208 research outputs found

    Cooperative Precoding with Limited Feedback for MIMO Interference Channels

    Full text link
    Multi-antenna precoding effectively mitigates the interference in wireless networks. However, the resultant performance gains can be significantly compromised in practice if the precoder design fails to account for the inaccuracy in the channel state information (CSI) feedback. This paper addresses this issue by considering finite-rate CSI feedback from receivers to their interfering transmitters in the two-user multiple-input-multiple-output (MIMO) interference channel, called cooperative feedback, and proposing a systematic method for designing transceivers comprising linear precoders and equalizers. Specifically, each precoder/equalizer is decomposed into inner and outer components for nulling the cross-link interference and achieving array gain, respectively. The inner precoders/equalizers are further optimized to suppress the residual interference resulting from finite-rate cooperative feedback. Further- more, the residual interference is regulated by additional scalar cooperative feedback signals that are designed to control transmission power using different criteria including fixed interference margin and maximum sum throughput. Finally, the required number of cooperative precoder feedback bits is derived for limiting the throughput loss due to precoder quantization.Comment: 23 pages; 5 figures; this work was presented in part at Asilomar 2011 and will appear in IEEE Trans. on Wireless Com

    Cooperative Feedback for MIMO Interference Channels

    Full text link
    Multi-antenna precoding effectively mitigates the interference in wireless networks. However, the precoding efficiency can be significantly degraded by the overhead due to the required feedback of channel state information (CSI). This paper addresses such an issue by proposing a systematic method of designing precoders for the two-user multiple-input-multiple-output (MIMO) interference channels based on finite-rate CSI feedback from receivers to their interferers, called cooperative feedback. Specifically, each precoder is decomposed into inner and outer precoders for nulling interference and improving the data link array gain, respectively. The inner precoders are further designed to suppress residual interference resulting from finite-rate cooperative feedback. To regulate residual interference due to precoder quantization, additional scalar cooperative feedback signals are designed to control transmitters' power using different criteria including applying interference margins, maximizing sum throughput, and minimizing outage probability. Simulation shows that such additional feedback effectively alleviates performance degradation due to quantized precoder feedback.Comment: 5 pages; submitted to IEEE ICC 201

    On the superiority of improper Gaussian signaling in wireless interference MIMO scenarios

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Recent results have elucidated the benefits of using improper Gaussian signaling (IGS) as compared to conventional proper Gaussian signaling (PGS) in terms of achievable rate for interference-limited conditions. This paper exploits majorization theory tools to formally quantify the gains of IGS along with widely linear transceivers for MIMO systems in interferencelimited scenarios. The MIMO point-to-point channel with interference (P2P-I) is analyzed, assuming that received interference can be either proper or improper, and we demonstrate that the use of the optimal IGS when received interference is improper strictly outperforms (in terms of achievable rate and mean square error) the use of the optimal PGS when interference is proper. Then, these results are extended to two practical situations. First, the MIMO Z-interference channel (Z-IC) is investigated, where a trade-off arises: with IGS we could increase the achievable rate of the interfered user while gracefully degrading the rate of the non-interfered user. Second, these concepts are applied to a two-tier heterogeneous cellular network (HCN) where macrocells and smallcells coexist and multiple MIMO Z-IC appear.Peer ReviewedPostprint (author's final draft

    Co-existence Between a Radar System and a Massive MIMO Wireless Cellular System

    Full text link
    In this paper we consider the uplink of a massive MIMO communication system using 5G New Radio-compliant multiple access, which is to co-exist with a radar system using the same frequency band. We propose a system model taking into account the reverberation (clutter) produced by the radar system at the massive MIMO receiver. Then, we propose several linear receivers for uplink data-detection, ranging by the simple channel-matched beamformer to the zero-forcing and linear minimum mean square error receivers for clutter disturbance rejection. Our results show that the clutter may have a strong effect on the performance of the cellular communication system, but the use of large-scale antenna arrays at the base station is key to provide increased robustness against it, at least as far as data-detection is concerned.Comment: To be presented at 2018 IEEE SPAWC, Kalamata, Greece, June 201

    Convergence of millimeter-wave and photonic interconnect systems for very-high-throughput digital communication applications

    Get PDF
    In the past, radio-frequency signals were commonly used for low-speed wireless electronic systems, and optical signals were used for multi-gigabit wired communication systems. However, as the emergence of new millimeter-wave technology introduces multi-gigabit transmission over a wireless radio-frequency channel, the borderline between radio-frequency and optical systems becomes blurred. As a result, there come ample opportunities to design and develop next-generation broadband systems to combine the advantages of these two technologies to overcome inherent limitations of various broadband end-to-end interconnect systems in signal generation, recovery, synchronization, and so on. For the transmission distances of a few centimeters to thousands of kilometers, the convergence of radio-frequency electronics and optics to build radio-over-fiber systems ushers in a new era of research for the upcoming very-high-throughput broadband services. Radio-over-fiber systems are believed to be the most promising solution to the backhaul transmission of the millimeter-wave wireless access networks, especially for the license-free, very-high-throughput 60-GHz band. Adopting radio-over-fiber systems in access or in-building networks can greatly extend the 60-GHz signal reach by using ultra-low loss optical fibers. However, such high frequency is difficult to generate in a straightforward way. In this dissertation, the novel techniques of homodyne and heterodyne optical-carrier suppressions for radio-over-fiber systems are investigated and various system architectures are designed to overcome these limitations of 60-GHz wireless access networks, bringing the popularization of multi-gigabit wireless networks to become closer to the reality. In addition to the advantages for the access networks, extremely high spectral efficiency, which is the most important parameter for long-haul networks, can be achieved by radio-over-fiber signal generation. As a result, the transmission performance of spectrally efficient radio-over-fiber signaling, including orthogonal frequency division multiplexing and orthogonal wavelength division multiplexing, is broadly and deeply investigated. On the other hand, radio-over-fiber is also used for the frequency synchronization that can resolve the performance limitation of wireless interconnect systems. A novel wireless interconnects assisted by radio-over-fiber subsystems is proposed in this dissertation. In conclusion, multiple advantageous facets of radio-over-fiber systems can be found in various levels of end-to-end interconnect systems. The rapid development of radio-over-fiber systems will quickly change the conventional appearance of modern communications.PhDCommittee Chair: Gee-Kung Chang; Committee Member: Bernard Kippelen; Committee Member: Shyh-Chiang Shen; Committee Member: Thomas K. Gaylord; Committee Member: Umakishore Ramachandra

    Improper Gaussian signaling for the K-user MIMO interference channels with hardware impairments

    Get PDF
    This paper investigates the performance of improper Gaussian signaling (IGS) for the K-user multiple-input, multiple-output (MIMO) interference channel (IC) with hardware impairments (HWI). HWI may arise due to imperfections in the devices like I/Q imbalance, phase noise, etc. With I/Q imbalance, the received signal is a widely linear transformation of the transmitted signal and noise. Thus, the effective noise at the receivers becomes improper, which means that its real and imaginary parts are correlated and/or have unequal powers. IGS can improve system performance with improper noise and/or improper interference. In this paper, we study the benefits of IGS for this scenario in terms of two performance metrics: achievable rate and energy efficiency (EE). We consider the rate region, the sum-rate, the EE region and the global EE optimization problems to fully evaluate the IGS performance. To solve these non-convex problems, we employ an optimization framework based on majorization-minimization algorithms, which allow us to obtain a stationary point of any optimization problem in which either the objective function and/or constraints are linear functions of rates. Our numerical results show that IGS can significantly improve the performance of the K-user MIMO IC with HWI and I/Q imbalance, where its benefits increase with the number of users, K, and the imbalance level, and decrease with the number of antennas.The work of Mohammad Soleymani and Peter J. Schreier was supported by the German Research Foundation (DFG) under Grant SCHR 1384/8-1. The work of Ignacio Santamaria was supported in part by Ministerio de Ciencia e Innovacion of Spain, and in part by AEI/FEDER funds of the E.U. under Grants TEC2016-75067-C4-4-R (CARMEN) and PID2019-104958RB-C43 (ADELE)

    Adaptive Nonlinear RF Cancellation for Improved Isolation in Simultaneous Transmit-Receive Systems

    Get PDF
    This paper proposes an active radio frequency (RF) cancellation solution to suppress the transmitter (TX) passband leakage signal in radio transceivers supporting simultaneous transmission and reception. The proposed technique is based on creating an opposite-phase baseband equivalent replica of the TX leakage signal in the transceiver digital front-end through adaptive nonlinear filtering of the known transmit data, to facilitate highly accurate cancellation under a nonlinear TX power amplifier (PA). The active RF cancellation is then accomplished by employing an auxiliary transmitter chain, to generate the actual RF cancellation signal, and combining it with the received signal at the receiver (RX) low noise amplifier (LNA) input. A closed-loop parameter learning approach, based on the decorrelation principle, is also developed to efficiently estimate the coefficients of the nonlinear cancellation filter in the presence of a nonlinear TX PA with memory, finite passive isolation, and a nonlinear RX LNA. The performance of the proposed cancellation technique is evaluated through comprehensive RF measurements adopting commercial LTE-Advanced transceiver hardware components. The results show that the proposed technique can provide an additional suppression of up to 54 dB for the TX passband leakage signal at the RX LNA input, even at considerably high transmit power levels and with wide transmission bandwidths. Such novel cancellation solution can therefore substantially improve the TX-RX isolation, hence reducing the requirements on passive isolation and RF component linearity, as well as increasing the efficiency and flexibility of the RF spectrum use in the emerging 5G radio networks.Comment: accepted to IEE

    Rate splitting in MIMO RIS-assisted systems with hardware impairments and improper signaling

    Get PDF
    In this paper, we propose an optimization framework for rate splitting (RS) techniques in multiple-input multiple-output (MIMO) reconfigurable intelligent surface (RIS)-assisted systems, possibly with I/Q imbalance (IQI). This framework can be applied to any optimization problem in which the objective and/or constraints are linear functions of the rates and/or transmit covariance matrices. Such problems include minimum-weighted and weighted-sum rate maximization, total power minimization for a target rate, minimum-weighted energy efficiency (EE) and global EE maximization. The framework may be applied to any interference-limited system with hardware impairments. For the sake of illustration, we consider a multicell MIMO RIS-assisted broadcast channel (BC) in which the base stations (BSs) and/or the users may suffer from IQI. Since IQI generates improper noise, we consider improper Gaussian signaling (IGS) as an interference-management technique that can additionally compensate for IQI. We show that RS when combined with IGS can substantially improve the spectral and energy efficiency of overloaded networks (i.e., when the number of users per cell is larger than the number of transmit/receive antennas).The work of Ignacio Santamaria has been partly supported by the project ADELE PID2019-104958RB-C43, funded by MCIN/AEI/10.13039/501100011033. The work of Eduard Jorswieck was supported in part by the Federal Ministry of Education and Research (BMBF, Germany) in the program of “Souver¨an. Digital. Vernetzt.” joint project 6G-RIC, project identification number: 16KISK020K and 16KISK031
    corecore