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Rate Splitting in MIMO RIS-assisted Systems with
Hardware Impairments and Improper Signaling
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Abstract—In this paper, we propose an optimization frame-
work for rate splitting (RS) techniques in multiple-input multiple-
output (MIMO) reconfigurable intelligent surface (RIS)-assisted
systems, possibly with I/Q imbalance (IQI). This framework
can be applied to any optimization problem in which the
objective and/or constraints are linear functions of the rates
and/or transmit covariance matrices. Such problems include
minimum-weighted and weighted-sum rate maximization, total
power minimization for a target rate, minimum-weighted energy
efficiency (EE) and global EE maximization. The framework
may be applied to any interference-limited system with hardware
impairments. For the sake of illustration, we consider a multicell
MIMO RIS-assisted broadcast channel (BC) in which the base
stations (BSs) and/or the users may suffer from IQI. Since
IQI generates improper noise, we consider improper Gaussian
signaling (IGS) as an interference-management technique that
can additionally compensate for IQI. We show that RS when
combined with IGS can substantially improve the spectral and
energy efficiency of overloaded networks (i.e., when the number
of users per cell is larger than the number of transmit/receive
antennas).

Index Terms—Energy efficiency, improper Gaussian signaling,
majorization minimization, MIMO broadcast channels, power
minimization, rate splitting, reflecting intelligent surface, spectral
efficiency.

I. INTRODUCTION

Rate splitting (RS) and reconfigurable intelligent surfaces
(RISs) are among the most promising technologies for beyond
5G (B5G) and 6G, and have been shown to be able to
substantially improve the spectral and energy efficiency of
various wireless communication systems [1]–[3]. RS is a
powerful interference-management technique, which includes
a variety of schemes/technologies such as treating interference
as noise (TIN), non-orthogonal multiple access (NOMA) tech-
niques, space division multiple access (SDMA), multicasting,
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broadcasting, among others [1]. Additionally, the use of RIS is
an emerging trend in wireless technologies for improving the
coverage and/or manage/neutralize interference by modulating
channels [2].

In this paper, we provide a general optimization frame-
work for RS in multiple-input, multiple-output (MIMO) RIS-
assisted systems and investigate the performance of RS in such
systems.

A. Literature review

One of the main bottlenecks for modern wireless com-
munication systems is interference from other users such
that these systems are mostly interference-limited [4]. Hence,
interference-management techniques are expected to continue
playing an essential role in the upcoming wireless commu-
nication systems. RS is a practical and flexible signaling
scheme that includes various schemes/technologies such as
TIN, NOMA, SDMA, multicasting, broadcasting, etc. [1].
Indeed, RS can get the benefits of all theses schemes and
switch between them depending on the channel conditions
and interference level. When interference is weak, TIN is
the optimal decoding strategy for maximizing the sum rate
[5]. Under some conditions on the strength of the desired
and interference links, TIN is also optimal in terms of the
generalized degrees of freedom [6]. In the presence of strong
interference, decoding and canceling interference from the
received signal is the optimal strategy [7], which is also known
as successive interference cancellation (SIC). RS bridges both
strategies as it may apply each depending on the level of
interference. In RS, there are two types of messages: common
and private. Common messages are decoded by all users while
treating the private messages as noise. However, the private
messages are decoded only by the intended user, employing
SIC to remove common messages from the received signal.
It is worth noting that for the operational points between
these two extreme cases, i.e., weak and strong interference,
the optimal strategy for every interference-limited system is
not known. In other words, RS is not necessarily the optimal
transmission/decoding strategy for all operational points [8].

RS has received a lot of attention in the past few years [1],
[9]–[25]; however, it is not a new technology. The terminology
of “RS multiple access” (RSMA) was introduced in [26] for
the first time in the literature, where the authors showed that
RS may enlarge the rate region of a single-input, single-output
(SISO) multiple-access channel (MAC). The main idea of RS
is even older and was introduced by Carleial in [27] for the
2-user interference channel (IC), where it was shown that RS
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can enlarge the achievable rate region. A survey on RS is
provided in [1], and we refer the reader to [1, Sec. II] for a
detailed literature review on RSMA. In this section, we only
briefly discuss some advantages of RSMA. Note that RSMA
is more general than NOMA and, in fact, includes NOMA
as a particular case. In NOMA, users are firstly ordered,
and then, each user employs SIC to decode and cancel the
signal of the users with a lower order. Hence, user ordering
plays a key role in NOMA, and finding the optimal user
ordering can be a very difficult task in RIS-assisted MIMO
systems. NOMA is optimal in SISO systems with perfect
channel state information (CSI) and without RIS [8]. The
channels are degraded in SISO systems, which makes it easier
to obtain the optimal user ordering. However, MIMO channels
are not degraded and hence, NOMA is suboptimal for MIMO
systems and might be very inefficient [28]. The optimal user
ordering can be very challenging in multiple-antenna RIS-
assisted systems and may even require solving an NP-hard
problem [29]. It is also in general infeasible to obtain the
optimal user ordering through exhaustive search since there
are K! user ordering possibilities. Furthermore, the optimal
user ordering problem may be further complicated in the
presence of imperfect CSI. Unlike NOMA, RSMA does not
need any user ordering and has been shown to be robust against
imperfect CSI [20], [21]. The performance of RSMA in MIMO
systems has to be developed further, but the existing literature
shows that RSMA may improve the spectral efficiency of 2-
user MIMO IC and/or BC [17], [22]. To summarize, RSMA
can be adapted to the interference level and is robust against
imperfect CSI. Additionally, RSMA can be very efficient in
multiple-antenna systems.

Another promising technology for 6G is RIS, which has
been shown to significantly improve the spectral and energy
efficiency of various wireless communication systems [2], [3],
[29]–[40]. RIS can modulate the channels, thus providing
another degree-of-freedom to improve the coverage and/or
manage interference. The papers [31], [33], [34], [36], [41]–
[43] showed that RIS can improve the performance of single-
cell and/or multi-cell BCs. The paper [44], [45] showed that
RIS can enlarge the rate region of the K-user multiple-input,
single-output (MISO) ICs. The authors in [46] have employed
RIS to neutralize interference in the K-user SISO IC. In
[47], it is shown that RIS can improve the performance of
orthogonal-frequency-division-multiple-access (OFDMA) sys-
tems. We refer the reader to [2], [3] for a more detailed
literature review on RIS.

In addition to RS and RIS, there are other interference-
management tools such as improper Gaussian signaling (IGS)
[41], [48]–[71]. In a zero-mean proper complex Gaussian
signal, the real and imaginary parts of the signal are indepen-
dent and identically distributed (iid). However, the real and
imaginary parts of improper signals can be correlated and/or
have unequal powers [72]. Indeed, relaxing the assumption that
the transmit signals are proper, it is possible to exploit another
degree-of-freedom in the design by considering the real and
imaginary parts of each transmitted signal as independent
optimization dimensions. IGS has been shown to increase the
DoF of the 3-user SISO IC for the first time in the literature in

TABLE I: A brief comparison of the most related works.

IGS RS RIS MIMO STAR-RIS HWI
This paper

√ √ √ √ √ √

[42]
√ √ √ √

[34], [43], [70]
√ √

[49], [60]
√ √

[59], [61], [62]
√

[50]
√ √ √

[56], [57]
√ √

[31]–[33]
√

[36], [37]
√ √

[9]–[14]
√

[15]–[19]
√ √

[24], [25]
√ √

[78]
√ √

[79]–[82]
√ √

[48]. Later, IGS was employed to improve the spectral and/or
energy efficiency of various interference-limited systems such
as multi-user ICs [58]–[63], cognitive radio [51]–[54], BCs
[41]–[43], among others. We refer the reader to [71] for a
more comprehensive literature review on improper signaling
in both Gaussian signals and discrete constellations.

Interference is not, unfortunately, the only factor limiting the
performance of wireless systems. There are also other factors
that limit performance such as hardware impairments (HWI).
The papers [9]–[16], [18], [19], [26], [27], [73] considered the
performance of RS with ideal devices. However, in practice,
devices always have non-idealities that, if not adequately
compensated for, can severely affect the system performance
[42], [49], [50], [60], [74]–[78]. A source of imperfection
in devices is I/Q imbalance (IQI), caused by an amplitude
and phase mismatch between the in-phase and quadrature
components [50], [76], [77]. IQI is modeled as a widely linear
transformation of the input signal, which makes the output
(transmitted) signal improper [76]. A way to compensate for
the IQI is to employ IGS, which further motivates us to study
IGS in this work [42], [50].

B. Motivation

In Table I, we provide a brief comparison of some of the
most related works, based on the considered scenarios. As
can be observed in the table, even though RS is not a new
concept/technology, further studies are needed to analyze its
performance, especially in MIMO RIS-assisted systems and/or
in the presence of imperfect devices. Additionally, it may be
interesting to evaluate the performance of RS when used in
combination with another interference-management technique
such as IGS. Despite the vast recent literature on the topic, we
believe this is the first work to study RS, jointly with IGS, in
MIMO RIS-assisted systems.

IGS is a powerful interference-management tool, which can
be beneficial in RSMA systems. In our previous study [43],
we have proposed a NOMA-based IGS scheme for a multicell
MISO RIS-assisted BC showing that IGS and NOMA can be
mutually beneficial interference-management techniques. As
indicated, NOMA is suboptimal in MIMO systems. Further-
more, NOMA involves high complexities to obtain the optimal
user ordering in multicell and/or RIS-assisted systems, even
in a MISO scenario, which makes it very complicated to
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implement a full NOMA scheme among the cell users. Thus,
it can be challenging (and inefficient) to extend the scheme in
[43] to MIMO systems. In [42], we proposed IGS schemes for
multicell MIMO RIS-assisted BCs with TIN. Unfortunately,
TIN can be highly suboptimal in strong interference. Thus,
the performance of IGS can be highly improved if combined
with another interference-management technique, especially in
overloaded systems as shown in [43]. These previous findings
motivate us to study schemes with RS and IGS for MIMO
RIS-assisted systems with HWI.

Another motivation for this work is to propose a general
framework to solve complicated optimization problems for
RSMA in MIMO RIS-assisted systems with HWI. Such a
framework could be applied to any interference-limited sys-
tems and include different RS schemes.

C. Contributions

In this paper, we propose a general framework for RSMA
in MIMO RIS-assisted systems to solve a rich class of
optimization problems in which the objective function and/or
constraints are linear functions of the rates and/or transmit
covariance matrices. These optimization problems include
weighted-minimum-rate and weighted-sum-rate maximization,
power minimization for a target rate, globally EE (GEE) max-
imization, and minimum-weighted-EE maximization, among
others that are vastly employed in the literature [41], [58],
[63]–[66], [83]. The optimization framework employs ma-
jorization minimization (MM) combined with alternating op-
timization (AO) to optimize the transmit covariance matrices
and RIS components. We first introduce the framework and
then, present some examples that illustrate how it can be
specialized to solve different optimization problems.

We make realistic assumptions regarding devices and as-
sume that the transceivers may suffer from IQI, based on the
model in [76]. Additionally, we study practical scenarios for
RIS by employing an appropriate model for the large-scale
and small-scale fading of the links as well as considering four
different feasibility sets for RIS components based on [2].
Furthermore, we consider simultaneous transmit and reflect
(STAR) RISs and show that STAR-RIS can considerably
outperform regular RIS. Supported by experimental results
[84]–[86], STAR-RIS is able not only to reflect signals, but
also to transmit. As shown in this work, in some scenarios,
STAR-RIS can improve the spectral efficiency of the network,
outperforming regular RIS.

The numerical results show that IGS with RS can signif-
icantly increase the minimum rate and EE of users for a
given power budget, or reduce the total power consumption
for a given target rate in overloaded systems, i.e., when the
number of users per cell is higher than the number of trans-
mit/receive antennas. Additionally, our results show that RS
and RIS are mutually beneficial tools to improve performance
in overloaded systems. In this case, RS aims at managing
interference, while RIS aims at improving the coverage, and
they complement each other very well. Furthermore, our
results indicate that IQI may considerably decrease the system
performance if we do not account for it in the system design.
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Fig. 1: A multicell broadcast channel with RIS.

The main contributions of this paper are summarized as
follows:
• We propose a general framework for RSMA, which can

be applied to MIMO RIS-assisted interference-limited
networks. This framework is capable of solving any
optimization problem in which the objective and/or con-
straints are linear functions of the rates and/or transmit
covariance matrices.

• For the sake of illustration, we consider the downlink of
a multicell MIMO RIS-assisted BC. Then, we formulate
and solve a variety of optimization problems for the sys-
tem, including weighted-minimum rate and weighted-sum
rate maximization, weighted-minimum EE and global EE
maximization, power minimization for a target rate.

• We consider realistic assumptions regarding devices and
RISs. We additionally extend our framework to MIMO
STAR-RIS assisted systems. To the best of our knowl-
edge, this is the first work on RS in STAR-RIS assisted
systems.

• We show that RS with IGS can substantially improve the
spectral and energy efficiency of overloaded interference-
limited systems. The more overloaded the system is, the
more benefits are provided by RS/IGS. In other words,
the benefits of RS/IGS increase with number of users
per cell and decrease with the number transmit/receive
antennas.

D. Paper outline

This paper is organized as follows. Section II describes
the system model and formulates the optimization problem
addressed in this work. Section III presents the solution for
optimizing the transmit covariance matrices. Section IV ex-
tends the framework to MIMO RIS-assisted systems. Section
V presents some numerical results, and finally, Section VI con-
cludes the paper. Additionally, we provide some preliminaries
on improper signaling, majorization minimization, and RIS in
appendices.

II. SYSTEM MODEL

Our proposed framework can be applied to any MIMO
RIS-assisted interference-limited system with IQI at the
transceivers. As a representative example of these networks,
we consider a multicell MIMO BC with at least one RIS
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per cell shown in Fig. 1, which is among the most practical
scenarios [36], [87]. The system consists of L BSs with NBS
antennas, each serving K users with Nu antennas. All BSs
and users may suffer from IQI, according to the model in
[76], which is shortly presented in Appendix A. There are
also M ≥ L RISs with NRIS components each, which assist
the BSs to improve the spectral and/or energy efficiency of
the system. In [42], we showed that a distributed RIS imple-
mentation may outperform a collocated RIS implementation
due to the harsh large-scale fading of RIS links. Thus, we
assume that there is at least one RIS per cell. To simplify
the notation and the presentation of results, we consider a
symmetric scenario in which each BS/user/RIS has the same
number of antennas/components, and all devices have the same
level of IQI. However, our framework can be easily extended
to asymmetric systems with any arbitrary number of users per
cell, with different number of antennas at each BS/user/RIS
and with different IQI parameters at each device as will be
indicated later.

A. RIS model

In this paper, we employ the RIS model in [36] for the
MIMO multicell BC. For the sake of completeness, we briefly
restate the model in this subsection and refer the readers to
Appendix C and [2], [3] for more detailed discussions on
the small-scale and large-scale fading models of RIS-assisted
systems, the feasibility sets for RIS components and the format
of STAR-RISs. In RIS-assisted systems, there are two possible
links between a transmitter and receiver: a direct link and
a link through RISs. The direct link is given and cannot be
optimized. However, the links through RISs can be optimized
by modifying the reflecting coefficients.

The channel matrix between BS i and the k-th user associ-
ated to BS l, denoted as ulk, is given by

Hlk,i({Θ})=
M∑
m=1

Glk,mΘmGm,i︸ ︷︷ ︸
Link through RIS

+ Flk,i︸︷︷︸
Direct link

∈ CNu×NBS, (1)

where Flk,i ∈ CNu×NBS is the channel matrix between the
BS i and ulk, Glk,m ∈ CNu×NRIS is the channel matrix
between the m-th RIS and ulk, Gm,i ∈ CNRIS×NBS is
the channel matrix between the BS i and the m-th RIS,
{Θ} = {Θm}Mm=1 denotes the set of all reflecting coefficients,
where Θm ∈ CNRIS×NRIS is a diagonal matrix, containing
the vector of reflecting coefficients for the m-th RIS

Θm = diag (θm1, θm2, · · · , θmNRIS
) ,

where θmns for all m,n are complex-valued optimization
parameters. In this way, the channel matrices are functions
of the reflecting coefficients. We represent the feasibility set
of the reflecting coefficients by T , unless we explicitly refer
to one of the feasibility sets in Appendix C. To simplify
the representation of equations, we drop the dependency of
channels on the reflecting coefficients and denote them as
Hlk,i for all l, k, i, hereafter. Note that we can easily apply the
channel model in (1) to asymmetric scenarios in which each

BS/user/RIS has a different number of antennas/components.
In this case, Hlk,i ∈ CNu,lk×NBS,i , where Nu,lk and NBS,i
are, respectively, the number of antennas at ulk or BS i in
an asymmetric scenario. Additionally, note that we consider
perfect, instantaneous and global CSI similar to many other
studies on RIS such as [29], [31]–[34], [36], [37], [46],
[88]–[90]. Such an assumption provides an upper bound for
the performance of the proposed techniques while showing
potential tradeoffs in the system’s performance. However, in
practice, it may happen that we only have an access to noisy
estimates of the channels and/or statistical CSI especially in
RIS-assisted multi-user systems [39], [40]. Investigating the
performance of RS and IGS with imperfect and/or statistical
CSI poses numerous challenges that would require a separate
study and treatment, which should be considered in a future
work.

B. Signal model
We assume that BSs employ the 1-layer RS scheme to

transmit signals to the users. Note that there are various RS
schemes such as 1-layer RS, 2-layer hierarchical RS (HRS),
generalized RS [1, Section III.B]. 1-layer RS is not necessarily
the optimal RS scheme; however, we consider this scheme
since it is very practical and the most widely studied in
the literature [9]–[16], [18], [19]. Nevertheless, the proposed
framework can be applied to multi-layer or to generalized RS
since the rate expressions for all these schemes have similar
structure. Due to space restrictions, we leave multi-layer RS
schemes for a future study.

In the 1-layer RS scheme, the transmit signal of BS l
consists of two parts. One part contains a common message,
which is decoded by all users associated to that BS. The other
part contains private messages that can be decoded only by the
intended user. Hence, the transmit signal of BS l employing
1-layer RS is

xl = xl,c +

K∑
k=1

xlk ∈ CNBS×1,

where xl,c ∈ CNBS×1 is the common message, and xlk ∈
CNBS×1 is the transmit signal of BS l intended for its kth
associated user, i.e., ulk. The signals xl,c and xlks are zero-
mean uncorrelated improper Gaussian random vectors. The
common message of BS l is decoded by all its associated
users; however, xlk is decoded only by ulk. Moreover, each
transceiver may suffer from IQI, following the model de-
scribed in Appendix A. Employing Lemma 1 in Appendix
A, the received signal at ulk is

y
lk

=

L∑
i=1

Hlk,i

K∑
j=1

xij +nlk = Hlk,lxl,c︸ ︷︷ ︸
Common message

+ Hlk,lxlk︸ ︷︷ ︸
Private message

+ Hlk,l

K∑
j=1,j 6=k

xlj︸ ︷︷ ︸
Intracell interference

+

L∑
i=1,i6=l

Hlk,ixi︸ ︷︷ ︸
Intercell interference

+ nlk︸︷︷︸
Noise

, (2)

where Hlk,i ∈ R2Nu×2NBS for all i, l, k is the equivalent
channel given by Lemma 1. Note that xl,xl,c,xlj ∈ R2NBS×1
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for all l, j are 2NBS × 1 real vectors stacking the real and
imaginary parts of xl, xl,c, and xlj , respectively. Additionally,
note that if IQI parameters are not the same at all transceivers,
we can still apply Lemma 1 to easily obtain the equivalent
channel for each individual links.

We represent the transmit covariance matrix of xl, xl,c, and
xlkby Pl, Pl,c and Plk, respectively. Note that Pl = Pl,c +∑
k Plk. Moreover, we represent the feasibility set for IGS by

PI ={Plk,Pl,c :Tr (Pl) ≤ pl,Plk < 0,Pl,c < 0,∀l, k}, (3)

where pl is the power budget of BS l. Note that the transmit
covariance matrices can be arbitrary positive semi-definite
real matrices for IGS. However, for PGS, these matrices are
structured as described in [42, Eq. (5)] since the real and
imaginary parts of the signal are iid in this case. Therefore,
the feasibility set for PGS is

PP = {Plk,Pl,c : Tr (Pl) ≤ pl,Plk ∈ Pt,
Pl,c ∈ Pt,Plk < 0,Pl,c < 0,∀l, k}, (4)

where Pt is the set of all semi-definite positive real matrices
that fulfill the structure in [42, Eq. (5)]. Since our framework is
general and can be applied to both PGS and IGS, we represent
the feasibility set for transmit covariance matrices by P for
notational simplicity.

C. Rate and energy efficiency expressions

We assume that the intercell interference is treated as noise,
and we employ the RS technique to partly manage the intracell
interference. In the 1-layer RS, each user first decodes the
common message while treating all other signals as noise [1],
[91], [92]. Then, each user subtracts the common message
from the received signal, and then decodes its private message
treating the remaining intracell interference as well as intercell
interference as noise [1], [91], [92].

1) Rate expressions: The achievable rate of ulk is the
summation of the rate of decoding its private message and
its dedicated rate from the common message, i.e.,

rlk = rlk,c + rlk,p, (5)

where rlk,p is the rate of decoding xlk at ulk after decoding
and canceling xl,c and treating xli for i 6= k as noise [91, Eqs.
(2)-(3)]

rlk,p =
1

2
log2

∣∣∣I + D−1
lk Hlk,lPlkH

T
lk,l

∣∣∣=rlk,p1− rlk,p2, (6)

where Plk is the transmit covariance matrix of xlk, and

rlk,p1=
1

2
log2

∣∣∣Dlk+Hlk,lPlkH
T
lk,l

∣∣∣, rlk,p2= 1

2
log2|Dlk|, (7)

Dlk =

L∑
i=1,i6=l

Hlk,iPiH
T
lk,i︸ ︷︷ ︸

Intercell interference

+

K∑
j=1,j 6=k

Hlk,lPljH
T
lk,l︸ ︷︷ ︸

Intracell interference

+ Cn︸︷︷︸
Noise

,

(8)

where Cn is the noise variance given by Lemma 1. Moreover,
rlk,c is the portion of the decoding rate of common message

allocated to ulk. We denote the common rate at BS l as rl,
which is given by

rl =

K∑
k=1

rlk,c ≤ min
k
{r̄lk,c} , rl,c, (9)

where r̄lk,c is the maximum decodable rate of the common
message at ulk treating the other signals as noise [91, Eqs.
(2)-(3)]

r̄lk,c =
1

2
log2

∣∣∣∣I +
(
Dlk + Hlk,lPlkH

T
lk,l

)−1

Hlk,lPl,cH
T
lk,l

∣∣∣∣
=

1

2
log2

∣∣∣Dlk + Hlk,lPlkH
T
lk,l + Hlk,lPl,cH

T
lk,l

∣∣∣︸ ︷︷ ︸
r̄lk,c1

− 1

2
log2

∣∣∣Dlk + Hlk,lPlkH
T
lk,l

∣∣∣︸ ︷︷ ︸
r̄lk,c2

. (10)

Note that the common message of BS l should be decodable
by all its associated users. Thus, the rate has to be equal
to (or less than) mink {r̄lk,c} to ensure the decodability of
the common message for all users associated to the BS. It is
worth emphasizing that the rates rlk,c are actually optimization
parameters, and it may happen that a user receives all its rate
through the common message, while another user receives
all its rate through the private message. We will discuss the
possible solutions of rlk,c in the next section with more details.

2) Energy efficiency metrics: The global EE (GEE) is
defined as the total achievable rate (throughput) of the system,
divided by the total power consumption, i.e., [93]

GEE =

∑
∀l,k rlk

LKpc + η
∑
l Tr (Pl)

, (11)

where η−1 is the power efficiency of each BS, and pc is the
constant power consumption in the network for transmitting
data to a user, which is given by [42, Eq. (27)]. GEE is a metric
for the performance of the whole network. Alternatively, the
EE of each user is defined as [93]

EElk =
rlk

pc + ηTr (Plk) + η
KTr (Pl,c)

. (12)

D. Problem statement

In this subsection, we formulate a general optimization
problem for RS in MIMO RIS-assisted systems as

max
{P}∈P,{Θ}∈T ,rc

f0 ({P} , {Θ}) (13a)

s.t. fi ({P} , {Θ}) ≥ 0, ∀i, (13b)

rlk ≥ rthlk , ∀l, k, (13c)
K∑
k=1

rlk,c ≤ rl,c({P}), ∀l, k, (13d)

rlk,c ≥ 0, ∀l, k, (13e)

where rc = {rlk,c,∀l, k} is the vector of rates for the
common message, fis are linear functions of rates/EEs and/or
concave/convex/linear functions of transmit covariance ma-
trices, (13c) is the rate constraint, (13d) is the decodability
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constraint, (13e) is due to the fact that the rates cannot
be negative, and rc, {P} and {Θ} are the optimization
parameters. The function f0 ({P}) in (13a) is the considered
utility function, which can be, for instance, the [weighted]
sum rate, minimum [weighted] rate, global EE and so on.
If we want to minimize a cost function, f0 ({P}) returns a
negative value as mentioned below. Note that fi can include,
for example, an energy harvesting constraint and/or the so-
called interference temperature (in cognitive radio systems)
since these constraints are linear/affine in {P}. It is worth
emphasizing that rl,c({P}) = mink {r̄lk,c({P})} is a function
of {P}. For notational simplicity, we drop this dependency
hereafter.

The general optimization problem (13) includes the
minimum-weighted-rate maximization (MWRM), weighted-
sum-rate maximization (WSRM), minimum-weighted-EE
maximization (MWEEM), global EE maximization (GEEM)
problems, among others. Additionally, it is possible to min-
imize the transmission power for a target rate by choosing
f0 ({P}) = −∑l Tr (Pl) in (13).

III. GENERAL FRAMEWORK FOR SYSTEMS WITHOUT RIS

In this section, we propose an iterative algorithm to solve
problem (13) for systems without RIS. Thus, we only opti-
mize over the transmit covariance matrices {P} and rc. In
(13), the constraints (13d), (13c), and (13e) are linear in rc.
Additionally, the rate of each user, given by (5), is linear
in rc. Thus, the optimization problem (13) is linear in rc
for fixed transmit covariance matrices. Furthermore, the total
energy/power consumption is linear in {P}. However, the
optimization problem is not convex in {P} since the rates
are not concave. To solve (13), we employ MM, which is
a numerical optimization approach that is briefly described
in Appendix B. To apply MM, we have to obtain suitable
lower bound surrogate functions for the rates. To this end, we
can employ the upper bound in Lemma 3 and approximate
the non-concave part of the rates (i.e., −rlk,p2 for rlk,p, and
−r̄lk,c2 for r̄lk,c) by affine functions, which is known as
convex-concave procedure (CCP) [94]. Note that rlk,p2 and
r̄lk,c2 are, respectively, given by (7) and (10). For the sake of
completeness, we state the concave lower bound only for rlk,p
since it is straightforward to apply Lemma 3 to the other rate
functions, i.e., r̄lk,c.

Corollary 1. A concave lower bound only for rlk,p is

rlk,p ≥ r̃lk,p = rlk,p1 ({P})− r(t−1)
lk,p2

−
K∑

j=1,6=k

Tr

(
HT
lk,l(D

(t−1)
lk )−1Hlk,l

2 ln 2

(
Plj −P

(t−1)
lj

))

−
L∑

i=1,6=l

Tr

(
HT
lk,i(D

(t−1)
lk )−1Hlk,i

2 ln 2

(
Pi −P

(t−1)
i

))
,

where r
(t−1)
lk,p2

= rlk,p2
(
{P(t−1)}

)
, and D

(t−1)
lk =

Dlk

(
{P(t−1)}

)
.

Proof. rlk,p1 ({P}) is concave and thus, remains unchanged.
However, −rlk,p1 ({P}) is convex, which is approximated by

the lower bound given in Lemma 3. To this end, we set A = I,
Hlk,i = Bi, which proves the corollary.

Let us represent the surrogate functions for the rates r̄lk,c
and rlk by, respectively, r̃lk,c and r̃lk for all l, k. Additionally,
we define r̃l,c as r̃l,c = min∀k {r̃lk,c}. Substituting the
surrogate functions for the rates, r̃lk, in fi yields the surrogate
functions f̃i and leads to the surrogate optimization problem

max
{P}∈P,rc

f̃0 ({P}) (14a)

s.t. f̃i ({P}) ≥ 0, ∀i. (14b)

r̃lk = rlk,c + r̃lk,p({P}) ≥ rthlk , ∀l, k, (14c)
K∑
k=1

rlk,c ≤ r̃l,c = min
∀k
{r̃lk,c({P})} , ∀l, k, (14d)

rlk,c ≥ 0, ∀l, k. (14e)

Note that fi can be a linear function of the rates/EEs and/or
transmit covariance matrices. The optimization problem (14)
is jointly convex in {P} and rc for spectral efficiency max-
imization problems such as the WMRM, WSRM as well as
minimizing power for a target rate. Therefore, it can be effi-
ciently solved by existing numerical tools. For the optimization
problems with EE metrics such as MWEEM and GEEM, the
optimization problem (14) falls into fractional programming
problems [93], and their global optimal solutions can be
obtained by Dinkelbach-based algorithms since each fractional
function has a concave numerator and a linear denominator
[93]. For the sake of completeness, we shortly discuss the
solution of each problem in the following subsections. Note
that this optimization framework converges to a stationary
point of (13) since the proposed algorithm falls into MM and
fulfills the conditions in Lemma 2.

A. Spectral efficiency maximization

The most general performance metric for spectral efficiency
is the achievable rate region, which gives all the possible
operational points for a scheme. The achievable rate region
is defined as the set of all achievable rates by the considered
scheme:

R =
⋃

{P}∈P,{Θ}∈T ,rc∈Ω

{rlk}∀l,k ,

where Ω is the feasibility set for rc

Ω =

{
rlk,c : rlk,c ≥ 0,

K∑
k=1

rlk,c ≤ rl,c,∀l, k
}
. (15)

Employing the rate-profile technique, we can obtain the
achievable rate region by solving the MWRM problem [58]

max
{P}∈P,rc∈Ω,r

r s.t. rlk = rlk,c + rlk,p ≥ λlkr, ∀l, k, (16)

and varying λlks for all possible λlk ≥ 0 and
∑
∀l,k λlk = 1.

Substituting the rates by r̃lk, the following convex problem
results

max
{P}∈P,rc,r

r s.t. r̃lk = rlk,c + r̃lk,p ≥ r, ∀l, k, (17a)

(14d), (14e), (17b)
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which can be efficiently solved.
There are other common performance metrics for the spec-

tral efficiency such as the weighted-sum rate, and/or the
geometric mean of rates (GMR). The WSRM problem has a
structure similar to (16). Hence, it is straightforward to solve
the WSRM problem by our framework. Furthermore, it is
shown in [70, Eq. (10)] that maximizing the GMR is equivalent
to solving a sequence of WSRM problems. Therefore, our
framework can be easily applied to the GMR maximization
problem as well.

B. Energy efficiency maximization

In this subsection, we provide the solution for the GEEM
problem and refer the readers to [42], [50], [93] for solving
MWEEM. The GEEM problem is

max
{P}∈P,rc∈Ω

∑
l,k rlk

LKpc + η
∑
l Tr (Pl)

s.t. rlk ≥ rthlk ,∀l, k. (18)

Thus, the surrogate optimization problem for the GEEM
problem is

max
{P}∈P,rc

∑
l,k r̃lk

LKpc + η
∑
l Tr (Pl)

s.t. (14c), (14d), (14e). (19)

The global optimal solution of (19) can be obtained by
iteratively solving [93]

max
{P}∈P,rc

∑
l,k

r̃lk−µ(m)

(
LKpc + η

∑
l

Tr (Pl)

)
, (20a)

s.t. (14c), (14d), (14e), (20b)

and updating µ(m) as

µ(m) =

∑
l,k r̃

(m−1)
lk

LKpc + η
∑
l Tr
(
P

(m−1)
l

) ,
where P

(m−1)
lk is the solution of (20) at (m − 1)th iteration,

and r̃(m−1)
lk is the value of r̃lk at the end of (m−1)th iteration.

Note that this procedure is known as the Dinkelbach algorithm
[93]. It is worth indicating that rthlk s for all l, k have to be
chosen such that (18) is feasible.

C. Total transmission power minimization

The total transmission power minimization for a target rate
can be formulated as

min
{P}∈P,rc∈Ω

∑
l

Tr (Pl) s.t. rlk ≥ rthlk ∀l, k, (21)

which is non-convex due to the structure of the rate functions.
Replacing rlk with r̃lk and rlk,c with r̃lk,c, we have

min
{P}∈P,rc

∑
l

Tr (Plk) s.t. (14c), (14d), (14e). (22)

The problem (22) is convex. Note that the target rates should
be chosen such that the optimization problem (21) is feasible.
Indeed, the target rate should be achievable by the employed
scheme.

D. Discussions on the solution for rc

In this subsection, we shortly describe the solutions by RS
and mention how RS can be specialized to TIN, NOMA,
multicasting and/or broadcasting. For simplicity, we consider
the 1-layer RS for a single-cell SISO BC with only two users.
Let us denote rc the common rate, rc,i the portion of the
common rate dedicated to user i, rp,i the rate of the private
message for user i. Based on the value of rc, rc,i, and rp,i,
we can have either TIN, NOMA or broadcasting as follows:
• TIN: If rc = 0, then the RS scheme is equivalent to TIN.
• NOMA: If rc,1 = rp,2 = 0, RS is equivalent to NOMA.

The reason is that, in this case, user 1 firstly decodes the
signal of user 2, and then subtracts it from the received
signal. However, user 2 treats the private message of
user 1 as noise and decodes only the common message.
Moreover, there is no private message for user 2 to be
decoded, which is the same as in NOMA.

• Broadcasting/Multi-casting: If rp,1 = rp,2 = 0, there
is no private message, and both users decode only the
common message, which is equivalent to broadcasting.

Note that for K > 2, 1-layer RS may not necessarily attain
the optimal NOMA in SISO systems since NOMA involves
multiple decoding and canceling signals (multi-layer SIC)
while 1-layer RS has only 1 layer SIC at each user. Therefore,
when K > 2 in SISO systems, the generalized RS, which
contains multiple SIC levels, is expected to outperform 1-layer
RS [23].

E. Discussions on computational complexity

In this subsection, we discuss the computational complexity
of our framework and provide an approximate upper bound for
the number of required multiplications to obtain a solution
for our framework. The exact complexity of our proposed
framework depends the number of required iterations for
the convergence and the computational complexities of each
iteration, which highly depends on the implementation of the
framework. We set the maximum number of iterations of our
framework to N . Now we discuss the complexity of solving
the surrogate optimization problem in each iteration, which is
provided in (14). Since (14) includes the most general opti-
mization problem, we consider the MWRM problem in (17),
which has a specific structure. Note that it is straightforward
to extend to the computational complexity analysis to other
optimization problems.

The surrogate optimization problem (17) is convex. The
number of Newton iterations to solve a convex optimization
problem is proportional to the square root of the number of
its constraints [95, Chapter 11]. The problem (17) has 3LK
constraints. In each Newton iteration, the surrogate functions
for the private and common messages at each user should
be computed, which are in total 2LK surrogate functions.
As shown in Corollary 1, each surrogate function includes
a logarithmic and a linear part. Now we obtain an approx-
imation for the number of multiplications to compute each
surrogate function. The computational complexity of obtaining
the determinant of n × n matrix is O(n3). Additionally, the
number of multiplication in computing the multiplication of
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the matrices An1×n2
and Bn2×n3

is n1n2n3. Thus, the com-
putational complexity of obtaining r̃lk,c can be approximated
as O(N3

u + LN2
BS (Nu +NBS)). Note that the number of

multiplications for computing the rate of private messages is
approximately in the same order of computing the rate of
common messages. Thus, the total computational complexity
of solving the WMRM problem with our framework is ap-
proximately O

(
NLK

√
LK

(
N3
u + LN2

BS (Nu +NBS)
))
.

IV. EXTENSION TO RIS-ASSISTED SYSTEMS

In this section, we consider RIS-assisted systems in which
we have to optimize over transmit covariance matrices and
reflecting coefficients. Indeed, in addition to optimizing the
transmission parameters, we can optimize the environment
through RISs, which is mainly the new part of the proposed
framework in this section comparing to the framework in
Section III. Jointly optimizing the transmit covariance matri-
ces and reflecting coefficients entails many challenges. For
instance, finding suitable surrogate functions is more compli-
cated when optimizing over RIS components. Additionally,
the feasibility sets for RIS components are mainly non-
convex, which further complicates the optimization problems.
To tackle the challenges, we employ an AO approach to
separate the optimization of transmit covariance matrices from
RIS components. That is, we first optimize over transmit
covariance matrices for a fixed {Θ(t−1)} and obtain the
new {P(t)}. Then, we update {Θ} by fixing the transmit
covariance matrices to {P(t)}. In the following, we describe
each optimization steps in separate subsections.

A. Optimizing the transmit covariance matrices

For fixed reflection coefficients {Θ(t−1)}, the channels are
fixed, and the optimization problems are equivalent to the
problems in Section III. Thus, we can employ the framework in
Section III to optimize over the transmit covariance matrices.
Due to space limitations, we do not repeat them in this
subsection again and refer the reader to Section III.

B. Optimizing the reflecting coefficients

For given transmit covariance matrices {P(t)}, the optimiza-
tion problem (13) can be written as

max
{Θ}∈T ,rc

f ({Θ}) s.t. fi ({Θ}) ∀i, (23a)

rlk ≥ rthlk , ∀l, k, (23b)∑
k

rlk,c ≤ rl,c, ∀l, (23c)

rlk,c ≥ 0, ∀l, k, (23d)

where the constraints (23b), (23c), and (23d) are linear in
rc. However, the corresponding optimization problem is not
convex due to the structure of the rate functions and the
structure of the feasibility sets. To solve (23), we first obtain
suitable lower-bound surrogate functions for the rates by using
the inequality in Lemma 4. In the following, we only write
the concave lower bound for rlk,p since it is straightforward
to apply Lemma 4 to derive concave lower bounds for rlk,c.

Corollary 2. A concave lower bound for rlk,p is

rlk,p ≥ r̂lk,p = r
(t−1)
lk,p −

1

2 ln 2
Tr
(
V̄lk,pV̄

T
lk,pȲ

−1
lk,p

)
+

1

ln 2
Tr
(
V̄T
lk,pȲ

−1
lk,pVlk,p

)
− 1

2 ln 2
×

Tr
(
(Ȳ−1

lk,p− (V̄lk,pV̄
T
lk,p+Ȳlk,p)

−1)T (Vlk,pV
T
lk,p+Ylk,p)

)
,

where Ylk,p = Dlk ({Θ}), Vlk,p = Hlk,l ({Θ}) P
(t)1/2

lk , and

V̄lk,p = Hlk,l

(
{Θ}(t−1)

)
P

(t)1/2

lk , Ȳlk,p = Dlk

(
{Θ}(t−1)

)
.

Let us denote the concave lower bounds for rlk,c as r̂lk,c.
The surrogate optimization problem for weighted-sum and
minimum-weighted rates, minimum-weighted EE and global
EE maximization problems can be formulated as

max
{Θ}∈T ,rc

f̂
({

P(t)
}
, {Θ}

)
(24a)

s.t.
K∑
k=1

rlk,c ≤ r̂l,c = min
k
{r̂lk,c} , ∀l, (24b)

r̂lk = rlk,c + r̂lk,p ≥ rthlk , ∀l, k, (24c)
rlk,c ≥ 0, ∀l, k, (24d)

where the utility function is a linear function of the rates
r̂lk. The reason is that the EE of a user is a scale of the
rate of the user for fixed transmit covariances. Note that we
cannot minimize the total transmit power for a target rate when
transmit covariance matrices are fixed. Thus, for the total-
transmission-power-minimization problem, we maximize the
minimum achievable rate of users since it allows to further
decrease the transmission power in the next iteration.

When the feasibility set for the reflecting coefficients is
convex, the optimization problem (24) is convex as well.
Since TU is a convex set, (24) is convex for TU and can be
solved efficiently. However, we have to convexify the sets TI
and TC . In the following, we discuss how we can deal with
the feasibility set for reflecting coefficients. Note that whole
algorithm for the feasibility set TU converges to a stationary
point of (13).

1) Feasibility set TI : In this feasibility set, we have the
constraint |θmn| = 1 for all m,n, which can be written as
the following two constraints |θmn|2 ≤ 1, and |θmn|2 ≥ 1.
The constraint |θmn|2 ≤ 1 is convex. However, the constraint
|θmn|2 ≥ 1 is not convex since the function |θmn|2 is convex
rather than concave. Thus, we apply Lemma 5 to convexify
this constraint as

|θmn|2 ≥ |θ(t−1)
mn |2 − 2R{θ(t−1)∗

mn (θmn − θ(t−1)
mn )} ≥ 1,

where θ(t−1)
mn is the value of θmn at (t − 1)-th iteration. We

then relax this constraint to make the convergence faster as

|θmn|2≥|θ(t−1)
mn |2−2R{θ(t−1)∗

mn (θmn−θ(t−1)
mn )}≥ 1−ε, (25)

for all m,n, where ε > 0. Finally, the convex surrogate
optimization problem for this feasibility set is

max
{Θ},rc

f̂
({

P(t)
}
, {Θ}

)
s.t. (24b)−(24d), (25), (26a)
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|θmn|2 ≤ 1 ∀m,n, (26b)

which can be efficiently solved. Since we relaxed the con-
straint |θmn|2 ≥ 1, the solution given by (26), i.e., {Θ̂} is not
necessarily feasible. Thus, we project {Θ̂} to the feasibility
set TI by normalizing {Θ̂} as {Θ̂new}, i.e.,

θnew
mn =

θ̂mn

|θ̂mn|
, ∀m,n. (27)

To ensure the convergence of our scheme, we update the
reflecting coefficients as

{Θ(t)} =


{Θ̂new} if f

({
P(t)

}
, {Θ̂new}

)
≥

f
({

P(t)
}
, {Θ(t−1)}

)
{Θ(t−1)} Otherwise.

(28)

By this updating rule, the algorithm generates a sequence of
non-decreasing f , which guarantees convergence.

2) Feasibility set TC: We propose a suboptimal scheme
for this feasibility set by convexifying TC . To this end, we
first relax the relationship between the phase and amplitude
of reflecting components, which gives us the following two
constraints

|θmn|2 ≤ 1, (29)

|θmn|2 ≥ |θ|2min, (30)

for all m,n. (29) is convex as indicated, but (30) is not a
convex constraint since |θmn|2 is convex, instead of concave.
Thus, we find a surrogate function for |θmn|2 by Lemma 5 as

|θ(t−1)
mn |2 + 2R

(
θ(t−1)
mn (θmn − θ(t−1)

mn )∗
)
≥ |θ|2min. (31)

Substituting these constraints in (24), we have

max
{Θ},rc

f̂
({

P(t)
}
, {Θ}

)
s.t. (24b)−(24d), (29), (31), (32)

which is a convex problem. The solution of (32) {Θ?} is
not necessarily feasible. Thus we project {Θ?} into TC by
choosing

{Θ̂new} = F(∠{Θ?}), (33)

where F is defined as in (48). We update {Θ} according to
(28) to ensure the convergence of the scheme.

3) Feasibility set TD: We propose a suboptimal algorithm
for the feasibility set TD. That is, we first relax the and assume
that the phases of the RIS components are continuous and can
take any value similar to the feasibility set TI . Then, we solve
(26) and obtain {Θ̂}. Now we project {Θ̂} to the feasibility set
TD. To this end, we first normalize {Θ̂} according to (27) and
then take the closest phase to ∠θ̂mn in TD to obtain {Θ̂new}.
Finally, we update {Θ(t)} according to the rule in (28) to
ensure the convergence of our algorithm.

4) Extension to STAR-RIS: The structure of the general
problem for STAR-RIS is very similar to the case with
conventional RIS. Indeed, the only difference is that some
reflecting coefficients are correlated to each other according
to (51) or (52). As indicated, the constraint (51) is convex.
Thus, the following optimization problem is convex

max
{Θ},rc

f̂
({

P(t)
}
, {Θ}

)
s.t. (24b)−(24d),

|θtmn|2 + |θrmn|2 ≤ 1 ∀m,n,

which can be solved efficiently. As a result, our proposed
framework converges to a stationary point of (13) for the
STAR-RIS-assisted MIMO systems with the convex constraint
|θtmn|2 + |θrmn|2 ≤ 1.

The constraint |θtmn|2 + |θrmn|2 = 1 is not convex, but we
can convexify it similar to our approach for the feasibility set
TI . That is, we rewrite the constraint as the two following
constraints

|θtmn|2 + |θrmn|2 ≤ 1, (34)

|θtmn|2 + |θrmn|2 ≥ 1, (35)

for all m,n. The constraint (34) is convex as indicated.
However, (35) is not a convex constraint since |θtmn|2 and
|θrmn|2 are convex functions, instead of being concave. Thus,
we employ Lemma 5 to convexify (35) as

|θtmn|2 + |θrmn|2 ≥ gS
mn , |θt(t−1)

mn |2 + |θr(t−1)

mn |2

+ 2R
(
θt

(t−1)

mn (θtmn − θt
(t−1)

mn )∗ + θt
(t−1)

mn (θtmn − θt
(t−1)

mn )∗
)

≥ 1, (36)

where θt
(t−1)

mn /θr
(t−1)

mn is the value of θtmn/θrmn at the previous
step. To make the convergence faster, we relax it by rewriting
it as

gS
mn ≥ 1− ε. (37)

Plugging the constraints (34) and (37) into (24) results in the
following convex problem

max
{Θ},rc

f̂
({

P(t)
}
, {Θ}

)
s.t. (24b)−(24d), (34), (37), (38)

whose solution {Θ̂r}, {Θ̂t} may not satisfy (51). Thus,
we normalize {Θ̂r}, {Θ̂t} as in (27) to obtain {Θ̂r

new},
{Θ̂t

new}. To ensure the convergence, we update the reflecting
coefficients as in (28).

C. Discussion on computational complexity analysis

Our proposed framework for RIS-assisted systems is it-
erative, and each iteration consists of two steps. The first
step, is to optimize the transmit covariance matrices, which
has the same computational complexity as one iteration of
our proposed framework in Section III. For instance, the
computational complexity of updating the transmit covariance
matrices for the WMRM problem can be approximated as
O
(
LK
√
LK

(
N3
u + LN2

BS (Nu +NBS)
))

. To optimize RIS
components, we have to solve the surrogate optimization
problem (24). In this paper, we have considered three different
feasibility sets for RIS components. Additionally, we consider
the STAR-RIS. In this subsection, we provide an approxima-
tion for optimizing the RIS components in STAR-RIS-assisted
systems. Note that the algorithms for the other feasibility sets
have approximately the same computation complexity. Due to
a strict space restriction, we skip the computation complexity
analysis for the algorithms with different feasibility sets since
they can be similarly obtained.
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Fig. 2: System topology in simulations.

To update the RIS components for STAR-RIS-assisted sys-
tems, we have to solve the convex optimization problem (38),
which has at least 2LK+L+2NRISM constraints. The term
L can be neglected, comparing to 2LK + 2NRISM . Thus,
the number of Newton iterations to solve (38) approximately
grows with

√
LK +NRISM . The main complexity in each

Newton iteration is to obtain the concave lower bounds for
the rate expressions in Corollary 2, which are quadratic in
channels. In other words, the number of multiplications in
computing all the surrogate rate functions is considerably
higher than the number of other multiplications in order to
solve (38). Note that the constant coefficients in the lower
bound in Corollary 2 can be computed once. Hence, the main
complexities are the multiplications that are repeated in each
Newton iteration. As a result, the complexity of solving (38)
can be approximated as:

O
(
LK

√
LK +NRISM

(
LNu

(
N2
u +N2

BS

)
+NuNBS (Nu +NBS) +MNRISNuNBS)) . (39)

Finally, the computational complexity of our framework to
solve the MWRM problem for STAR-RIS-assisted systems can
be approximated as

O
(
NLK

[√
LK +NRISM

(
LNu

(
N2
u +N2

BS

)
+NuNBS (Nu +NBS) +MNRISNuNBS)

+
√
LK

(
N3
u + LN2

BS (Nu +NBS)
)])

. (40)

V. NUMERICAL RESULTS

In this section, we provide some numerical examples for
WMRM, MWEEM, and for minimizing the total transmission
power for a target rate. In this work, we focus on the perfor-
mance of RSMA techniques in different operational regimes,
analyzing the effect of different system parameters such as the
number of BS/user antennas and the number of users per cell.

In the simulations, we consider a two-cell system with
one RIS in each cell. The BSs have 25 meters height and
are located at (0, 0, 25) and (400, 0, 25). Furthermore, RISs
have 15 meters height and are located at (180, 0, 15) and
(220, 0, 15). We assume that there are K users at a height
of 1.5 meters in each cell, which are located in a square with
a RIS at its center as depicted in Fig. 2. The sides of the
squares are 20 meters long. The power budget for all BSs is
equal to P . For the feasibility set TD, we assume that there
are 4 phase shifters, which means that there can be 16 possible
discrete phases. Other simulation parameters are chosen based
on [42].

To the best of our knowledge, this is the first work on
RS in RIS-assisted MIMO systems with IQI. Hence, we

compare our proposed algorithms with the IGS/PGS schemes
with TIN in [42] as well as the suboptimal NOMA-based
IGS scheme in [43]. Note that there is no other work on
IGS in combination with NOMA in MIMO systems. Thus,
we compare our algorithms with the suboptimal NOMA-
based IGS scheme in [43], which was proposed for multicell
MISO RIS-assisted BCs. To summarize, in the simulations we
consider the following transmission schemes:

• IRXR (or PRXR) refers to the IGS (or PGS) scheme
with RS for TX , where X can be equal to U, I and C.
Also, we represent the IGS (or PGS) scheme with RS and
random reflecting coefficients by “IRRR” (or PRRR).

• IRUT (or PRUT) refers to the proposed IGS (or PGS)
scheme in [42] for the feasibility set TU with TIN. Note
that this scheme can be seen as an upper bound for the
IGS (or PGS) performance with TIN.

• IN (or PN) refers to the proposed IGS (or PGS) scheme
with RS, but without RIS.

• PRIRun refers to the PGS scheme, which is unaware of
IQI, with RIS and the feasibility set TI .

• ISRR refers to the IGS scheme with RS for STAR-RIS
assisted systems with the feasibility constraint in [80].

A. Maximization of the minimum rate

In this subsection, we consider the performance of RS
in max-min rate problems. We call the solution of MWRM
problem as fairness rate since it usually results in the same rate
for all the users [42], [43]. In the following, we first compare
different 1-layer RS schemes with PGS/IGS with/without RIS.
Then, we compare the 1-layer RS IGS/PGS schemes with TIN
and the proposed algorithms in [43] for RIS-assisted systems.
Finally, we compare the performance STAR-RIS with a regular
RIS and traditional systems without RIS for the proposed 1-
layer RS with IGS.

1) Performance of RS: Fig. 3 shows the average fairness
rate versus P for NBS = Nu = 1, NRIS = 40, L = 2,
K = 2, M = 2. As can be observed, RIS can considerably
increase the fairness rate in both IGS and PGS schemes for
all the feasibility sets when RIS components are properly
optimized. Furthermore, we observe that IQI-aware schemes
substantially outperform IQI-unaware PGS schemes. Fig. 3c
shows that IGS with RS provides a much higher fairness rate
than PGS schemes. We also observe that the schemes with the
feasibility set TI perform close to the upper bound especially
when SNR is not high. This is in line with our previous results
in [42], [43]. Additionally, it can be observed that RIS with
all four considered feasibility sets can considerably improve
the system performance.

Fig. 4 shows the average fairness rate versus P for NBS =
Nu = 2, NRIS = 25, L = 2, K = 3, M = 2. As can
be observed, IGS with RS outperforms the PGS scheme with
RS; however, the benefits of IGS are less than in the SISO
system shown in Fig. 3. The reason is that the number of
spatial resources increases with NBS and Nu, which in turn
reduces the interference level. Thus, the benefits of IGS as an
interference-management tool reduce as well.
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Fig. 3: The average fairness rate versus P for NBS = Nu = 1,
NRIS = 40, L = 2, K = 2, M = 2.

0 4 8 12 17
1

2

3

4.1

P (dB)

Fa
ir

ne
ss

R
at

e
(b

/s
/H

z)

IRUR IRIR
PRUR PRIR

Fig. 4: The average fairness rate versus P for NBS = Nu = 2,
NRIS = 25, L = 2, K = 3, M = 2.

2) Comparison with TIN and/or NOMA-based schemes in
[43]: Fig. 5 shows the average fairness rate versus P for
NBS = Nu = 1, NRIS = 20, L = 2, K = 4, M = 2.
As can be observed, RS can significantly outperform TIN
as well as the suboptimal NOMA-based schemes in [43]. It
is worth emphasizing that NOMA is the optimal scheme in
a single-cell SISO BC with PGS and ideal devices, and RS
cannot outperform NOMA in this set up. However, it is not
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Fig. 5: The average fairness rate versus P for NBS = Nu = 1,
NRIS = 20, L = 2, K = 4, M = 2.
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Fig. 6: The average fairness rate versus P for NBS = 2, Nu = 1,
NRIS = 20, L = 2, K = 4, M = 2.

necessarily the case when we employ IGS and/or there is
IQI at devices. Note that NOMA requires the optimal user
ordering, which can be a difficult task in RIS-assisted systems,
especially with multiple-antenna systems. Fig. 5c shows that
RS can significantly outperform TIN in both IGS and PGS
schemes. Additionally, IGS with RS performs better than the
other schemes.

Fig. 6 shows the average fairness rate versus P for NBS =
2, Nu = 1, NRIS = 20, L = 2, K = 4, M = 2. As can be
observed, the overall performance is similar to Fig. 5. It means
that RS can improve the system performance for both PGS
and IGS schemes. Moreover, IGS with RS can outperform the
other schemes. We also observe that the benefits of RS are
much higher for PGS schemes. Indeed, since IGS is able to
manage part of interference, the benefits of RS are a bit lower,
but still significant, in IGS schemes.
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Fig. 7: The average fairness rate versus P for NBS = Nu = 2,
NRIS = 15, L = 2, M = 2.
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Fig. 7 shows the average fairness rate versus the BS power
budget for NBS = Nu = 2, NRIS = 15, L = 2, M = 2
with different number of users per cell. As can be observed,
IGS brings a significant improvement over PGS in both RS
and TIN schemes. Additionally, RS provides a considerable
benefit for PGS schemes. However, the benefits of RS for IGS
schemes are less than the benefits for the PGS schemes. The
reason is that part of interference is already mitigated by IGS,
and hence, the benefits of RS as an interference-management
technique, decrease in turn. When K < 2 max (NBS , Nu),
IGS can effectively manage the interference, and there are
no additional benefits by RS over IGS. However, when K
increases, the interference-level significantly increases, and as
a result, more advanced interference-management techniques
are needed, i.e., a combination of RS and IGS. When K >
2 max (NBS , Nu), RS can provide significant gains in both
IGS and PGS schemes, which shows the superiority of RS in
overloaded systems.

3) Role of RIS: Fig. 8 shows the average fairness rate versus
NBS for P = 10 dB, Nu = 1, NRIS = 20, L = 2, and M =
2. As can be observed, the benefits of RS significantly decrease
with NBS since the number of spatial resources per users
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Fig. 9: The average fairness rate versus P for NBS = 2, Nu = 2,
NRIS = 20, L = 1, K = 4, and M = 1.

increases, and the system changes from highly overloaded to
underloaded as NBS grows. On the contrary, RIS provides a
considerable gain for all NBS especially when it is combined
with RS. In other words, RIS can improve the performance
of both underloaded and overloaded systems, which is mainly
due to the coverage improvements by RIS. Additionally, we
observe that RIS can significantly increase the benefits of RS
for NBS = 1 (and vice versa), which may indicate that RIS
and RS are mutually beneficial tools to improve performance
in highly overloaded systems. Note that in our previous study
[43], we showed that RIS alone cannot completely handle
the undesired consequences of interference in a multicell BC.
Therefore, to fully exploit the RIS benefits, other advanced
interference-management techniques are necessary, which is
in line with the results in Fig. 8.

4) STAR-RIS-assisted systems: We also consider STAR-
RIS-assisted systems in the simulations. In the numerical
results for STAR-RIS-assisted systems, we consider a single-
cell BC with NBS = 2, Nu = 2, NRIS = 20, L = 1,
K = 4, and M = 1. We assume that the conventional RIS
can assist only half of the users, while the two other users
are blocked and do not receive any signal from the RIS.
However, the STAR-RIS can cover all the users. Specifically,
two users are in the transmission space of the STAR-RIS, and
the other two users are in the reflection space of the STAR-
RIS. For a fair comparison, we assume that both STAR-RIS
and regular RIS have the same number of components. In this
particular example, we consider the mode switching protocol
for the STAR-RIS, which means that half of the components
operate in the transmission mode, and the other half operates
in the reflection mode. Note that there are also other protocols.
However, due to a space restriction, we leave the full study
of STAR-RIS for a future work. As can be observed in Fig.
9, STAR-RIS can outperform the regular RIS. Additionally,
we observe that RIS (either regular or STAR) can drastically
increase the fairness rate.

B. Minimization of the total transmit power for a target rate

Fig. 10 shows the minimum average power versus the target
rate rth for NBS = Nu = 2, NRIS = 15, L = 2, M = 2.
As can be observed, the total transmission power significantly
increases with rth. It should be noted that the target rate rth

might not be necessarily achievable by a scheme for a specific
channel, especially if we set a high threshold rth. In Fig.
10, we observe that IGS with RIS and RS improves energy
efficiency and substantially reduces the power consumption.
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Fig. 10: The average minimum total transmission power versus the
target rate Rth for NBS = Nu = 2, NRIS = 15, L = 2, M = 2.
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Fig. 11: The average fairness EE versus P for NBS = Nu = 2,
NRIS = 25, L = 2, K = 2, M = 2.

Note that the scenario in Fig. 10b is a highly overloaded
network. This figure shows that RS can be very energy
efficient, especially when the threshold is set to high values.
Note that the scale of the y-axis is in dB in Fig. 10b, and
IGS with RS achieves 0.9 b/s/Hz with the total average power
less than 10W, while IGS with TIN requires around 30dBW
total power on average to reach the rate, which shows the
superiority of RS over TIN from an energy efficiency point of
view.

C. Maximization of the minimum EE

In the previous subsections, we have considered several
scenarios with different parameters. It can be expected that
we observe the same behavior with EE metrics. Thus, in this
subsection, we consider only one scenario for the MWEEM
problem. Fig. 11 shows the average fairness EE versus P for
NBS = Nu = 2, NRIS = 25, L = 2, K = 2, M = 2. As
can be observed, IGS with RS outperforms the PGS scheme
with RS. Moreover, it is clear that the IGS scheme with
random reflecting coefficients does not provide any gain over
PGS, which shows the importance of optimizing the reflecting
coefficients.

D. Summary

Our main findings in the numerical section can be summa-
rized as follows:

• IGS schemes always improve the system performance
over PGS schemes with both RS and TIN because of two
reasons. First, IGS can compensate IQI. Second, IGS is in
addition an efficient interference-management technique.

• RS when combined with IGS may substantially improve
the system performance with different performance met-
rics specially when the system is highly overloaded. A
metric for measuring the overload of a system can be
defined as the comparison between the number of users
per cell and the maximum number of transmit/receive an-
tennas. If K > max(NBS , Nu), the system is considered
as overloaded.

• The benefits of RS are higher in PGS schemes than in
IGS schemes. The reason is that part of the interference
can be managed by IGS, which reduces the effective
interference level, and in turn, yields less benefits by RS
as an interference-management technique.

• The more overloaded a system is, the more benefits by
the RS in combination with IGS. In other words, the
benefits of the RS with IGS scheme increase with the
number of users per cell and decrease with the number
of transmit/receive antennas.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a general framework for RS
in MIMO RIS-assisted systems. The optimization framework
yields a stationary point of every optimization problem in
which the objective and/or constraints are linear functions of
rates and/or transmit covariance matrices when the feasibility
set of the RIS components is convex. These optimization prob-
lems include, e.g., weighted-minimum and weighted-sum rate
maximization, total transmit power minimization, weighted-
minimum EE and global EE maximization. Additionally, this
framework accounts for hardware imperfections such as IQI.
As an illustrative example, we considered a multicell MIMO
RIS-assisted BC with IQI at all BSs and users, showing that RS
can substantially improve the spectral and energy efficiencies
of this system when the number of users per cell is higher
than the maximum number of transmit and receive antennas.

As a future work, the performance of RS and IGS should
be investigated in the presence of imperfect and/or statistical
CSI at transceivers. Furthermore, another challenging future
research line can be to consider multiple layer RS schemes.

APPENDIX A
IQI MODEL AND IMPROPER SIGNALS

When there is an imbalance in in-phase and quadrature
components of a device, the output signal is improper. In a
zero-mean improper signal, the real and imaginary parts are
correlated and/or have unequal powers [72], [96]. Consider a
zero-mean Gaussian random vector x. It is called proper if its
complementary variance is equal to zero, i.e., E{xxT } = 0
[72], [96]. Otherwise, x is called improper [72], [96]. To
model impropriety, there are different approaches. In this
paper, we employ the real-decomposition method since it is
more convenient to optimize over the rate expression [42],
[50]. We refer the readers to [42, Sec. II.A] for more details
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on the real-decomposition method to model impropriety in
MIMO systems.

IQI can be modeled as a widely linear transformation
[50], [76], which means that the output signal is a linear
transformation of the input signal and its conjugate [72], [96].
In this paper, we employ the IQI model for MIMO systems
in [76], which was later used in [42], [50]. For the sake of
completeness, we briefly restate the model here and refer the
reader to [42], [50], [76] for more details. Consider a typical
point-to-point MIMO system with Nt transmit antennas and
Nr receive antennas with IQI at the transceivers. The received
signal can be written as [42, Eq. (6)]

y = Γr,1 [H (Γt,1x + Γt,2x
∗) + r]

+ Γr,2 [H (Γt,1x + Γt,2x
∗) + r]

∗
, (41)

where the parameters are defined in [42, Eqs. (7)-(10)]. The
transmitter (receiver) is ideal if Γt,1 = I (Γr,1 = I) and Γt,2 =
0 (Γr,2 = 0). In the following lemma, we represent the real
decomposition of (41).

Lemma 1 ([42]). Employing the real-decomposition method,
the point-to-point MIMO system with IQI can be modeled
as y = H x + n, where y =

[
R{y}T I{y}T

]T
,

x =
[
R{x}T I{x}T

]T
, and n =

[
R{n}T I{n}T

]T
are, respectively, the real decomposition of y, x, and n =
Γr,1r + Γr,2r

∗. Moreover, H is the equivalent channel, given
by [42, Eq. (11)]. The statistics of the vector n ∈ R2Nr×1 are
E{n} = 0, and E{n nT } = Cn = Γ CrΓ

T , where Cr is the
real decomposition of Cr and Γ is given by [42, Eq. (13)].

APPENDIX B
PRELIMINARIES ON MAJORIZATION MINIMIZATION

Consider the following optimization problem

max
{P}∈P

f0 ({P}) s.t. fi ({P}) ≥ 0, ∀i, (42)

where {P} is the set of optimization parameters, and P
is the feasibility set of the variables. If fis for all i are
concave, and P is a convex set, the optimization problem
(42) is known as convex and can be solved in polynomial
time [95]. Unfortunately, it is not the case in most of practical
systems, especially with RS and RIS. Thus, we resort to some
optimization techniques to efficiently solve (42). A power-
ful numerical optimization tool is majorization minimization
(MM), which includes many iterative optimization techniques
such as expectation-maximization (EM), sequential convex
programming (SCP) and difference of convex programming
(DCP) [97]. In the following, we provide a brief review on
the main idea of MM and refer the reader to [97] for a more
detailed overview of MM-based techniques.

MM is an iterative optimization approach, which consists of
two steps in each iteration: majorization and minimization. In
the majorization step of the t-th iteration, the non-concave
objective and/or constraint function fi is approximated by
a suitable surrogate function f̃

(t)
i that yields a surrogate

optimization problem. Then, the surrogate problem is solved in
the minimization step, which gives a new point as depicted in

f (·)

x(0) x(1)

f̃ (1) (·)

x(2)

f̃ (2) (·)

Fig. 12: An example of Majorization minimization.

Fig. 12. This procedure is iterated until a convergence metric
is met. MM converges to a stationary point of the original
problem. In MM, the surrogate functions are not necessarily
concave, but they should fulfill three specific conditions shown
in the following lemma.

Lemma 2 ( [98]). Assume that f̃ (t)
i , which is a surrogate

function for fi at the t-th iteration, fulfills the following
conditions:
• f̃

(t)
i

(
{P(t−1)}

)
= fi

(
{P(t−1)}

)
.

•
∂f̃

(t)
i ({P(t−1)})

∂Pk
=

∂fi({P(t−1)})
∂Pk

for all k.

• f̃
(t)
i ≤ fi for the whole domain,

where {P(t−1)} is the initial point at the t-th iteration, given
by

max
{P}∈P

f̃
(t−1)
0 s.t. f̃

(t−1)
i ≥ 0, ∀i. (43)

Then, the sequence of {P(t)} converges to a stationary point
of (42).

The most difficult task in MM algorithms is to obtain
suitable surrogate functions. In wireless communications, we
often deal with achievable rate, which is a logarithmic function
for Gaussian signals with infinite block lengths [99]. Rates
are mostly continuous-valued and differentially continuous
functions, which makes the majorization task simpler. For
instance, rates are either concave, convex and/or a difference of
two concave functions (depending on the scenario) in transmit
covariance matrices. Hence, it is customary to employ the
first-order Taylor expansion and the convex-concave procedure
(CCP) to find suitable surrogate functions. CCP is based on
the following inequality [97, Eq. (15)]

fcvc ≤ fl ≤ fcvx, (44)

where fcvc, fl and fcvx are, respectively, concave, linear/affine
and convex functions with an equal value and an equal first
order derivative at an arbitrary feasible point P(t). In the
following lemmas, we state some frequently used inequalities,
which are based on (44). We refer the readers to [43, Lemma
1] and [34], [41] for the proofs and/or further details.

Lemma 3. Consider f({P}) = ln
∣∣∣A +

∑I
i=1 BiPiB

T
i

∣∣∣ ,
where A ∈ RN×N and Bi ∈ RN×M for all i are constant
matrices. Additionally, A and Pi ∈ RM×M for all i are posi-
tive semi-definite matrices. Then, we have following inequality
for all feasible {P}

f({P}) ≤ f
({

P(t)
})
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+

I∑
i=1

Tr

BT
i

(
A +

I∑
i=1

BiP
(t)
i BT

i

)−1

Bi(Pi −P
(t)
i )

,
where

{
P(t)

}
=
{

P
(t)
1 ,P

(t)
2 , · · · ,P(t)

I

}
is any feasible fixed

point.

Proof. Since f({P}) is concave in {P}, we can obtain
the following inequality by employing the first-order Taylor
expansion

f(P) ≤ f(P(t))+
∑
i

Tr

([
∂f({P})
∂Pi

|{P(t)}

]T
(Pi −P

(t)
i )

)
,

where ∂f({P})
∂Pi

|{P(t)} is the derivative of f({P}) with respect
to Pi at {P(t)}, which is given by

∂f({P})
∂P

|P(t) = BT
i

(
A +

I∑
i=1

BiP
(t)
i BT

i

)−1

Bi.

It is easy to verify that ∂f(P)
∂P is symmetric, which proves the

lemma.

Lemma 4 ([34], [41]). The following inequality holds for all
N × N Hermitian positive definite matrices Y and Ȳ, and
any arbitrary N ×M complex matrices V and V̄:

ln
∣∣I + VVHY−1

∣∣ ≥ ln
∣∣I + V̄V̄HȲ−1

∣∣
− Tr

(
V̄V̄HȲ−1

)
+ 2R

{
Tr
(
V̄HȲ−1V

)}
− Tr

(
(Ȳ−1 − (V̄V̄H + Ȳ)−1)H(VVH + Y)

)
.

Lemma 5. The following inequality holds for all ti
I∑
i=1

|ti|2 ≥
I∑
i=1

|t(n)
i |2 + 2

I∑
i=1

R
{
t
(n)∗

i (ti − t(n)
i )
}
, (45)

where t(n)
i is any arbitrary point.

Proof. The function |ti|2 is convex for all i. Thus, we can
apply the the first-order Taylor expansion and the inequality
to obtain a linear lower bound for |ti|2.

APPENDIX C
PRELIMINARIES ON RIS

In this appendix, we provide a short preliminary discussion
on the feasibility set of RIS components and refer the reader
to [36], [42] for more details. Additionally, we briefly present
the main idea of STAR-RISs.

A. Feasibility sets for the RIS components

We consider the three feasibility sets in [43] throughout this
paper. The ideal feasibility set for the reflecting coefficients is
[2, Eq. (11)]

TU =
{
θmn

: |θmn
|2 ≤ 1 ∀m,n

}
, (46)

in which the amplitude and the phase of each component can
be independently optimized [2], [35], [38]. This feasibility
set is a convex set, but it is not practical [2], [3], although
it serves to assess the theoretical performance limit for RIS-
assisted systems [2]. A more practical feasibility set assumes

that the amplitudes are fixed to 1, and only the phases can be
optimized, i.e.,

TI = {θmi : |θmi| = 1 ∀m, i} . (47)

This feasibility set is very popular and has been used in many
works such as [2], [3], [32]–[34], [36], [37]. Another practical
feasibility set assumes that the amplitude of each RIS element
is not fixed, but it is a deterministic function of its phase [100].
In [100], the amplitude as a function of the phase is

F(∠θmi) = |θ|min+(1−|θ|min)

(
sin (∠θmi − φ) + 1

2

)α
, (48)

where |θ|min, α, and φ are non-negative constant values. This
feasibility set can be formulated as [43, Eq. (7)]

TC ={θmi : |θmi| = F(∠θmi), ∠θmi ∈ [−π, π]∀m, i}. (49)

Finally, we consider a feasibility set in which the phases of
the RIS components are discrete while the amplitude is set to
1 as

TD = {θmi : |θmi| = 1,∠θmi = {φ1, φ2, · · · , φN} ∀m, i} ,
(50)

where φns for all n are the only possible phase shifts that can
be tuned [2].

B. STAR-RIS

In STAR-RIS, each RIS component can simultaneously
reflect and transmit signals, which provides an additional
degree of freedom in the design. The reflection and trans-
mission components of the i-th element of the m-th RIS are
denoted, respectively, by θrmi

and θtmi
. They are constrained

as |θrmi
| ≤ 1 and |θtmi

| ≤ 1 [79]–[82]. Unfortunately, θrmi

and θtmi
are related to each other, and their values cannot be

optimized independently. There are two different models that
account for this relationship. The most common model is [80],
[81, Eq. (1)]

|θrmi
|2 + |θtmi

|2 = 1. (51)

An alternative model is [82, Eq. (2)]

|θrmi
|2 + |θtmi

|2 ≤ 1. (52)

Clearly, (52) is a convex constraint, while (51) is not, which
makes the optimization problems with this constraint more
complicated.

In STAR-RIS-assisted systems, there are two spaces for
each RIS: reflection space (RS) and transmission space (TS),
and each user belongs to either of them [79]. Thus, the channel
for a user is [79, Eq. (2)]

Hlk,i ({Θ}) =

M∑
m=1

Glk,mΘr/t
m Gm,i︸ ︷︷ ︸

Link through RIS

+ Flk,i︸︷︷︸
Direct link

∈ CNu×NBS ,

where

Θr
m = diag

(
θrm1

, θrm2
, · · · , θrmNRIS

)
,

Θt
m = diag

(
θtm1

, θtm2
, · · · , θtmNRIS

)
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Three different operational modes are proposed in [79] for
STAR-RIS: energy splitting (ES), mode switching (MS), and
time sharing (TS). In ES, all RIS components can simulta-
neously transmit and reflect. In MS, the RIS components can
either transmit or reflect. In other words, in this mode, the RIS
components are divided into two separate groups. In TS, all
the RIS components periodically switch between transmission
and reflection modes in different orthogonal time slots. Note
that MS and TS are special cases of ES. Thus, in this work,
we consider only ES without loss of generality.
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