1,520 research outputs found

    Speech-based recognition of self-reported and observed emotion in a dimensional space

    Get PDF
    The differences between self-reported and observed emotion have only marginally been investigated in the context of speech-based automatic emotion recognition. We address this issue by comparing self-reported emotion ratings to observed emotion ratings and look at how differences between these two types of ratings affect the development and performance of automatic emotion recognizers developed with these ratings. A dimensional approach to emotion modeling is adopted: the ratings are based on continuous arousal and valence scales. We describe the TNO-Gaming Corpus that contains spontaneous vocal and facial expressions elicited via a multiplayer videogame and that includes emotion annotations obtained via self-report and observation by outside observers. Comparisons show that there are discrepancies between self-reported and observed emotion ratings which are also reflected in the performance of the emotion recognizers developed. Using Support Vector Regression in combination with acoustic and textual features, recognizers of arousal and valence are developed that can predict points in a 2-dimensional arousal-valence space. The results of these recognizers show that the self-reported emotion is much harder to recognize than the observed emotion, and that averaging ratings from multiple observers improves performance

    Affective games:a multimodal classification system

    Get PDF
    Affective gaming is a relatively new field of research that exploits human emotions to influence gameplay for an enhanced player experience. Changes in player’s psychology reflect on their behaviour and physiology, hence recognition of such variation is a core element in affective games. Complementary sources of affect offer more reliable recognition, especially in contexts where one modality is partial or unavailable. As a multimodal recognition system, affect-aware games are subject to the practical difficulties met by traditional trained classifiers. In addition, inherited game-related challenges in terms of data collection and performance arise while attempting to sustain an acceptable level of immersion. Most existing scenarios employ sensors that offer limited freedom of movement resulting in less realistic experiences. Recent advances now offer technology that allows players to communicate more freely and naturally with the game, and furthermore, control it without the use of input devices. However, the affective game industry is still in its infancy and definitely needs to catch up with the current life-like level of adaptation provided by graphics and animation

    Building Embodied Conversational Agents:Observations on human nonverbal behaviour as a resource for the development of artificial characters

    Get PDF
    "Wow this is so cool!" This is what I most probably yelled, back in the 90s, when my first computer program on our MSX computer turned out to do exactly what I wanted it to do. The program contained the following instruction: COLOR 10(1.1) After hitting enter, it would change the screen color from light blue to dark yellow. A few years after that experience, Microsoft Windows was introduced. Windows came with an intuitive graphical user interface that was designed to allow all people, so also those who would not consider themselves to be experienced computer addicts, to interact with the computer. This was a major step forward in human-computer interaction, as from that point forward no complex programming skills were required anymore to perform such actions as adapting the screen color. Changing the background was just a matter of pointing the mouse to the desired color on a color palette. "Wow this is so cool!". This is what I shouted, again, 20 years later. This time my new smartphone successfully skipped to the next song on Spotify because I literally told my smartphone, with my voice, to do so. Being able to operate your smartphone with natural language through voice-control can be extremely handy, for instance when listening to music while showering. Again, the option to handle a computer with voice instructions turned out to be a significant optimization in human-computer interaction. From now on, computers could be instructed without the use of a screen, mouse or keyboard, and instead could operate successfully simply by telling the machine what to do. In other words, I have personally witnessed how, within only a few decades, the way people interact with computers has changed drastically, starting as a rather technical and abstract enterprise to becoming something that was both natural and intuitive, and did not require any advanced computer background. Accordingly, while computers used to be machines that could only be operated by technically-oriented individuals, they had gradually changed into devices that are part of many people’s household, just as much as a television, a vacuum cleaner or a microwave oven. The introduction of voice control is a significant feature of the newer generation of interfaces in the sense that these have become more "antropomorphic" and try to mimic the way people interact in daily life, where indeed the voice is a universally used device that humans exploit in their exchanges with others. The question then arises whether it would be possible to go even one step further, where people, like in science-fiction movies, interact with avatars or humanoid robots, whereby users can have a proper conversation with a computer-simulated human that is indistinguishable from a real human. An interaction with a human-like representation of a computer that behaves, talks and reacts like a real person would imply that the computer is able to not only produce and understand messages transmitted auditorily through the voice, but also could rely on the perception and generation of different forms of body language, such as facial expressions, gestures or body posture. At the time of writing, developments of this next step in human-computer interaction are in full swing, but the type of such interactions is still rather constrained when compared to the way humans have their exchanges with other humans. It is interesting to reflect on how such future humanmachine interactions may look like. When we consider other products that have been created in history, it sometimes is striking to see that some of these have been inspired by things that can be observed in our environment, yet at the same do not have to be exact copies of those phenomena. For instance, an airplane has wings just as birds, yet the wings of an airplane do not make those typical movements a bird would produce to fly. Moreover, an airplane has wheels, whereas a bird has legs. At the same time, an airplane has made it possible for a humans to cover long distances in a fast and smooth manner in a way that was unthinkable before it was invented. The example of the airplane shows how new technologies can have "unnatural" properties, but can nonetheless be very beneficial and impactful for human beings. This dissertation centers on this practical question of how virtual humans can be programmed to act more human-like. The four studies presented in this dissertation all have the equivalent underlying question of how parts of human behavior can be captured, such that computers can use it to become more human-like. Each study differs in method, perspective and specific questions, but they are all aimed to gain insights and directions that would help further push the computer developments of human-like behavior and investigate (the simulation of) human conversational behavior. The rest of this introductory chapter gives a general overview of virtual humans (also known as embodied conversational agents), their potential uses and the engineering challenges, followed by an overview of the four studies

    Building Embodied Conversational Agents:Observations on human nonverbal behaviour as a resource for the development of artificial characters

    Get PDF
    "Wow this is so cool!" This is what I most probably yelled, back in the 90s, when my first computer program on our MSX computer turned out to do exactly what I wanted it to do. The program contained the following instruction: COLOR 10(1.1) After hitting enter, it would change the screen color from light blue to dark yellow. A few years after that experience, Microsoft Windows was introduced. Windows came with an intuitive graphical user interface that was designed to allow all people, so also those who would not consider themselves to be experienced computer addicts, to interact with the computer. This was a major step forward in human-computer interaction, as from that point forward no complex programming skills were required anymore to perform such actions as adapting the screen color. Changing the background was just a matter of pointing the mouse to the desired color on a color palette. "Wow this is so cool!". This is what I shouted, again, 20 years later. This time my new smartphone successfully skipped to the next song on Spotify because I literally told my smartphone, with my voice, to do so. Being able to operate your smartphone with natural language through voice-control can be extremely handy, for instance when listening to music while showering. Again, the option to handle a computer with voice instructions turned out to be a significant optimization in human-computer interaction. From now on, computers could be instructed without the use of a screen, mouse or keyboard, and instead could operate successfully simply by telling the machine what to do. In other words, I have personally witnessed how, within only a few decades, the way people interact with computers has changed drastically, starting as a rather technical and abstract enterprise to becoming something that was both natural and intuitive, and did not require any advanced computer background. Accordingly, while computers used to be machines that could only be operated by technically-oriented individuals, they had gradually changed into devices that are part of many people’s household, just as much as a television, a vacuum cleaner or a microwave oven. The introduction of voice control is a significant feature of the newer generation of interfaces in the sense that these have become more "antropomorphic" and try to mimic the way people interact in daily life, where indeed the voice is a universally used device that humans exploit in their exchanges with others. The question then arises whether it would be possible to go even one step further, where people, like in science-fiction movies, interact with avatars or humanoid robots, whereby users can have a proper conversation with a computer-simulated human that is indistinguishable from a real human. An interaction with a human-like representation of a computer that behaves, talks and reacts like a real person would imply that the computer is able to not only produce and understand messages transmitted auditorily through the voice, but also could rely on the perception and generation of different forms of body language, such as facial expressions, gestures or body posture. At the time of writing, developments of this next step in human-computer interaction are in full swing, but the type of such interactions is still rather constrained when compared to the way humans have their exchanges with other humans. It is interesting to reflect on how such future humanmachine interactions may look like. When we consider other products that have been created in history, it sometimes is striking to see that some of these have been inspired by things that can be observed in our environment, yet at the same do not have to be exact copies of those phenomena. For instance, an airplane has wings just as birds, yet the wings of an airplane do not make those typical movements a bird would produce to fly. Moreover, an airplane has wheels, whereas a bird has legs. At the same time, an airplane has made it possible for a humans to cover long distances in a fast and smooth manner in a way that was unthinkable before it was invented. The example of the airplane shows how new technologies can have "unnatural" properties, but can nonetheless be very beneficial and impactful for human beings. This dissertation centers on this practical question of how virtual humans can be programmed to act more human-like. The four studies presented in this dissertation all have the equivalent underlying question of how parts of human behavior can be captured, such that computers can use it to become more human-like. Each study differs in method, perspective and specific questions, but they are all aimed to gain insights and directions that would help further push the computer developments of human-like behavior and investigate (the simulation of) human conversational behavior. The rest of this introductory chapter gives a general overview of virtual humans (also known as embodied conversational agents), their potential uses and the engineering challenges, followed by an overview of the four studies

    Finding Fidelity: Advancing Audiovisual Analysis Using Software

    Get PDF
    Seit den letzten 30 Jahren wurden sukzessive Programme zur Unterstützung qualitativer Datenanalysen entwickelt. Allerdings ist ihre Nutzung noch immer nicht sehr verbreitet. Zugleich hat sich qualitative Forschung selbst verändert: von Projekten, die kleine, textbasierte Datensets nutzten hin zu Projekten, in denen große Mengen an multimedialen Daten oder unterschiedlichste Datensorten erhoben, verwaltet und organisiert werden. Für die Softwareentwicklung gingen mit diesen Veränderungen einige Herausforderungen einher: 1. Die Bedürfnisse der Forschenden zu verstehen ist schwer, wenn aufseiten derer, die die Software nutzen, eine hinreichende Dokumentation und explizite Kritik fehlen. 2. Die Unterstützung audiovisueller Datenanalysen ist besonders anspruchsvoll angesichts der Multidimensionalität der Daten und der Unterschiedlichkeit der Ziele und Output-Anforderungen in den je konkreten Forschungsprojekten. In diesem Beitrag befassen wir uns mit der Geschichte computergestützter Software für die qualitative Datenanalyse, und zwar insbesondere im Feld audiovisueller Daten. Wir verwenden dabei den Begriff "fidelity" zur Konzeptualisierung der Übereinstimmung von Softwarefunktionalitäten und dem Bedarf der Forschenden. Verfügbare Programme werden kritisch geprüft und künftiger Entwicklungsbedarf wird identifiziert. URN: http://nbn-resolving.de/urn:nbn:de:0114-fqs1101372Durante los últimos treinta años se ha desarrollado software especializado para el análisis de datos cualitativos. Su adopción, sin embargo, está lejos de ser generalizada. Adicionalmente, la misma investigación cualitativa evoluciona, desde proyectos que utilizan conjuntos pequeños de datos basados en texto a otros que involucran la colección, gestión y análisis de enormes cantidades de datos multimedia o datos de múltiples tipos. El software se ha esforzado por mantener estos cambios por varias razones: 1. reunir las necesidades de investigadores es complicado por la falta de documentación y la crítica de quienes están implementando el uso del software, y 2. los datos audiovisuales son particularmente polémicos debido a su multidimensionalidad y variedad esencial en los propósitos de investigación y las necesidades del proyecto. Este artículo discute la historia del Análisis de Datos Cualitativos Asistido por Computadora (CAQDAS) relacionada a datos audiovisuales e introduce el término "fidelidad" como un mecanismo conceptual para examinar la correspondencia entre herramientas del software y las necesidades del investigador. Se examinan las herramientas actualmente disponibles y se subrayan áreas en las que ellas hacen falta. URN: http://nbn-resolving.de/urn:nbn:de:0114-fqs1101372Specialised software for the analysis of qualitative data has been in development for the last thirty years. However, its adoption is far from widespread. Additionally, qualitative research itself is evolving, from projects that utilised small, text-based data sets to those which involve the collection, management, and analysis of enormous quantities of multimedia data or data of multiple types. Software has struggled to keep up with these changes for several reasons: 1. meeting the needs of researchers is complicated by the lack of documentation and critique by those who are implementing software use and 2. audiovisual data is particularly challenging due to the multidimensionality of data and substantial variety in research project aims and output requirements. This article discusses the history of Computer Assisted Qualitative Data AnalysiS (CAQDAS) as it relates to audiovisual data, and introduces the term "fidelity" as a conceptual mechanism to match software tools and researcher needs. Currently available software tools are examined and areas found lacking are highlighted. URN: http://nbn-resolving.de/urn:nbn:de:0114-fqs110137

    Automatic Measurement of Affect in Dimensional and Continuous Spaces: Why, What, and How?

    Get PDF
    This paper aims to give a brief overview of the current state-of-the-art in automatic measurement of affect signals in dimensional and continuous spaces (a continuous scale from -1 to +1) by seeking answers to the following questions: i) why has the field shifted towards dimensional and continuous interpretations of affective displays recorded in real-world settings? ii) what are the affect dimensions used, and the affect signals measured? and iii) how has the current automatic measurement technology been developed, and how can we advance the field

    Expressing social attitudes in virtual agents for social training games

    Full text link
    The use of virtual agents in social coaching has increased rapidly in the last decade. In order to train the user in different situations than can occur in real life, the virtual agent should be able to express different social attitudes. In this paper, we propose a model of social attitudes that enables a virtual agent to reason on the appropriate social attitude to express during the interaction with a user given the course of the interaction, but also the emotions, mood and personality of the agent. Moreover, the model enables the virtual agent to display its social attitude through its non-verbal behaviour. The proposed model has been developed in the context of job interview simulation. The methodology used to develop such a model combined a theoretical and an empirical approach. Indeed, the model is based both on the literature in Human and Social Sciences on social attitudes but also on the analysis of an audiovisual corpus of job interviews and on post-hoc interviews with the recruiters on their expressed attitudes during the job interview
    corecore