Multi-antenna precoding effectively mitigates the interference in wireless
networks. However, the precoding efficiency can be significantly degraded by
the overhead due to the required feedback of channel state information (CSI).
This paper addresses such an issue by proposing a systematic method of
designing precoders for the two-user multiple-input-multiple-output (MIMO)
interference channels based on finite-rate CSI feedback from receivers to their
interferers, called cooperative feedback. Specifically, each precoder is
decomposed into inner and outer precoders for nulling interference and
improving the data link array gain, respectively. The inner precoders are
further designed to suppress residual interference resulting from finite-rate
cooperative feedback. To regulate residual interference due to precoder
quantization, additional scalar cooperative feedback signals are designed to
control transmitters' power using different criteria including applying
interference margins, maximizing sum throughput, and minimizing outage
probability. Simulation shows that such additional feedback effectively
alleviates performance degradation due to quantized precoder feedback.Comment: 5 pages; submitted to IEEE ICC 201