and our work fills this gap. Overall, this work is the first to survey ChatGPT with a comprehensive review of its underlying technology, applications, and challenges. Moreover, we present an outlook on how ChatGPT might evolve to realize general-purpose AIGC (a.k.a. AI-generated content), which will be a significant milestone for the development of AGI.Comment: A Survey on ChatGPT and GPT-4, 29 pages. Feedback is appreciated ([email protected]

    Modularizing and Assembling Cognitive Map Learners via Hyperdimensional Computing

    Full text link
    Biological organisms must learn how to control their own bodies to achieve deliberate locomotion, that is, predict their next body position based on their current position and selected action. Such learning is goal-agnostic with respect to maximizing (minimizing) an environmental reward (penalty) signal. A cognitive map learner (CML) is a collection of three separate yet collaboratively trained artificial neural networks which learn to construct representations for the node states and edge actions of an arbitrary bidirectional graph. In so doing, a CML learns how to traverse the graph nodes; however, the CML does not learn when and why to move from one node state to another. This work created CMLs with node states expressed as high dimensional vectors suitable for hyperdimensional computing (HDC), a form of symbolic machine learning (ML). In so doing, graph knowledge (CML) was segregated from target node selection (HDC), allowing each ML approach to be trained independently. The first approach used HDC to engineer an arbitrary number of hierarchical CMLs, where each graph node state specified target node states for the next lower level CMLs to traverse to. Second, an HDC-based stimulus-response experience model was demonstrated per CML. Because hypervectors may be in superposition with each other, multiple experience models were added together and run in parallel without any retraining. Lastly, a CML-HDC ML unit was modularized: trained with proxy symbols such that arbitrary, application-specific stimulus symbols could be operated upon without retraining either CML or HDC model. These methods provide a template for engineering heterogenous ML systems

    Audio-Visual Automatic Speech Recognition Towards Education for Disabilities

    Get PDF
    Education is a fundamental right that enriches everyone’s life. However, physically challenged people often debar from the general and advanced education system. Audio-Visual Automatic Speech Recognition (AV-ASR) based system is useful to improve the education of physically challenged people by providing hands-free computing. They can communicate to the learning system through AV-ASR. However, it is challenging to trace the lip correctly for visual modality. Thus, this paper addresses the appearance-based visual feature along with the co-occurrence statistical measure for visual speech recognition. Local Binary Pattern-Three Orthogonal Planes (LBP-TOP) and Grey-Level Co-occurrence Matrix (GLCM) is proposed for visual speech information. The experimental results show that the proposed system achieves 76.60 % accuracy for visual speech and 96.00 % accuracy for audio speech recognition

    Arts and humanities shaping the AI future

    Get PDF
    The organisation of this event was motivated by the view there should be more Arts and Humanities (A&H) perspectives, methods and approaches involved in shaping our future relationship with AI technology. Our invitation was sent to the most diverse group we could imagine being interested in this view. Positive responses to the invitation, rich discussions during and critical reflections after the meeting in general confirms this view. Besides facilitating a discussion amongst this group of participants from different disciplines, the event was not outcome-driven. Some information as well as questions were gathered before the meeting. At the meeting, example projects using A&H methods to shape relationships with AI technology were presented as triggers for small group discussions to follow. Note takers collected and summarised discussion highlights at the end of the day, and invitations for post-meeting follow up reflections were sent. This report provides a relatively detailed account of these activities, the conditions and what was shared. Writing this has been useful for considering what might come next, which we are currently reflecting on. Please feel free to contact us with any thoughts or questions

    Supplementary materials for the article: Augmented reality interfaces for pedestrian-vehicle interactions: An online study.

    No full text
    Supplementary data for the paper Tabone, W., Happee, R., García, J., Lee, Y.M., Lupetti, M.L., Merat, N., & De Winter, J.C.F. (2022). Augmented reality interfaces for pedestrian-vehicle interactions: An online study. Data includes  an export of the questionnaire questions, the respondent raw data, all the videos utilised, and a supplementary video demonstrating all the interfaces operating in the VR environment. </p

    Robotic Bronchoscopy: Review of Three Systems

    Get PDF
    Robotic bronchoscopy (RB) has been shown to improve access to smaller and more peripheral lung lesions, while simultaneously staging the mediastinum. Pre-clinical studies demonstrated extremely high diagnostic yields, but real-world RB yields have yet to fully matched up in prospective studies. Despite this, RB technology has rapidly evolved and has great potential for lung-cancer diagnosis and even treatment. In this article, we review the historical and present challenges with RB in order to compare three RB systems

    Semantic Segmentation Enhanced Transformer Model for Human Attention Prediction

    Full text link
    Saliency Prediction aims to predict the attention distribution of human eyes given an RGB image. Most of the recent state-of-the-art methods are based on deep image feature representations from traditional CNNs. However, the traditional convolution could not capture the global features of the image well due to its small kernel size. Besides, the high-level factors which closely correlate to human visual perception, e.g., objects, color, light, etc., are not considered. Inspired by these, we propose a Transformer-based method with semantic segmentation as another learning objective. More global cues of the image could be captured by Transformer. In addition, simultaneously learning the object segmentation simulates the human visual perception, which we would verify in our investigation of human gaze control in cognitive science. We build an extra decoder for the subtask and the multiple tasks share the same Transformer encoder, forcing it to learn from multiple feature spaces. We find in practice simply adding the subtask might confuse the main task learning, hence Multi-task Attention Module is proposed to deal with the feature interaction between the multiple learning targets. Our method achieves competitive performance compared to other state-of-the-art methods

    Can Large Language Models design a Robot?

    Full text link
    Large Language Models can lead researchers in the design of robots.Comment: Under revie
    • …
    corecore