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Abstract—Recent results have elucidated the benefits of using
improper Gaussian signaling (IGS) as compared to conventional
proper Gaussian signaling (PGS) in terms of achievable rate for
interference-limited conditions. This paper exploits majorization
theory tools to formally quantify the gains of IGS along with
widely linear transceivers for MIMO systems in interference-
limited scenarios. The MIMO point-to-point channel with inter-
ference (P2P-I) is analyzed, assuming that received interference
can be either proper or improper, and we demonstrate that the
use of the optimal IGS when received interference is improper
strictly outperforms (in terms of achievable rate and mean square
error) the use of the optimal PGS when interference is proper.
Then, these results are extended to two practical situations. First,
the MIMO Z-interference channel (Z-IC) is investigated, where
a trade-off arises: with IGS we could increase the achievable
rate of the interfered user while gracefully degrading the rate of
the non-interfered user. Second, these concepts are applied to a
two-tier heterogeneous cellular network (HCN) where macrocells
and smallcells coexist and multiple MIMO Z-IC appear.

Index Terms—Improper Gaussian signaling, widely linear
processing, majorization theory, MIMO point-to-point channel
with interference, MIMO Z-interference channel, heterogeneous
cellular networks.

I. INTRODUCTION

In order to address the massive data demand in wireless
networks, today’s most advanced cellular networks (as LTE-
A [1]) consider the densification of the network with base
stations and the spatial re-use of the spectrum [2]. In both cases
interference coordination becomes a key enabler. Interference
management in wireless communication systems is a chal-
lenging task that has been receiving a lot of attention during
many years. It is well known that the statistical characteristics
of the signals affect the maximum achievable rate of the
communication. In this sense, recently, it has been shown
that improper Gaussian signaling (IGS) is able to improve
the achievable rate in interference-limited scenarios [3][4][5].

The key difference between IGS and conventional proper
Gaussian signaling (PGS) is the characterization of the second
order statistics: while PGS is fully specified by the covariance
matrices under the zero-mean assumption, IGS is characterized
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not only by the covariance matrices but also by the pseudo-
covariance matrices, i.e. the improper Gaussian random vector
is correlated with its complex conjugate [6][7].

Conventional PGS has been shown to be optimal in terms
of capacity for the Gaussian multiple-input multiple-output
(MIMO) point-to-point channel (P2P) [8], and also for the
Gaussian MIMO broadcast channel (BC) with dirty paper
coding as the capacity achieving strategy [9][10]. For that
reason, PGS is usually also assumed in multi-user wireless
communications. However, optimality of PGS does not nec-
essarily hold for MIMO BC if transceivers are restricted to
be (widely) linear [11]. It is shown there that capacity gains
can be obtained by employing IGS because, in the absence of
non-linear interference cancellation, the MIMO BC becomes
interference-limited [12]. The same applies in the Gaussian
MIMO interference channel (IC), where IGS has been shown
to: i) obtain larger degrees of freedom, i.e. slope of the sum-
rate as a function of the signal-to-noise ratio (SNR) at the high
SNR regime, [3][5][13] and ii) improve the known achievable
rates when interference is treated as noise under certain MIMO
configurations [4][14][15] and under coexistence of linear
and widely linear transceivers in MIMO systems [16][17]. In
addition, the positive benefits of IGS have been reported in
terms of achievable rates [18] and outage probabilities [19]
for underlay cognitive radio systems.

In order to generate and estimate IGS with linear processing,
widely linear precoding (WLP) [4] and widely linear estima-
tion (WLE) [6] need to be adopted at transmitter and receiver
sides, respectively. WLE is a generalized concept used in
estimation theory whenever improper noise is encountered [20]
and in systems that transmit improper signal constellations
[21], as it has been already under investigation in 3GPP LTE-
A [22]. On the other hand, WLP can be used to generate
IGS even when departing from proper signal constellations
[11]. Differently from WLE that has been extensively studied
in literature, the generation of IGS through WLP to handle
interference more effectively is a recent research line.

In this work we focus on gaining more insights on the
use of IGS along with widely linear transceivers for MIMO
systems in interference-limited conditions. To do so we use
the equivalent composite real representation [8], whereby real
and imaginary parts of the MIMO channel are separated, and
exploit majorization theory [23][24] to formally quantify the
benefits. We analyze the MIMO P2P channel with interference
(MIMO P2P-I), in which a transmitter (TX) equipped with M
antennas wish to send information to a receiver (RX) equipped
with N antennas that is receiving noise-plus-interference. The
optimal signaling (PGS or IGS) and the associated trans-
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Fig. 1: Example of the MIMO Z-Interference Channel.

mit/receive scheme (linear or widely linear) are well known
in the literature and can be obtained from the minimization
of any Schur-concave function of the MSE-matrix [25], like
maximization of the achievable rate or minimization of the
mean square error (MSE) of the transmitted symbols. Their
solutions are determined by the statistics of the interference,
which can be modeled either as a PGS or IGS depending
on the transmission strategy of the interferer: if interference is
proper then the optimal signaling is PGS, while if interference
is improper then the optimal signaling is IGS. In this sense,
we focus on the following question: is it better to use IGS (and
improper interference) or to use PGS (and proper interference)
in the MIMO P2P-I? By using majorization theory tools [23],
we demonstrate that the use of IGS allows obtaining a strict
improvement in terms of achievable rate and MSE for M ≥ N
and full rank channel matrix. The proof sheds light on why
the use of IGS is better. Then, we investigate how to exploit
these properties in different interference-limited scenarios.

On the one hand, we study the MIMO Z-interference chan-
nel (Z-IC) [26], a two-transmitter two-receiver multi-antenna
interfering scenario where one of the receivers (RXB) just
observes noise while the other (RXA) receives interference.
The MIMO Z-IC is present in certain situations in cellular
networks, as shown in Fig. 1 where RXA is in the cell-
edge. Under the condition of treating interference as noise,
the optimal transmission scheme for sum-rate maximization
in the Z-IC is only known for the SISO case [27], for which
a set of five possible solutions that subsume PGS and IGS
depending on the channel conditions is obtained. The MIMO
Z-IC is interesting because TXB should apply conventional
PGS for optimally transmitting to its intended receiver (RXB)
but, according to the properties derived in the sequel for the
MIMO P2P-I, it will be beneficial for RXA that TXB employs
IGS such that the interference injected onto RXA is improper
and TXA can design WLP to improve the performance of
RXA (see Fig. 1). Clearly this comes at the cost of reducing
the performance of RXB, such that a clear trade-off in the
rates of the two receivers arises. In this regard, we analyze
the trade-off and propose a simple improper-based scheme for
TXB that allows improving the fairness and controlling the
sum-rate performance.

On the other hand, we apply the aforementioned properties
to heterogeneous cellular networks (HCNs) [2], a promising
deployment for future cellular systems. HCNs consist of a
multi-tier deployment of macro eNode Bs (MeNBs) and small
eNode Bs (SeNBs) that allow boosting the spectral efficiency
of the system thanks to the network densification and the
spatial re-use of the spectrum among MeNBs and SeNBs.
However, HCNs have to deal with a major impairment: the
cross-tier interference, which can be very detrimental specially
in the direction from MeNBs towards the users served by

SeNB

MeNB

SUE

SeNB

SeNB
SUE

SUE

MUE

Fig. 2: Predominant cross-tier interference (red dashed lines) in HCNs that lead to
multiple MIMO Z-IC. Each SeNB generates a different MIMO Z-IC, which are all

coupled by the MeNB.

SeNBs with a lower transmit power [1]1, as illustrated in Fig.
2. Interestingly, the interfering channel that models the major
cross-tier interference impairment in HCNs is the MIMO Z-
IC. Furthermore, there will appear as many MIMO Z-IC as the
number of SeNBs deployed within the MeNB coverage area,
see Fig. 2. Hence, the derived improper-based scheme for the
MIMO Z-IC could be applied at the MeNB (corresponding
to TXB in Fig. 1) and a performance improvement of all the
users served by SeNBs would be guaranteed thanks to the
properties derived for the MIMO P2P-I.

To summarize, the main contributions of this work are:

• In the MIMO P2P-I with M ≥ N , when uniform power
allocation (UPA) is used, we demonstrate that the use of
the optimal IGS when received interference is improper
strictly outperforms in terms of achievable rate and MSE
the use of the optimal PGS when interference is proper.
If optimal power allocation (OPA) is adopted, then the
achievable rate is shown to be equal or larger with IGS,
and the strict superiority is shown for a particular case.

• In the MIMO Z-IC, we propose a simple improper-
based scheme without any claim about optimality that
allows improving the achievable rate of the most impaired
user and controlling the rate loss of the non-interfered
user. The scheme is characterized by a parameter that
provides two extreme solutions: PGS or maximal IGS.
If such parameter is fixed (e.g. maximal IGS is used),
then its implementation does not require knowledge of
the interfering channel either at transmitters or receivers.

• The proposed improper-based scheme is evaluated in an
HCN deployment compliant with 3GPP LTE-A specifi-
cations [29]. Simulations show significant gains in terms
of 5%-tile and mean user throughput as compared to
conventional interference coordination techniques.

This paper generalizes our results presented in [30], where
superiority (but not strict) of IGS in the MIMO P2P-I was
demonstrated in terms of achievable rate for the UPA case.
Here, strict superiority is formally proven in terms of achiev-
able rate and MSE for UPA. Also, superiority is shown
in terms of achievable rate for OPA. Further, the derived
properties are generalized and applied to different interference-
limited scenarios, including HCNs.

1Note that if SeNBs were deployed in concentrated areas then the co-
tier interference would become relevant and additional techniques would be
required, see [28].
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Organization: The rest of the paper is organized as follows.
In Section II the use of IGS for the MIMO P2P-I, as well as
the optimal signaling and the associated transmission scheme,
are presented. In Section III, the superiority of IGS in the
MIMO P2P-I is demonstrated in terms of achievable rate and
MSE for UPA and in terms of achievable rate for OPA. In
Section IV, a practical improper-based scheme for the MIMO
Z-IC is proposed and evaluated. In Section V, the proposed
scheme is applied and evaluated in HCN deployments. Finally,
concluding remarks are included in Section VI.

Appendix A-A presents preliminaries for improper random
vectors. Preliminaries for majorization theory are included in
Appendix A-B.

Notation: In this paper, scalars are denoted by italic letters.
Boldface lower-case and upper-case letters denote vectors and
matrices, respectively. For given scalars a and b, min(a, b),
(a)+, log2(a), and ln(a), denote the minimum between a and
b, the maximum between a and 0, the base-2 logarithm, and
the natural logarithm, respectively. <{.} and ={.} refer to the
real and imaginary operators, respectively. For a given vector
a, ā denotes a double-sized real-valued vector that stacks its
real and imaginary parts as: ā =

[
<{a}T ={a}T

]T
, and ‖a‖2

refers to the squared 2-norm of vector a. For given vectors a
and b, a ◦ b denotes the Hadamard product (i.e. component-
wise product). For a given matrix A, AT , A∗, AH , and A−1

denote the transpose matrix, the conjugate matrix, the hermi-
tian matrix, and the inverse matrix, respectively. The operators
|A|, Tr(A), E{A} refer to the determinant, the trace, and the
expectation, respectively. rank(A) denotes the rank of matrix
A. Matrices In and Jn denote the identity matrix and the anti-
identity matrix of size n×n, respectively. a = eig(A) refers to
a vector that stacks the eigenvalues of matrix A in decreasing
order. a−1 refers to a vector containing the inverse of each
element of vector a, in decreasing order. A = diag(a1 . . . an)
denotes a n × n diagonal matrix with values a1 . . . an in its
diagonal and 0 in the non-diagonal elements. a = diag(A)
refers to a vector containing the diagonal values of matrix A.
a � b, a �w b, and a �w log b denote strong majorization,
weak majorization, and weak log-majorization, respectively
(see definitions in Appendix A-B). Cm×n, Rm×n, and Rm×n+

denote an m by n dimensional complex space, real space,
and real positive space, respectively. The circularly symmetric
complex normal distribution is represented by CN (., .).

II. SYSTEM MODEL FOR THE MIMO P2P-I
Consider a MIMO P2P-I between one transmitter equipped

with M antennas and one receiver with N receive antenna
elements, as shown in Fig. 3. The MIMO channel is described
by a matrix H ∈ CN×M containing complex-valued channel
gains of the different antenna-pairs. In the following we
assume M ≥ N and full rank channel matrix H. Hence, under
narrow-band transmissions, the equivalent baseband signal
observed at the receiver is expressed as:

y = Hx + s, s = i + n, (1)

where x ∈ CM×1 is the complex-valued transmitted vector
and s ∈ CN×1 denotes the noise-plus-interference vector at the
receiver (see Fig. 3), which contains a proper Gaussian noise

TX RX
1

M N

1

noise-plus-interference vector 

b x y

s

H b̂

Fig. 3: MIMO Point-to-Point channel with Interference.

n ∼ CN (0, σ2IN ) and a Gaussian interference component
i ∈ CN×1 that is caused by an interfering transmitter. Dif-
ferent from the conventional transmission setup where PGS is
assumed (i.e. x ∼ CN (0,Cx)), in this paper the more general
IGS is adopted for x.

Any improper Gaussian signal x can be generated from a
proper Gaussian information-bearing signal b ∈ CN×1 with
unitary power (i.e. b ∼ CN (0, IN ))) through the use of widely
linear precoding (WLP) (see Lemma 5 in Appendix A-A), i.e.:

x = W1b + W2b∗, (2)

where matrices W1 and W2 ∈ CM×N denote the linear
transmit precoders for the information-bearing signal b and
its complex conjugate b∗. The conventional linear precoding
(LP) scheme is a special case of WLP in which W2 = 0 such
that x in (2) is PGS. It is assumed that N parallel data streams
are transmitted, although some of the streams can have a rate
of zero. Recall that E{bbH} = IN and E{bbT } = 0. Then, the
covariance matrix Cx = E{xxH} and the pseudo-covariance
matrix C̃x = E{xxT } of x in (2) are:

Cx = W1WH
1 + W2WH

2 , C̃x = W1WT
2 + W2WT

1 . (3)

Similarly, as the Gaussian interference component i in (1) can
be either proper or improper depending on the transmission
scheme adopted by the interferer, we denote by Cs = E{ssH}
and C̃s = E{ssT } the covariance matrix and the pseudo-
covariance matrix of s = i + n in (1), respectively.

A. Composite real representation

The signal model for the MIMO P2P-I can be equivalently
expressed using the composite real representation [8], in which
real and imaginary parts of the signals are separated. Such
representation is useful to derive the optimal signaling and
the associated transmission scheme in (2). The input-output
relation in (1) can be equivalently written as:

ȳ =

[
<{y}
={y}

]
= H̄x̄ + s̄, H̄ =

[
<{H} −={H}
={H} <{H}

]
, (4)

where the double-sized real-valued transmitted signal x̄ in (4)
(following WLP in (2)) is given by:

x̄=

[
<{x}
={x}

]
=W̄b̄, W̄=

[
<{W1 + W2} −={W1 −W2}
={W1 + W2} <{W1 −W2}

]
.

(5)
The achievable rate (R) with IGS is obtained as [7]:

R = I(x; y) = I(x̄; ȳ) = h(ȳ)− h(ȳ/x̄) = h(ȳ)− h(s̄)
= 1

2 log2|I2N + 1
2 H̄W̄W̄T H̄TCs̄

−1|, (6)

where I(x̄; ȳ) denotes the mutual information between real-
valued random vectors x̄ and ȳ, h(x̄) refers to the entropy
of x̄ [7], and the 1

2 factor inside the determinant comes from
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E{b̄b̄T } = 1
2 I. Cs̄ ∈ R2N×2N accounts for the covariance

matrix of s̄ in (4), which can be written in terms of Cs and
C̃s through a transformation matrix T ∈ C2N×2N as follows
(see Lemma 4 in Appendix A-A):

Cs̄ = E{s̄s̄T } = T
[

Cs C̃s

C̃
∗
s C∗s

]
TH , T = 1

2

[
IN IN
−jIN jIN

]
. (7)

The mean square error (MSE) of the transmitted symbols is
expressed as: ε = Tr(Ē), being Ē = E{(b̄ − ¯̂b)(b̄− ¯̂b)T }
the MSE-matrix and ¯̂b ∈ R2N×1 the double-sized real-
valued vector of the estimated information-bearing signal at
the receiver side. Assuming optimal widely linear estimation
(see details in [6]), the MSE-matrix results:

Ē = 1
2

(
I2N + 1

2 W̄T H̄TCs̄
−1H̄W̄

)−1

. (8)

Therefore, the achievable rate R in (6) is related to the MSE-
matrix Ē in (8) through [30]:

R = − 1
2 log2|2Ē|. (9)

B. MSE-based optimal scheme

Let us present the optimal design for transmit precoder W̄
in (5), a result already known in the literature that is needed to
demonstrate the superiority of IGS in next Section III. In the
most general MSE-based designs (including minimum MSE
and maximum achievable rate designs) [25][31], the optimal
transmit precoder W̄ in (5) is obtained from the minimization
of a Schur-concave function of the MSE-matrix Ē in (8)
subject to a maximum transmit power constraint:

minimize
W̄

f(Ē) subject to 1
2Tr(W̄W̄T

) = Pmax, (10)

where f(.) is any Schur-concave function of Ē in (8) and
Pmax is the maximum available power at the transmitter.
For instance: f(Ē) = ε = Tr(Ē) defines the minimum
MSE problem, while f(Ē) = −R = 1

2 log2|2Ē| defines the
maximum achievable rate problem.

Consider the following eigenvalue decomposition (EVD):
1
2 H̄TCs̄

−1H̄ = Q̄Λ̄Q̄T
, (11)

where Λ̄ = diag(λ̄1 . . . λ̄2N ) is a diagonal matrix containing
the positive eigenvalues of 1

2 H̄TCs̄
−1H̄ and Q̄ ∈ R2M×2N

corresponds to a unitary matrix that contains the associated
eigenvectors stacked in columns. Recall that the rank of
1
2 H̄TCs̄

−1H̄ (i.e. the number of positive eigenvalues) is given
by 2N and does not depend on the interference statistics, since
rank(Cs̄

−1) = 2N , H̄ is a full row rank matrix, and hence
rank( 1

2 H̄TCs̄
−1H̄) = rank(Cs̄

−1) = 2N .
Then, the optimal transmit precoder W̄opt to problem in (10)

presents the following structure [25]:

W̄opt
= Q̄P̄

1
2 , (12)

where P̄ = diag(p̄1 . . . p̄2N ) is a diagonal matrix that
describes the power allocation per stream, which satisfies
1
2 Tr(P̄) = Pmax (see (10)) and depends on the optimization
criterion (see Sections III-A and III-B).

The optimal transmit precoder in (12) allows diagonalizing

the MSE-matrix in (8), i.e.:

Ēopt
= 1

2

(
I2N + P̄Λ̄

)−1
. (13)

So, the optimal achievable rate and the optimal MSE become,
respectively:

Ropt(p̄ ◦ λ̄)= − 1
2 log2|2Ēopt| = 1

2

∑2N

i=1
log2

(
1 + p̄iλ̄i

)
,(14)

εopt(p̄ ◦ λ̄)= Tr(Ēopt
) = 1

2

∑2N

i=1

1

1 + p̄iλ̄i
, (15)

where p̄ ◦ λ̄ denotes the Hadamard product of vectors p̄ =
diag(P̄) = [p̄1 . . . p̄2N ]T and λ̄ = diag(Λ̄) = [λ̄1 . . . λ̄2N ]T .
We occasionally use the notations Ropt(p̄ ◦ λ̄) and εopt(p̄ ◦ λ̄)
to make their dependencies on the product p̄ ◦ λ̄ explicit.

The key aspect of the optimal solution in (12) is the
EVD in (11), for which two cases are differentiated: proper
interference (C̃s = 0) or improper interference (C̃s 6= 0). It is
well known that if received interference is proper the optimum
signaling is PGS (i.e. C̃x = 0), while if received interference
is improper the optimum signaling is IGS (i.e. C̃x 6= 0). For
example, [30] shows how this is concluded from the composite
real representation.

III. SUPERIORITY OF IGS FOR THE MIMO P2P-I

In this section we focus on comparing the optimal schemes
when interference is either proper or improper so as to
determine if IGS is beneficial or not in terms of achievable rate
and MSE in the simple MIMO P2P-I. The comparison reduces
to relate the eigenvalues (see (14)-(15)) of the following two
matrices (which are obtained from (11) by using the structure
of Cs̄ in (7)) for a fixed noise-plus-interference covariance
matrix Cs:

Proper: λ̄I = eig
(

1
2 H̄TT−H

[
Cs 0
0 C∗s

]−1

T−1H̄
)
,

Improper: λ̄P = eig
(

1
2 H̄TT−H

[
Cs C̃s

C̃
∗
s C∗s

]−1

T−1H̄
)
,

(16)

where λ̄I ∈ R2N×1
+ and λ̄P ∈ R2N×1

+ denote the vectors of
positive eigenvalues in decreasing order under the reception of
improper and proper Gaussian interference, respectively. The
comparison in the sequel is based on fixing the same Cs, so
the level of received interference-plus-noise power is the same
but the difference comes from the proper or improper statistics
of the interference (i.e. C̃s = 0 or C̃s 6= 0, see (16)) and the
corresponding optimal signaling (i.e. PGS or IGS).

In Lemma 1 we show how the eigenvalues in (16) are
related, which will be exploited afterwards.

Lemma 1: For M ≥ N and full rank channel matrix H, the
eigenvalues in (16) are related by the following majorization
relations:

λ̄
−1
I �λ̄

−1
P and λ̄I�w logλ̄P , (17)

where � refers to strong majorization, �w log denotes weak
log-majorization, λ̄−1

I ∈ R2N×1
+ and λ̄

−1
P ∈ R2N×1

+ refer to
vectors whereby each component is obtained from the inverse
of the components in λ̄I and λ̄P , respectively, in decreasing
order.

Proof: See Appendix B-A.
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The strong majorization result in (17) is equivalent to (see
(52) in Definition 5 in Appendix A-B):∑n

i=1

1

λ̄I,i
≤
∑n

i=1

1

λ̄P,i
n = 1, ..., 2N − 1

and
∑2N

i=1

1

λ̄I,i
=
∑2N

i=1

1

λ̄P,i
, (18)

while the weak log-majorization result in (17) is equivalent to
(see Definition 7 in Appendix A-B):∏n

i=1
λ̄I,i ≥

∏n

i=1
λ̄P,i n = 1, ..., 2N

and
∑n

i=1
λ̄I,i ≥

∑n

i=1
λ̄P,i n = 1, ..., 2N. (19)

Therefore, when using IGS and receiving improper interfer-
ence in the MIMO P2P-I, the eigenvalues of the equivalent
channel are more spread out having an equal or larger sum,
an equal or larger product, and an equal sum of the inverses, as
compared to using PGS and receiving proper interference. In
other words, the arithmetic mean and the geometric mean of
the eigenvalues are equal or larger, while the harmonic mean
of the eigenvalues is equal.

The proof of the strong majorization result in Lemma 1
(i.e. λ̄

−1
I �λ̄

−1
P ) is only valid for M ≥ N and the channel

matrix H being full rank. Otherwise, the inverse in (65) (see
Appendix B-A) does not exist. This is due to the fact that
if the desired signal subspace at the receiver has less than
N dimensions (which happens either if M < N or if the
channel is rank deficient), then the strong majorization result is
not valid since the properties of the noise-plus-interference in
the noise-plus-interference subspace can be chosen arbitrarily
without influencing the desired signal space. In case that either
M < N or the channel matrix H is rank deficient, then
the weak-log majorization result in Lemma 1 is satisfied, i.e.
λ̄I�w logλ̄P (see [30]), but the strong majorization result in
Lemma 1 (which is key to demonstrate the strict superiority
of IGS in what follows) is not further valid.

Now we show how Lemma 1 allows determining the
superiority of IGS in terms of achievable rate in (14) and
MSE in (15). The strong majorization result in (17) allows
us to set the strict superiority in terms of achievable rate and
MSE when uniform power allocation (UPA) is adopted, while
the weak log-majorization result in (17) is used to derive the
superiority in terms of achievable rate when optimal power
allocation (OPA) is used.

A. Superiority for uniform power allocation

When adopting a UPA strategy, the solution for
P̄ = diag(p̄1 . . . p̄2N ) in (12) is given by:

p̄i = P̄ = Pmax/N,∀i, (20)

such that p̄ ◦ λ̄ = P̄ λ̄. Thus, the optimal achievable rate in
(14) and the optimal MSE in (15) become, respectively:

Ropt(P̄ λ̄) = 1
2

∑2N

i=1
log2

(
1 + P̄ λ̄i

)
, (21)

εopt(P̄ λ̄) = 1
2

∑2N

i=1

1

1 + P̄ λ̄i
. (22)

Theorem 1: Assume a MIMO P2P-I, M ≥ N , full rank
channel matrix H, receiving noise-plus-interference with a

given covariance matrix Cs. When applying the optimal sig-
naling and the associated transmission scheme with UPA, the
achievable rate Ropt in (14) is strictly increased in the improper
interference scenario (i.e. C̃s 6= 0) as compared to the proper
interference scenario (i.e. C̃s = 0):

Ropt(P̄ λ̄I) ≥ Ropt(P̄ λ̄P ) + cupa
R

(
‖λ̄−1

I ‖2 − ‖λ̄
−1
P ‖2

)
, (23)

with a positive constant cupa
R :

cupa
R =

P̄ λ3
min

(
1 + 0.5P̄ λmin

)
2 ln(2)

(
1 + P̄ λmin

)2 > 0, (24)

where λmin denotes the minimum eigenvalue of λ̄I and P̄
is defined in (20). The rate gap in (23) is strictly positive
provided that λ̄I 6= λ̄P .

Proof: See Appendix B-B. The proof departs from the
strong majorization result in Lemma 1 and exploits majoriza-
tion theory on strongly Schur-convex functions (see Definition
9 in Appendix A-B).

The rate gap in (23) increases as the difference among the
squared 2-norm of the inverses of the eigenvalues increases
(i.e. as the improperness of the interference increases or,
equivalently, as C̃s ”increases”, see (16)). Further, we can
determine the rate gap behavior when varying the desired
signal power (i.e. P̄ ) for a fixed interference-plus-noise power
level or, equivalently, when varying the signal-to-interference-
plus-noise ratio (SINR):
• At high SINR, cupa

R in (24) scales as cupa
R ∼ 1

4 ln(2)λ
2
min

such that the rate gap in (23) is constant as the SINR
increases. This means that, at the high SINR regime, the
rates grow with the same slope with PGS and IGS but
there is a constant difference among said achievable rates
such that the use of IGS is always beneficial.

• At low SINR, cupa
R in (24) scales as cupa

R ∼ 1
2 ln(2) P̄ λ

3
min

and hence the rate gap in (23) increases with the SINR.
Theorem 2: Assume a MIMO P2P-I, M ≥ N , full rank

channel matrix H, receiving noise-plus-interference with a
given covariance matrix Cs. When applying the optimal sig-
naling and the associated transmission scheme with UPA,
the MSE εopt in (15) is strictly reduced in the improper
interference scenario (i.e. C̃s 6= 0) as compared to the proper
interference scenario (i.e. C̃s = 0):

εopt(P̄ λ̄I) ≤ εopt(P̄ λ̄P )− cupa
ε

(
‖λ̄−1

I ‖2 − ‖λ̄
−1
P ‖2

)
, (25)

with a positive constant cupa
ε :

cupa
ε =

P̄ λ3
min

2
(
1 + P̄ λmin

)3 > 0. (26)

The error gap in (25) is strictly positive as long as λ̄I 6= λ̄P .
Proof: See Appendix B-C. The proof departs from the

strong majorization result in Lemma 1 and exploits ma-
jorization theory on strongly Schur-concave functions (see
Definition 9 in Appendix A-B).

Similarly as in Theorem 1, the error gap in (25) increases
as the difference among the squared 2-norm of the inverses
of the eigenvalues increases (i.e. as the improperness of the
interference increases). The error gap behavior with respect to
the SINR is as follows:
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• At high SINR, cupa
ε in (26) scales as cupa

ε ∼ 1
2 P̄
−2

such that the error gap in (25) decreases as the SINR
increases. This is related to the fact that the rate gap in
(23) is constant at high SINR: due to the convex rate-
MSE relation in (9), the rate gap being constant implies
the error gap being reduced as the SINR increases.

• At low SINR, cupa
ε in (26) scales as cupa

ε ∼ 1
2 P̄ λ

3
min and

therefore the error gap in (25) increases with the SINR.

Corollary 1: If UPA is used in a MIMO P2P-I such that
M ≥ N and H is full rank, the achievable rate Ropt in (14)
and the MSE εopt in (15) are strictly outperformed (with a
positive gap) when received interference is improper Gaussian
distributed (i.e. C̃s 6= 0).

Proof: through Theorem 1 and Theorem 2.

B. Superiority for optimal power allocation

When adopting an OPA strategy to maximize the achievable
rate (i.e. f(Ē) = −R = 1

2 log2|2Ē| in (10)), the optimal
solution for P̄ = diag(p̄1 . . . p̄2N ) in (12) is given by [32]:

p̄i =
(
µ− λ̄−1

i

)+
,∀i, µ =

1

k

(
2Pmax +

∑k

i=1
λ̄−1
i

)
, (27)

where k ≤ 2N is the number of active streams after the
water-filling solution in (27). Accordingly, let us denote by
p̄P and p̄I the vectors with power allocation in (27) (ordered
in decreasing order) for the proper and improper interference
cases, respectively.

Due to the water-filling solution in (27), some streams can
have a power equal to 0 and the number of active streams in
the proper and improper interference cases might differ. Thus,
as the power allocation in (27) depends on the eigenvalues, we
cannot exploit majorization theory on strongly Schur-convex
functions to guarantee a strict rate improvement with OPA.

Theorem 3: Assume a MIMO P2P-I, M ≥ N , full rank
channel matrix H, receiving noise-plus-interference with a
given covariance matrix Cs. When applying the optimal sig-
naling and the associated transmission scheme with OPA in
(27) for maximum achievable rate, the achievable rate Ropt in
(14) is equal or larger in the improper interference scenario
(i.e. C̃s 6= 0) as compared to the proper interference scenario
(i.e. C̃s = 0):

Ropt(p̄I ◦ λ̄I) ≥ Ropt(p̄P ◦ λ̄P ). (28)

The equality in (28) is satisfied when λ̄I = λ̄P , i.e. C̃s = 0,
such that p̄I = p̄P (see (27)) and hence p̄I ◦ λ̄I = p̄P ◦ λ̄P .

Proof: See Appendix B-D. The proof departs from the
weak log-majorization result in Lemma 1 and is valid even
if the number of streams with OPA in (27) is different in the
proper and improper interference cases.

There is, however, a particular case in which the strict
superiority of IGS over PGS under OPA strategy can be
demonstrated through the application of majorization theory
tools. In case that all steams are active both with IGS and
PGS, i.e. kI = kP = 2N in (27), then the water-level µ
in (27) is equal with IGS and PGS: µ = µI = µP because∑2N
i=1 λ̄

−1
I,i =

∑2N
i=1 λ̄

−1
P,i (see (18)). In this case, the optimal

achievable rate in (14) becomes:

Ropt(p̄ ◦ λ̄) = 1
2

∑2N

i=1
log2

(
µλ̄i
)
. (29)

Theorem 4: Assume a MIMO P2P-I, M ≥ N , full rank
channel matrix H, receiving noise-plus-interference with a
given covariance matrix Cs. When applying the optimal sig-
naling and the associated transmission scheme with OPA in
(27) for maximum achievable rate and all streams are active
for IGS and PGS, the achievable rate Ropt in (14) is strictly
increased in the improper interference scenario (i.e. C̃s 6= 0)
as compared to the proper interference scenario (i.e. C̃s = 0):

Ropt(p̄I ◦ λ̄I) ≥ Ropt(p̄P ◦ λ̄P ) + copa
R

(
‖λ̄−1

I ‖2 − ‖λ̄
−1
P ‖2

)
,

(30)
with a positive constant copa

R :

copa
R =

λ2
min

4 ln(2)
> 0. (31)

The rate gap in (30) is strictly positive in case λ̄I 6= λ̄P .
Proof: See Appendix B-E. The proof departs from the

strong majorization result in Lemma 1 and exploits majoriza-
tion theory on strongly Schur-convex functions (see Definition
9 in Appendix A-B).

Similarly as in Theorem 1, the rate gap in (30) increases
as the difference among the squared 2-norm of the inverses
of the eigenvalues increases (i.e. as the improperness of the
interference increases). However, result in Theorem 4 is only
valid when the number of active streams under IGS and PGS
is equal to 2N , which occurs at medium/high SINR regimes.
Note also that the derived rate gap under OPA strategy in (31)
coincides with the one derived for UPA in (24) at high SINR.

C. Simulation results

First, let us show through simulations the strict rate and
MSE improvement of IGS over PGS derived from Theorems
1 and 2 for UPA strategy. We evaluate the gains in the MIMO
P2P-I for a single channel realization when interference is
either proper or improper Gaussian distributed. Fig. 4.(a) and
Fig. 4.(b) depict the actual rate gap and the actual MSE
gap versus the SINR, respectively, for an interference-to-noise
ratio (INR) of INR=20dB and antenna configuration M=N=2
(2× 2). The figures also display the lower bound of the gaps
presented in (23) for rate and in (25) for MSE. Further, the
actual rate gap and the lower bound of gap derived in Theorem
4 under OPA strategy are included in Fig. 4.(a).

With regard to the rate (see Fig. 4.(a)), it can be observed
that the rate gap is constant at high SINR and that it is
increasing with the SINR at low SINR. Differently, in terms
of the MSE (see Fig. 4.(b)), the error gap is decreasing with
the SINR at high SINR and it is increasing with the SINR
at low SINR. This corroborates the conclusions drawn from
Theorems 1 and 2. The closer the lower bound of the gap is to
the actual gap depends on the individual channel realizations,
but it is observed to be tighter in the MSE than in the rate.
Also, it is observed through simulations that the lower bound
of the rate gap derived for UPA strategy is also valid for
OPA strategy in all SINR regimes and antenna configurations
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Fig. 4: Gap in the achievable rate and MSE versus SINR of a MIMO P2P-I. 2× 2,
INR=20dB. UPA and OPA strategies. (a) rate gap, (b) MSE gap.
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Fig. 5: Average relative rate gain (in %) of IGS over PGS versus SINR for a MIMO
P2P-I with different antenna configurations: 1× 1, 2× 2, 4× 4, and 8× 8.

INR=20dB. UPA and OPA strategies.

(although this has been mathematically demonstrated only for
medium/high SINR regimes, see Theorem 4).

Second, we show how the rate improvement of IGS over
PGS scales as the number of transmit/receive antennas in-
creases. 1000 channel realizations of the MIMO P2P-I are
used to take statistic results. Fig. 5 displays the average of the
relative rate gain (in %) of IGS over PGS versus the SINR
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Fig. 6: MIMO Z-Interference Channel.

for INR=20dB and different antenna configurations: 1 × 1,
2× 2, 4× 4, and 8× 8. The relative rate gains decrease as the
number of transmit/receive antennas increase. This is due to
the fact that IGS provides flexibility by splitting one dimension
into two halves, which is more useful when the number of
transmit/receive antennas is low, otherwise extra dimensions
are already added to the system by adding antennas. Even
though, it is important to recall that for the 8 × 8 antenna
case, relative rate gains are still obtained for all SINR regimes
(see Fig. 5). For SINR=0dB, where the desired signal and the
interfering signal have a similar strength because INR=20dB,
the relative rate gains are: 102-115% for 1 × 1, 46-37% for
2× 2, 24-20% for 4× 4, and 17-13% for 8× 8. In addition,
in Fig. 5 we can observe that the relative rate gains are larger
for low SINR regimes, in which the MIMO P2P-I is highly
limited by interference. However, as the SINR increases, rate
gains are still obtained due to the use and reception of IGS.

IV. APPLICATION TO THE MIMO Z-IC

In this section we show how to exploit the benefits of using
IGS in the MIMO Z-IC through a simple WLP design. The
MIMO Z-IC is a two-transmitter two-receiver multi-antenna
interfering scenario, as shown in Fig. 6, where one of the
receivers (RXB) just observes noise while the other (RXA)
receives interference. The signal model detailed in Section II
applies for each of the two MIMO P2P-I links that appear in
the MIMO Z-IC. In this regard, we add the subindex (.)A and
(.)B to refer to the corresponding link, see Fig. 6.

Concerning RXB that is receiving only proper Gaussian
noise, the optimal scheme at TXB is a proper-based scheme
(i.e. LP) that would be given by WB,1 = Wopt

B,1 and WB,2 = 0.
Such proper-based scheme would generate proper interference
onto RXA. However, RXA could benefit in terms of achievable
rate from the reception of improper interference from TXB, as
is demonstrated in Section III, but the fact that TXB transmits
IGS implies a degradation of the rate of RXB due to the
sub-optimality of the signaling scheme [8]. Therefore, a clear
trade-off arises: with IGS the rate of RXA could be increased
but the rate of RXB would be decreased.

Assuming that we can tolerate a certain achievable rate
loss at RXB, performance gains at RXA would be guar-
anteed with IGS provided that TXB uses the same trans-
mit covariance matrix as in the optimum proper scheme
for RXB (i.e. CxB = Wopt

B,1WoptH
B,1 ), such that the re-

ceived noise-plus-interference covariance matrix at RXA
(CsA=HB,ACxBHH

B,A+σ2IN ) is the same as in the case of
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proper interference and, due to the use of WLP with C̃xB 6= 0
(and hence C̃sA = HB,AC̃xBHT

B,A 6= 0), the achievable rate
of RXA would be increased by Theorem 1 for UPA and by
Theorem 3 for OPA.

A. WLP scheme at TXB

In order to guarantee a rate improvement of RXA we need to
construct an improper-based scheme at TXB (characterized by
transmit precoders WB,1 and WB,2, see (2)) that maintains the
transmit covariance matrix used in the optimal proper-based
scheme for RXB (i.e. CxB = Wopt

B,1WoptH
B,1 ). A practical WLP

scheme at TXB that controls the degradation on performance
of RXB and generates improper interference onto RXA can
be obtained by right-multiply the transmit precoder Wopt

B,1 by
two scaling factors

√
α and

√
1− α and two unitary matrices

Z1 ∈ CN×N and Z2 ∈ CN×N . Thus, the WLP scheme is
created as follows:

WB,1 =
√

1− αWopt
B,1Z1, WB,2 =

√
αWopt

B,1Z2, (32)

where α ∈ [0, 0.5]. This improper-based scheme at TXB has
the same transmit covariance matrix than the optimal proper-
based scheme for RXB provided that Z1 and Z2 are unitary
matrices:

CxB = WB,1WH
B,1 + WB,2WH

B,2 = Wopt
B,1WoptH

B,1 , (33)

but the transmit pseudo-covariance matrix does not vanish to
0 and can be tunned as a function of α:

C̃xB =
√
α(1− α)Wopt

B,1(Z1ZT2 + Z2ZT1 )WoptT
B,1 . (34)

Hence, by performing WLP in (32) at TXB with α > 0, the
achievable rate of RXB is degraded while the achievable rate
of RXA is ensured to be increased as compared to the use
of WB,1 = Wopt

B,1 and WB,2 = 0. This is possible because
the WLP scheme in (32) allows maintaining the transmit
covariance matrix CxB independently of the values of α, Z1,
and Z2, such that the properties in Section III apply.

1) Parameter α: The range α ∈ [0, 0.5] is considered in
(32) because C̃xB has a symmetric shape with respect to α
that is centered on α = 0.5, i.e. the system performance of
the MIMO Z-IC is equivalent when selecting α or α′ = 1−α.
The suitable selection of parameter α allows controlling the
level of improperness: if α = 0 the generated signal at TXB is
proper, while if α = 0.5 the generated signal at TXB achieves
the maximal level of improperness and improper interference
is generated towards RXA.

2) Spatial unitary matrices Z1 and Z2: Matrices Z1 and
Z2 are included in (32) so as to get different MIMO spatial
structures of WB,1 and WB,2, although Z1 = Z2 = IN
is also an option. It is important to realize from (34) that
the performance of the MIMO Z-IC is affected by the term
(Z1ZT2 +Z2ZT1 ) rather than by the specific selection of Z1 and
Z2. So, if we design Z1 and Z2 such that Z1ZT2 = Z2ZT1 , then
a single choice would control the performance of the MIMO
Z-IC. For N = 2, [30] proposes a design for Z1 and Z2 that
satisfies such condition and depends on a single parameter.
For the general MIMO case, Z1 and Z2 are designed in order

to get two totally opposite behaviors:

Option 1 (identity): Z1ZT2 = Z2ZT1 = IN
→ Z1 = Z2 = IN , (35)

Option 2 (anti-identity): Z1ZT2 = Z2ZT1 = JN
→ Z1 = JN , Z2 = IN , (36)

being JN the anti-identity matrix2 of size N . Both options have
a trivial solution for unitary matrices Z1 and Z2, as shown in
(35)-(36).

B. Trade-off

Let us show that parameter α is the one that allows trading-
off on the rates of the MIMO Z-IC system.

1) Rate improvement at RXA: The achievable rate improve-
ment of RXA is guaranteed by Theorem 1 for UPA or by Theo-
rem 3 for OPA. The exact rate improvement expression cannot
be extracted, however, it is given by how much the eigenvalues
in the improper interference case majorize the eigenvalues in
the proper interference case, i.e. the difference in the majoriza-
tion results in (17). Said difference becomes larger as C̃sA in
(16) ”increases” because the stronger the off-diagonal blocks
in (16) are the more spread out the eigenvalues become (see
Lemma 6 in Appendix A-B). Accordingly, the optimum value
of α to maximize the achievable rate of RXA (RA) is α = 0.5
(see (34)), as it allows ”increasing” C̃xB and, as consequence,
”increasing” the pseudo-covariance matrix of the interference-
plus-noise received at RXA: C̃sA = HB,AC̃xBHT

B,A.
2) Rate degradation at RXB: Due to the use of WLP at

TXB and as RXB only receives proper noise (i.e. CsB = σ2IN
and C̃sB = 0), the achievable rate of RXB is degraded. When
using the WLP scheme in (32) at TXB, the achievable rate of
RXB (RB) can be decomposed as (derived from [4]):

RB = log2

∣∣IN + C−1
sB HB,BCxBHH

B,B

∣∣︸ ︷︷ ︸
Ropt

B

+ 1
2 log2

∣∣IN − C−1
yB C̃yBC−TyB C̃H

yB

∣∣︸ ︷︷ ︸
Rpenalty

B ≤0

, (37)

where CyB = HB,BCxBHH
B,B + σ2IN and C̃yB =

HB,BC̃xBHT
B,B . The first term in (37) corresponds to the

achievable rate of RXB if the transmission scheme adopted
at TXB was PGS with LP (the optimum one for RXB, with
C̃xB = 0). However, due to the use of an improper-based
scheme in which C̃xB 6= 0, an achievable rate penalty is
obtained at RXB, which is given by the second term in (37)
and is strictly negative. The fact that Rpenalty

B ≤ 0 can be shown
by using the Fischer’s inequality [33, Sect. 8.2] applied over
the partitioned matrix [CyB C̃yB ; C∗yB C̃∗yB ] that is positive
semidefinite (see Theorem 5 in Appendix A-A), from which
it is concluded that

∣∣IN − C−1
yB C̃yBC−TyB C̃H

yB

∣∣ ≤ 1. Conse-
quently, the closer α is to 0.5 (i.e. C̃yB in (37) ”increases”,
see (34)) the more the achievable rate of RXB is reduced.

2We refer with anti-identity matrix (also known as reflection matrix) to a
square matrix where all the entries are 0 except those on the anti-diagonal that
are equal to 1 (going from the lower left corner to the upper right corner).



IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. XX, NO. XX, MONTH 2016 9

C. Sum-rate performance
The selection of parameter α has a clear trade-off on

the sum-rate performance: RB in (37) is decreasing while
RA is increasing with α ∈ [0, 0.5]. Let us consider α̃ =√
α(1− α) ∈ [0, 0.5], being α̃ the parameter that impacts

on the sum-rate performance of the MIMO Z-IC (see (34)). In
this sense, RB is decreasing and RA is increasing with respect
to α̃ ∈ [0, 0.5]. Let us draw their rate expressions. The rate
expression RB in (37) (using (33) and (34)) as a function of
α̃ is:

RB(α̃) = Ropt
B + 1

2 log2

∣∣IN − α̃2X
∣∣ , (38)

where X = C−1
yB HB,BWopt

B,1(Z1ZT2 + Z2ZT1 )WoptT
B,1 HT

B,BC−TyB
H∗B,BWopt∗

B,1(Z∗2ZH1 +Z∗1ZH2 )WoptH
B,1 HH

B,B and Ropt
B is shown in

(37). On the other hand, the rate expression RA (derived from
(14) and (16)) as a function of α̃ is:

RA(α̃) = 1
2

∑2N

i=1
log2(1 + p̄iλ̄i), (39)

λ̄ = eig
(

1
2 H̄T

A,AT−H
[

CsA α̃U
α̃U∗ C∗sA

]−1

T−1H̄A,A

)
,

where U=HB,AWopt
B,1(Z1ZT2 + Z2ZT1 )WoptT

B,1 HT
B,A.

Then, constrained to the WLP design proposed in Section
IV-A, the optimum α̃ =

√
α(1− α) in order to maximize the

sum-rate performance of the MIMO Z-IC is obtained from:

maximize
α̃

RA(α̃) +RB(α̃) subject to 0 ≤ α̃ ≤ 0.5. (40)

The optimization problem in (40) can be solved by setting
the first order derivative to zero, and selecting the value of
α̃ from the candidate points given by the extreme of the
domain (0 and 0.5) and the positive real roots of the first
order derivative that lie within the domain and have a negative
second order derivative (i.e. are maximum points). Through
extensive numerical evaluations, we have observed that the
optimal value of α̃ always lies in the extremes of the domain
(α̃opt = 0 or α̃opt = 0.5), which corresponds to αopt = 0
(i.e. PGS) or αopt = 0.5 (i.e. IGS with maximal level of
improperness). Intuitively, for low interference regimes the
optimal value is αopt = 0 because increasing α leads to an
increase of the rate of RXA lower than the reduction of the
rate of RXB. On the contrary, for medium/high interference
regimes the optimal value is αopt = 0.5 since reducing α leads
to a reduction of the rate of RXA larger than the increase of
the rate of RXB.

For the MIMO Z-IC, the optimal value of the transmitted
power at TXA corresponds always to the maximum one, as
RA is increasing with the available power and no interference
is generated onto RXB [27]. Therefore, the operating points of
the proposed scheme are obtained by varying the values of α
from 0 to 0.5 (at maximum power of TXB) and then varying
the transmitted power at TXB from maximum power to 0.

D. Simulation results
The proposed improper-based scheme is evaluated in the

MIMO Z-IC scenario displayed in Fig. 6. It is assumed that
both transmitters have the same available power Pmax. Signal-
to-noise ratio is defined as SNR = Pmax/σ2 and signal-to-
interference ratio by SIR = 1/η, where factor η ≥ 0 denotes

the average ratio between interfering and direct channel attenu-
ations. Channels are modeled through a Rayleigh distribution,
such that HA,A,HB,B ∼ CN (0, I) and HB,A ∼ CN (0, ηI).

1) Achievable rate region: Let us show the achievable rate
region of the MIMO Z-IC for a specific channel realization
with SNR=10dB and SNR=20dB, η = 1, M = N = 2 (2×2).
The MIMO channel matrices are:

HA,A=[1.01e−j174.9 0.74ej152.8; 0.86e−j55.5 0.82ej166.7],

HB,B=[0.49ej162.3 1.30e−j101.0; 0.70e−j43.8 0.46ej9.8], (41)
HB,A=[1.16e−j132.6 0.90e−j88.5; 0.93e−j141.5 0.70ej67.1].

The following transmission schemes are evaluated:
• proper (LP): transmitters use LP,
• improper (WLP) id: varying α: transmitters use WLP,

whereby TXB uses the improper-based scheme in (32)
with different values of α and the identity solution for
Z1 and Z2 in (35),

• improper (WLP) anti-id: varying α: transmitters use
WLP, and TXB uses the improper-based scheme in (32)
with different values of α and the anti-identity solution
for Z1 and Z2 in (36).

Fig. 7 displays the achievable rate region when UPA in (20)
is adopted and when OPA in (27) is used. Another way to
achieve a similar behavior than the one given by the proposed
improper-based scheme (i.e. reduce rate of RXB to increase
rate of RXA) is by reducing the power used by TXB (P ≤
Pmax), which can be applied both for LP and WLP cases.
Such performance results are depicted in the figures with the
label ’varying P ’. Note that the optimal solution for TXA
corresponds to always using the maximum power Pmax, as it
does not interfere RXB.

By comparing ’improper (WLP) varying α’ with respect to
’proper (LP)’ at P = Pmax, it is verified that the rate of RXA
is always increased when received interference is improper
(as is demonstrated by Theorems 1 and 3) at the expenses
of a reduced rate for RXB. Accordingly, the proposed WLP
scheme is beneficial when interference is non-negligible, such
that the gain at RXA is significant. The choice of Z1 and
Z2 (i.e. identity or anti-identity) does not have a significant
impact on the rate of RXA, however it affects the rate of
RXB, being the anti-identity (Option 2 in (36)) shown to
be the best solution. Therefore, in interference-limited sce-
narios, the proposed improper-based scheme allows trading
in transmission fairness mainly through parameter α without
adjusting the transmitted power. Even with time-sharing, the
improper-based scheme outperforms the proper-based scheme,
as is shown with dashed lines in Fig. 7. To conclude, it can
be observed that the achievable rate region is enlarged when
using IGS through WLP and, additionally, both system sum-
rate (i.e. RA + RB) and system fairness (i.e. min(RA, RB))
are improved for this channel realization.

2) Average sum-rate and min-rate performance: In this
section we show simulation results averaged over 1000 random
channel realizations when varying η for SNR=10dB, OPA, and
different antenna configurations. The following schemes are
evaluated:
• proper (LP): transmitters use LP (i.e. α = 0 at TXB in
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Fig. 7: Achievable rate region of a MIMO Z-IC with HA,A, HB,B , HB,A in (41).
2× 2, SNR=10dB and SNR=20dB. (a) UPA, (b) OPA.

(32)) and maximum power.
• improper (WLP) α=0.5: transmitters use WLP and

maximum power, whereby for TXB: α = 0.5 and the
anti-identity solution for Z1 and Z2 (i.e. Option 2 in (36))
are used in (32).

• only TXA (LP): TXA transmits through optimal LP
design, and TXB is turned off.

• optimal scheme SISO: optimal sum-rate scheme pre-
sented in [27] for the SISO Z-IC. It is valid for
M = N = 1 and encompasses PGS and IGS solutions.

• WMMSE: weighted minimum MSE algorithm in [34]
for sum-rate maximization in MIMO IC. To adopt IGS,
the complex-valued MIMO Z-IC is transformed into an
equivalent double-sized real-valued MIMO Z-IC where
the WMMSE algorithm applies. It can be employed for
any antenna configuration, encompasses PGS and IGS
solutions, and converges to a local optimum.

Fig. 8 displays the sum-rate (i.e. RA + RB) and the min-
rate (i.e. min(RA, RB)) versus η for 1 × 1. Fig. 9 and Fig.
10 show the same for antenna configurations 2× 2 and 4× 4,
respectively, so as to see how the system performance scales
with the number of transmit/receive antennas.

Note that ’optimal scheme SISO’ and ’WMMSE’ schemes
are used as benchmarks in terms of sum-rate. They involve
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Fig. 8: Average sum-rate and min-rate (in bits/s/Hz) of the MIMO Z-IC in Fig. 6
versus η for 1× 1. OPA, SNR=10dB.

larger complexity, coordination among transmitters and knowl-
edge of all channel matrices. On the other hand, ’proper (LP)’,
’improper (WLP) α=0.5’, and ’only TXA’ do only require
knowledge of the direct channels and no coordination among
transmitters is required.

Let us compare the proposed ’improper (WLP) α=0.5’ with
’proper (LP)’. In the 1×1 antenna case (see Fig. 8), it can be
observed that the average sum-rate of the system is increased
with IGS for values of η ≥ 1.25, but for values of η ≥ 0.5 the
use of IGS starts to be important in some channel realizations
(as shown by ’optimal scheme SISO’). On the other hand, the
average fairness of the system is increased with IGS for values
of η ≥ 0.5. In the 2× 2 antenna case (see Fig. 9), the average
sum-rate is improved with IGS for η ≥ 1.5 and the average
fairness for η ≥ 0.5. Finally, in the 4 × 4 antenna case (see
Fig. 10), the average sum-rate is improved for η ≥ 2.75 and
the average fairness for η ≥ 0.75.

Therefore, the use of IGS is beneficial when interference
exceeds a certain threshold, where the proposed ’improper
(WLP) α=0.5’ allows trading in transmission fairness and
system sum-rate. Such threshold increases as the number of
transmit/receive antennas increase, due to the fact that the
larger is the number of transmit/receive antennas the larger
are the dimensions of the system and the lower are the gains
of the flexibility provided by IGS.
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Fig. 9: Average sum-rate and min-rate (in bits/s/Hz) of the MIMO Z-IC in Fig. 6
versus η for 2× 2. OPA, SNR=10dB.

In the SISO case (1× 1), the sum-rate performance of the
proposed ’improper (WLP) α = 0.5’ is close to the optimal
sum-rate performance of ’optimal scheme SISO’ (see Fig.
8.(a)), while the average min-rate is improved (see Fig. 8.(b)).
Recall that the proposed scheme has much less complexity
when α is fixed, as it does not require knowledge of the
interfering channel. Further, it can be adopted in any MIMO
system such that M ≥ N .

V. APPLICATION TO HCNS

In this section we show how to exploit the benefits of using
IGS in HCNs through the simple WLP design presented in
Section IV. Let us focus on the deployment shown in Fig.
2 with one MeNB and multiple SeNBs. Assume orthogonal
frequency division multiple access (OFDMA), such that on
a given time/frequency resource the MeNB serves a single
user (denoted by MUE) and each SeNB serves a single user
(denoted by SUE). Then, the interference channel towards each
SUE can be modeled by the MIMO Z-IC.

More specifically, the HCN in Fig. 2 is related to the MIMO
Z-IC in Fig. 6 as follows:
• the MUE (that just observes noise) corresponds to RXB,
• each SUE (that might observe interference due to

the active transmission of the MeNB on the same
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Fig. 10: Average sum-rate and min-rate (in bits/s/Hz) of the MIMO Z-IC in Fig. 6
versus η for 4× 4. OPA, SNR=10dB.

time/frequency resource) corresponds to RXA.

Notice that, due to the deployment of multiple SeNBs within
the MeNB coverage area (see Fig. 2), there will appear as
many MIMO Z-IC as the number of SUEs within the MeNB
coverage area that are being served.

The interesting part is that the proposed improper-based
scheme with WLP in subsection IV-A for TXB (i.e. the
MeNB) when using maximal IGS (i.e. α = 0.5 in (32)) can
be applied independently of the interfering channels, as it is
based on generating improper interference towards the SUEs
(i.e. RXA) but does not depend on the specific SUE that is
selected. Accordingly, the proposed improper-based scheme
can be easily applied to multi-tier HCN deployments defined
in 3GPP LTE-A [35] so as to increase the achievable rate of
the SUEs. Furthermore, as multiple MIMO Z-IC may appear,
large gains could be obtained with the use of the proposed
improper-based scheme because all SUEs would be guaranteed
to increase their rate according to Theorem 1 for UPA and to
Theorem 3 for OPA.

A. Simulation results

The proposed improper-based scheme is evaluated through
Monte Carlo simulations in a simulator compliant with 3GPP



IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. XX, NO. XX, MONTH 2016 12

LTE-A specifications in [36]. The network consists of a multi-
tier deployment where MeNBs and SeNBs use the same
carrier frequency of 2GHz with 10MHz bandwidth. The Small
Cell Scenario 1 is used, following deployment and simulation
parameters specified in [36]. The deployment consists of 1
MeNB and 4 SeNBs that are uniformly distributed within the
macrocell area. 60 users (UEs) are deployed per macrocell
area, being 2/3 of them placed near the SeNBs, and the
remaining UEs are uniformly distributed within the MeNB
coverage area. All UEs are placed outdoor. ITU UMa and
ITU UMi models with 3D distance are used for path loss
and shadowing modeling for MeNB-UE and SeNB-UE links,
respectively. The typical urban model is used for frequency-
selective fading modeling. Maximum transmit power at MeNB
is Pmax

MeNB = 46dBm. At SeNBs we use two different maximum
transmit power values for simulation: either Pmax

SeNB = 24dBm
or Pmax

SeNB = 15dBm. Antenna gains are 17dBi at MeNB,
5dBi at SeNB, and 0dBi at UE. Noise spectral density is
−174dBm/Hz. The number of antennas is MMeNB = MSeNB =
2, and NUE = 2 for all UEs.

Cell selection at each UE is based on best downlink refer-
ence signal receive power (RSRP) [36]. A range extension bias
(REB) is added at the RSRP received from each SeNB in order
to expand its cell-range and offload more UEs to the SeNBs
[37]. REB=10dB is used for Pmax

SeNB = 24dBm and REB=15dB
is employed for Pmax

SeNB = 15dBm, such that around 73% of
the UEs (in mean over different deployments) are offloaded to
the SeNBs in both cases. Hence, 73% of the UEs are SUEs
and 27% of the UEs are MUEs.

The LTE-A frame composed of 8 downlink sub-frames and
2 uplink sub-frames [35] is assumed, but only downlink is
evaluated in the sequel. Full-load traffic model is used, where
all UEs in the network have packets to be received. For each
frame, the UEs associated to the same MeNB or SeNB are
uniformly distributed in frequency domain among the available
resource blocks (RBs), such that intra-cell interference is
removed and only inter-cell interference remains (including
cross-tier and co-tier interference). The power available at each
MeNB or SeNB is uniformly distributed among the RBs where
the UEs have been scheduled.

The following techniques are evaluated on each RB:
• time-sharing: time-sharing solution among MeNB and

SeNBs. Different muting ratios are used, represented by
X/8 in the figures, which means that all SeNBs transmit
in X sub-frames while MeNB transmits in the 8 − X
subsequent sub-frames.

• eICIC ABS: enhanced inter-cell interference coordina-
tion (eICIC) defined in LTE-A with time-division muting
based on almost blank sub-frames (ABS) [38]. Different
muting ratios are used, represented by X/8 in the figures,
which means that the MeNB is muted X sub-frames
where the SeNBs transmit while in the 8−X subsequent
sub-frames all MeNB and SeNBs transmit.

• FR proper (LP): full-reuse (FR) of the frequency band
and time slots for MeNB and SeNBs, using proper-based
schemes (i.e. LP) at MeNB and SeNBs with OPA in (27).

• FR improper (WLP): FR of the frequency band and
time slots for MeNB and SeNBs, using improper-based

t

f

t

f

t

f

SeNBs MeNBMeNB
SeNBs

a) FR proper/improper     b) time-sharing c) eICIC ABS
X/8 X/8

SeNBs MeNB
SeNBsRB

Fig. 11: Transmission schemes considered for HCNs, shown in a frequency/time grid
corresponding to 1 RB and 8 downlink sub-frames.

schemes (i.e. WLP) at MeNB and SeNBs with OPA in
(27). The proposed scheme in (32) is employed at MeNB
with α = 0.5 and the anti-identity solution for Z1 and
Z2 in (36).

Fig. 11 displays the evaluated transmission schemes in a
frequency/time grid corresponding to 1 RB and 8 downlink
sub-frames, showing the sub-frames in which MeNB and
SeNBs are allowed to transmit.

The performance indicator is the user throughput (UT)
measured in Mbits/s. Let us remark that all the evaluated
schemes have as main objective dealing with the cross-tier
interference, either with time-sharing or with an efficient
spatial precoding design. However, the co-tier interference (i.e.
interference from SeNB towards SUEs associated to other
SeNBs) can degrade the system performance in some cases
depending on the deployment and the system parameters. Also,
in the case of a full-reuse, the cross-tier interference from
SeNB to the MUEs can also be prejudicial in some cases.

Fig. 12 displays the cumulative distribution function (CDF)
of the achievable rates per RB of the MUEs and the SUEs (in
bits/s/Hz), separately, for Pmax

SeNB = 24dBm. In the ’eICIC ABS’
technique, as the muting ratio (X/8) increases, the achievable
rate of the MUEs is degraded while the achievable rate of
the SUEs is improved because the cross-tier interference is
eliminated. As compared to the baseline ’FR proper (LP)’,
the proposed ’FR improper (WLP)’ has a similar behavior
than the ’eICIC ABS’: it degrades the achievable rate of the
MUEs so as to improve the achievable rate of the SUEs (as
is also shown in Section IV-D). However, it can be observed
that, among all techniques, ’FR improper (WLP)’ achieves the
fairest performance when considering all MUEs and SUEs.

Fig. 13.(a) displays the 5%-tile UT vs. the mean UT when
considering all UEs for the case of Pmax

SeNB = 24dBm. The use
of ’time-sharing’ or ’eICIC ABS’ define an oval area where
the system can operate based on the variation of the muting
ratio (X/8). As the muting ratio increases, the mean UT is
increased because the SeNBs have more sub-frames available
with less interference (see Fig. 11). On the contrary, there is
a limit in terms of fairness (or 5%-tile UT) because when
the muting ratio increases the resources devoted to the MUEs
decrease and there is a switching point in which the fairness
passes from being limited by SUEs to being constrained by
the MUEs. However, it is important to realize that, although
the ’FR proper (LP)’ lies inside the oval areas delimited by
the ’time-sharing’ or ’eICIC ABS’ solutions, the proposed ’FR
improper (WLP)’ allows to go out of these areas and improve
both the system fairness and the system sum-rate performance.

Fig. 13.(b) displays the same as Fig. 13.(a), but for case
of Pmax

SeNB = 15dBm. Similar conclusions can be extracted.
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Fig. 12: CDF of the achievable rate (in bits/s/Hz) per RB of (a) MUEs and (b) SUEs.
Pmax

SeNB = 24dBm.

However, the 5%-tile and the mean UT gains of ’FR improper
(WLP)’ are larger than in the case of Pmax

SeNB = 24dBm,
owing to the fact that when reducing the power at SeNBs
the interfering-to-direct ratio for the SUEs increases (same
interfering power from MeNB, but less direct power from
SeNB) and hence the use of IGS provides larger system
performance gains.

In addition to the system fairness and performance gains,
’FR improper (WLP)’ has the following advantages as com-
pared to ’time-sharing’ or ’eICIC ABS’ solutions: i) there is no
need to optimize the muting ratio, and ii) the synchronization
issues due to the time-sharing and the on/off switching of the
MeNB do not need to be tackled. Furthermore, the proposed
’FR improper (WLP)’ does not add any complexity in terms
of implementability, either in overhead or in additional infor-
mation required for coordination.

VI. CONCLUSIONS

This paper exploits majorization theory to formally quantify
the benefits of IGS in the MIMO P2P-I, and then applies the
concepts to the MIMO Z-IC and to HCNs through an efficient
design of widely linear transceivers. First, for the MIMO P2P-
I, we show that the use of IGS allows: i) strictly improving
the achievable rate and the MSE and when uniform power
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Fig. 13: 5%-tile UT vs. mean UT (in Mbits/s). Different muting ratios are displayed
for time-sharing and eICIC solutions. (a) Pmax

SeNB = 24dBm, (b) Pmax
SeNB = 15dBm.

allocation is performed and ii) improving the achievable rate
when optimal power allocation for maximum rate is adopted.
Second, for the MIMO Z-IC, we propose a practical improper-
based scheme through a simple WLP design, which allows:
i) improving the achievable rate of the most impaired user
and ii) improving the system fairness and controlling the sum-
rate performance through a single parameter in interference-
limited scenarios. The proposed improper-based scheme is
useful provided that the interference levels are high enough,
in which case the performance gains are significant. Finally,
such benefits are applied to HCNs where multiple MIMO Z-IC
appear with high interference levels. In this scenario, 3GPP-
compliant simulations show that the 5%-tile and the mean user
throughput are improved with the proposed improper-based
scheme as compared to conventional time-sharing solutions,
proper-based schemes, and the well-known eICIC technique,
due to the fact that the proposed scheme can cope with
a full reuse of the frequency bands and time slots while
providing enough flexibility to combat the predominant cross-
tier interference in HCNs.
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APPENDIX A
PRELIMINARIES

A. Preliminaries for improper Gaussian random vectors

In this section we introduce the basic notions of improper
random vectors that are used through the paper (see [6] for
more details).

Definition 1 ([6]): Given a zero-mean complex random
vector x ∈ Cn×1, the matrix Cx = E{xxH} is the covariance
matrix of x and the matrix C̃x = E{xxT } is the pseudo-
covariance matrix of x.

By definition, it is easy to check that the covariance matrix
Cx is Hermitian and positive semidefinite while the pseudo-
covariance matrix C̃x is symmetric.

Definition 2 ([39] - proper): A complex random vector x
is called proper if its pseudo-covariance matrix C̃x vanishes
to a zero matrix, otherwise it is called improper.

A more restrictive definition than properness is known as
circularly symmetric.

Definition 3 ([6] - circularly symmetric): A complex ran-
dom vector x is circularly symmetric if its distribution is
rotationally invariant, i.e. if x and x̂ = xejα have the same
distribution for any real value α.

For a circularly symmetric random vector x, we have
C̃x = C̃x̂ = E{x̂x̂T } = ej2αC̃x, which implies C̃x = 0. Thus,
circularity implies properness, but the converse is not true in
general. Nevertheless, if x is a zero-mean Gaussian random
vector, then properness and circularity are equivalent [6], as
given by the following lemma.

Lemma 2 ([6]): A complex zero-mean Gaussian random
vector x is circularly symmetric if and only if it is proper.

Hence, the commonly adopted assumption that the noise
vector is zero-mean circularly symmetric complex Gaussian
(CSCG) is equivalent to say that the noise vector is a proper
Gaussian random vector.

For an arbitrary zero-mean complex random vector x ∈
Cn×1, two mathematical tools have been used in the recent
literature to represent them: the composite real representa-
tion, whereby real and imaginary parts of x are separated:
x̄ =

[
<{x}T ={x}T

]T ∈ R2n×1, and the augmented complex
representation, which works with the complex vector and its

complex conjugate: x =
[
xT (x∗)T

]T
∈ C2n×1 [40]. Both

representations are mathematically equivalent in the sense that
it is equivalent to work with one or the other, since they are
related by the following bijective transformation:

x̄ =

[
<{x}
={x}

]
= T

[
x
x∗

]
= Tx, (42)

where

T = 1
2

[
In In
−jIn jIn

]
. (43)

It is very important to recall that although x̄ is a real-valued
vector, T and x are complex-valued. Thus, x̄T = xHTH .

Lemma 3 ([6]): Any arbitrary zero-mean complex random
vector x ∈ Cn×1 is characterized by the covariance matrix of

the augmented vector x, which is given by:

Cx = E{x xH} =

[
Cx C̃x

C̃
∗
x C∗x

]
. (44)

The augmented covariance matrix Cx in (44) has some
built-in redundancy for the second-order characterization of
x. However, it is useful as shown in the following theorem.

Theorem 5 ([6]): Cx and C̃x are a valid set of covariance
and pseudo-covariance matrices, i.e. there exists a random
vector x with covariance and pseudo-covariance matrices given
by Cx and C̃x, respectively, if and only if the augmented
covariance matrix Cx is positive semidefinite (i.e. Cx � 0).

The conditions of the covariance matrix Cx being Hermitian
and positive semidefinite and the pseudo-covariance matrix
C̃x being symmetric are already implied by the augmented
covariance matrix Cx being positive semidefinite [6].

The relation between the covariance matrix of the aug-
mented vector x (i.e. Cx in (44)) and the covariance matrix of
the real-valued vector x̄ (i.e. Cx̄) can be derived from (42). It
is included in the following lemma.

Lemma 4: The covariance matrix of the real-valued vector
x̄ is related to the covariance matrix of the augmented vector
x as:

Cx̄ = E{x̄ x̄T } = E{Tx xHTH} = TCxTH

= T
[

Cx C̃x

C̃
∗
x C∗x

]
TH , (45)

being matrix T the one defined in (43). Due to the bijective
transformation in (42) and Lemma 3, Cx̄ in (45) characterizes
any arbitrary zero-mean complex random vector x.

In wireless communications, the information-bearing signals
are usually selected from a CSCG (i.e. proper Gaussian)
codebook. Hence, the problem of how efficiently generate an
improper Gaussian signal x ∈ Cn×1 from a proper Gaussian
signal b ∈ Cm×1 selected from a CSCG codebook arises.
Without loss of generality, assume that b ∼ CN (0, Im), i.e.
Cb = Im and C̃b = 0. Note that the conventional linear
precoding, i.e. x = Wb where W ∈ Cn×m is the precoding
matrix, is not able to map the proper Gaussian signal b into
an improper Gaussian signal x, since the pseudo-covariance
matrix of x vanishes: C̃x = WC̃bWT = 0. However, widely
linear precoding is able to do it [4]. The main result is
summarized in the following lemma.

Lemma 5 ([4]): Given a proper Gaussian information-
bearing signal b ∈ Cm×1 characterized by Cb = Im and
C̃b = 0, an improper Gaussian signal x ∈ Cn×1 can be
obtained by applying the following widely linear precoding
(WLP) to the proper Gaussian signal b:

x = W1b + W2b∗, (46)

where W1 ∈ Cn×m and W2 ∈ Cn×m are the precoding
matrices corresponding to the blocks of Cx in (44):

C
1
2
x =

[
W1 W2

W∗2 W∗1

]
. (47)
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Therefore, as Cx characterizes any arbitrary zero-mean com-
plex random vector, any improper Gaussian signal can be
generated from a proper Gaussian signal through the use of
WLP [4, Sect. II.C]. Further, Lemma 5 states the relation
between the covariance and pseudo-covariance matrices of x
(Cx and C̃x) and the precoding matrices (W1 and W2):

Cx = W1WH
1 + W2WH

2 , C̃x = W1WT
2 + W2WT

1 . (48)

Note that if W2 = 0 (and hence C̃x = 0), then (46) reduces
to the conventional linear precoding used for PGS.

B. Preliminaries for majorization theory

In this section we introduce the basic notions of majoriza-
tion theory that are used through the paper. See [23] for a
complete reference and [24] for its applications in wireless
communications. Majorization theory makes precise the vague
notion that the components of a vector y are ”more spread out”
or ”less nearly equal” than are the components of a vector x.

Definition 4: For any real-valued vector x ∈ Rn×1, let

x[1] ≥ · · · ≥ x[n] (49)

denote the components of vector x in decreasing order. Simi-
larly, let

x(1) ≤ · · · ≤ x(n) (50)

denote the components of vector x in increasing order.
Under this ordering of vectors, different kinds of ma-

jorization relations arise when comparing two vectors: strong
majorization, weak majorization, and weak log-majorization,
as defined in what follows.

Definition 5 ([23] - strong majorization): For any x, y ∈
Rn×1, y majorizes x (or x is majorized by y), written as y � x
(or, equivalently, x ≺ y), if:∑m

i=1
y[i] ≥

∑m

i=1
x[i] m = 1, ..., n− 1

and
∑n

i=1
y[i] =

∑n

i=1
x[i]. (51)

The conditions in (51) are equivalent to:∑m

i=1
y(i) ≤

∑m

i=1
x(i) m = 1, ..., n− 1

and
∑n

i=1
y(i) =

∑n

i=1
x(i), (52)

Definition 6 ([23] - weak majorization): For any x, y ∈
Rn×1, y weakly majorizes x (or x is weakly majorized by
y), written as y �w x (or, equivalently, x ≺w y), if:∑m

i=1
y[i] ≥

∑m

i=1
x[i] m = 1, ..., n. (53)

Note that y � x implies y �w x, so strong majorization is a
more restrictive definition than weak majorization.

Definition 7 ([23] - weak log-majorization): For any
x, y ∈ Rn×1, y weakly log-majorizes x (or x is weakly
log-majorized by y), written as y �w log x (or, equivalently,
x ≺w log y), if:∏m

i=1
y[i] ≥

∏m

i=1
x[i] m = 1, ..., n. (54)

Note that y �w log x implies y �w x, so weak log-majorization
is a stronger definition than weak majorization.

Functions that preserve the ordering of majorization are said
to be Schur-convex (or Schur-concave if the order is reverted).

Definition 8 ([23] - Schur-convex/concave): A real-valued
function φ defined on a set A ∈ Rn×1 is said to be Schur-
convex on A if:

y � x on A ⇒ φ(y) ≥ φ(x). (55)

Similarly, φ is said to be Schur-concave on A if:

y � x on A ⇒ φ(y) ≤ φ(x). (56)

The Schur-convex or Schur-concave property of a function
can be identified as follows.

Proposition 1 ([23]): If I ∈ R is an interval and g : I→ R
is a convex function, then:

φ(x) =
∑n

i=1
g(x[i]) (57)

is Schur-convex on In×1. Similarly, if g : I→ R is a concave
function, then: φ(x) =

∑n
i=1 g(x[i]) is Schur-concave on In×1.

There is a stronger version of Schur-convexity and Schur-
concavity for functions that preserve the ordering of majoriza-
tion with a positive increment, as introduced what follows.

Definition 9 ([41] - Strongly Schur-convex/concave): A
real-valued function φ defined on a set A ∈ Rn is said to be
strongly Schur-convex with modulus c > 0 on A if:

y � x on A ⇒ φ(y) ≥ φ(x) + c(||y||2 − ||x||2). (58)

Similarly, φ is said to be strongly Schur-concave with modulus
c > 0 on A if:

y � x on A ⇒ φ(y) ≤ φ(x)− c(||y||2 − ||x||2). (59)

Note that the usual Schur-convexity and Schur-concavity
correspond to the case c = 0.

The strongly Schur-convex or strongly Schur-concave prop-
erty of a function can be identified as follows.

Proposition 2 ([41]): If I ∈ R is an interval and g : I→ R
is a strongly convex function with modulus c > 0, then:

φ(x) =
∑n

i=1
g(x[i]) (60)

is strongly Schur-convex with modulus c > 0 on In×1.
Similarly, if g : I → R is a strongly concave function with
modulus c > 0, then: φ(x) =

∑n
i=1 g(x[i]) is strongly Schur-

concave with modulus c > 0 on In×1.
Now let us present an important majorization result for

partitioned Hermitian matrices which states that, for two
Hermitian matrices with equal diagonal blocks, the stronger
the off-diagonal blocks are the more spread out the eigenvalues
become, see [6, Result A3.7]. This result can also be derived
from the pinching inequality, see [42].

Lemma 6 ([6] - partitioned Hermitian matrices): For
Hermitian matrices A and B in the form:

A =

[
A11 A12

AH12 A22

]
, B =

[
A11 0

0 A22

]
, (61)
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the following strong majorization result is fulfilled:

eig(A) � eig(B). (62)

APPENDIX B
PROOFS

A. Proof of Lemma 1

Assume that the channel coefficients of H ∈ CN×M in (1)
follow a Rayleigh distribution (i.e. H is full rank) and M ≥ N .
Then, let us write the vector of eigenvalues in (16) as follows:

λ̄P = eig

([
Cs 0
0 C∗s

]−1
1
2 T−1H̄H̄TT−H

)
,

λ̄I = eig

([
Cs C̃s

C̃
∗
s C∗s

]−1

1
2 T−1H̄H̄TT−H

)
,

(63)

in which we have used the fact that eig(XY) = eig(YX) for
any matrix X and Y. Note that the block-matrices [Cs 0; 0 C∗s ]

and [Cs C̃s; C̃
∗
s C∗s ] in (63) are full rank, so their inverses

exist. By using the structure of H̄ in (4), the structure of T
in (7), and some matrix manipulations, it can be shown that
1
2 T−1H̄H̄TT−H in (63) is equal to:

1
2 T−1H̄H̄TT−H =

[
HHH 0

0 H∗HT

]
. (64)

This relation is key for the proof. Note that 1
2 T−1H̄H̄TT−H

in (64) is full rank for M ≥ N and H full rank, so
its inverse exists and it is equal to ( 1

2 T−1H̄H̄TT−H)−1 =
[(HHH)−1 0; 0 (HHH)−1].

The inverses of the positive eigenvalues in (63) (i.e. λ̄−1
P

and λ̄
−1
I ) can be obtained from the positive eigenvalues of the

inverse matrix. Then, using the relation in (64), we get:

λ̄
−1
P = eig

([
Cs 0
0 C∗s

][
(HHH)−1 0

0 (H∗HT )−1

])
,

λ̄
−1
I = eig

([
Cs C̃s

C̃
∗
s C∗s

][
(HHH)−1 0

0 (H∗HT )−1

])
,

(65)

such that, multiplying the block-matrices, we have:

λ̄
−1
P = eig

([
Cs(HHH)−1 0

0 C∗s (H∗HT )−1

])
,

λ̄
−1
I = eig

([
Cs(HHH)−1 C̃s(H∗HT )−1

C̃
∗
s (HHH)−1 C∗s (H∗HT )−1

])
.

(66)

Therefore, as the diagonal blocks of the partitioned Hermitian
matrices in (66) are equal, we can make use of Lemma 6 in
Appendix A-B and hence, from (66), obtain:

λ̄
−1
I �λ̄

−1
P , (67)

which demonstrates the strong majorization result in (17) of
Lemma 1.

The weak log-majorization result in (17) of Lemma 1 is
demonstrated in continuation by using some useful majoriza-
tion theory properties that can be derived from (67). The first
useful majorization theory property is [23, Sect. 5.A.1.d]: if
eig(A) � eig(B), then

∏K
i=k eig(A)i ≤

∏K
i=k eig(B)i, k =

1, ...,K, being eig(A)i the i-th eigenvalue of A and K the rank

of A. Due to the ordering of eigenvalues, the last components
of the vectors in (67) correspond to the first components of
the eigenvalues in (63), such that as an implication of (67):∏n

i=1

1

λ̄I,i
≤
∏n

i=1

1

λ̄P,i
n = 1, ..., 2N, (68)

and hence:∏n

i=1
λ̄I,i ≥

∏n

i=1
λ̄P,i n = 1, ..., 2N. (69)

The second useful majorization theory property is [23, Sect.
5.A.1]: if eig(A) � eig(B), then we can apply a convex
function g(.) over each component of the vectors and the
following is satisfied: g(eig(A)) �w g(eig(B)). As g(x) = 1

x
is a convex function, it follows from (67) that:∑n

i=1
λ̄I,i ≥

∑n

i=1
λ̄P,i n = 1, ..., 2N. (70)

Again, the ordering of eigenvalues is very important here.
Finally, from (69) and (70), the weak log-majorization result
in (17) is demonstrated (see Definition 7 in Appendix A-B).

B. Proof of Theorem 1

The function 1
2 log2

(
1 + P̄

x

)
is a convex function on

x ≥ 0 for P̄ > 0. Thus, as convex functions generate
Schur-convex sums (see Proposition 1 in Appendix A-B), the
function

∑
i

1
2 log2

(
1 + P̄

xi

)
is a Schur-convex function. The

achievable rate in (21) can be written in such a form with
xi = 1

λ̄i
: Ropt =

∑2N
i=1

1
2 log2

(
1 + P̄

1/λ̄i

)
, so it is a Schur-

convex function on λ̄
−1 for P̄ > 0. Therefore, due to Lemma

1 (λ̄−1
I �λ̄

−1
P ) and as the achievable rate is a Schur-convex

function on λ̄
−1, by majorization theory on Schur-convex

functions (see Definition 8 in Appendix A-B) we get:

Ropt(P̄ λ̄I) ≥ Ropt(P̄ λ̄P ). (71)

To further extend this inequality, we make use of the results
from strong Schur-convexity (see Definition 9 in Appendix
A-B) [41]. Inequality in (23) of Theorem 1 is obtained by
showing that the rate expression Ropt =

∑2N
i=1

1
2 log2

(
1 + P̄

xi

)
with xi = 1

λ̄i
is a strongly Schur-convex function with modulus

cupa
R . As strongly convex functions generate strongly Schur-

convex sums (see Proposition 2 in Appendix A-B), we need
to prove that 1

2 log2

(
1+ P̄

x

)
is strongly convex3 with modulus

cupa
R on interval x ∈ [0, xmax] or, equivalently, to show that

1
2 log2

(
1+ P̄

x

)
−cupa

R x2 is convex on the interval x ∈ [0, xmax]
[41]. By checking the second order derivative, it is easy
to show that 1

2 log2(1 + P̄
x ) − cupa

R x2 is convex for cupa
R ≤

P̄ (x+0.5P̄ )
2 ln(2)x2(x+P̄ )2

. Therefore, as the values of xi = 1
λ̄i

are upper
bounded by the minimum positive eigenvalue xmax = 1

min(λ̄i)
,

there exists an interval x ∈ [0, xmax] in which 1
2 log2

(
1 + P̄

x

)
is strongly convex with modulus:

cupa
R =

P̄ (xmax + 0.5P̄ )

2 ln(2)x2
max(xmax + P̄ )2

> 0. (72)

Consequently, due to Lemma 1 (λ̄−1
I �λ̄

−1
P ) and as the

achievable rate is a strongly Schur-convex function on λ̄
−1

3A twice continuously differentiable function f : (a, b) → R is strongly
convex with modulus m if and only if f ′′(x) ≥ m > 0 for x ∈ (a, b).
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with modulus cupa
R (see Definition 9 in Appendix A-B):

Ropt(P̄ λ̄I) ≥ Ropt(P̄ λ̄P ) + cupa
R

(
‖λ̄−1

I ‖2 − ‖λ̄
−1
P ‖2

)
. (73)

Note that due to the strong majorization result in Lemma 1:
1

min(λ̄P )
≤ 1

min(λ̄I)
, such that the interval [0, xmax] is deter-

mined by the IGS case. Therefore, by setting xmax = 1
min(λ̄I)

in (72), cupa
R in (24) is derived. Finally, as the squared 2-

norm function is a Schur-convex function then
(
‖λ̄−1

I ‖2 −
‖λ̄−1

P ‖2
)
≥ 0 (with equality if and only if λ̄I = λ̄P ) [41]. So,

the rate gap in (23) is strictly positive provided that λ̄I 6= λ̄P .

C. Proof of Theorem 2

The function 1
2

x
(P̄+x)

is a concave function on x ≥ 0

for P̄ > 0. Then, as concave functions generate Schur-
concave sums (see Proposition 1 in Appendix A-B), the
function

∑
i

1
2

xi

(1+xi)
is a Schur-concave function. The MSE

in (22) can be written in such a form with xi = 1
λ̄i

:

εopt =
∑2N
i=1

1
2

1/λ̄i

(P̄+1/λ̄i)
, so it is a Schur-concave function on

λ̄
−1 for P̄ > 0. Therefore, due to Lemma 1 (λ̄−1

I �λ̄
−1
P ) and

as the MSE is a Schur-concave function on λ̄
−1, by majoriza-

tion theory on Schur-concave functions (see Definition 8 in
Appendix A-B) we have:

εopt(P̄ λ̄I) ≤ εopt(P̄ λ̄P ). (74)

To further extend this inequality, we make use of the results
from strong Schur-concavity (see Definition 9 in Appendix
A-B) [41]. Inequality in (25) of Theorem 2 is obtained by
showing that the error expression εopt =

∑2N
i=1

1
2

xi

(P̄+xi)
with

xi = 1
λ̄i

is a strongly Schur-concave function with modulus
cupa
ε . As strongly concave functions generate strongly Schur-

concave sums (see Proposition 2 in Appendix A-B), we need to
prove that 1

2
x

(P̄+x)
is strongly concave4 with modulus cupa

ε on
interval x ∈ [0, xmax] or, equivalently, to show that 1

2
x

(P̄+x)
+

cupa
ε x2 is concave on interval x ∈ [0, xmax] [41]. By checking

the second order derivative, one can show that 1
2

x
(P̄+x)

+cupa
ε x2

is concave for cupa
ε ≤ P̄

2(x+P̄ )3
. Therefore, as the values of xi =

1
λ̄i

are upper bounded by the minimum positive eigenvalue
xmax = 1

min(λ̄i)
, there exists an interval x ∈ [0, xmax] in which

the function 1
2

x
(P̄+x)

is strongly concave with modulus:

cupa
ε =

P̄

2(xmax + P̄ )3
> 0. (75)

Consequently, due to Lemma 1 (λ̄−1
I �λ̄

−1
P ) and as the MSE

is a strongly Schur-concave function on λ̄
−1 with modulus cupa

ε

(see Definition 9 in Appendix A-B):

εopt(P̄ λ̄I) ≤ εopt(P̄ λ̄P )− cupa
ε

(
‖λ̄−1

I ‖2 − ‖λ̄
−1
P ‖2

)
. (76)

By setting xmax = 1
min(λ̄I)

in (75), cupa
ε in (26) is derived.

Also, as
(
‖λ̄−1

I ‖2 − ‖λ̄
−1
P ‖2

)
≥ 0, the error gap in (25) is

strictly positive provided that λ̄I 6= λ̄P .

4A twice continuously differentiable function f : (a, b) → R is strongly
concave with modulus m if and only if f ′′(x) ≤ m < 0 for x ∈ (a, b).

D. Proof of Theorem 3

In order to prove an achievable rate improvement with the
use of IGS when OPA in (27) is adopted, let us focus on
demonstrating the following inequalities:

Ropt(p̄I ◦ λ̄I) ≥ R(p̄P ◦ λ̄I) ≥ Ropt(p̄P ◦ λ̄P ), (77)

where R(p̄P ◦λ̄I) refers to the achievable rate in the improper
interference case when the power allocation derived from the
proper interference case is used (which is not the optimum, but
a valid power allocation). Regarding the second inequality in
(77), in the following we introduce some interesting properties
that would allow us to prove it.
• Property 1: [23, Prop. 3.H.3.b] states that if a �w b,

then a ◦ u �w b ◦ u for any u ∈ D+, where D+ denotes
the set of vectors of length L such that {(u1, ..., uL) :
u1 ≥ · · · ≥ uL ≥ 0}. The extension of this proposition
to weak log-majorization is straightforward by realizing
the properties of the product operation. So we can state
that: if a �wlog b, then a ◦ u �wlog b ◦ u for any
u ∈ D+. Accordingly, as p̄P ∈ D+ and due to Lemma
1 (λ̄I�w logλ̄P ), we can conclude that when using the
power allocation derived from the proper interference
case (i.e. p̄P ), the following relation is satisfied:

p̄P ◦ λ̄I �w log p̄P ◦ λ̄P . (78)

• Property 2: From [43, Prop. 1.3] it can be estab-
lished that if a �wlog b, then

∑L
i=1 log (1 + ai) ≥∑L

i=1 log (1 + bi), being L the vector length, as log(1 +
x) is an increasing function on x ∈ [0,∞) and log(1+ex)
is a convex function on x ∈ [0,∞). Accordingly, as the
achievable rate in (14) has such a form, and owing to
Property 1 (p̄P ◦ λ̄I�w logp̄P ◦ λ̄P ), we can conclude:

R(p̄P ◦ λ̄I) ≥ Ropt(p̄P ◦ λ̄P ). (79)

Hence, the second inequality in (77) is demonstrated. The first
inequality in (77) is intrinsic of the water-filling solution for
OPA in (27), as for a given λ̄I the optimal power allocation
in terms of achievable rate is given by p̄I , so: Ropt(p̄I ◦ λ̄I) ≥
R(p̄P ◦ λ̄I) and the proof is completed.

E. Proof of Theorem 4

The function 1
2 log2

(
µ
x

)
is a convex function on x ≥ 0

for µ > 0. Thus, as convex functions generate Schur-convex
sums (see Proposition 1 in Appendix A-B), the function∑
i

1
2 log2

(
µ
xi

)
is a Schur-convex function. The achievable rate

in (29) can be written in such a form with xi = 1
λ̄i

: Ropt =∑2N
i=1

1
2 log2

(
µ

1/λ̄i

)
, so it is a Schur-convex function on λ̄

−1

for µ > 0. Furthermore, by checking the second order deriva-
tive and following similar rationale as in Appendix B-B, it can
be observed that the rate expression Ropt =

∑2N
i=1

1
2 log2

(
µ
xi

)
is a strongly Schur-convex function with modulus copa

R (i.e.
1
2 log2

(
µ
x

)
is strongly convex with modulus copa

R on interval
x ∈ [0, xmax] or, equivalently, 1

2 log2

(
µ
x

)
− copa

R x2 is convex
on the interval x ∈ [0, xmax] [41]):

copa
R =

1

4 ln(2)x2
max

> 0. (80)
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Consequently, due to Lemma 1 (λ̄−1
I �λ̄

−1
P ) and as the

achievable rate is a strongly Schur-convex function on λ̄
−1

with modulus copa
R (see Definition 9 in Appendix A-B):

Ropt(p̄I ◦ λ̄I) ≥ Ropt(p̄P ◦ λ̄P ) + copa
R

(
‖λ̄−1

I ‖2 − ‖λ̄
−1
P ‖2

)
.

(81)
By setting xmax = 1

min(λ̄I)
in (80), copa

R in (31) is derived.

Finally, as
(
‖λ̄−1

I ‖2 − ‖λ̄
−1
P ‖2

)
≥ 0, the rate gap in (30) is

strictly positive provided that λ̄I 6= λ̄P .
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