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CHAPTER 1

1.1 The evolution of user interfaces

"Wow this is so cool!" This is what I most probably yelled, back in the 90s, when my first 
computer program on our MSX computer turned out to do exactly what I wanted it to 
do. The program contained the following instruction:
 COLOR 10 (1.1)

After hitting enter, it would change the screen color from light blue to dark yellow.

A few years after that experience, Microsoft Windows was introduced. Windows came 
with an intuitive graphical user interface that was designed to allow all people, so 
also those who would not consider themselves to be experienced computer addicts, 
to interact with the computer. This was a major step forward in human-computer 
interaction, as from that point forward no complex programming skills were required 
anymore to perform such actions as adapting the screen color. Changing the background 
was just a matter of pointing the mouse to the desired color on a color palette.

"Wow this is so cool!". This is what I shouted, again, 20 years later. This time my new 
smartphone successfully skipped to the next song on Spotify because I literally told 
my smartphone, with my voice, to do so. Being able to operate your smartphone with 
natural language through voice-control can be extremely handy, for instance when 
listening to music while showering. Again, the option to handle a computer with voice 
instructions turned out to be a significant optimization in human-computer interaction. 
From now on, computers could be instructed without the use of a screen, mouse or 
keyboard, and instead could operate successfully simply by telling the machine what 
to do.

In other words, I have personally witnessed how, within only a few decades, the way 
people interact with computers has changed drastically, starting as a rather technical 
and abstract enterprise to becoming something that was both natural and intuitive, 
and did not require any advanced computer background. Accordingly, while computers 
used to be machines that could only be operated by technically-oriented individuals, 
they had gradually changed into devices that are part of many people’s household, just 
as much as a television, a vacuum cleaner or a microwave oven.

The introduction of voice control is a significant feature of the newer generation of 
interfaces in the sense that these have become more "antropomorphic" and try to mimic 
the way people interact in daily life, where indeed the voice is a universally used device 
that humans exploit in their exchanges with others. The question then arises whether 
it would be possible to go even one step further, where people, like in science-fiction 
movies, interact with avatars or humanoid robots, whereby users can have a proper 



Introduction   |   11   

1
conversation with a computer-simulated human that is indistinguishable from a real 
human. An interaction with a human-like representation of a computer that behaves, 
talks and reacts like a real person would imply that the computer is able to not only 
produce and understand messages transmitted auditorily through the voice, but also 
could rely on the perception and generation of different forms of body language, such 
as facial expressions, gestures or body posture. At the time of writing, developments 
of this next step in human-computer interaction are in full swing, but the type of such 
interactions is still rather constrained when compared to the way humans have their 
exchanges with other humans. It is interesting to reflect on how such future human-
machine interactions may look like. When we consider other products that have been 
created in history, it sometimes is striking to see that some of these have been inspired 
by things that can be observed in our environment, yet at the same do not have to be 
exact copies of those phenomena. For instance, an airplane has wings just as birds, yet 
the wings of an airplane do not make those typical movements a bird would produce 
to fly. Moreover, an airplane has wheels, whereas a bird has legs. At the same time, 
an airplane has made it possible for a humans to cover long distances in a fast and 
smooth manner in a way that was unthinkable before it was invented. The example 
of the airplane shows how new technologies can have "unnatural" properties, but can 
nonetheless be very beneficial and impactful for human beings.

This dissertation centers on this practical question of how virtual humans can be 
programmed to act more human-like. The four studies presented in this dissertation 
all have the equivalent underlying question of how parts of human behavior can be 
captured, such that computers can use it to become more human-like. Each study differs 
in method, perspective and specific questions, but they are all aimed to gain insights 
and directions that would help further push the computer developments of human-like 
behavior and investigate (the simulation of ) human conversational behavior. The rest 
of this introductory chapter gives a general overview of virtual humans (also known as 
embodied conversational agents), their potential uses and the engineering challenges, 
followed by an overview of the four studies.

1.2 Embodied Conversational Agents (ECAs)

1.2.1 Definition of ECAs
A virtual human that operates as an interface between a user and a machine is called 
an Embodied Conversational Agent (‘ECA’) [43]. ECAs are designed to understand and 
expressively react to verbal and non-verbal messages of their human interlocutors 
resulting, ideally, in meaningful conversations with the users [158]. Other terms that are 
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used in the literature, and are closely related to ECAs, include Intelligent Virtual Agents 
(‘IVA’) and Socially Intelligent Agents (‘SIA’).

 (a) SARA         (b) Digital Human from Soul Machines
Figure 1.1 Impression of a cartoonlike ECA on the left, and a photorealistic ECA on the right.

Definitions differ regarding their embodiment (IVAs are virtual, SIAs may be physical 
or robotic (see [133] for an elaborate overview regarding the terminology)). In this 
dissertation where the term ECA utilized, it refers to a realistic human-like character that 
is both visually and behaviorally indistinguishable from real humans.

Over the years, many ECAs have been developed. Cartoonlike characters include Greta, 
an agent that is used to research and develop models for multi-modal behavior and 
social competence [168], SARA, an agent that is used to research rapport-building 
capabilities between humans and ECAs [140], and REA [24], an ECA that represents a 
real-estate agent. Due to recent technological advances, more photorealistic ECAs are 
being developed. Companies like Soul Machines [1] and Uneeq [2] build ECAs to be 
‘employed’ at companies as digital assistants or product specialists.

Although ECAs have greatly improved, there are no ECAs yet that are truly 
indistinguishable from real humans [203].

1.2.2 Features of ECAs
The appearance and performance of ECAs tend to be inspired by what can be observed 
in real human beings, especially in the way they communicate with others. During 
conversation, humans do not only rely on language to carry on a conversation, but 
also use different parts of the body to support or steer the interaction, such as through 
facial expressions, gestures, eye gaze, head nods and other non-verbal gestures. We 
raise our eyebrows at the end of a sentence to convey that we asked a question. We 
point to objects in our environment to indicate what we are talking about. We modulate 
the speech melody or intensity pattern of our voice to emphasize certain words. 
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Accordingly, we exploit multiple characteristics of our body to convey meaning and we 
communicate in a multi-modal way. This indeed could be considered the most natural 
form of communication, given that speakers and addressees tend to hear and see each 
other during most of their interactions, so that it is only logical that they take into each 
other’s auditory and visual signals.

The language of computers on the other hand is composed of zeros and ones, in a 
way that is too complex and therefore impractical for (most) people to handle directly. 
Consequently, in order to make the interaction with computers feasible, users need 
an interface that translates information from the computer into information that a 
human can interpret, and vice versa. Since the inception of the computer, there has 
therefore been a lot of effort into optimizing the ways in which people can operate with 
computers, leading to the invention of mouse, keyboard, joystick, etc.. These inventions 
have been designed to make human-computer interaction more natural and efficient. 
These mechanical devices, however, can still be viewed and experienced as parts of a 
machine, where the computer is just a tool to be used for a specific purpose. We are 
now entering the next level of human-computer interaction with the attempt to create 
computers that act and communicate as a human; if successful, human-computer 
interaction will then shift from “using a tool” to “interacting with a living creature” or 
even “interacting with a friend”. Studies have already shown that e.g. children build 
social bonds and feel relatedness with ECAs [35] and social robots [125] with whom 
they can learn a new language together [87] or share secrets with [22]. In establishing 
trust relationships with a robot, similar psychological mechanisms to those used in 
establishing a trust relationship with a human being come into play [58].

Clearer communication Multi-modal communication offers the possibility to 
communicate the same message via multiple communication channels or even add 
extra meaning or disambiguate the main message using multiple channels. For example, 
we can use gestures to clarify ambiguous words, or point to the type of ice-cream we 
would like to order. Facial expressions can reveal the extra connotation that comes with 
a certain message, e.g. whether it is a neutral, sad, happy or angry statement. Gestures 
can also convey the exact same message as our speech, e.g. when we put our thumbs 
up and say “ok” [95, 18]. Thus, adding multi-modality to human-computer interaction 
will add an extra layer of information to the interaction and can qualify the messages 
between speaker and addressee.

Minimal mental overhead Interacting with a computer requires a certain amount of 
mental effort. Interacting with a computer puts a certain cognitive load on the working 
memory of the user, as the user must translate his/her intentions into actions that fit 
within the computer paradigm. The amount of cognitive load that a user can handle is 
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limited, as the working memory is limited. Thus, the less cognitive load is required for 
the computer interaction, the more cognitive resources remain available for the actual 
task[163]. Two known factors that minimize the mental overhead of computer interfaces 
are (1) if such interfaces are built upon familiar experiences and habits [154, 8] and (2) 
if users can interact in a multimodal fashion with an interface [221, 164]. Interestingly, 
ECAs tick both boxes. First, ECAs build upon a deeply rooted, familiar experience, namely 
human interaction. And secondly, ECAs take advantage of multimodal interactions. 
And indeed, researchs showed that ECA-based systems result in lower frustration 
levels than traditional text-based systems [97, 8]. Furthermore, [162] demonstrated 
that people are more efficient when using multimodal interfaces, when executing 
a spatial task participants showed less disfluencies and errors with a multimodal 
interface, compared to a unimodal interface. In the same line, [221] established that 
people playing a multimodal variant of game make less errors (and experience a lower 
cognitive load) compared to those who played the unimodal variant of the game. Thus, 
operating a computer via an ECA may facilitate an optimal interaction where a user 
could focus maximally on the task and spend the least cognitive resources possible on 
the interaction itself.

Rapport When two people (i) have a positive feeling towards each other, (ii) feel 
connected and synchronized, and (iii) have the feeling that they understand each other’s 
ideas and communicate well, they have something that is called “rapport”. Rapport feels 
good and seems to play a central role in successful relationships [200]. Although the 
rapport construct is historically defined in terms of human-human interactions, people 
can also experience something similar to rapport when interacting with an ECA [82, 46]. 
Like rapport in human-human conversations can have a positive influence in negotiation 
[33, 61] education [20] and healthcare [65], computer-systems able to establish rapport 
can have a positive influence on their users as well. One of the first examples was Rea, a 
real-estate ECA, that used rapport-seeking strategies to build rapport with extroverted 
people [24]. Another experiment with an ECA that gave educational instructions to 
math learners, [116] showed that if the ECA was actively building rapport, learners had 
better performance measures compared to an ECA that was not building rapport. In the 
healthcare context a social robot was to help children to teach self-management skills 
needed to cope with diabetes type 1. The experiment was executed in two different sets 
of conditions. The first condition was a neutral robot, the other robot was personalized 
and included actively seeking rapport. Children that interacted with the personalized 
version reported a more pleasurable interaction and had a higher learning outcome, 
compared to children that interacted with the neutral robot [91].

Would the increase of comprehensibility, the minimization of mental overhead and the 
ability to build social relationships suggest that all human-computer interactions would 
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benefit from a computer that represents itself as human? Probably not. If a user knows 
how to interact effectively with a computer via shortcuts, a terminal or a text processor, 
some input tasks such as programming or writing a book may be accomplished faster 
via such terminal or text processor than via an ECA. Some researchers hypothesize 
that when a computer substitutes human tasks it could benefit from a human-like 
representation, while when the computer is used for computational tasks, it benefits 
from a ’machine’-like representation. The main reason is that humans seem to trust 
machines more than humans when it comes to rationality and efficiency [185]. Finally, 
using an ECA also comes with responsibility. Humans that interact with ECAs also 
(unconsciously) expect the ECA to understand them [172], and a human-like ECA may 
yield too high expectations in a user about the range of functionalities of the machine.

1.3 Relevance of studying ECAs

1.3.1 Scientific relevance
Human behavior is studied within a wide array of scientific disciplines, which results 
in a variety of explanations and models, relating to cognitive, social, linguistic, 
psychological, and philosophical aspects of human behavior. Building a human-like 
ECA could be the glue that ties multiple theories together. Building a human-like ECA 
implies that our knowledge of human behavior (e.g. how non-verbal communication 
functions) needs to be sufficiently explicit so that it can be implemented in an artificial 
character. Using this analysis-by-synthesis procedure, ECAs can serve as the ultimate 
test case to check to what extent our models of human behavior are realistic and 
applicable. Richard Feynman’s quote, "If you cannot build it, you do not understand it", 
was aimed at synthetic biology, but also applies in this context as building an artificial 
human may lead to a deeper understanding of human behavior. Another scientifically 
relevant aspect of ECAs is that they can serve as useful tools to test specific hypotheses 
about human behavior, as they give the possibility to manipulate specific features while 
controlling others in an orthogonal design, so that the effect of specific variables can 
be accurately tested. When human actors (or confederates) are replaced by an ECA 
in a specific experiment, scientists get the opportunity to experiment with variables 
which were difficult or impossible to control by human participants [166]. For example, 
[77] conducted an experiment where human participants had to interact with an ECA. 
The experiment consisted of two versions, whereby the only difference between the 
versions was the pitch and speed rate of the interlocutor (which was an ECA in this 
case). Such an experiment would be less obvious with a human interlocutor. An actor 
who does everything the same way every time except the use of his/her pitch and speed 
rate is virtually impossible. [96] has experimented with ECAs that showed either short 
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or long eye blinks while listening to the participant. Again, such an experiment would 
have been impossible with a human confederate, as a human confederate does not 
have this minute control over his/her eye blinks. Although actors naturally try to behave 
as similarly as possible in any experiment, there will always be uncontrollable factors. 
When using ECAs as confederates in an experiment, there will be more control over 
the experiment while maintaining the same ecological validity. Nonetheless, there is 
room to improve. [166] mentions e.g. that one of the current limitations of using ECAs 
in human experiments is the lack of spontaneous bi-directional interactions between 
human and ECA. Thus, by aiming at the creation of conversational artificial humans, 
we may not only test our knowledge of aspects of human behavior, but we can also 
utilize ECAs for maximizing control in an ecological valid setting to further deepening 
our knowledge.

1.3.2 Societal relevance
The combination of both computer-like and human-like properties give ECAs a unique 
position with specific properties that can be utilized in different societal applications. 
Compared to traditional computer-systems, ECAs are able to establish social bonds 
with their users [81]. Compared to their human counterparts, ECAs have a perfect 
memory and are always available [195]. In this section we discuss a few specific societal 
opportunities for ECAs. 

Confidential interactions ECAs seem to be effective in getting information from 
people in contexts where people are commonly hesitant to share information [130, 
82]. For example, [131] showed that participants (ex-soldiers) disclose more PTSD 
symptoms when interviewed by an ECA, compared to when they are interviewed by 
a real person or when they must fill out an anonymous questionnaire. Due to cultural 
stigma’s, ex-soldiers do often not disclose all their PTSD symptoms. The anonymity of 
an ECA compared to a real person gives a participant freedom to share any symptoms. 
Compared to the anonymous questionnaire, an ECA has the rapport building skills 
needed to give participants confidence to open-up and speak their minds.

Pedagogical interactions One way to effectively learn new things is with a teacher 
or learning companion. An ECA could be a good substitute or supplement to the 
learning process. Compared to a human tutor, an ECA is always available, treats learners 
unbiased, is patient and will not be annoyed [94]. In general, the more a student is 
engaged in learning, the more a student learns. Students who learn with an ECA [11] 
or social robot[53] are generally highly engaged, which in turn could lead to positive 
learning outcomes. ECAs and social robots are able to memorize all historical learning 
performances of a learner and can in turn provide a learner with personalized activities 
and adaptive tutoring that lead to effective learning and positive learning outcomes 
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[57, 28]. Also, ECAs and social robots are able to motivate the student and stimulate 
essential learning behaviors [107, 86]. ECAs can be employed as teachers to for example 
learn social skills [196], mathematical skills [116] or to learn a (second) language [211]. 
More specifically, ECAs could especially be useful as interactive tools for people who 
sometimes find it hard to communicate with other human beings [151] or to learn skills 
necessary to cope with certain illnesses [91].

Multilingual interactions Another advantage of an ECA is that it could potentially 
speak all languages, such that each person interacting with the ECA could use his or 
her native language. This functionality could be especially useful for ECAs that act (i) as 
tourist guides [72], (ii) in multilingual healthcare related settings [157], (iii) in migration 
and integration contexts [208], and (iv) in language learning [138].

1.4 The challenges

Although current ECAs are getting better in terms of appearance and behavior, all 
ECAs are still distinguishable from real people [203]. This is largely because of two main 
challenges that make it difficult to create a human-like ECA: (1) humans are difficult to 
trick because of their sensitive perception and (2) believable human behavior is hard to 
generate within a timely manner due to its complexity.

1.4.1 Uncanny Valley
Human perception is sensitive for little mistakes in the interaction with an ECA. If an 
ECA looks sufficiently human-like, small errors in the behavior of that ECA can produce 
creepy, uncanny feelings in the observer. Those uncomfortable feelings are a sign of 
the so-called uncanny valley, the metaphorical lowland between the mountain of 
cartoonish looking avatars on the left side and the mountain of real humans on the 
right side [150]. The uncanny valley is a term coined by Masahori Mori back in 1970. In 
an essay, he predicted that if robots would appear and behave human-like, that those 
robots would elicit negative responses from people. This negative response would 
be caused by the robot that failed in fully replicating human behavior. Errors in the 
replication would invoke feelings of fright. Uncannyness is related to the horror genre. 
The German psychologist Ernst Jentsch described the uncanny feeling as a state of mind 
in which you cannot discern between what is alive and what is dead, between what is 
real and what is unreal. According to Jentsch we can experience the uncanny when we 
observe people that move abnormally, like a person having a seizure or a person that lost 
control over their bodily functions due to madness or a mental illness [105]. Masahori 
Mori stated that such experience can be expected with a human-like robot. The valley 
aspect of the uncanny valley originates from the graph that Mori supplied in his essay. 
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The graph shows that the higher the human-likeness of something is, the higher the 
perceived affinity. However, this otherwise positive related relationship contains a dip 
just before full human-likeness. This dip is the uncanny valley [150].

And indeed, people often get an uneasy feeling, or even a feeling of disgust, at the mere 
sight of a human-looking doll, computer-game character, or robot [216]. This poses a 
problem for the creation of ECAs that are indistinguishable from real humans. People 
seem to possess a doorkeeper that needs to be fooled or convinced that the human-
like avatar in front of them is a real human. Why do we have this uncanny reaction 
to human-like creatures? Different theories exist. One theory hypothesizes that the 
uncanny feeling arises from our so called behavioral immune system [182], a system 
that detects dangerous peoples, like psychopaths [201] and virus-infected people [93], 
and once detected produces the uncanny feeling to nudge us to avoid those dangerous 
people. Another explanation is that the feeling sprouts from cognitive dissonance [216], 
e.g. we do not know if we must categorize this object as human or as non-human which 
causes the uncanny feeling.

As for the present, the uncanny valley has not yet been passed by current ECAs. The 
sensitive human perception that is able to detect small errors, and the uncanny feelings 
that result from such errors, is one of the major obstacles to actually create human-like 
ECA that are indistinguishable from real people.

1.4.2 Complexity
Human conversational behavior is complex. Multiple modalities (and channels) are 
involved in sending and receiving messages between interlocutors. When it comes 
to multi-modal behavior generation for ECAs there are a few concerns. For example: 
how to generate natural looking behavior? Human bodies are capable of all kinds of 
movements, but not all movements will be perceived as natural. And how to generate 
communicative behavior within the correct timeframe? Generation of behavior is time-
sensitive that requires high computing power and speedy algorithms.

Natural behavior: Degrees of freedom The human body consists of about 600 muscles 
which can all be moved semi-independently. In addition, the human voice can utter a 
myriad of sounds on a spectrum of frequencies. Although some combinations of sounds 
with body movements will result in natural behavior, some behaviors will be perceived 
as unnatural [181, 39]. The human body allows for many degrees of freedom, which 
makes behavior generation complex. As a thought experiment, to grasp the intricacies 
of the complexity problem, one could imagine being a puppeteer of a human-like 
marionette with about 600 wires, one for each muscle. This marionette is placed into a 
conversation with a person that thinks that the marionette is a real person. When should 
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one move which muscle (and with what speed and contraction) in order to come off as 
acting natural? This, together with operating the voice of the marionette, is essentially 
the challenge that a computer faces when simulating a human being.

Time sensitivity An ECA must not only generate meaningful behavior, it must also 
understand the (sometimes unpredictable) behavior from the other person to whom it 
has to react. This complex interplay between perception and generation must take place 
in a timely fashion. Time sensitivity takes place on multiple levels. On the generation side 
there is time alignment between the multiple modalities. For example, gestures should 
be shown within the same time of the utterance, there seems to be some wiggle room, 
but a gesture cannot be shown more then 160ms before the linguistic component is 
uttered or after the utterance (the timewindow of 160ms may be a bit longer depending 
on the concreteness of the gesture) [88]. On the perceptual side, some signals shown 
by the user are volatile, e.g. a short eye-blink [96] is about 200ms long. The epitome of 
rapid reactions in human conversations is the average silence between turns (i.e. when 
one persons stops talking, and the other one takes over), which is on average just 200ms 
[190].

In sum, behavior generation is a complex puzzle because behavior manifests itself 
across multiple channels, where a communicative element on each channel can keep 
the illusion of naturalness alive or take it away. A conversation is a continuous game 
and behavior must be generated within short time intervals, where every minuscule 
deviation from the expected sets off internal alarm bells for the user in the form of 
uncanny feelings.

1.5 The current dissertation

The four studies presented in this dissertation are all intended to reduce the 
aforementioned challenges and to pave the way towards the creation of an ECA that 
approaches the behavior of a real human.

Chapter 2 tries to mitigate the complexity of human behavior generation. The 
underpinning idea sprouted from the Pareto principle which states that 80% of the 
outcomes are produced by 20% of the causes. Which led to the conjecture that in order 
to curb the seemingly endless degrees of freedom of human behavior and to keep 
behavior generation within reasonable time-bounds, we perhaps should focus on the 
successful generation of the most frequent behaviors (the proverbial 20%). According 
to FACS, our face has 46 muscles. Each muscle can be contracted to 6 levels (0 is neutral, 
5 is maximum contraction). Thus, the set of possible facial configuration according to 
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FACS is 646. However, is this large number of possible facial configurations actually used 
by humans, and should an ECA be able to move its face into 646 different configurations? 
Of course, implementing 646 is a time-consuming task for both the 3d artist and the 
testers. We showed that the largest portion of facial expressions was neutral (meaning, 
no contraction for any facial muscle). In cases that facial muscles were activated, most 
often those were only activated slightly. The results of this research show that indeed 
not all possible facial configurations are commonly used, or are used at all.

Chapter 3 describes another approach to curb the degrees of freedom in behavior 
generation. This time, the inspiration came from the concept of hidden attractors, an 
idea from dynamical systems theory. Simply put, a hidden attractor is an underlying 
pattern that exists in an ostensibly chaotic system. Multi-modal human behavior could 
be seen as a chaotic system that produces output over different semi-independent 
communication channels, such as facial expressions, gestures, and linguistic content 
that are all involved in behavior generation. In chapter 3 we show with cross recurrence 
analysis that there seem to be dependencies between the linguistic channel and the 
gesture channel. We show that some gestures often go together with certain linguistic 
parts (dialog acts), while there also seem to be ’mutually exclusive’ relations, some 
linguistic parts never go together with certain gestures. This information can be used as 
an initial guidebook for an ECA developer to create a multi-modal behavior generation 
system that takes into account the dependencies between communication channels. 
Whereas Chapters 2 and 3 attempt to circumscribe the pool of possible human 
behaviors, Chapters 4 and 5 are about the variations of behaviors found in that pool.

Chapter 4 reports on the variability found in listening behavior. Listening behavior, 
more specifically backchanneling behavior, includes nodding, vocalizations, and 
facial expressions that listeners and speakers use to coordinate their interaction. We 
analyzed the behavior of 14 different participants that all interacted with the same 
(pre-recorded) speaker-stimulus. Participants were made to believe that they had a live 
skype-connection with the speaker. The speaker and the participant played a Tangram 
game. A jury consisting of 10 people identified the so-called backchannel opportunity 
points; moments in the speaker-stimulus that would allow for feedback from the listener. 
We analyzed the differences between the listening behavior of different participants, 
but also between different BOPs. We found out that variation between and within 
listeners exists with some listeners being more expressive than others, whereas some 
backchannel opportunity points trigger more responses than other.

Chapter 5 contains the results of an experiment based on the findings for chapter 4. 
In this follow-up research we investigated whether the variations in listening behavior 
correlate with personality perceptions, and if those variations can be used in ECAs. 
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Personality seems to be an important factor in conversational systems and specifically 
ECAs to create smooth and natural interactions with its user. We conducted two rating 
experiments in which participants judged the personalities (i) of human beings and 
(ii) of embodied conversational agents. The results show that personality perceptions 
of both humans and artificial communication partners are indeed influenced by the 
type of feedback behavior used. This knowledge could help developers on how to also 
include personality in the listening behavior of their ECAs, which in turn could generate 
a stronger sense of presence for the human interlocutor when interacting with the ECA.

All four studies presented in this dissertation are based on a few assumptions. All 
presented research assumes that the final goal of the work is to create perfect, 
human-like ECAs which closely resemble real humans and are modeled based on 
human behavior. Therefore, the chapters present analyses on human behavior or 
the synthesis of human behavior into an ECA. Other lines of research exist that try to 
exploit non-human behaviors in ECAs to optimize human-computer interaction, e.g. the 
possibility of co-embodiment and re-embodiment, which reflects the possibility that 
an ECA contains multiple identities or that multiple ECAs contain the same identities 
respectively [135]. However, in this work we strictly focus on the analysis of human 
behaviors. Each chapter in this dissertation is a self-contained study which is either 
already published or submitted to a peer-reviewed scientific journal (chapter 3 and 4) 
or a conference (chapter 1 and 2). Therefore, each chapter contains its own abstract, 
introduction, discussion and reference list. As a consequence, there is a minor overlap 
between the different chapters and there may be slight variations in jargon and stylistic 
elements, due to the different outlets.
Chapter 2
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Abstract

With forty-six Action Units (AUs) forming the building blocks in the Facial Action Coding 
System (FACS), millions of facial configurations can be formed. Most research has 
focused on a subset of combinations to determine the link between facial configurations 
and emotions. Despite the value of this research for psychological and computational 
reasons, it is not clear what the most common combinations of AUs are to form the most 
commonly expressed facial configurations. We used three diverse corpora with human 
coded facial action units for a computational analysis. The analysis demonstrated that 
the largest portion of facial behavior consists of the absence of AU activations, yielding 
only one specific facial configuration, that of the neutral face. These results are important 
for cognitive scientists, computer graphics designers and virtual human developers 
alike. They suggest that only a relatively small number of AU combinations are initially 
needed for the creation of natural facial behavior in Embodied Conversational Agents 
(ECAs). 1

1 This chapter is based on: Blomsma, P. A., Vaitonyte, J., Alimardani, M., & Louwerse, M. M. (2020). Spontaneous 
Facial Behavior Revolves Around Neutral Facial Displays. In Proceedings of the 20th ACM International 
Conference on Intelligent Virtual Agents (IVA ’20), October 19–23, 2020, Virtual Event, Scotland Uk. ACM, New 
York, NY, USA, 8 pages .https://doi.org/10.1145/3383652.3423893
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2.1 Introduction

The most natural form of communication is multimodal communication, in which 
verbal and non-verbal channels participate in the joint action of the dialog partners 
[50]. Among the non-verbal channels, the human face is widely investigated when it 
comes to social cues [206]. Facial displays reveal much about the people we talk to. The 
facial display could be seen as a dynamic information space that can adopt a myriad of 
different facial configurations, with each configuration potentially sending out a specific 
social signal [102]. A mere glance at a person’s face can reveal information about their 
identity and gender [71], age [71], physical health [183], intention [3], emotion [4], eye 
gaze direction [76] and social traits [160]. Moreover, the face can encode linguistically 
relevant cues such as lip movements that can enhance language comprehension, 
particularly beneficial under difficult listening conditions [192]. Ideally, Embodied 
Conversational Agents (ECA) would allow humans to have face-to-face conversations 
with computers such that we can use our most natural form of communication [43]. As 
computer graphics techniques become more advanced and the realism of ECA faces 
increases, this reality is coming closer and questions regarding the development of 
ECA facial behavior become increasingly important. However, the generation of natural 
facial behavior for ECAs is still a major challenge.

In addition to the difficulty of all social cues that have to be taken into account in 
generating facial behavior, small inaccuracies in ECA behavior may result in feelings of 
uncanniness and frustration by the perceiver [181]. Herein lies a problem for the creation 
of ECAs; due to the precision needed to accurately mold a digital face to replicate each 
detail of its human counterpart [176], designing a natural facial configuration for an 
ECA is a very time-consuming task. Furthermore, the face allows for a nearly infinite 
number of different facial configurations. The combination of the above factors ensures 
that designing all possible facial configurations for an ECA, such that it can generate 
all desired facial behavior would take enormous amounts of time. As a compromise, 
to reduce those designing efforts, many ECA developers only implement a subset of 
facial configurations. Although this trade-off is a promising approach, it also begs the 
question which subset of facial configurations is the most optimal to implement. In 
other words, what are the most common facial configurations that humans employ? 
The current research aims to find answers to this question.

2.1.1 Uncanny Valley
The first factor that prevents developers from creating ECAs that are indistinguishable 
from real humans is the uncanny valley effect. Recent advances in animation and 
rendering technology (e.g. the AutoDesk Maya application, as well as Unity3D and 
Unreal engines) allow developers to design increasingly realistic, human-like avatars, 
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both in academic and industrial virtual human projects [186, 198]. However, it turned 
out that tiny mismatches between real humans and the ECA’s appearance or behavior 
can be perceived as frightening and evoke feelings of discomfort [150]. This so-called 
‘uncanny valley effect’ might be explained biologically. Humans might have an internal 
behavioral immune system [182] that produces strong negative feelings once it detects 
dangerous people like psychopaths [201] or disease carriers [93]. Others have explained 
this uncanny valley effect as a consequence of cognitive dissonance [216]. Irrespective 
of the reason for the uncanny valley effect, correcting all the tiny mismatches that evoke 
the effect, is a laborious and meticulous process which currently prevents ECAs to be 
perceived as real humans [176].

2.1.2 Facial Action Coding System
The second factor that makes natural facial behavior generation for ECAs difficult is 
the nearly infinite number of possible facial configurations. The most commonly used 
reference framework to create facial configurations is the Facial Action Coding System 
(FACS) [204]. FACS is an instrument to objectively characterize facial movements in an 
anatomically-based manner [64], measuring the level of contraction of 46 facial muscle-
endings, called Action Units (AUs). Encoding a facial configuration with FACS involves 
enumerating all AUs that are active in the face along with their corresponding intensity 
on a scale from 0 (i.e., no activation) to 5 (i.e., maximum activation). Consequently, FACS 
is able to describe 646 possible combinations of AUs (albeit the case that in practice some 
combinations are very unlikely or even impossible). This number, equaling to 6.2e+35, 
is astronomically large, so large that it exceeds the average number of cells in a human 
body (i.e., 10e+16).

Given (i) the enormous number of facial configurations enabled by FACS, (ii) the 
photometric, kinematic and geometric complexities of the human face [219] and (iii) 
our sensitivity to inaccuracies in digital humans, one could come to the conclusion 
that digitalization of natural human-like faces is not feasible. A possible solution lies 
in reducing the number of facial configurations in the agent. There may be at least two 
solutions for such reduction. The first solution has been used in the psychological and 
computational literature so far, and involves using only prototypical facial configurations 
that go with extreme emotions. The other solution, which is the main subject of this 
paper, may lie in identifying which facial configurations are most commonly used in 
non-verbal communication.

2.1.3 Prototypical facial configurations
Researchers in the field of facial expressions of emotions are often interested in which 
specific facial expressions are related to specific emotions or social contexts [52]. 
Moreover, most ECA developers have focused on the implementation of prototypical 
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emotions and corresponding facial behavior into an ECA [126, 169] and some have even 
focused on the implementation of prototypical expressions blended into more complex 
expressions [167]. Such implementations can be effective if the aim is to generate easily 
recognizable facial expressions of emotion for the perceiver, however ECAs that execute 
them do not necessarily replicate human-like facial behavior. According to literature, in 
natural situations, humans are not exposed equally to the above-mentioned prototypical 
emotions. We are exposed most frequently to happy expressions (31.0% of the time), 
in contrast with fearful expressions (3.4% of the time) [37]. If we apply Occam’s Razor, 
it thus seems best to go for a happy rather than a fearful configuration. Granted that 
frequency may not be the only important factor in the choice of configurations (others 
may include deviation from the norm), an ECA that implements only the prototypical 
facial configurations should also take into account those ratios while generating facial 
behavior. However, taking into account those ratios still assumes that all facial behavior 
takes place within the confinements of prototypical facial configurations. In other 
words, we do not know what the distribution of facial behavior looks like when the 
option space outside these prototypical configurations is included.

The option space outside prototypical facial configurations may in fact be quite 
important. During a conversation, humans convey emotional content via the face not 
more than 18% of the time [69]. This is not surprising, as facial displays may serve a 
variety of functions, such as emphasizing words during a conversation or indicating that 
an utterance serves as a question. The point here is that the unbalanced distribution 
of prototypical facial configurations and the relatively limited emotional content that 
is conveyed in conversation may be indicative of the fact that we do not know much 
about the distribution of facial configurations in human-human conversation, let alone 
generating a representation of that distribution in human-ECA conversations.

2.1.4 Current Work
In this paper, we addressed the above-mentioned gap and investigated the 
distribution of human facial configurations in a natural setup. We selected three large 
non-posed human-coded facial behavior datasets that differed with regard to the 
type of spontaneous emotion elicitation used. Although the accuracy of automated 
FACS encoding software (.e.g. [127]) is impressive and is of added value for various 
applications, the precision of the produced encodings is lower than the encodings 
produced by certified FACS encoders, especially if the certified FACS encoders have a 
high interrater reliability. Many applications of automated encoding analyze faces to 
detect combinations of activated AUs to identify prototypical expressions of emotions. 
Because combinations of activated AUs are the main concern, the exact activation of each 
specific AU (and the associated encoding accuracy) are of less importance. However, the 
current research does analyse both combinations and single AU activations, therefore 
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it is essential that each AU is accurately encoded. For that reason, in the current work 
we only selected manually encoded datasets with high interrater reliability scores (in 
contrast to other approaches like [191]). The number of available human FACS-encoded 
datasets containing non-posed facial configurations is rather small [119]. This is partly 
due to the fact that FACS encoding is a costly, labor-intensive process. It takes at least 
100 hours of extensive training to become a certified FACS encoder and it takes two 
hours for such encoder to FACS encode one minute of video (depending on number 
of AUs and level of detail) [13]. Study 1 used a dataset with facial configurations from 
participants in a task-based multimodal communicative setting. Study 2 used a dataset 
with facial configurations from participants watching an emotion-eliciting video clip. 
Study 3 used a very specific dataset with pain-related facial behavior.

2.2 Study 1

Study 1 used a multimodal communication corpus of about 25 hours of dialog, with 
48 students (30 female, 18 male; one Asian, 19 African-American, 28 Caucasian). Verbal 
and non-verbal channels of dyads were recorded while they participated in a Map Task 
scenario [6, 129]. The Map Task involves one person (the instruction giver), who has a 
map with a route and another person (the instruction follower) who has a similar map 
without a route. The goal of the task is to reproduce the route of the instruction giver’s 
map onto the instruction follower’s map. The interlocutors have full freedom of speech, 
however they cannot see each other’s map (see [129] for details). Each facial movie was 
FACS-encoded at 250ms intervals by certified FACS coders for 11 specific AUs, resulting 
in 731,824 encoded frames (see Table 2.1 for an overview). AUs were encoded as either 0 
(i.e., no activation) or 1 (i.e., activated). The coders had a high inter-observer agreement 
score, quantified by Cohen’s κ (.78). The dataset is also used in [129, 29].

2.2.1 Method
The FACS encodings of the videos were imported as matrices into R. Each row 
corresponded with one encoded frame, thus the matrix contained 731,824 rows. Each 
column referred to one of the AUs and expressed the level of contraction for that specific 
AU, thus the matrix contained 11 columns. In order to deduce the number of distinct 
facial configurations present in the matrix, the unique rows in the matrix were identified 
by stripping out all duplicate rows in a copy of the matrix. Subsequently the number of 
occurrences of each unique row was counted in the original matrix2.

2  Code publicly available via: https://github.com/pblomsma/facial-behavior
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2.2.2 Results and Discussion
As the dataset was encoded for 11 different AUs on a binary level, a total of 211(= 2,048) 
different facial configurations could have been expressed during the dialogs. Yet, only 
67 different facial configurations were found in the 731,824 frames. From these 67 facial 
configurations, 15 were not shared among participants and were only expressed by one 
person.

By far the most common facial configuration was neutral (i.e. AUs having an activation 
level of zero), with 88.32% (SD=8.09, see Figure 2.1) of the encoded frames described by 
this facial configuration (646,347 frames). The 20 most occurring facial configurations 
are listed in Table 2.2.

Table 2.1 Zero-contraction frequency per AU per dataset. A dash indicates that that AU was 
not encoded for that dataset.

AU Description
Map Task
(Study 1)

DISFA
(Study 2)

PAIN
(Study 3)

1 Inner brow raiser - 93.29% -

2 Outer brow raiser 95.27% 94.37% -

4 Brow lowerer 98.23% 81.20% 97.78%

5 Upper lid raiser 99.67% 97.91% -

6 Cheek raiser - 85.11% 88.52%

7 Lid tightener - - 93.05%

9 Nose wrinkler - 94.55% 99.13%

10 Upper lip raiser - - 98.92%

12 Lip corner puller 97.86% 76.46% 85.77%

15 Lip corner depressor - 93.99% 99.99%

17 Chin raiser 99.93% 90.12% -

18 Lip puckerer 99.77% - -

20 Lip stretcher - 96.54% 98.54%

23 Lip tightener 99.45% - -

25 Lip part 99.38% 64.80% 95.03%

26 Jaw drop - 80.91% 95.68%

27 Mouth stretch 99.98% - 99.96%

43 Eyes closed - - 98.00%

44 Squint 98.71% - -

45 Blink 99.23% - -

50 Speech - - 100.00%
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Study 1 shows that the most-occurring facial configuration is neutral. Moreover, that for 
those cases where activation of an AUs was observed, the seven most-occurring facial 
configurations only had one of the eleven AUs activated. The neutral facial configuration 
combined with the seven most occurring configurations described 99.34% of the data. 
This indicates that only a small set of facial configurations with single AU activations is 
needed to describe the facial behavior in this dataset.

Table 2.2 Most frequent facial configurations in Map Task dataset.
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There are, however, at least three potential caveats in this study that need to be 
accounted for. The first is that we would like to assume that the Map Task corpus concerns 
natural conversation, but the question can be raised to what extent instructions on 
route navigations on a map elicit natural dialog and natural emotions. For instance, it is 
unlikely that sadness or disgust would be expressed in such a dialog setting. Secondly, 
in this corpus, 11 AUs were encoded on a binary level (activated or not). It may be 
the case that coders – despite their acceptable inter-rater reliability – marked minor 
activations of AUs as 0 and only major activations as 1. Therefore another dataset to 
determine whether the findings from Study 1 can be extended to a different setting 
is desirable. Finally, as the dataset is only coded in binary form, the activations cannot 
inform on the exact intensity of found facial configurations. For ECA developers it would 
be important to know the precise activation levels in order to exactly replicate the facial 
configurations into an ECA. Therefore, the next Study used a dataset that is encoded on 
the full FACS spectrum (i.e. 0-5).

Figure 2.1 Distribution of neutral facial configurations (i.e., all AUs having zero contraction) 
among participants whose facial configurations were coded in Study 1.

2.3 Study 2

Study 2 used the Denver Intensity of Spontaneous Facial Actions (DISFA) dataset [141] 
consisting of facial movies of 27 subjects (15 male, 12 female; three Asian, two Hispanic, 
one African-American, 21 Caucasian) in the age range of 18-50 years. The dataset was 
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created with the intention to examine AU activations in naturally occurring facial 
configurations. Each subject was filmed while they watched a 4-minute video that 
contained a collection of emotion-evocative clips designed to elicit a wide variety of 
spontaneous emotions, such as fear, disgust and surprise. Each frame of the collected 
videos was then FACS-encoded by certified FACS coder for a set of 12 specific AUs (see 
Table 2.1 for an overview). AUs were encoded on a scale from 0 (i.e., no activation) 
to 5 (i.e., maximum activation). In total, the DISFA dataset contains 130,814 encoded 
frames. The FACS encodings of the DISFA dataset had an inter-observer agreement 
score, quantified by an intra-class correlation coefficient [188] in the range between 
.80 and .94 per AU, which qualifies as a strong to very-strong inter-observer agreement 
score. The dataset is widely utilized within facial expression research (see e.g. [67, 202]). 
This set of encoded AUs is among the most studied in research regarding emotional 
expression and social interaction as described by [199].

2.3.1 Method

The method of analysis was identical to the one used in Study 1.

2.3.2 Results and Discussion
As the DISFA dataset is encoded for 12 AUs, all having a value between 0 (i.e., no 
activation) and 5 (i.e., maximum activation), 612 (=2.2e+09) distinct facial configurations 
could be expressed by this AU selection. However, out of a total of 130,814 frames 
in the DISFA dataset, we only found 3,333 unique facial configurations. In addition, 
2,664 (79.9%) of the 3,333 distinct facial configurations were ‘idiosyncratic’, i.e. those 
facial configurations were not shared among subjects and thus only expressed by 
one subject. This large number of idiosyncratic facial configurations described 18,533 
frames (14.17%). Moreover, 949 of frames (0.73%) regarding those idiosyncratic facial 
configurations appeared in the dataset only once. Hence, these configurations only 
described one frame in the dataset.

Again, the most frequent facial configuration was the one described by all AUs having a 
contraction level of zero. This ‘neutral’ facial configurations described 48,616 (37.16%) of 
all frames with a SD = 20.60% over all participants (see Figure 2.2). Table 2.3 shows that 
the seven subsequent most present facial configurations only contained one activated 
AU. Thus, as the first eight configurations describe 50.48% of the frames, at least 50.48% 
of the frames were described by either a neutral facial configuration or a configuration 
with only one activated AU. Furthermore, all activation levels of twenty most occurring 
facial configurations are in the range of 0 and 3. In general, the intensity of those 
activation levels can be interpreted as 0, no activation; 1, trace of the action; 2, slight 
evidence; 3, pronounced; 4, severe; 5, maximum [63]. Hence, none of the AUs in the top 
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twenty configurations was activated at a severe (4) or maximum level (5). This indicates 
that the more intense levels do not occur often. The histogram in Figure 2.3 shows the 
frequency of each activation level per AU. Indeed, all AU are mostly neutral (see also 
Table 2.1), and furthermore, when an AU is activated, it is most often only moderately 
activated.

Study 1 showed that most facial configurations in spontaneous communication are 
likely to be neutral. Similarly, Study 2 showed that even in a dataset derived from 
an experiment that was specifically designed to elicit emotional reactions from the 
participants, the most common facial configuration was neutral followed by some 
configurations with minor activations. However, one could still argue that in the first 
case the Map Task conversations were not emotional enough to produce many non-
neutral facial configurations, and in the same line, that the second dataset did not use 
a strong enough video clip to elicit emotional reactions. Therefore, in our final study, 
we looked at a dataset that contains facial configurations elicited by a more direct 
elicitation method.

2.4 Study 3

The UNBC-McMaster Shoulder Pain Expression Archive (PAIN) Database [132] contains 
a total of 200 videos of 25 participant faces (12 male, 13 female). With the help of a 
physiotherapist, the participants were filmed while moving their painful shoulders. 
These 200 videos are comprised of a total of 48,398 frames, which are all FACS-encoded 
for a specific set of AUs by certified FACS coders. The PAIN dataset has an inter-coder 
percent agreement of 95% as determined by the Ekman-Friesen formula [132]. For this 
dataset, only those AUs that are potentially related to pain expression are encoded (see 
Table 2.1 for an overview).

2.4.1 Method
The method of analysis was identical to the one used in Study 1 and 2.

2.4.2 Results and Discussion
The PAIN dataset utilized 13 AUs. Each AU is encoded on a 6 level scale (0-5), except 
AU43 (eyes closed) which is encoded on a 2 level scale (i.e. present (5) or not(0)). Thus, 
612 ∗2 (=2.2e+09) distinct facial configurations could be expressed by this selection.
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Table 2.3 Most frequent facial configurations in DISFA dataset.
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0.91% 0 0 0 0 0 0 0 0 0 0 2 1

0.87% 0 0 0 0 1 0 1 0 0 0 0 0

0.77% 0 0 0 0 0 0 0 0 1 0 0 0

0.72% 0 0 0 0 0 0 0 0 0 0 1 2

0.60% 0 0 0 0 0 0 0 0 0 0 1 1

0.60% 0 0 0 1 0 0 0 0 0 0 0 0

0.59% 0 0 0 0 0 0 2 0 0 0 0 0

0.54% 0 0 0 0 1 0 0 0 0 0 0 0

0.53% 0 0 0 0 0 0 1 0 0 0 2 0

0.50% 0 0 0 0 0 0 1 0 0 0 3 0

0.48% 0 0 0 0 0 0 0 0 0 0 0 1

0.44% 0 0 0 0 2 0 3 0 0 0 3 0
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Figure 2.2 Distribution of neutral facial configurations (i.e., all AUs having zero contraction) 
among participants whose facial configurations were coded in Study 2.

Figure 2.3 Frequency of the AU activation levels for each AU in the DISFA dataset.
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Remarkably, the dataset contained only 476 distinct facial configurations. Despite the 
specific nature of the dataset, the most frequent facial configuration was the neutral 
one. 36,480 (75.4%) of all frames were described by the neutral facial configuration (see 
Figure 2.4 and Table 2.4). A total of 400 (84.2%) of the 476 distinct facial configurations 
were displayed by one subject only. These ‘idiosyncratic’ facial configurations described 
3,620 frames (2.19%). Of the 400 ‘idiosyncratic’ facial configurations (0.92%), 152 (.35%) 
are shown only in one frame.

Table 2.4 Most frequent facial configurations in PAIN dataset.
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4.
 B

ro
w

 L
ow

er
er

6.
 C

he
ek

 R
ai

se
r

7.
 L

id
 T

ig
ht

en
er

9.
 N

os
e 

W
rin

kl
er

10
. U

pp
er

 L
ip

 R
ai

se
r

12
. L

ip
 C

or
ne

r P
ul

le
r

15
. L

ip
 C

or
ne

r D
ep

re
ss

or

20
. L

ip
 S

tr
et

ch
er

25
. L

ip
 P

ar
t

26
. J

aw
 D

ro
p

27
. M

ou
th

 S
tr

et
ch

43
. E

ye
s 

Cl
os

ed

50
. S

pe
ec

h

75.38% 0 0 0 0 0 0 0 0 0 0 0 0 0

1.53% 0 0 0 0 0 1 0 0 0 0 0 0 0

1.16% 0 2 0 0 0 2 0 0 0 0 0 0 0

1.01% 0 0 0 0 0 0 0 0 0 2 0 0 0

0.95% 0 2 0 0 0 3 0 0 0 0 0 0 0

0.94% 0 0 0 0 0 2 0 0 0 0 0 0 0

0.85% 0 0 0 0 0 0 0 0 1 0 0 0 0

0.85% 0 0 0 0 0 3 0 0 0 0 0 0 0

0.84% 0 0 1 0 0 0 0 0 0 0 0 0 0

0.77% 0 1 0 0 0 1 0 0 0 0 0 0 0

0.71% 0 0 0 0 0 0 0 0 0 0 0 5 0

0.64% 0 0 0 0 0 0 0 0 2 0 0 0 0

0.56% 0 3 0 0 0 3 0 0 0 0 0 0 0

0.55% 0 0 1 0 0 1 0 0 0 0 0 0 0

0.43% 0 1 0 0 0 2 0 0 0 0 0 0 0

0.42% 0 0 0 0 0 0 0 0 0 1 0 0 0

0.41% 0 0 0 0 0 0 0 0 0 4 0 0 0

0.40% 0 0 2 0 0 0 0 0 0 0 0 0 0

0.34% 0 0 0 0 0 3 0 0 0 4 0 0 0

0.33% 0 4 3 0 0 4 0 0 0 0 0 0 0

Table 2.4 shows the twenty most frequent facial configurations in the dataset. It is 
notable that, in this dataset, unlike in the previous two studies, the third most frequent 
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expression already contains multiple AUs activated. Furthermore, the most frequent 
facial configurations contain activation levels from 0 to 4. Please note that AU 43 is 
encoded on a binary scale, thus the 5 for facial configuration 11 in Table 2.4 denotes 
eyes closed instead of an extreme contraction. Admittedly, in contrast to the previous 
two studies, the setting of the PAIN dataset is probably less in line with a situation in 
which an ECA is likely to be employed. Therefore, it is probably not useful to reproduce 
the exact facial configurations from this dataset onto an ECA. However, this dataset 
also confirms that neutral is the most common facial configuration, even while such an 
extreme elicitation method is used.

Figure 2.4 Distribution of neutral facial configurations (i.e., all AUs having zero contraction) 
over subjects in Study 3.

2.5 General Discussion

The goal of the present research was to determine the set of most common human facial 
configurations to guide research and development of ECAs. Creating ECAs that mimic 
human behavior with such precision that they are able to cross the uncanny valley is still 
a major challenge. On the one hand, the complexity of the face [102], which allows for 
a seemingly infinite number of distinct facial configurations according to facial action 
coding system (FACS), poses a combinatorial explosion of facial configurations that 
need to be implemented in the ECA. On the other hand, the high sensitivity of users 
towards small errors in ECAs’ facial behavior demand for an accurate implementation of 
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each facial configuration, which in turn is a time-consuming process. The combination 
of these two factors demand for a nearly infinite amount of time to implement all 
possible facial configurations with high accuracy. As a solution to this dilemma, 
developers often choose to limit ECAs’ facial behavior to a small set of prototypical facial 
configurations [126, 169]. Although such limitation simplifies the problem of generating 
the appropriate facial behavior at the right time, it also poses the question if such a 
small set of prototypical facial configurations is the most common (i.e. most optimal) set 
of configurations to implement.

Figure 2.5 Frequency of the AU activation levels for each AU in the PAIN dataset. 

In order to determine the distribution of human facial configurations, three human 
coded FACS-encoded datasets were analyzed. All three datasets were encoded by 
multiple human raters, with a high inter-rater reliability. Findings showed that the 
neutral facial configuration constitutes the largest part of the facial behavior in all three 
analyzed datasets. The main reason for such a large proportion of neutral faces may 
sprout from the fact that the face is not always involved in the display of emotional 
content [69]. Moreover, the display of some affective states may produce a neutral face 
as indicated by [142] who found that faces of bored students are indistinguishable 
from students with a neutral face. Furthermore, most of the time, emotions are not 
expressed or conveyed dramatically. In other words, emotional content is not always 
exhibited through the facial displays, in that other modalities such as vocal [75, 180] 
and bodily postures [49] are also involved in the expression of emotional content. 
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Given the large number of neutral facial configurations and the fact that humans use 
contextual information to attribute meaning to perceived facial configurations [178], 
facial configurations are perhaps ambiguous and not a strong predictor of a person’s 
internal state [12]. Age and culture probably also played a role. Younger children are 
more expressive when it comes to emotions, than older children [193], thus if we would 
have analyzed facial configurations of children, we would probably have found a lower 
percentage of neutral facial configurations than with the current datasets, which all 
contained facial behavior of adults. Moreover, cultural display rules could also have 
played a role. Some cultures are more expressive than others due to social norms related 
to that cultural group. Those so-called cultural display rules informally describe how 
members of a culture group should express their emotions [139].

In addition, the neutral facial expression may be a transitional state that occurs in-
between other visible emotional states reflected in the face. Another reason for the large 
amount of neutral facial displays could be the absence of an audience in the collected 
datasets. According to [68], people smile more when they are in a social environment 
(either real or imagined), compared to when they are alone. While the subjects of the 
Map Task dataset were recorded in a face-to-face setting, and the subjects of the PAIN 
dataset were recorded under supervision of a physiotherapist, the subjects of the DISFA 
dataset were indeed recorded in solitude. Thus, a proportion of the neutral faces in the 
DISFA dataset may be due to the lack of an audience. Following this line of reasoning, 
one might expect that these datasets that did include an audience would then contain 
less neutral faces than DISFA. However, that was not the case - on the contrary, DISFA 
contained the smallest proportion of neutral faces. A possible explanation is that of the 
three datasets, only DISFA was created with the intention to capture emotional facial 
displays from its participants. Thus, despite the fact that participants were alone, that 
intention may led to more variety in terms of facial display in the DISFA dataset than 
in the other datasets. Another factor that potentially caused a large number of neutral 
configurations, related to the AU coding scale, is the potential insufficient sensitivity of 
FACS. Due to the fact that FACS assumes only five levels of facial muscle contraction, 
facial configurations that contain facial muscle contractions below the first level are 
encoded as zero activation. Further research could inform us whether an extended 
version of FACS with a more sensitive encoding would be able to distinguish between 
neutral and non-neutral faces with more precision. Given the results of this research, 
what set of facial configurations should therefore be implemented in ECAs? Study 
1 showed that in the minor case that facial behavior is non-neutral, most often AU2 
(outer brow raiser), AU12 (lip corner puller) and AU4 (brow lowerer) are activated (see 
Table 2.1). According to [63], the outer brow raiser (AU2) is used during conversation to 
emphasize words or to highlight question marks, the lip corner puller (AU12) may be 
related to smiling and the brow lowerer (AU4) is part of the prototypical expressions 
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of sadness and anger. However, the exact social and communicative functions of these 
frequent facial configurations can only be speculated for now and requires further 
research. Furthermore, from Study 2 we can derive that non-neutral facial configurations 
often only contain light activation intensities. Study 3 showed that pain-related facial 
behavior may have more pronounced facial configurations. Although the setting used 
to conduct the PAIN dataset is probably less comparable to a setting where an ECA 
will be deployed, Study 3 shows that in situations with a pre-defined context, specific 
facial displays may be required. Nevertheless, in generic situations, the facial behavior 
of ECA should rely on the most commonly-observed facial configurations, and when 
specific signalling is needed (e.g. in an emotional environment), the precedence should 
be given to that particular signal. A recent work by Stratou et al. has reduced the AU 
space by using factors that describe combinations of correlated AU activations [191] ; 
such approach implies that ECA facial displays can be manipulated with a small number 
of factors and a change in a specific factor would signify a change in all AUs related to 
that factor. However, results of this study hint towards the contrary; the most frequent 
facial displays are neutral or have only a single activated AU instead of a combination of 
AUs. Further research is needed to compare the approach of Stratou et al. [191] with the 
current study. Moreover, in case an ECA is deployed within a specific domain or context 
or with a specific purpose, the methods described in this paper can be used to analyze 
datasets that contain relevant facial behavior for such deployment.

One of the limitations of this study, is the small number of participants the analysis are 
based on (less than 100). This is because of the low availability of hand-coded FACS 
datasets with spontaneous facial behavior. In addition, each study analyzed a different 
set of AUs (see Table 2.1). An analysis based on a combination of the three datasets 
would not provide any generalizable results, as only AU4, AU12 and AU25 were encoded 
for all three datasets. Future research may include an extension of the current analysis 
with the output of automatically analyzed datasets of spontaneous facial displays. 
This would both increase the number of subjects and the AU overlap of the datasets. 
An additional benefit of such extension is that any results that specifically surfaced 
due to the experimental settings of the used datasets will automatically fade into the 
background. Another important point is that the current study used the frame as a 
unit of analysis, which provides insight into the most common facial configurations. 
However, due to this unit of analysis, the study does not inform about the dynamical 
element of facial expressions, therefore it remains an open question what the most 
natural sequence of facial configurations would be.

In conclusion, spontaneous facial behavior seems to revolve around the neutral facial 
configuration. It is therefore recommended, at least from an ECA development point 
of view, to start focusing on the most common facial configurations instead of the 
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prototypical facial configurations. Restricting an ECA’s facial behavior to a subset of facial 
configurations seems to be a promising approach, only if this set contains a reflection 
of real human facial behavior instead of uncommon prototypical configurations. 
Implementing a subset with most common facial configurations saves time and effort 
and would likely result in more realistic facial behavior, bringing crossing the uncanny 
valley closer.
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Abstract

Human interlocutors automatically adapt verbal and non-verbal signals so that different 
behaviors become synchronized over time. Multimodal communication comes naturally 
to humans, while this is not the case for Embodied Conversational Agents (ECAs). 
Knowing which behavioral channels synchronize within and across speakers and how 
they align seems critical in the development of ECAs. Yet, there exists little data-driven 
research that provides guidelines for the synchronization of different channels within 
an interlocutor. This study focuses on intrapersonal dependencies of multimodal 
behavior by using cross-recurrence analysis on a multimodal communication dataset to 
better understand the temporal relationships between language and gestural behavior 
channels. By shedding light on the intrapersonal synchronization of communicative 
channels in humans, we provide an initial manual for modality synchronisation in ECAs.3

3 This chapter is based on: Blomsma, P. A., Vaitonyte, J., Linders, G. M., & Louwerse, M. M. (2020). Intrapersonal 
dependencies in multimodal behavior. In Proceedings of the 20th ACM International Conference on Intelligent 
Virtual Agents (IVA ’20), October 19–23, 2020, Virtual Event, Scotland Uk. ACM, New York, NY, USA, 8 pages 
.https://doi.org/10.1145/3383652.3423893
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3.1 Introduction

Natural communication is multimodal [50]. It includes tightly interwoven verbal (i.e., 
speech) and non-verbal (i.e., facial expressions, eye gaze, body posture, and gestures) 
channels. The use of multiple channels facilitates communication in allowing speakers 
to express messages more clearly. For instance, the advantage of multimodality is 
apparent in co-speech gestures, hand and arm movements that spontaneously occur 
with spoken language [144].

Gestures can help disambiguate information in the spoken modality [95]. One can 
gesture while saying “The cup was this big” or point to a certain glass on the table 
while uttering “Can you pass me that one?”. While gestures can convey complementary 
information to speech, they can also be redundant [18]. Gestures can thus vary in their 
semantic relationship to speech. Spoken and gestural modalities are not only related 
on a semantic level, they are also coupled on a temporal level [85, 212], such that the 
most meaningful part of gesture slightly precedes speech content [88]. Thus, on the 
production side, speech and gestures are related and on the comprehension side, 
listeners draw on both linguistic utterances and gestures to understand a speaker’s 
message [109].

Studying the interplay of speech and gestures is important for understanding human-
human interaction, but even more so for human-machine interaction. That is, when 
humans interact with Embodied Conversational Agents (ECAs), these agents display 
similar verbal and non-verbal competences to humans [43]. However, generating ECAs’ 
non-verbal behavior, including gestures that need to be aligned with the generated 
speech, is not trivial. In order to do so, several aspects need to be considered. For 
example, should gestures be generated on the basis of speech, or should speech and 
gestures be two independent systems? Are there any contingencies and constraints as 
to which types of gestures occur with speech? If so, how are they aligned across time?

In human interlocutors, temporal dependencies between different multimodal 
behaviors have been shown to exist in face-to-face settings [129]. In the current study, 
we ask the question whether similar dependencies between spoken and gestural 
modalities also exist within a single speaker. Thus, to what extent are verbal and non-
verbal behaviors aligned within an individual? The answer to this question is crucial 
in the development of ECAs. Without knowing which types of behavior go together, 
the generation of naturally-looking multimodal cues is comparable to looking for a 
needle in a haystack. First, this is because the proverbial haystack of possible behaviors 
is the combinatorial explosion of all the degrees of freedom of each modality. Without 
guidance, the number of possible behaviors is semi-infinite. Another difficulty involves 
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selecting behaviors that come across as natural. Without guidance, such selection is 
not feasible. Therefore, we suggest that, to limit the number of possible behaviors, it 
is worthwhile to look at the relations between the spoken and gestural modalities at 
the intrapersonal level. It is plausible that certain speech-gesture combinations are 
not possible, meaning they do not occur in human communication. Such information 
would help diminish the size of the haystack and, in turn, simplify the process of finding 
the needle. Thus, a better understanding of the mechanisms that govern multimodal 
behavior within one individual could directly inform the development of ECAs.

In this study, we use a cross-recurrence quantification analysis to investigate speech-
gesture dependencies within a speaker during face-to-face communication. The cross-
recurrence analysis is applied to a multimodal communication corpus of about 25 hours 
of dialog that is encoded for speech (thirteen categories of dialog acts) and gestures 
(five types of gestures) at 250 ms intervals. The main goal of this study is to show 
that cross-recurrence quantification analysis is useful to unravel potential underlying 
patterns in intrapersonal multimodal behavior. We focus specifically on the correlations 
between different dialog acts and gesture behaviors. These results can be used by agent 
developers to increase the multimodal realism of their dialogue systems.

3.2 Background

3.2.1 Embodied Conversational Agents
An important part of ECAs’ multimodal behavior generation is the temporal coordination 
of speech and gestures. Gesture plays a prominent role in conveying information in 
human communication [165] and humans are able to notice whether speech and 
gesture of ECAs are consistent or not [66]. In general, ECAs use rule-based approaches 
to produce gestures that are based on the speech that has been uttered [207]. However, 
it is difficult to construct precise rules about how the different modalities interact in 
communication as the relationships between different modalities on the production 
side remain unclear. Furthermore, large richly-annotated multimodal corpora are scarce 
due to the time-intensive and difficult labor required to create such corpora [113].

Also for this reason, most available corpora are specific to a domain or purpose. Hence, 
there are very few general-purpose multimodal corpora. Currently, rules lack the 
precision on a temporal level that data-driven techniques could provide, as rules are 
usually manually extracted from these multimodal corpora and implemented in ECAs 
[175]. BEAT was one of the first rule-based systems and it uses syntactic and semantic 
information to generate gestures and eye gaze behavior during speech [44]. Similar 
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systems have been designed subsequently, such as the NUMACK system [114], the 
NVBGenerator [121] and more recently, the Cerebella system [124]. With the increase 
in multimodal corpora and computing power, researchers slowly started to investigate 
extracting patterns from data automatically. The first data-driven approaches focused 
on data from individual speakers [156].

These approaches were quickly extended to include data from multiple speakers. For 
example, [218] collected a dataset consisting of TED videos with subtitles and used an 
end-to-end learning approach to learn the relation between gesture and speech. Others 
have used prosody to automatically learn mappings between prosody and gestures 
[47] or a deep learning approach that learns gesture behavior from prosody, syntax 
and semantics [48]. Some researchers have used hybrid approaches that combine a 
rule-based approach with a data-driven one [19, 179]. Focusing only on iconic gestures, 
[19] uses a Bayesian network to decide which gesture to use, after which it is further 
specified by a set of rules. Finally, in a recent approach gestures were generated in an 
adaptive way through optimizations, based on feedback from human participants [36].

3.2.2 Dialog acts and gestures
Dialog acts are used to represent the pragmatic (contextual) meaning of user utterances 
in dialog. Although the communicative intention of a speaker is not marked explicitly 
in speech, dialog acts capture such intentions [10, 184]. Dialog acts and gestures could 
potentially be coupled in ECAs to generate realistic multimodal behavior. Just like 
prosodic, syntactic and lexical units, dialog acts are linguistic units that may relate to 
gestures, however wether such relationship exists, and if so, to what extent is an open 
question.

There are many theoretical arguments for the existence of such a relationship. [143] was 
the first to note that gestures also have a pragmatic function, next to their propositional 
content. [15] introduced a new class of hand gestures, called interactive gestures, stating 
the importance of (hand) gestures for the organization of discourse and turn-taking. 
On a pragmatic level, next to a contribution to the organization of the discourse, [110] 
distinguishes three other pragmatic functions. Gestures can provide the way speech 
should be interpreted, add to the meaning of speech by being an operator and also 
elucidate the speech act being used [110].

From an empirical point of view, however, there is little evidence for such relationship. 
[101] tried to establish an empirical relationship between dialog acts and gestures by 
analyzing the distribution of gestures across dialog acts in a small multimodal corpus of 
non-task-based conversations between three participants and found that turn-keeping 
utterances and fillers contain relatively the most hand gestures, while backchannels 
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contain the least [101]. Moreover, self-touch motions occurred most with backchannels 
and laughter. This research helps to understand the different distributions of gestures 
among dialog acts, however the results do not necessarily imply a direct relationship 
between gesture and dialog acts. The data could simply reflect the fact that gestures 
help in dividing the information into small parts and thus help in conceptualizing 
information [111]. More concretely, gestures are more frequent during high cognitive 
load [112] and turn-keeping phrases intuitively have a higher cognitive load than 
backchannels. These results are interesting from a conversational agent point of view, 
since an ECA needs to know when to gesture. A similar study, looking at instances of 
hand gestures, observed relationships between dialog acts and certain interactive 
gestures [177]. So, while theoretically a relationship between gestures and dialog acts is 
not unlikely, current empirical evidence is for their relationship is unclear. In this study, 
we hope to shed more light on this relationship by investigating it with cross-recurrence 
quantification analysis.

3.2.3 Cross-recurrence Quantification Analysis
No default framework exists to scrutinize the temporal relationships between the different 
behavioral channels. We looked at frameworks utilized in studies regarding behavioral 
coordination between speakers and selected cross-recurrence quantification analysis 
(CRQA) [51]. Many other analytic frameworks disregard the temporal organization of the 
relationships and primarily aggregate data over the temporal dimensions of analysis. 
Such frameworks calculate event frequencies, rates or magnitudes [89]. Although such 
calculations have produced many insights, in the current research, we are primarily 
interested in the time-related patterns across the intention and gesture channels. If 
two events, i.e., a gesture activity and a dialog activity, often happen simultaneously, 
we could quantify this relationship by calculating the correlation between the two 
channels representing the activities. However, since the multimodal production system 
is more complex, this view would be too simplistic and a simple correlation would not 
be able to capture potentially complex relationships between the two channels. For 
example, it might be the case that events on two channels never happen at the exact 
same time, but follow or precede each other. This means that, next to the strength of the 
correlation, we also do not know the timing of this correlation.

In order to find out how two events relate temporally to each other, we need a measure 
that can quantify the relationship between them at different time shifts. One way to 
do this is to look at the co-occurrence of the events in time. For this, we use cross-
recurrence analysis. This measure looks at the correlations in time, the recurrences of 
discrete events. The main idea behind cross-recurrence analysis is to determine how 
often events of one time series are succeeded (or preceded) by events of another 
time series, which is expressed in a proportional measure, called recurrence rate. This 
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measure is obtained for a specific delay as follows: one of the time series is delayed, 
i.e., shifting all values of that time series a number of steps into the past. This means 
that the result of delaying a time series with one time step is that all values shift one 
step into history, such that the original value of the first time step is removed and the 
last element of time series is deleted. Thus, the length of the time series is one step 
shorter. In order to compare the shifted time series with a non-shifted time series, the 
last element of the non-shifted time series is also removed, such that both time series 
have the same length. The recurrence rate is obtained by creating a new time series that 
contains a 1 for each time point if both time series contain 1 for that time point as well. 
The recurrence rate is equal to the sum of the resulting vector divided by the length of 
that vector. The recurrence rate for a specific delay indicates how often an event on one 
channel co-occurs with an event on the other channel. Analyzing the recurrence rate for 
multiple delays informs us on how often events co-occur and within which time-frames 
[137].

3.3 Method

3.3.1 Dataset
A multimodal communication corpus of about 25 hours of dialog is used. 48 students 
from the University of Memphis participated (30 female, 18 male; 1 Asian, 19 African-
American, 28 Caucasian) in a Map Task scenario [129]. This scenario requires two persons: 
an instruction giver, who has a map containing a route, and instruction follower, with a 
slightly different map without a route. The aim of the task is to reproduce the route of 
the instruction giver’s map onto the instruction follower’s map. The interlocutors can 
freely interact. However, they cannot see each other’s map.

The corpus consisted of 13 encoded verbal and 10 encoded non-verbal behavior channels 
per interlocutor at 250 ms time intervals, with a total of 731,824 encoded intervals. The 
non-verbal behavior of each interval was encoded for five types of gestures according 
to the gesture coding scheme proposed by [144]: beat, deictic, iconic, metaphoric 
and symbolic gestures (emblems). Some gesture types were subdivided over multiple 
channels. The coders had a high inter-rater agreement score, quantified by Cohen’s κ 
(.82).

Beat gestures are rhythmic hand movements that do not directly convey meaning but 
help marking discourse and organizing speech. Beat gestures were encoded over two 
channels: beat single contained the isolated, standalone beat events and beat multiple 
channel contained the sequences with multiple connected beat gestures. Deictic 
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gestures referred to locations in space (i.e., pointing at something or someone). This 
space can be real (pointing at present objects and people) as encoded in the deictic 
concrete channel, or methaporical (pointing at abstract ideas, located in space), as 
encoded in the deictic abstract channel. Iconic gestures conveyed information about 
actions and object attributes by bearing partial resemblance to them, e.g., gestures 
depicting the path of the movement or the shape of the object. The behavior was 
encoded for iconic gestures, related to landmarks (iconic landmark) and those related 
to route information (iconic route). Metaphoric gestures were similar to iconic ones, in 
that they are also pictorial, but instead of bearing a resemblance to concrete entities, 
metaphoric gestures depict abstract ideas. Metaphoric gestures were captured in three 
different channels: metaphoric level action, gestures related to actions; metaphoric 
meta-action, metaphoric gestures related to meta-actions and metaphoric metaphor, 
metaphoric gestures that do not belong to the action and meta-action categories. 
Symbolic gestures (also called emblems) were conventionalized gestures (e.g., "thumbs 
up") and were least dependent on the speech content, as they do not require speech 
to be disambiguated. All symbolic gestures were encoded in one channel: symbolic. 
The communicative intention was encoded by thirteen different dialog act types that 
are typically used for Map Task scenarios [38]. The types included dialog acts that 
communicate new information (instruct, explain, check and align), responses to previous 
dialog (reply-yes, reply-no, reply-what, acknowledgement, clarification), dialog acts related 
to preparations in the experiment (ready) and an unknown category for unclassifiable 
dialog acts. Dialog acts were encoded at utterance level, thus each conversational turn 
could potentially consist of a sequence of dialog acts. The coders had a good inter-rater 
agreement score, quantified by Cohen’s κ (.67).

The 23 behavior channels were encoded as binary time series. If a behavior channel 
contained an event at a certain interval (e.g., the person was making an iconic gesture 
related to the route), the value at that time point was encoded as 1. If no event was 
measured at that interval (e.g., person was not making an iconic gesture), the value was 
encoded as 0. The dataset was also used in [129] and [30].

3.3.2 Analysis
The dataset was loaded into the statistical computing software R as a matrix, such 
that each row represented a specific interval and each column, a specific behavior 
channel. Hence, the matrix comprised 731,824 rows and 23 columns. Subsequently, the 
recurrence rate was calculated for every possible combination of behavior channels. 
Thus, 23 behavior channels times 22 behavior channels resulted in 506 recurrence rate 
calculations. Each recurrence rate calculation involved calculating the recurrence rate 
per experiment (session) for every delay between 0 and 240 intervals (as each interval 
is 250 ms, this range corresponds with 0 and 60 seconds). The final result for each of the 
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506 recurrence rate calculations was the mean of the recurrence rates for each interval 
over all sessions for that specific combination. The final results were then plotted as 
a recurrence plot. As an example, the recurrence plots for deictic concrete with beat 
multiple and deictic concrete with beat single are shown in Figure 3.1. For the calculation 
of the recurrence rates, we used a custom-made script 4.

This script produced exactly the same results as the widely-used CRQA analysis package 
for R [51]. The only difference with the CRQA analysis package is that, due to some minor 
optimizations in the custom made script, it allowed us to use longer time series as input 
and to shorten the calculation times significantly. Finally, because the recurrence rate 
is a proportional value that is difficult to interpret on its own, we also calculated the 
random (chance level) recurrence rate for each combination to facilitate a contrast and 
to determine the significance of the results at a later stage. Unlike other works that have 
facilitated such contrast by randomized baseline patterns [129], which can be wobbly 
and difficult to interpret by the human eye, this work uses the random recurrence rate, 
which produces straight baselines that make interpretation more accessible for human 
raters. The random recurrence rate (RRR) was calculated by dividing the number of 
events of the second behavior channel by the length (number of intervals) of the first 
behavior channel, as in Equation (3.1), where:

• T1s is the number of events of the first behavior channel.
• T1l is the length of the first behavior channel.
• T2s is the number of events of the behavior channel.
• T2l is the length of the second behavior channel.

3.3.3 Results selection
To minimize the risk of both Type 1 error, i.e., classifying the recurrence plot as having 
the effect where there is none, and Type 2 error, i.e., selecting a wrong time window, 
such that the plot contains a real effect within a different time range, the results were 
selected in three stages, both automatically and manually.

Each stage analyzed only the results selected in the previous stage. The first selection 
automatically discarded recurrence plots without any significant difference between 
the recurrence rate and the random recurrence rate. To calculate if such significant 
difference exists for a combination, the delay with the largest difference between the 

4 Code publicly available via: https://github.com/pblomsma/CRQA-turbo

T1s T2s 
 RRR =  (3.1) 

T2l T1l 
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recurrence rate and the random recurrence rate was taken as input for a significance 
analysis. The significance for this delay was calculated with a mixed-regression analysis 
with actual recurrence rate for that delay against the random cross-recurrence rate 
(see Equation 3.1), with role, session and dialog as fixed factors. The second selection 
automatically discarded recurrence plots where 20% or more of the time delays had a 
zero cross-recurrence rate, as this indicates data sparsity. The final selection was done by 
four raters, on an individual basis. For each recurrence plot, each rater judged whether 
the recurrence plots contained an effect or not. Plots that were not unanimously 
classified as having an effect were discussed in a group meeting. Plots for which at least 
three raters agreed upon a certain classification were then reclassified, while the others 
were identified as conflicted and removed from the analysis. In sum, all selected results 
had a significant peak or valley, contained less than 20% zero cross-recurrence rates 
and the cross-recurrence plot of those results were classified by at least three raters as 
having an effect.

3.4 Results and discussion

Cross-recurrence rates were analyzed for 506 combinations (23 times 22 behavior 
channels). Of the 506 combinations, 133 have been found significant by automatic 
analysis (described in Section 3.3.3), i.e., the largest distance between the random 
recurrence rate and the actual recurrence rate was significant for those 133 combinations. 
Four human raters classified 130 of those results unanimously as having an effect. An 
example of a recurrence plot with a significant effect is shown in Figure 3.1. In this figure, 
the temporal relationship between deictic gestures and beat gestures is examined from 
the perspective that beat gesture(s) happen at the same time or after the deictic gesture 
has started. Both types of gesture show the largest effect at time point 0, which means 
that both gestures most often occur simultaneously. It is also possible that beat gestures 
most often occur before deictic gestures, but that cannot be derived from Figure 3.1 as 
it only shows one side of the recurrence plot.

The results of the remaining 130 combinations were then further analyzed. For every 
recurrence plot, we identified the delay that corresponded with largest difference 
between random recurrence rate and actual recurrence rate between 0 and 1250ms. This 
time window was chosen to maximize the possibility that two behaviors are somehow 
related to each other. If the largest difference resulted from the actual recurrence rate 
being below the random recurrence rate, then such relation was classified as a mutual 
exclusive relation ("Mutex"), as this indicates that an event on the first behavior channel 
is not followed by an event on the second behavior channel. In other words, those 
events do not go together for that specific delay. On the other hand, recurrence plots 
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where the largest difference resulted from the actual recurrence rate being higher than 
the random recurrence rate, were classified as "synchronized", as an event of the first 
behavior channel was followed above average by an event on the second behavior 
channel for that specific delay. These results are summarized in Figure 3.2. Due to the 
low number of participants, we deviated from good statistical practice by not splitting 
our dataset in two sets (i.e., one for the selection of effects, and one for the significance 
calculation), but used the same data for both the selection and the selective analysis. 
A potential consequence of this circular dependency is that the reported results could 
show inflated correlations[117]. The next paragraphs discuss the notable aspects of 
Figure 3.2, grouped by details regarding the gesture and dialog act modality, and the 
relations between both modalities.

3.4.1 Within gesture modality
One would have expected that (1) a person could only produce one gesture at a time and 
(2) that gesture events in general would not occur often. Thus, one would not expect to 
find any temporal synchronizations between gestures, and expect only mutual exclusive 
relations. However, because of the second conjecture it is likely that the number of events 
would not result in any significant relations, and we would therefore find only non-
significant mutual exclusive relations between the gestures (resulting in grey squares 
Figure 3.2). Indeed, the results do not show any mutually exclusive relationship within 
the gesture modality. This could sprout from a data sparsity problem: i.e., not enough 
gesture events were available in the data to produce significant cross-recurrence valleys 
around time point zero. However, this non-exclusivity could also be explained by the 
fact that the boundaries between different gesture types are less clearly delineated than 
they are for the spoken modality. While it is possible to encode and classify gestures, 
they are not discrete and categorical the way words are [134]. Except for emblems that 
are conventional gestures, gestures are not “frozen” and can take on many forms. In 
consequence, being spontaneously produced, gestures are representative of thought 
processes or mental representations of an event [40], suggesting that gestures are not 
stored in the mental lexicon and happen on the fly.

However, against what one would expect, deictic and beat gestures seem to synchronize 
with a peak at 0 ms. Thus, speakers often start a deictic and beat gesture (both the 
beats single and beats multiple version) at the same time. Beat gestures are often found 
superimposed over other types of gestures [42], which could explain this finding. It 
could also be an encoding artifact. The starting phase of a beat gesture and a deictic 
gesture are quite similar, this similarity could have elicited uncertainty on the part of the 
encoders. Indeed, an inspection of the data reveals that out of the total 1562 intervals 
that were encoded as beat single, 987 (63.4%) were also encoded as deictic gestures. 705 
(61.8%) of the 1141 intervals, that were encoded as beat multiple, were also encoded as 
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deictic gestures. Thus, further research is needed to investigate if gestures in general 
do not happen together (with the exception of the aforementioned superimposed beat 
gestures).

3.4.2 Within dialog act modality
Regarding the relations among different dialog acts, one would expect to only find 
significant mutual exclusive relations between dialog acts with a peak delay at 0 ms. 
First of all, a speaker can only express one dialog act at a time, which implies that no 
dialog act combination can be synchronized and thus dialog acts should be mutually 
exclusive. Secondly, every utterance in the in the corpus (that contained about 25 hours 
of dialog) was encoded with a specific dialog act, the corpus should have enough dialog 
act data points to reap significant results. Finally, as a speaker most probably does not 
pause between dialog acts, one would expect to see 0 ms peaks.

Indeed, there is no synchronization between any of the dialog act combinations. 
However, contrary to the expectations, not all combinations have significant mutually 
exclusive relations either. Furthermore, not all significant mutually exclusive relations 
have a peak delay at 0 ms, Why is the peak of all the significant mutually exclusive 
relations not at the 0 ms delay? There are several possible explanations. First, small 
interruptions by the interlocutor with e.g., a backchannel or a short acknowledgement 
could cause the speaker to stop speaking for a moment to subsequently continue with 
a different dialog act. Secondly, it could be an artifact of the data, since the start of a 
new dialog act, after a previous one ends is often within 250 ms [190]. The reason that 
some combinations have non-significant results may, in hindsight, sprout from a data 
sparsity problem. Not all dialog acts have a high frequency in the data. As a result, some 
combinations of dialog acts do not occur often enough to reap significant results.

3.4.3 Between modalities
As indicated in the background section, several researchers have given theoretical 
arguments as to why a relationship between gestures and pragmatic functions 
(which are represented by dialog acts) should exist. However, empirically, little of 
this relationship has been verified yet. Figure 3.2 shows multiple significant mutually 
exclusive and synchronized relations. Most synchronized relations show that dialog acts 
lead gestures. In other words, a gesture starts after a dialog act has started. For example, 
the deictic abstractness concrete gesture starts after an instruct or explain dialog acts has 
started (among others). This is contrary to what has been argued in the literature [128].

However, the beat single gesture often starts before a yes-no or what query. Most mutually 
exclusive relations are led by the gesture, or in case of the acknowledge dialog act and 
the beat single gesture, are at the same time (0 ms). Deictic gestures do not go together 
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with the dialog acts ready, acknowledge, and reply-yes and reply-no. Interestingly, 
those dialog acts are also often short and, according to literature, do not involve high 
cognitive effort [112]. However, further research is needed to claim with more certainty 
to what extent deictic gestures and cognitive effort are related. Why are acknowledge 
and beat single gestures mutually exclusive? Some studies show that beat gestures are 
used by the speaker to emphasize certain cues [59]. Thus, the likely explanation for 
why acknowledge and beats are mutually exclusive is that the former is mainly used in 
listening while the latter has a role in speaking – for emphasis and discourse structuring 
[145]. Thus, it seems logical that neither go together, since one is mainly used while 
speaking and the other while listening.

3.4.4 Precision of event generation
The results have shown the existence of several temporal dependencies between 
combinations of dialog acts and gestures. How can those dependencies, both mutual 
exclusive and synchronized, be translated to exact multimodal behavior generation 
rules for ECAs? Figure 3.2 can be used to draw up a first set of rules about which dialog 
acts and gestures do or do not go together. However, if we specifically want to know 
within which time interval both events should take place, then Figure 3.2 does not 
provide enough detail. Figure 3.2, only providing the peak delay of the recurrence, is 
not informative regarding the delay at which the recurrence starts and ends. Knowledge 
about the exact start and end delays can be translated into specific rules, that take 
into account how tightly or loosely, the two channels are coupled and thus the time 
frame during which two events should be generated together. Therefore, we report 
those start and end delays (which can be interpreted as a measure for spread) for 
every significant combination in Table 3.1. The spread is specified by the start and end 
intervals of the cross-recurrence effect. The start interval indicates the interval at which 
the cross-recurrence rate starts to rise above the random recurrence rate, and the end 
interval indicates the latest interval before the cross-recurrence rate crosses the random 
recurrence rate again. In case a combination signifies a mutually exclusive relation, it is 
exactly the opposite: the start interval indicates the first interval below the baseline and 
the end interval indicates the latest interval before the cross-recurrence rate intersects 
with the baseline again. For example, beat single gesture events have been found above 
baseline 5.50 seconds before an explain dialog act starts, explain dialog act events have 
been found 11 seconds before a beat single gesture starts.
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Table 3.1 Spread indications

Channel A Channel B Start End Peak

Beat multiple Deictic -21.00 21.75 0.00 +++

Iconic landmark -8.50 11.00 -0.25 +++

Explain -3.25 12.50 0.25 +++

Beat single Beat multiple* -0.50 0.00 0.00 - - -

Deictic concrete -50.00 60.00 0.00 +++

Iconic landmark -32.00 13.25 -0.25 +++

Instruct -37.75 8.00 0.25 +++

Explain -5.50 11.00 0.50 +++

Acknowledge -2.00 3.25 0.00 - - -

Query-YN -1.50 27.00 0.00 +++

Query-W* -2.75 0.00 -0.50 +++

Clarify* 0.00 9.00 2.25 +++

Deictic concrete Ready* -2.25 0.00 -0.75 - - -

Instruct -37.50 60.00 0.50 +++

Explain -1.00 1.75 0.00 +++

Check* -18.50 0.00 0.00 +++

Acknowledge -19.00 2.75 0.00 - - -

Query-YN -2.00 2.50 0.25 +++

Reply-Y -6.50 6.00 -0.25 - - -

Reply-N* -4.00 0.00 -1.00 - - -

Query-W* -1.75 0.00 0.00 +++

Check* 0.00 13.00 0.50 +++

Align* 0.00 11.25 1.00 +++

Query-W* 0.00 2.00 0.50 +++

Reply-W* 0.00 9.75 0.50 +++

Iconic landmark Reply-W -0.75 4.25 1.25 +

Reply-Y* 0.00 24.50 1.75 - - -

Iconic route Iconic landmark* -11.25 0.00 0.00 - - -

Acknowledge* -4.25 0.00 0.00 - -

Note. Pluses and minuses mark positive and negative regression coefficients.

Positive coefficients correspond with peaks, negative coefficients with valleys

(mutex). The number of symbols indicates p-level: +++ <0.001, ++<0.01, + <0.05. Combinations 
marked with a * had only direction that was taken into consideration for this table, as the other 
direction was filtered put by the selection process.
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3.5 Conclusion

In the current study, we investigated the temporal dependencies between verbal and 
nonverbal behaviors. We specifically looked at which dialog acts and gestures do (or do 
not) occur in the same time frame.

The results provide multiple insights. First of all, significant effects for relationships 
within the gesture modality exist, such as deictic and beat gestures, and iconic and 
beat gestures being synchronized while relationships within dialog acts are mutually 
exclusive. Secondly, significant effects between dialog acts and gestures exist. These 
results function partly as a proof for the theoretical conjectures that the pragmatic 
function of speech is linked to the accompanying gestures [110], but also show that 
agent developers should not ignore those dependencies as they can help build more 
accurate multimodal behavior generation systems.

Interestingly, and contrary to the existing literature [128], we found that some dialog 
acts start before the gesture starts (e.g., people start with their explanation first, and 
then start to use deictic gestures). Furthermore, we found some instances of dialog 
acts and gestures that do not go together. Especially deictic gestures do not go with 
specific dialog acts (ready, acknowledge, reply-no, reply-y), which probably relates to 
the low information density of a typical instance of one of those dialog acts. In other 
words, deictic gestures are probably more appropriate with dialog acts that are more 
information-rich.

However, more research is needed to further analyze this relation. Acknowledgments 
and beat gestures do not go together either. We encourage ECA developers to compare 
their behavior generation rules with the measurements as presented in Figure 3.2 and 
Table 3.1 in order to get ECAs behavior generation closer to human behavior. Please 
note that this work solely reports the patterns found in the human speaker. What the 
perceptual effects are of the found patterns, and especially the effects of breaking such 
patterns, is an open question for future research. Finally, we hope that not only this 
article provides insights into the relationships between intentions and gestures, but that 
it also shows the agent community the possibilities of using cross-recurrence analysis 
to translate human behavioral data into patterns to be used for agent dialog systems.
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Figure 3.1 Recurrence plots for the behavior channel beat multiple and deictic concrete, and 
beat single and deictic concrete. 

The graph can be interpreted as follows: the actual recurrence rate for e.g., the delay 50 equals 
0.00045 in the upper graph. This signifies that in 0.045% of the total analyzed time an event oc-
curred at the behavior channel beat multiple, 50 intervals (of 250 ms) after an event occurred at the 
deictic concrete behavior channel. As the recurrence rate does not take into account the number of 
total events of both behavior channels, the rate is difficult to interpret on its own, therefore the ran-
dom recurrence rate (see Equation 3.1) is also plotted to contrast the recurrence rate and facilitate 
its interpretation.
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Figure 3.2 Overview of combinations of channels which had their most significant peak or 
valley within 0 ms and 1250 ms. 

Combinations that had their most significant peak or valley outside of this timeframe, or had no 
significant difference at all, were left out of this overview.
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Abstract

In spoken conversations, speakers and their addressees constantly seek and provide 
different forms of audiovisual feedback, also known as backchannels, which includes 
nodding, vocalizations, and facial expressions. It has previously been shown that 
addressees backchannel at specific points during an interaction, namely after a speaker 
provided a cue to elicit feedback from the addressee. However, addressees may differ 
in frequency and type of the feedback that they provide, and likewise speakers may 
vary the type of cues they generate to signal the backchannel opportunity points. 
Research on the extent to which backchanneling is idiosyncratic is scant. In this article, 
we quantify and analyze the variability in feedback behavior of fourteen addressees 
who all interacted with the same speaker stimulus. We conducted this research by 
means of a previously-developed experimental paradigm that generates spontaneous 
interactions in a controlled manner. Our results show (1) that backchanneling behavior 
varies between listeners (some addressees are more active than others), and (2) 
backchanneling behavior varies between backchannel opportunity points (some 
points trigger more responses than others). We discuss the relevance of these results for 
models of human-human and human-machine interaction.5

5 This paper has been submitted, but not yet published
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4.1 Introduction

A spoken conversation can be operationalised as a highly interactive form of cooperative 
activity between at least two individuals. In that sense, it is more than an exact data 
transfer process, whereby a sender simply transmits information to a receiver, who then 
decodes the incoming message. The latter characterization of a spoken interaction does 
not do justice to the observation that an addressee is often more than a passive listener 
and is, in fact, co-responsible for a successful exchange of information [50]. Indeed, 
communication via speech can sometimes be a fuzzy endeavour, e.g. because of a noisy 
channel or the fact that a speaker may not correctly estimate a listener’s prior knowledge 
about a specific state of affairs. As a result, it is typically the case that speakers and 
addressees seek and provide feedback on the smoothness of the interaction, to check 
whether information has successfully arrived at the other end of the communication 
chain. Accordingly, there is a growing interest in current models of spoken interaction 
regarding the systematicity of various types of feedback behavior.

In this paper, we are specifically interested in the brief responses, called backchannels 
[217] that addressees return during an interaction. Such backchannels, which can be 
verbal and non-verbal, serve as cues to show to a speaker that an addressee is engaged 
and listening. Backchannels thus convey attention and interest to the speaker and they 
can also regulate turn-taking [84]. While verbal backchannels include vocalizations 
(laugh, sigh, etc.), paraverbals (‘mm-hmm’, ‘uh-huh’, etc.), and short utterances (‘really’, 
‘yeah’, ‘okay’), non-verbal backchannels consist of facial expressions, nodding, eye gaze, 
and gestures. It has been shown that there is a marked difference between signals that 
serve as “go-on” cues i.e., to make clear that the addressee has correctly processed the 
incoming message and signals that highlight a possible communication problem so 
that a speaker-sender may have to repair a potential error [115, 187, 80].

In the literature, backchannels are distinguished from turn-taking cues. The intention of 
a speaker, when backchanneling, is to signal that the current speaker is still in charge of 
the turn, while the intention of a turn-taking cue is to interrupt the speaker and to take 
the speaking turn. Thus, backchannels can be viewed as a form of cooperative overlap, 
or from a turn-taking perspective, as a turn-yielding cue [21].

4.1.1 Backchannel-inviting Cues
It has been shown that the timing of backchannels is crucial to guarantee a smooth 
interaction [81, 170]. For instance, [81] demonstrated that a wrongly-timed head 
nod from a listener can disrupt a speaker, which suggests that addressees typically 
are efficient at producing backchannels at the right points in an interaction. Indeed, 
research shows that backchannels occur at specific points in a conversation, e.g., after 
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the speaker gives a so-called backchannel-inviting cue [84], also called backchannel-
preceding cues [123]. The specific behaviors that the speaker produces to transmit 
backchannel-inviting cues to elicit backchannel behavior from an addressee occur in 
different forms, including the usage of specific prosodic patterns. [83] demonstrated 
that speakers use rising and falling intonations to elicit feedback, [45], [210] showed 
that listeners often provide a backchannel after speakers have lowered their pitch for 
at least 110 ms, [45] showed that pauses in the speaker’s speech, and also certain parts 
of speech are predictive of backchannels. [17] revealed that mutual gaze often occurs 
prior to a backchannel being produced. Speakers may not be aware of sending out 
backchannel-inviting cues, but listeners and observers are capable of picking up on 
those signals. [16] showed that listeners are even able to provide backchannels at the 
right moment when not attending to the content of the speech.

4.1.2 Backchannel Opportunity Points
Although speakers provide backchannel-inviting cues, it is up to the addressee to 
pick up on these cues and identify relevant moments in a conversation to produce 
backchannels. Those moments in a conversation, where it’s appropriate for an addressee 
to provide some kind of listener feedback, are referred to as backchannel opportunity 
points (BOPs) [81]. BOPs, which are also known as jump-in points [149] and response 
opportunities [55], are points in the interaction where an addressee could or would 
want to provide feedback in reaction to the speaker [54].Prior studies show that not all 
BOPs are used by addressees to provide a backchannel [108, 170]. The potential reason 
why not every BOP is seized is that people’s listening behavior is idiosyncratic. However, 
research to which listening behavior is idiosyncratic is scant.

4.1.3 Current Work
The goal of this study is to shed light on the variation that exists in backchannel 
behaviors across addressees and within an individual addressee. Specifically, we ask 
(i) what types of behaviors are utilized by addressees to give feedback during BOPs?; 
(ii) how does feedback behavior differ across different addressees?; (iii) to what extent 
differs the behavior of addressees for the same BOP? 

The fact that we expect there to be variability between and within addressees in their 
feedback behavior is in line with previous findings that human beings do not have a 
fixed communication style. Speakers have been shown to adapt their way of speaking 
depending on the situational context, such as the type of addressee or the specific 
environment. Typically, speakers talk differently to children or adults, and switch to 
a different style when they notice that their partner experiences some problems of 
understanding (e.g., because that person is not a native speaker) [32]. Along the same 
lines, there may be differences across addressees, e.g., depending on personality traits 
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or the mere fact that some addressees have more developed communicative skills 
[213]. It could be expected that addressees may vary in how they produce backchannel 
behaviors, with some spots in the interaction eliciting stronger or more backchannels 
than others (e.g., because such a cue is felt to be more needed). Also, some addressees 
may be more extravert or engaged so that one could expect differences across 
addressees as well. Insight into the variability of audiovisual backchannel behavior is not 
only informative to understand how human-human communication proceeds, but it is 
also relevant for practical applications, such as models of human-computer interaction, 
specifically, social robots and embodied conversational agents

(ECAs) [43], also known as Socially Interactive Agents (SIAs) [133]. In a similar manner to 
human-human interaction, it could be useful for ECAs to vary in the extent to which they 
backchannel, e.g., depending on the type of user, context and application. It it also likely 
that inducing variability may render the interaction style of an ECA more natural and less 
monotonous, similarly to the efforts to synthesize variability in speech and language 
generation systems [73]. However, modelling natural backchannel behavior for artificial 
entities is a non-trivial task for at least two reasons. One of the difficulties lies in detecting 
and appropriately responding to backchannel-inviting cues. Another difficulty is that due to 
backchannel behavior being idiosyncratic, it is not easy to define what a typical backchannel 
behavior should consist of for an ECA. To investigate variation in backchannel behaviors 
and to answer the research questions above, we conducted a computational study based 
on the data collected in a human experiment that used the so-called o-cam paradigm 
[79]. The o-cam paradigm was set up to allow comparisons between multiple addressees 
who are exposed to identical conversational data from the same speaker stimulus. The 
computational study consisted of two analyses. Analysis I examines the speaker stimulus, 
specifically the identification of BOPs, the categorization of those BOPs and the prosodic 
properties of the backchannel-inviting cues preceding the BOPs. Analysis II investigates the 
addressee behavior during the BOPs. We compared the behavior of the addressees across 
multiple channels (i.e., facial expressions, head movement and vocalizations) to examine 
the degree of variability between and within addressees.

4.2 Dataset

This study employed the materials of a database previously recorded during an 
experiment conducted by [34]. The database consisted of (1) one video recording of 
the stimulus, henceforth the ‘speaker’, and (2) the video recordings of 14 participants 
who were filmed during the experiment, henceforth ‘addressees’. Each video was 8.42 
minutes long and contained 6.25 minutes of conversation, the remaining time was used 
for game-related tasks such as preparing and answering questions (see explanation 
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below). The number of participants is comparable to similar backchannel studies, 
including [118] and [171].

The recorded experiment was based on the o-cam paradigm [79], an experimental 
design that combines the advantages of online paradigms (i.e., highly controllable 
environment, easy to run) with the advantages of offline settings (i.e., high ecological 
validity). The core concept of the o-cam paradigm is that a participant thinks that s/
he is having a computer-mediated conversation with another participant (i.e., an 
interaction via a video conferencing setting), while, in reality, the other participant is a 
confederate whose video is pre-recorded. Certain manipulations are used in the setup 
to make a participant think it is a real life conversation [79]. The o-cam paradigm has 
been previously utilized to, for example, study the relationship between gender and 
leadership capabilities [98], and investigate the influence of smiling behavior [152].

Figure 4.1 Visual impression of the o-cam experiment. 

First the participant is prepared (A-C), after that 11 rounds are played: In each round the participant 
is shown 4 figures (D), followed by a description of 1 of those figures (E) after which participant indi-
cates which figure is described (F).

The experiment reported in [34] was aimed to elicit feedback-behavior from the 
participants. Each addressee played a Tangram-game with the speaker (who was a pre-
recorded confederate) via computer mediated connection. During the experiment, the 
addressee was presented with 4 Tangram figures for 5 seconds, followed by a description 
of one of those Tangrams provided by the speaker. The participant’s task was to choose 
the figure from the 4 Tangram figures based on the description by the speaker. See 
Figure 4.1 for a visual illustration of the experiment. The experiment consisted of 11 
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rounds in which each time a different quadruple of Tangram figures would be used. The 
participants were told that the experiment was related to abstract thinking and that 
they were not allowed to ask questions since asking questions would make the game 
too simple. The confederate (the speaker) was not informed about the goal of the study 
in order to keep the experiment as ecologically valid as possible. After the experiment, 
participants were asked if they suspected that instead of a live interaction they were 
presented with a pre-recorded video of another person.

The data of five participants were discarded because they answered positively, whereas 
one participant asked a question during the experiment and thus their data was also 
discarded.

4.3 Analysis I: Speaker Behavior

The first analysis regards only the speaker behavior to identify the backchannel 
opportunity points (‘BOPs’) and to analyze the audiovisual behavior of the speaker 
during the backchannel-inviting cues preceding the BOPs. The identified BOPs are 
subsequently used in Analysis II to investigate the addressee feedback behavior. An 
obvious approach to identify the BOPs would be to annotate the backchannel behavior 
for each of the addressee videos separately. However, such an approach comes with at 
least two disadvantages. As addressees do not necessarily utilize all BOPs to provide 
feedback, analyzing the addressees would thus not necessarily result in the identification 
of all BOPs. Furthermore, using the same data for selection and selective analysis would 
result in a circular analysis also known as ‘double dipping’ [117]. Therefore, we identified 
the BOPs based on the speaker stimulus.

4.3.1 Methods

BOP identification
We used parasocial consensus sampling [90, 100], which takes the advantage of the 
fact that humans, especially as a third-party observer, can aptly point out BOPs in a 
conversation [55]. The approach consisted of two steps: identification of possible BOPs 
by a jury of multiple judges, followed by the aggregation of the output of the jury to 
determine genuine BOPs. Genuine BOPs are those BOPs that are identified by at least a 
certain percentage of judges.

For the identification of BOPs, we used a human jury that consisted of 10 judges. Each 
judge watched the speaker video and identified each moment that s/he thought was 
appropriate to backchannel. Each judge was instructed in the same way. First, they 
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were explained what backchanneling behavior is, namely, the listening signals one 
gives during a conversation that includes head nods and sounds like ‘uh-uh’, ‘hmm’, and 
‘hm hm’ and combinations of nods and sounds. Next, they were asked to watch the 
speaker video and to make a sound (e.g., ‘yes’) when s/he thought it was appropriate to 
backchannel, either verbally, non-verbally or both. The audio of the judge was recorded.

Figure 4.2 Illustration of a part of the speaker stimulus, with at each point in time the number 
of judges that indicated the presence of a BOP. 

If three judges or more indicated a BOP at a certain point, then this point is considered as a genuine 
BOP.

The aggregation of all the recordings of judges allowed us to determine for each data 
point in the stimulus, the percentage of judges that thought that a specific moment was 
a BOP. BOPs that were agreed upon by a minimum percentage of judges were classified 
as a genuine BOP and selected for a further analysis. The minimum percentage is based 
on the expected numbers of backchannels in the recording. [170] states that one could 
expect from 6 to 12 backchannels per minute. Since our recording was 6.25 minutes, we 
therefore expected between 38 and 77 backchannels.

All the recordings of judges were preprocessed with Audacity [9]: We used a Noise Gate 
filter (250 ms attack and -12.50 dB grate threshold) to remove background noise and a 
20 dB audio amplification to ensure that a judge was audible. Each recording was then 
converted to a binary timeseries with a resolution of 25 frames per second (FPS), in such 
a way that frames that contained a sound with an amplitude above 0.1 were converted 
to 1, and otherwise, to 0. Although [100] used a resolution of 10 FPS, we decided to use 
25 FPS as this matched with the FPS of both our video recording and the FaceReader 
encodings (as described in the subsequent section).
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Because judges had to vocally indicate visual backchannels, which start on average 202 
ms before a vocal backchannel [215], the onset of each indication was set to 202 ms 
before the actual onset in order to correct for a potential delay. Each onset of a judge’s 
indication was converted to a potential BOP of the length of 1000 ms in line with [100]. 
Finally, a timeseries was created with a resolution of 25 FPS, where each frame (i.e., 
sample) contained the number of judges that indicated a BOP for that frame.

BOP types: Continuer and End-of-turn
To gain further insight into whether specific BOPs or BOP types affect average addressee 
behavior, we subdivided the BOPs into two categories. Although each BOP functions as 
a moment for the addressee to acknowledge certain information, we conjecture that 
the urge to acknowledge is the strongest at the end of each game-round. After all, no 
further information will follow the last BOP of a game-round, and thus the addressee 
should have enough information to answer the question at that point. And if not, the 
addressee should indicate that at that last BOP. Therefore, we estimate that the most 
expressive addressee behaviors will be observable at the last BOP of a round. Hence, 
we have created the following categories: (1) all BOPs that are the last of a round, we 
called this category end-of-turn (EOT), and (2) all other BOPs that are placed during a 
round, we called this category Continuer. Given this categorisation, the EOT category 
contained 11 cues and the Continuer category contained 42 cues.

Backchannel-inviting cues
To verify that indeed the (visual) prosody is different for backchannel-inviting cues 
compared to the prosody used during remaining part of the conversation, we analysed 
the pitch properties, facial behavior and head movement of the speaker’s backchannel-
inviting cues that preceded the identified BOPs. The cues were isolated by selecting 
the last 1000 ms of the speaker stimulus sound before the start of each BOP. Although 
there is no consensus on the length of such samples in literature, e.g. [189] analysed 
the last 200ms of the voiced region for pitch, while [123] reports longer sample lengths 
including 1000ms.

We choose 1000ms to be on the safe side of finding a voiced part in the sample. The 
pitch properties were extracted with Praat [31]. Of each sample the F0 values (i.e. the 
fundamental pitch values), were extracted with a precision of 100 frames per second. 
Trailing and leading frames that did not contain pitch information were discarded. For 
each sample the average, minimum, maximum, F0-range (which is the maximum minus 
the minimum), average and form were obtained. The form was calculated by subtracting 
the average pitch of the second half of the sample from the average pitch of the first half 
of the sample, such that a negative number for form means an increasing pitch and a 
positive number means a decreasing pitch.
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The facial behavior and head movements were analyzed based on the output of 
FaceReader 8 software [159]. The stimulus video was encoded with Action Units as 
based on the Facial Action Coding System [64]. Every frame of the videos was encoded 
with the following Action Units: 1, 2, 4, 5, 6, 7, 9, 10, 12, 14, 15, 17, 18, 20, 23, 24, 25, 26, 
27, 45 as well as X, Y and Z coordinates were extracted for head orientation. Each AU 
can be scored for intensity on an ordinal scale from 0 (i.e., absence of an AU) to 5 (i.e., 
maximum intensity). For some frames in the dataset, FaceReader was unable to detect a 
face, and thus also unable to encode head position and/or AU activations.

Head nods were quantified for all backchannel-inviting cues following [161]. 
Specifically, for head nods we extracted amplitude and frequency. Amplitude equals 
the maximum tilt angle, i.e. the difference between the minimum and maximum X 
rotation angle. Frequency is the sum of upward and downward peaks per second of 
the X rotation angle. To prevent that small noise-related changes in elevation direction 
would influence the frequency, we ignored upward and downward peaks that differed 
a maximum of 1 degree. In order to verify if the backchannel-inviting cues differed 
from non-backchannel-inviting cues, each backchannel-inviting cue was paired with 
a randomly selected voice sample from the speaker stimulus. Paired T-tests were 
conducted between the obtained pitch properties, head movements and the average 
AU activation of the backchannel-inviting cues and the non-backchannel-inviting cues. 
The Bonferroni correction was applied for the multiple pairwise comparisons.

Subsequently, the analyzed properties of the backchannel-inviting cues of the EOT 
category were compared with the Continuer category. The two categories were 
compared with the Welch’s T test for significance, and also corrected with Bonferroni.

4.3.2 Results

BOP identification
The number of identified backchannels per response level is depicted in Figure 4.2. 
Genuine (i.e. definite) BOPs were based on a consensus-level of 30% (3 coders) such 
that 53 BOPs were taken into account. The average duration of the identified BOPs was 
934 ms (SD = 403).

Backchannel-inviting cues
The backchannel-inviting cues had a higher maximum pitch and larger F0-range, 
compared to the random selected samples. There were no significant differences for 
average pitch, minimum and form. The highest pitch observed in backchannel-inviting 
cues was on average 350.36 Hz (SD = 106.94 Hz), while the highest pitch in the random 
samples had a lower average of 201.30 Hz (SD = 70.88 Hz). The F0-range for backchannel-
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inviting cues was on average 156.07 Hz (SD = 111.84 Hz) , while the random samples had 
a lower average F0-range of 102.34 Hz (SD = 71.77 Hz). See Table 4.1 for all the results. 
The speaker’s head movements and facial behavior did not differ significantly between 
cues and non-cues, and also not between EOT and Continuer related inviting-cues (see 
Table 4.3 and 4.4).

Table 4.1 Pitch properties of backchannel-inviting cues, compared to non-cues.

Cue (1) Non-Cue (2) Diff (1)-(2) df Cohen’s d

Average 246.95 (37.23) 250.72 (40.63) -3.77 48 0.10

Min 194.29 (43.44) 303.64 (54.23) -109.35 48 0.14

Max 350.36 (106.94) 201.30 (70.88) 149.06* 48 0.51

F0-range 156.07 (111.84) 102.34 (71.77) 53.73* 48 0.57

Form 16.10 (52.87) 16.66 (49.74) -32.76 48 0.45

Statistics are based on paired t test analysis. All values are in Hertz. The Diff score is the result of 
subtracting the mean Cue value of the mean random value.

*p<.05, ** p<.01, *** p<.001

The backchannel-inviting cues that preceded BOPs from the EOT category had a 
significant lower average pitch, as compared to the cues that preceded the Continuer 
category. The form was also markedly different, EOTs have a downward going pitch on 
average, while the other cues had a upward going pitch on average. There were no 
significant differences for minimum, maximum and F0-range. See for an overview of the 
results, Table 4.2.

Table 4.2 Pitch properties of backchannel-inviting cues that precede EOTs vs cues that pre-
cede Continuers

EOT (1) Continuer (2) Diff (1)-(2) df Cohen’s d

Average 218.68 (13.05) 253.68 (38.02) -35.00*** 43.30 1.00

Min 159.37 (46.51) 202.61 (38.79) -43.24 12.16 1.07

Max 318.66 (117.47) 357.91 (104.37) -39.25 12.60 0.37

F0-range 159.28 (129.43) 155.30 (108.99) 3.98 12.22 0.04

Form 23.25 (21.97) -25.47 (53.88) 48.72*** 36.72 0.98

Statistics are based on Welch’s t test analysis. All values are in Hertz.

*p<.05, ** p<.01, *** p<.001
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Table 4.3 Averages of different channels (and standard deviations) over backchannel-inviting 
cues and non-backchannel-inviting cues.

Cue (1) Non-Cue (2) Diff df Cohen’s d

Head Movement

Frequency 4.80(2.41) 4.65(3.37) 0.15 49 0.05

Amplitude 11.39 (7.43) 9.99 (7.37) 1.41 49 0.19

Facial Gestures

Inner Brow Raiser (AU1) 0.33 (0.49) 0.32 (0.48) 0.02 49 0.04

Outer Brow Raiser (AU2) 0.23 (0.52) 0.09 (0.29) 0.14 49 0.34

Brow Lowerer (AU4) 0.53 (0.84) 0.38 (0.65) 0.15 49 0.19

Upper Lid Raiser (AU5) 0.05 (0.24) 0.02 (0.14) 0.03 49 0.16

Cheek Raiser (AU6) 0.64 (0.73) 0.40 (0.56) 0.24 49 0.36

Lid Tightener (AU7) 0.00 (0.03) 0.06 (0.22) -0.05 49 0.34

Nose Wrinkler (AU9) 0.00 (0.00) 0.00 (0.00) 0.00 49 0.00

Upper Lip Raiser (AU10) 0.00 (0.00) 0.00 (0.00) 0.00 49 0.00

Lip Corner Puller (AU12) 0.06 (0.23) 0.03 (0.14) 0.03 49 0.16

Dimpler (AU14) 0.66 (0.91) 1.05 (1.20) -0.39 49 0.39

Lip Corner Depressor (AU15) 0.00 (0.00) 0.00 (0.00) 0.00 49 0.00

Chin Raiser (AU17) 0.07 (0.27) 0.05 (0.21) 0.01 49 0.06

Lip Puckerer (AU18) 0.02 (0.12) 0.04 (0.16) -0.01 49 0.08

Lip stretcher (AU20) 0.00 (0.00) 0.01 (0.06) -0.01 49 0.20

Lip Tightener (AU23) 0.00 (0.00) 0.00 (0.02) -0.00 49 0.20

Lip Pressor (AU24) 0.00 (0.00) 0.00 (0.00) 0.00 49 0.00

Lips part (AU25) 0.00 (0.03) 0.01 (0.06) -0.01 49 0.17

Jaw Drop (AU26) 2.43 (0.89) 2.53 (0.87) -0.10 49 0.12

Mouth Stretch (AU27) 0.09 (0.27) 0.17 (0.45) -0.07 49 0.20

Eyes Closed (AU43) 0.00 (0.00) 0.00 (0.00) 0.00 49 0.00

Statistics are based on paired t test analysis. The Diff score is the result of substracting the mean BOP 
value of the mean non-BOP value. * p <.05, ** p<.01, *** p<.001
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Table 4.4 Averages of different speaker channels (and standard deviations) of backchannelin-
viting cues that precede EOTs vs cues that precede Continuers

EOT (1) Continuer (2) Diff df Cohen’s d

Head Movement

Frequency 5.27 (2.72) 4.68 (2.34) 0.60 14.30 0.25

Amplitude 13.70 (8.33) 10.76 (7.15) 2.94 14.30 0.40

Facial Gestures

Inner Brow Raiser (AU1) 0,50 (0,58) 0,29 (0,47) 0,21 4,20 0,44

Outer Brow Raiser (AU2) 0,44 (0,65) 0,17 (0,47) 0,26 12,94 0,52

Brow Lowerer (AU4) 0,96 (1,22) 0,41 (0,68) 0,54 11,73 0,67

Upper Lid Raiser (AU5) 0,00 (0,00) 0,06 (0,27) -0,06 39,00 0,27

Cheek Raiser (AU6) 0,96 (0,90) 0,55 (0,67) 0,41 13,17 0,56

Lid Tightener (AU7) 0,00 (0,00) 0,01 (0,04) -0,01 39,00 0,18

Nose Wrinkler (AU9) 0,00 (0,00) 0,00 (0,00) 0,00 0,00 0,00

Upper Lip Raiser (AU10) 0,00 (0,00) 0,00 (0,00) 0,00 0,00 0,00

Lip Corner Puller (AU12) 0,00 (0,00) 0,07 (0,25) -0,07 39,00 0,31

Dimpler (AU14) 0,98 (1,12) 0,58 (0,84) 0,40 13,28 0,45

Lip Corner Depressor (AU15) 0,00 (0,00) 0,00 (0,00) 0,00 0,00 0,00

Chin Raiser (AU17) 0,02 (0,07) 0,08 (0,30) -0,06 48,72 0,21

Lip Puckerer (AU18) 0,02 (0,07) 0,03 (0,13) 0,00 30,90 0,03

Lip stretcher (AU20) 0,00 (0,00) 0,00 (0,00) 0,00 0,00 0,00

Lip Tightener (AU23) 0,00 (0,00) 0,00 (0,00) 0,00 0,00 0,00

Lip Pressor (AU24) 0,00 (0,00) 0,00 (0,00) 0,00 0,00 0,00

Lips part (AU25) 0,00 (0,00) 0,00 (0,03) 0,00 39,00 0,18

Jaw Drop (AU26) 2,53 (0,82) 2,40 (0,92) 0,13 17,60 0,15

Mouth Stretch (AU27) 0,25 (0,44) 0,06 (0,18) 0,19 10,97 0,75

Eyes Closed (AU43) 0,00 (0,00) 0,00 (0,00) 0,00 0,00 0,00

Statistics are based on paired t test analysis. The Diff score is the result of substracting the mean BOP 
value of the mean non-BOP value.

p <.05, ** p<.01, *** p<.001

4.4 Analysis II: Addressee Behavior

In the following subsection, we first compare audiovisual feedback behavior at BOP and 
non-BOP spots in the spoken messages. Then, we focus on BOPs only to see to what 
extent we can observe variability in audiovisual feedback behavior within and between 
addressees.
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4.4.1 Methods

Semi-automated measures of audiovisual behavior
The videos from the addressees were all encoded for facial expressions, head movements, 
and vocal backchannels as follows. The head movements and facial behavior were 
analyzed analogue to how the backchannel-inviting cues were analyzed (see Section 
4.3.1). The vocal backchannels of the addressee videos were manually encoded by 1 
coder with ELAN 6.0 encoding software [214]. The coder indicated the moments that an 
addressee made a sound and its duration. The vocal backchannels were quantified for 
all identified BOPs as follows; if an addressee made a sound during a BOP, the BOP was 
represented by 1 for the addressee, or else by 0.

Comparisons of audiovisual behavior in BOPs vs non-BOPs
To understand whether the behavior of addressees differed between the BOPs and 
the rest of the conversation, we paired each BOP with a random non-BOP of the same 
length. A non-BOP is a moment in the conversation for which none of the judges 
thought it was a BOP. We compared the behavior of all addressees for a specific BOP 
with the behavior exhibited at the same non-BOP. Paired t-tests were carried out over all 
encoded channels. Pairs that contained frames that FaceReader was unable to encode 
were discarded. To determine how backchannel behavior differs across addressees, we 
calculated the average behavior per addressee, and reported the average behavior 
across all addressees. The Bonferroni correction was applied for the multiple pairwise 
comparisons.

BOP types: Continuer and End-of-turn
The differences of behavior betweeen Coninuer BOPs and EOT BOPs were quantified 
with the Welch’s t-test, corrected with the Bonferoni method.

4.4.2 Results
Overall, the behaviors during BOPs and non-BOPs differed markedly, except that we did 
not find any differences regarding minute facial expressions related to the action units 
(see Table 4.5, and Figures 4.3, 4.4 and 4.5). Even though the standard deviations for 
amplitude and frequency were high, there was a significant difference between the head 
movement of an addressee during a BOP and a non-BOP. On average, the frequency of 
head movement during a BOP was 3.43 upward/downward peaks per second, being 
0.68 higher than the frequency in a non-BOP. The average amplitude was 5.95 degrees, 
which was 1.87 higher compared to a non-BOP. Across all BOP instances, 28% of the 
time, vocalizations were produced, while during non-BOPs this occurred only 3% of the 
time. The behavior of the facial muscles was generally the same during BOPs and non-
BOPs (see Table 4.5 for an overview) and contained no significant differences.
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Figure 4.3 Head movement frequency during BOPs and outside of BOPs

Variation of backchannel behaviors across addressees
There was a substantial variation regarding different behaviors across addressees. Head 
movement differed among the addressees. Although the mean frequency of head 
movement was 3.46 upward/downward peaks per second across addressees, the most 
nodding addressee showed 5.47 upward/downward peaks per second on average, 
compared to 1.49 upward/downward peaks per second on average for the least 
nodding addressee. Amplitude was on average 5.97 degrees, with the addressee on the 
lowest end having an amplitude of 3.34 degrees on average, while the addressee on 
the highest end showed on average 9.65 degrees amplitude. Addressees vocalized 28% 
of the BOPs on average, while the least vocal addressee only vocalized 4% of the BOPs 
and the most vocal addressee vocalized 59% of all BOPs. AU activations also varied, for 
example, the AU with the highest variation (SD = 1.50) was Eyes Closed (AU43), followed 
by Lip Corner Puller (AU 12) (SD = 1.00). See table see Table 4.6 for a complete overview 
and Figure 4.6 for a visual inspection.



76   |   Chapter 4

Table 4.5 Averages of different channels (and standard deviations) over BOPs and non-BOPs

BOP (1) non-BOP (2) Diff df Cohen’s d

Head Movement:

Frequency 3.43 (3.09) 2.75 (2.76) 0.68*** 705 0.23

Amplitude 5.95 (5.69) 4.07 (3.74) 1.87*** 709 0.39

Vocalisations 0.28 (0.48) 0.03 (0.18) 0.25*** 741 0.72

Facial Gestures:

Inner Brow Raiser (AU1) 0.01 (0.12) 0.01 (0.08) 0.00 712 0.01

Outer Brow Raiser (AU2) 0.00 (0.03) 0.00 (0.02) 0.00 712 0.02

Brow Lowerer (AU4) 0.07 (0.26) 0.08 (0.27) 0.00 712 0.01

Upper Lid Raiser (AU5) 0.00 (0.04) 0.01 (0.06) 0.00 712 0.04

Cheek Raiser (AU6) 0.32 (0.65) 0.39 (0.75) -0.07 712 0.09

Lid Tightener (AU7) 0.11 (0.28) 0.19 (0.28) 0.01 712 0.05

Nose Wrinkler (AU9) 0.00 (0.00) 0.00 (0.00) 0.00 712 0

Upper Lip Raiser (AU10) 0.11 (0.30) 0.08 (0.27) 0.03 712 0.09

Lip Corner Puller (AU12) 0.78 (1.00) 0.87 (1.10) -0.09 712 0.08

Dimpler (AU14) 0.01 (0.08) 0.02 (0.14) -0.01 712 0.11

Lip Corner Depressor (AU15) 0.01 (0.10) 0.01 (0.09) 0.01 712 0.05

Chin Raiser (AU17) 0.23 (0.55) 0.23 (0.57) 0.00 712 0.00

Lip Puckerer (AU18) 0.00 (0.04) 0.01 (0.09) 0.01 712 0.09

Lip stretcher (AU20) 0.00 (0.02) 0.01 (0.08) -0.01 712 0.09

Lip Tightener (AU23) 0.02 (0.16) 0.02 (0.12) 0.01 712 0.04

Lip Pressor (AU24) 0.17 (0.39) 0.15 (0.38) 0.02 712 0.05

Lips part (AU25) 0.31 (0.85) 0.30 (0.88) 0.01 712 0.01

Jaw Drop (AU26) 0.05 (0.30) 0.02 (0.17) 0.02 712 0.09

Mouth Stretch (AU27) 0.00 (0.02) 0.00 (0.04) 0.00 712 0.03

Eyes Closed (AU43) 1.39 (1.50) 1.35 (1.49) 0.04 712 0.03

Statistics are based on paired t test analysis. The Diff score is the result of substracting the mean BOP 
value of the mean non-BOP value. * p <.05, ** p<.01, *** p<.001

Variation within addressees
The average addressee behavior also differed across the different BOPs. Figure 4.7 shows 
the distribution of behavior per BOP. On average, the frequency was 3.42 upward/
downward peaks per second across BOPs. However, BOP 35 elicited an average frequency 
of 1.10 upward/downward peaks per second, while at BOP 51, addressees show an 
average of 6.25 upward/downward peaks per second. The amplitude also varied, the 
mean amplitude across all BOPs was 5.96, while the minimal average amplitude was 
0.65 degrees at BOP 51, and the maximum average amplitude was 14.1 degrees at BOP 
11. Some BOPs (e.g., 12, 16, 17) were never vocalized, while other BOPs were vocalized 
by 93% of the addressees (e.g., BOP 26). The effect of addressee-dependent behavior 
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can also be visually inspected in Figure 4.8. For a full overview of the numbers, see Table 
4.7.

Figure 4.4 Head movement amplitude during BOPs and outside of BOPs

Figure 4.5 Number of times addressees vocalized BOPs versus the number of vocalized non-
BOPs
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Table 4.6 Differences in feedback behavior between addressees

Mean SD Min Max

Head Movement:

Frequency 3.45 1.21 1.49 5.45

Amplitude 5.97 2.10 3.34 9.65

Vocalisations 0.28 0.14 0.04 0.59

Facial Gestures:

Inner Brow Raiser (AU1) 0.01 0.02 0 0.06

Outer Brow Raiser (AU2) 0.00 0.00 0 0.01

Brow Lowerer (AU4) 0.07 0.21 0 0.79

Upper Lid Raiser (AU5) 0.00 0.01 0 0.04

Cheek Raiser (AU6) 0.32 0.33 0 1.14

Lid Tightener (AU7) 0.11 0.14 0 0.44

Nose Wrinkler (AU9) 0 0 0 0

Upper Lip Raiser (AU10) 0.11 0.20 0 0.65

Lip Corner Puller (AU12) 0.77 0.51 0.19 1.82

Dimpler (AU14) 0.01 0.02 0 0.05

Lip Corner Depressor (AU15) 0.01 0.02 0 0.07

Chin Raiser (AU17) 0.25 0.41 0 1.29

Lip Puckerer (AU18) 0.00 0.01 0 0.05

Lip stretcher (AU20) 0.00 0.00 0 0.01

Lip Tightener (AU23) 0.02 0.06 0 0.20

Lip Pressor (AU24) 0.17 0.25 0 0.91

Lips part (AU25) 0.32 0.47 0.02 1.57

Jaw Drop (AU26) 0.05 0.15 0 0.58

Mouth Stretch (AU27) 0.00 0.00 0 0.01

Eyes Closed (AU43) 1.39 1.40 0 4.06

Figure 4.6 Values for head movement, vocalisations and Dimpler (AU 10) values for each ad-
dressee.  Frequency, Amplitude and AU values are scaled, such that 1 represents the maxi-
mum value and 0 the lowest value.
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Figure 4.7 Values for head movement, vocalisations and Dimpler (AU 10) values for each BOP. 
Frequency, Amplitude and AU values are scaled, such that 1 represents the maximum value 
and 0 the lowest value.

Table 4.7 Differences in feedback behavior within addressees
Mean SD Min Max

Head Movement:

Frequency 3.42 1.01 1.10 6.25

Amplitude 5.96 3.11 0.65 14.1

Vocalisations 0.28 0.28 0 0.929

Facial Gestures:

Inner Brow Raiser (AU1) 0.01 0.03 0 0.19

Outer Brow Raiser (AU2) 0.00 0.01 0 0.05

Brow Lowerer (AU4) 0.07 0.04 0 0.15

Upper Lid Raiser (AU5) 0.00 0.01 0 0.07

Cheek Raiser (AU6) 0.32 0.30 0 1.56

Lid Tightener (AU7) 0.11 0.08 0 0.27

Nose Wrinkler (AU9) 0 0 0 0

Upper Lip Raiser (AU10) 0.11 0.07 0 0.31

Lip Corner Puller (AU12) 0.79 0.53 0.14 2.51

Dimpler (AU14) 0.01 0.02 0 0.11

Lip Corner Depressor (AU15) 0.01 0.02 0 0.07

Chin Raiser (AU17) 0.24 0.22 0.05 0.45

Lip Puckerer (AU18) 0.00 0.01 0 0.05

Lip stretcher (AU20) 0.00 0.01 0 0.03

Lip Tightener (AU23) 0.02 0.05 0 0.17

Lip Pressor (AU24) 0.17 0.08 0.04 0.42

Lips part (AU25) 0.32 0.34 0.00 2.03

Jaw Drop (AU26) 0.04 0.07 0 0.25

Mouth Stretch (AU27) 0.00 0.00 0 0.03

Eyes Closed (AU43) 1.38 0.185 0.85 1.73
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Variation within addressees for different BOP types
The BOPs that are marked as EOT BOP elicit higher nodding amplitudes from the 
addressees than the Continuer BOPs; furthermore, EOTs let to more vocalisations, on 
average 60% of the time while during the remaining BOPs, addressees vocalized 20% 
of the time, on average. Nodding frequency is not different between the two types of 
BOPs. See for all the results Table 4.8.

Table 4.8 Averages of head movement and vocalisations over continuer BOPs and End of Turns

EOT (1) BOP (2) Diff df Cohen’s d

Frequency 3.19 (2.58) 3.06 (3.03) 0.13 509.23 0.04

Amplitude 6.78 (5.99) 4.56 (4.48) 2.22*** 372.78 0.46

Vocalisations 0.60 (0.49) 0.20 (0.40) 0.40*** 208.74 0.97

Statistics are based on Welch’s t test analysis. The Diff score is the result of substracting the mean 
BOP value of the mean End Of Turn (EOT) value.

* p <.05, ** p<.01, *** p<.001

4.5 Discussion

In this study, we were interested in a computational examination of the variability in 
backchannel behaviors among addressees. We looked at whether and how behavior 
varied during backchannel opportunity points (BOPs) across and within addressees, 
specifically focusing on head movement, vocalizations, and facial expressions produced 
by fourteen addressees in a Tangram-game. The game setup used the o-cam paradigm, 
meaning that each addressee was exposed to exactly the same behaviors produced 
by the speaker. We showed that in general head movement and vocalization behavior 
significantly differed between BOPs and non-BOPs.

Nodding behavior and vocalizations were most pronounced during BOPs, compared to 
non-BOP instances. However, it is notable that the amount of facial activity was generally 
the same during BOPs and non-BOPs, characterized by most AUs being activated at low-
intensity levels. These low-intensity levels may be a consequence of the experimental 
setup, namely that addressees did not exhibit higher AU intensities because of the 
nature of interaction that the experimental setup (o-cam paradigm) allowed. However, 
it is more likely that low facial activity during both BOPs and non-BOPs was the result 
of a general pattern, which is that during natural interactions people rarely produce 
exaggerated facial expressions [30].

Further dissection of behavior during BOPs showed that there was a person-specific 
variability. This between-addressee variability indicates that not every addressee 
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demonstrated the same feedback behavior during BOPs. Some individuals were more 
discrete with their feedback behavior than others. In addition, the analysis indicated 
BOP-related differences. Some BOPs manifested more expressive behavior on average 
than others. Thus, in general, the timing of feedback behavior seems to adhere to 
certain rules. All addressees showed consistently different behavior during the BOPs 
than outside of the BOPs. However, the exact behavior seemed to be influenced by 
person-specific and BOP-related variables.

4.5.1 Variability between addressees
There was also variability between addressees. While all addressees nodded and 
vocalized during BOPs more than outside of them, there was variability in the extent to 
which addressees produced nodding and vocalizations during BOPs.

Interestingly, the most vocal addressee produced a sound during more than half of the 
BOPs, a substantial difference from the least vocal addressee, who vocalized 14 times 
less. Likewise, the addressee with the smallest amplitude (addressee 14, with an average 
amplitude of 2.9) differed substantially from the person with the most pronounced 
amplitude (addressee 22 with an average amplitude of 7.4).

Given that all addressees were subject to the same experimental paradigm, the most 
likely source of this variation in backchannel behavior was the addressee’s tendencies 
related to personality characteristics. In other words, while most BOPs were amenable 
to nods and vocalizations, addressees differed in the manifestation of their listening 
behaviors. Prior research shows that backchannel behavior can be linked, to some 
extent, to the personality characteristics of a person as measured through the Big-Five 
traits [205]. In addition, different backchannel behaviors can systematically engender 
certain personality perceptions as perceived by the third party observers [56]. In the 
study by [56], backchannel behaviors were applied on a virtual agent, showing that, 
for example, higher frequency of backchannels was related to the perception of 
extroversion. Other factors could include gender, research showed that women tend to 
backchannel with a higher frequency than men, and that backchanneling occurs more 
frequently in Japanese than in American English [60, 136, 70].

In a future experiment, it would be valuable to take into account the characteristics of 
the addressee, such as personality, gender, and cultural background to identify factors 
that may play a role in producing the person-specific variability of feedback behavior. In 
addition, it would be beneficial to extend the length of the experiment to harvest more 
behavioral data from each addressee, which would allow to also shed light on potential 
intrapersonal variability, unrelated to BOP or person-specific characteristics. Although it 
is currently unknown what the time limits are of an o-cam experiment, we hypothesize 
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that a longer experiment would result in more addressees that would find out that the 
speaker is pre-recorded.

Figure 4.8 Behavior for each addressee per BOP. Only the first 15 BOPs due to visualisation 
restrictions.

4.5.2 Variability between BOPs
While nodding and vocalizations characterize spontaneous listening behavior, the 
high standard deviations regarding nodding behavior (i.e., amplitude and upward/
downward peaks per second) suggest that different BOPs lead to the differing amount 
of nodding. This can be seen in Figure 4.8.

Regarding the current data, differing nodding patterns based on a BOP may partially be 
related to the fact that some Tangrams may have been more difficult to understand than 
others. That is, if an addressee quickly understood the description of a figure, they may 
have nodded more energetically compared to those instances where they doubted and 
hence nodded in a less pronounced fashion. This insight is related to the early research on 
non-verbal behavior conducted by [26], who showed that based on both the frequency 
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of nods and their duration the involvement of an addressee was communicated 
differently. In particular, a single nod of 400 ms in duration acted as a strong affirmation 
of the speaker’s behavior while a nod of 800 ms or longer signaled disbelief and even 
elicited interruptions on the part of the speaker. Overall, this demonstrates that the 
nature of backchannels varies as the interaction unfolds. Our research also put forward 
a difference between behavior showed during the last BOPs of a round, and BOPs that 
were located during a round. The last BOP of a round may have acted as a feedback 
point, but also as marking the end of a round. The addressee was signaled at this BOP 
that the moment of choosing the correct Tangram was near, and therefore the function 
of the BOP was perhaps different than the other BOPs. The speaker was more ‘asking’ 
for a confirmatory signal from the addressee, than an acknowledging feedback signal. 
Indeed also the backchannel-inviting cues from the speaker were clearly different when 
signaling the last BOP of a round, compared to other BOPs. The speaker was using a 
downward inflection when signaling the last BOP of the round, compared to an upward 
inflection when signaling other BOPs, and used a lower pitch rate on average. In return, 
addressees were more expressive during the EOTs, in the sense that they vocalized more 
often and showed a higher amplitude in their nodding behavior. That backchannel-
inviting cues have a lower pitch at the end of a round, and have a downward inflection 
is in line with [74], which shows that speakers ’reserve’ the low pith to mark the end of a 
turn, while keeping using a higher pitch in other cases to prevent that the turn is taken 
over by the opponent.

Given the variability in audiovisual behavior between various BOPs, we looked at a 
few cases in more detail to gain insight into possible reasons for the differences. In 
particular, we did some speculative analyses of BOP 26, which was vocalized by 92% 
of the addressees and received relatively frequent head nods (4.36), versus BOP 16 
which was not vocalized by any of the addressees and not frequently marked by head 
nods (2.21). Comparing these two instances yields the impression that the strength of 
the feedback cue (in terms of nodding and auditory backchanneling) is related to the 
degree to which the speaker signals that the information she provided is complete. BOP 
26 occurs at the end of round 5, just after the speaker said “That’s the one you have 
to pick. So, a square chimney and a triangle from the side of the house". During this 
BOP of 1000 ms the speaker is completely silent. The speaker appears to cue that she 
provided all the information the addressee needs to pick the correct Tangram figure, 
and therefore expects a strong affirmative backchannel. BOP 16, on the contrary, occurs 
at the beginning of round 4, just at the end of short sentence from the speaker “These 
are more like birds..", where it is clear that more details from the speaker are needed to 
be able to identify the Tangram she is describing. At this stage, a strong feedback cue 
from the addressee would seems less appropriate, given that the provided information 
is still incomplete, but an addressee may acknowledge that s/he is listening to the 
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speaker and awaiting further details. Obviously, future work is needed whether these 
impressions would generalise to more conversational contexts.

4.5.3 Division of labour
Given the results described above, it is interesting to compare the audiovisual behaviour 
of the speaker with that of the addressee. Admittedly, given that we only recorded one 
speaker, our claims related to her role would have to be explored further in future work, 
but based on our analyses so far, it appears that our speaker more consistently makes 
use of auditory than visual cues to elicit feedback from her addressees. Indeed, while we 
find some prosodic differences between BOPs and non-BOPs, there are no significant 
differences in facial activity. Conversely, the addressees appear to exploit visual cues 
more regularly than vocalisations to return feedback after BOPs. In other words, given 
the broader set of audiovisual cues that function within an interaction, these results 
suggest that a speaker is more often using auditory features, and the listener is more 
often making use of silent, visual cues, except for BOPs that occur at the final edge of 
a turn where a speaker is basically signalling that she has arrived at the end of her turn 
and will this stop talking.

While this would have to be explored further in the future, these results point to a 
division of labour between auditory and visual cues in the feedback mechanism of a 
conversation, with the former being more typical for the speaker and the latter for the 
addressee. The advantage of being able to access multiple channels, is that their use 
can be distributed over conversation partners so that they can exchange information in 
parallel. For instance, while one person is talking, the other can return visual feedback, 
such as affirmative head nods or expressions of surprise or misunderstanding, that do 
not interfere with the speech produced by the other as these are produced in silence. If 
instead dialogue partners were to produce speech simultaneously, miscommunication 
might well result from the overlapping sound streams, because the speech by one 
person might mask that of the other [194].

4.5.4 Embodied Conversational Agents
Understanding variation in backchannel behaviors across addressees is important for 
applications in embodied conversational agents. If for a large portion of backchannels 
nodding and vocalizations can be produced to show that one is engaged and listening, 
future research could investigate the conditions under which these behaviors are 
necessarily produced and vice versa the conditions when there is a slim chance that 
either a nod or a vocalization will occur. Understanding this balance between variability 
and stability of backchannel behaviors across a human-human conversation can help 
make artificial agents that can give flexible feedback and that come across natural in 
human-computer conversations. Moreover, person-specific variability may be used in 
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an ECA to augment gender, personality, and cultural characteristics. In other research, 
we have shown that indeed specific backchannel behavior in an ECA can elicit specific 
personality perceptions by its audience. We copy-synthesized the feedback behavior of 
different addressees during various BOPs onto an ECA and asked participants to indicate 
the perceived personality characteristics of the ECA. Among other conclusions, we 
found that a higher nodding amplitude during a BOP is perceived as more extroverted 
than a smaller nodding amplitude.

Previous studies show that when listening behaviors are missing or are poorly timed, the 
communication is negatively affected and can go off the rails [16]. The current findings 
suggest that there is no ‘one listening behavior’, but a variety of behaviors across 
different BOPs and across different addressees. And although nods and vocalizations are 
characteristic of spontaneous interactions, the degree to which they will be produced 
varies between addressees.
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Abstract

Different applications or contexts may require different settings for a conversational AI 
system, as it is clear that e.g. a child-oriented system would need a different interaction 
style than a warning system used in emergency situations. The current article focuses 
on the extent to which a system’s usability may benefit from variation in the personality 
it displays. To this end, we investigate whether variation in personality is signaled 
by differences in specific audiovisual feedback behavior, with a specific focus on 
embodied conversational agents. This article reports about two rating experiments in 
which participants judged the personalities (i) of human beings and (ii) of embodied 
conversational agents, where we were specifically interested in the role of variability 
in audiovisual cues. Our results show that personality perceptions of both humans 
and artificial communication partners are indeed influenced by the type of feedback 
behavior used. This knowledge could inform developers of conversational AI on how to 
also include personality in their feedback behavior generation algorithms, which could 
enhance the perceived personality and in turn generate a stronger sense of presence 
for the human interlocutor 6.

6 This chapter is based on: Blomsma, P., Skantze, G., & Swerts, M. (2022). Backchannel Behavior Influences the 
Perceived Personality of Human and Artificial Communication Partners. Frontiers in Artificial Intelligence, 5.
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5.1 Introduction

5.1.1 Personality perception
Personality refers to the consistent behavioral responses of a person and is often 
expressed in terms of the Big Five theory [106]. There is a growing scientific interest 
in rendering conversational AI systems with various types of personality as this may 
help to make interactions with such systems more natural, and would allow to tune 
their interaction style to different situations or users. Our current paper will tackle this 
issue in view of the further development of so-called Embodied Conversational Agents 
(ECAs), i.e., computer interfaces that are graphically represented as a human body or 
human face, in order to allow users to interact face-to-face with computers in a way that 
resembles that of their interactions with real humans [146, 41].

Technically speaking, ECAs are nothing more than a collection of algorithms that 
together orchestrate the interaction with the interlocutor. To create the illusion that 
the interlocutor is not conversing with just some mindless algorithms, but with a 
partner who has thoughts and emotions, there have been attempts to render such 
conversational AI systems with a specific personality. This may enhance a feeling of 
social presence, and therefore increase the experience of dealing with a system that 
truly understands the intentions and feelings of the user [122, 153, 25]. Furthermore, it 
may be useful if conversational AI systems adapt their personality and conversational 
style to the specific application or intended audience. For instance, a conversational AI 
implemented for a playful environment would typically demand a different interaction 
style than one which is put to use in a crisis or emergency context [78]. Likewise, a 
conversational AI may have to adjust its behaviour depending on whether it addresses a 
child or an adult, or a person with specific communicative deficiencies [213]. Adaptation 
of its personality to the personality of the interlocutor could also increase conversational 
quality by exploiting the mechanics behind similarity-attraction, as indeed people have 
been shown that people feel more attraction towards people or systems that match 
their personality [122]. Therefore, personality adaptation has the potential to result in 
conversations that are more engaging and enjoyable [104]. A study conducted by [197] 
demonstrated that therapy sessions were more engaging when a robot’s conversational 
behavior was matched to the personality traits of the patient, as compared to a robot 
that had mismatched its conversational behavior. Additionally, personality adaptation 
could lead to a more favorable perception of the system. [7] found that matching a 
robot’s gaze behavior with participants resulted in a more positive attitude towards the 
robot, as compared to mismatched gaze behavior.



90   |   Chapter 5

While personality potentially may help facilitating social presence and conversational 
quality, it would also seem to be a requirement to create next-level conversational AI 
systems in yet another sense. One of the factors that prevents the creation of human-like 
systems whose appearance is perceived as being similar to that of real humans is related 
to the uncanny valley effect, the phenomenon that small errors in behavior generation 
of the system can evoke feelings of fright discomfort in the interlocutor. While various 
theories exist regarding the cause of this effect, some explain it by cognitive dissonance 
[216], i.e., the discomfort that arises because it is unclear to a user or observer if the 
conversational system should be perceived as human- or system-like. A conversational 
AI system that lacks a personality, and may therefore generate inconsistent behavior, 
could increase the feelings of unease on the part of the user, as he or she may feel 
uncertain on how to deal with a conversation partner who displays deviant interactive 
behaviour [220].

5.1.2 Variability in feedback behavior
The current paper focuses on variability in feedback. In particular, we look at 
backchannel behavior, which refers to the feedback dialogue partners give each other 
on the smoothness of the information exchange process [50]. While one person is 
talking, the addressee typically returns brief responses, called backchannels, which can 
be auditory (e.g., “uhuh”) or visual (e.g., head nod) in nature [62]. Backchannels serve as 
cues to signal how the information was received at the other end of the communication 
channel, where one could roughly make a distinction between “go-on” or “do-not-go-
on” signals. Although feedback behavior is person-dependent, backchannels are more 
expected at certain points in the conversation, namely during backchannel opportunity 
points (BOPs) [81], moments when its appropriate to give feedback [217]. BOPs are 
signaled by the speaker with a so-called backchannel-inviting cue [84], signals via the 
prosodic channel, such as rising and falling intonations [83], low pitch ranges [209] and 
short pauses [45]. However, addressees may vary regarding the extent to which they 
react to such speaker-initiated cues and utilize BOPs.

Behavior during those BOPs differs significantly from behavior outside of the BOPS. 
Specifically, speakers’ nodding behavior, vocalisations and the use of the upper lip raiser 
(AU 10) is more apparent during BOPs than outside of those moments. During BOPs, 
people diverge considerably in timing, frequency and type of audiovisual feedback 
behaviour. There are both differences between how people react to the same BOP 
(within-people diversity) and how the same person react to different BOPs (within-
person diversity) [27]. Also people can diverge considerably in timing, frequency and 
type of audiovisual feedback behaviour. It is intuitively clear that, likewise, different 
conversational AI systems may have to vary regarding the degree, the type and the 
frequency of backchanneling. For instance, an “emphatic” tutoring system that has to 
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assist learners to acquire a specific new skill may have to produce more supporting 
cues than a more neutral system that is consulted to give legal advice or specific route 
directions.

The current article therefore focuses on whether personality perception is influenced 
by the aforementioned variability in feedback behavior a person gives. This question 
is inspired by the outcome of our previous study, which led to the impression, though 
not explicitly tested in that earlier study, that differences in interaction style generated 
variable perceptions of the personality of the people whose feedback behaviour was 
being recorded. While some participants appeared to come over as introvert and 
somewhat uninterested, others gave the impression of being extravert and lively, 
suggesting that there may exist a relation between the type of feedback behavior and 
the perceived personality of a person.

There are reasons to believe that this variability in behavior would lead to different 
personality perceptions. Although existing research into this question is scant, there 
are some studies that point into an affirmative direction. For example, [99] analyzed the 
personalities of backchannel coders and the relation between that personality and the 
number of identified backchannel opportunity points. They found that a high number of 
identified backchannel opportunity points are related to high values for Agreeableness, 
Conscientiousness and Openness. [103] showed that extraverted people have a higher 
tendency to use multimodal backchannels (e.g. a combination of utterance and nod), 
compared to introverted people who tend to rely on unimodal backchannels and show 
as well that this difference was perceived by human interlocutors when this behavior was 
re-enacted by a digital human-like robot. [23] found that extraverted persons produce 
more backchannels than introverted persons. Albeit that feedback behavior is person-
dependent and related to personality, we still lack knowledge on the perceptual impact 
of those person-dependent behaviors (e.g. what the perceived difference is between a 
passive vs. a dynamic addressee). If indeed the perception of personality is related to the 
type of feedback behavior a person produces, then this would give developers another 
opportunity to perpetuate the personality of a conversational AI system. Moreover, if 
feedback behavior is chosen randomly, such behaviors might conflict with the desired 
perceived personality of such conversational AI system.

5.1.3 Current study
In this study, we thus would like to gain insight into the relation between perceived 
personality and feedback behavior. We will utilize participant recordings from a 
previously conducted o-cam based experiment [34, 79], where each participant was 
made to believe to have a real-life conversation with another person, but who in reality is 
a pre-recorded speaker. In our first experiment, parts of these participant recordings are 
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shown to observers who are asked to rate perceived character traits of the participant 
in the recording.

Those ratings are analyzed in relation to the listening behavior of those participants 
(i.e. the auditory and visual backchannels during the recordings), to establish whether 
perceived character traits correlate with patterns in audiovisual backchannel behavior. 
In a second experiment, the same stimuli are re-enacted by a conversational AI (i.e. on 
a virtual Furhat robot), to verify whether the assessment of the personality of these 
synthetic characters is likewise affected by their feedback behavior.

5.2 Materials

For our study we utilized the dataset that was (partly) generated in a previous study 
described in [27]. The materials consisted of video recordings of 14 participants 
(henceforth called original addressees) of an o-cam experiment and the identified 
backchannel opportunity points (BOPs) of those recordings. BOPs are moments during 
the conversation that allow for listener feedback from the original addressee [81]. 
For every BOP, the following behavior was encoded: (1) vocalisations: did an original 
addressee vocalize during the BOP or not, (2) the nodding behavior of the original 
addressee, quantified by amplitude (the maximum head movement angle in head-
pose elevation direction) and frequency (number of upward and downward peaks per 
timeframe) and (3) the average contraction of a facial muscle called the upper lip raiser, 
as defined by the Facial Action Coding System as Action Unit (AU) 10 [63]. Our previous 
study, found that those four variables (amplitude, frequency, vocalisations and AU10) 
were the more important ones for original addressees during BOPs, as compared to 
the rest of the interaction. The videos were recorded during an experiment in which 
a participant plays a game with ostensibly another participant (a confederate) via a 
video connection. However, in reality there is no live video connection and the original 
addressee plays the game with a pre-recorded video of the confederate (‘the speaker’). 
The illusion of a real connection, which typifies o-cam experiments, is facilitated 
by the use of specific techniques, see e.g. [79]. Contrary to experiments that involve 
physical presence of confederates, the o-cam paradigm allows for a tightly controlled 
environment where each participant is subjected to exactly the same speaker-stimulus, 
while having a highly ecologically valid setting. This particular o-cam experiment was 
executed by [34] and aimed at eliciting listening behavior from the original addressees. 
Each original addressee played a Tangram game with the speaker, which consisted of 
11 rounds. In each round, the original addressee was first shown 4 different abstract 
pictures (tangram figures) for 5 seconds, subsequently, the speaker gave a description 
of one of those four tangram figures, and after that the original addressee had to choose 
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which of the four shown tangram figures was described by the speaker. Each round 
contained 4 new tangram figures. See Figure 4.1 for an illustration of the Tangram game 
and experiment.

The experiment resulted in the video recordings of 14 original addressees, who each 
interacted with exactly the same speaker-stimulus. Each video was 8 minutes and 42 
seconds long, and contained 6 minutes and 15 seconds of interaction. All videos were 
analysed with Facereader [159] to annotate the videos for a number of action units and 
head position. Head movements (nods) were then derived from the head pitch over 
time and quantified in terms of amplitude (maximum distance between y coordinates 
of the head position) and frequency (number of peaks and valleys of head position 
per timeframe). Sound was annotated by 1 coder in a binary fashion, 1 for presence 
of sound, 0 for being silent. The BOPs were identified by a panel of 10 judges. Each 
judge separately indicated the points in the speaker-stimulus that s/he thought were 
a BOP. With help of the parasocial consensus sampling method [100], all judgements 
were aggregated. All BOPs that were indicated by at least 3 judges were marked as 
genuine BOPs, which resulted in 53 different BOPs. See [27] for a detailed explanation 
of the data annotation process. The following two experiments make (indirect) use of 
the materials collected in that earlier dataset. Experiment 1 explores to what extent the 
perceived personality of the recorded human participants is determined by variation in 
their feedback behaviour as compared to the personality perceived by appearance only. 
Experiment 2 tests to what extent findings from the first experiment generalizes to the 
perception of artificial avatars, whose feedback behaviour was modelled based on the 
outcome of experiment 1.

5.3 Experiment 1: perceived personality of real humans

5.3.1 Method

Participants
Eighty-two students from Tilburg University were recruited from the Tilburg University 
subject pool to participate in the first experiment in exchange for course credits. Seven 
students did not finish the experiment for unknown reasons and were discarded. The 
remaining seventy-five students did complete the experiment (11 male, 63 female 
and 1 other, Age: mean 21.31, SD = 3.17). The Research Ethics and Data Management 
Committee of the Tilburg School of Humanities and Digital Sciences approved the 
experiment under identification code REDC#2021/33. All participants provided their 
consent before they participated in the experiment.
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Stimuli
The stimuli consisted of 14 pictures, one of each original addressee, and 42 video clips 
of 8 seconds length. Pictures were included to get the baseline personality indication 
from participants (called preconception score), as personality impressions are likely to be 
based on mere appearance [155]. In order to get personality perception scores for all 
original addressees, while keeping duration of the experiment within reasonable limits, 
we choose to include the behavior of all original addressees while including only three 
specific BOPs.

The pictures were created by exporting the first neutral frame from each original 
addressee recording. Neutral here means that original addressee did not have any facial 
muscle contractions, in other words, all annotated AUs had a value of 0 for the exported 
frame. For one of the original addressees (1g) such neutral frame was not available in the 
dataset, as AU43 (’eyes closed’) was annotated as contracted for many of the frames. The 
selected picture for this original addressee was the first neutral frame, with ignorance of 
AU43. See Figure 5.1 for a representative example of such neutral picture.

Figure 5.1 Impression of a neutral picture question as part of experiment 1

The video clips were extracted as follows: for each of the 14 original addressee recordings, 
three stimulus-videos of 8 seconds length were cut out, such that each video included 
a specific BOP. The stimulus-videos were cut such that the middle frame corresponded 
to the middle frame of the BOP. This resulted in 42 stimulus videos, each containing the 
behavior of one of the 14 original addressees for one of the three specific BOPs. See 
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Figure 5.2 for an impression of a stimulus-video. The three selected BOPs were chosen 
from a pool of 53 BOPs. The decision for those three BOPs was guided by the desires that 
(1) each BOP would have a different characteristic and (2) that each original addressee 
would exhibit different behaviors among themselves during the selected BOPs. After 
manually trying out different combinations, the following BOPs were selected: 16, 47, 
and 49.

Figure 5.2 A few still images from an original addressee during BOP 49

BOP 16 takes place at the start of round 4, just after a short sentence of the speaker 
“These are more like birds.." and has a duration of 1160 ms. The speaker has not 
shared much information at this point, and it is clear that she will need to share more 
information to enable the listener to identify the correct Tangram figure. Therefore, it 
may be inappropriate for the original addressee to provide a strong (vocalized) feedback 
signal as more information is coming and simply acknowledging to the speaker that 
one is listening seems to suffice. Interestingly, none of the original addressees vocalized 
during BOP 16. BOP 47 occurs near the end of round 10, just after the speaker utters “The 
person looks to the left and the arms also point to the left." and before the speakers says 
“I think you can figure it out by now.". BOP 47 is 920 ms long. At this feedback point it 
should be clear that the speaker shared all information that is needed to determine the 
correct Tangram figure, and thus a stronger feedback signal from the original addressee 
could be appropriate to signal that all information is understood. Six original addressees 
gave vocalized feedback signal at this BOP. BOP 49 is approximately halfway round 11 
(the last round) and has a length of 960 ms. Just after the speaker explained “You must 
have the one with the very lowest passage." and before the speaker said “Thus, it’s four 
buildings, all four with a sort of passage through in the middle ...". At this point in time 
the speaker explained the main hint that’s needed for choosing the correct Tangram 
figure, however, the explanation is a bit ambiguous, hence the explanation that follows 
BOP 49. For an overview of the behavior of all original addressees during these three 
BOPs, see Figure 5.3.

Procedure
Participants took part in an online experiment using the environment of Qualtrics 
(Qualtrics, 2021). Before the start of the experiment, participants read the instructions, 
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signed the consent form and familiarized themselves with the task with one practice 
picture and one practice video. The practice stimuli were taken from the stimuli used in 
[202] and were not in any way related to the stimuli used in the rest of the experiment. 
Successively, the stimuli (pictures and videos) were presented to the participants. First, 
the 14 pictures were presented in random order, followed by the presentation of the 42 
video clips in random order as well. For each stimulus, participants were asked to rate 
the perceived personality of the original addressee in that stimulus for four dimensions 
on 6-point bipolar Likert scales: Friendliness (1:Friendly 6:Distant), Activeness (1:Active 
- 6:Passive), Extraversion (1:Extravert 6:Introvert) and Dominance (1:Dominant - 
6:Submissive). See Figure 5.1 for an example of a presented stimulus.

The experiment concluded with two general questions: the participant was asked to fill 
in their age (open field) and indicate their gender (options: Male, Female, Other, Don’t 
want to say). On average it took 42 minutes and 39 seconds to complete the experiment 
(SD = 151 minutes and 42 seconds).

Figure 5.3 Quantification of the feedback behavior of the original addressees during the BOP 
16, 47 and 49.
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Statistical analyses

Statistical analyses were conducted in R Studio (version 1.1.456; [174]). Linear mixed-
effects models were used to fit each of the four personality dimensions with the lme4 
package [14]. The participant’s response for each dimension served as the dependent 
variable. The main goal was to determine if behavior related to feedback contributed 
to the perception of personalities of original addressees or not. Therefore we analyzed 
both the perceived personality of the original addressee in the static picture (called the 
preconception score), and the contribution of the audiovisual behavior during the BOP 
(sound, head movement (frequency and amplitude) and AU10). The fixed effects that 
entered the model were preconception score (6 levels: 1 - 6), sound (2 levels: sound, 
no-sound), frequency (number of nods per frame, value between 0 and 1), amplitude 
(maximum amplitude of nod per BOP in degrees, values between 0 and 28) and AU10 
(mean contraction of AU10 during BOP, values between 0 and 5). Participants, BOPs 
and original addressees were treated as random effects, with random intercepts, in 
all models. Degrees of freedom and Satterthwaite approximation for p-values for all 
main effects were obtained from the lmerTest package [120]. For every dimension we 
fitted two models, one with preconception score to see to what extent the static picture 
effects perception, and one without preconception score to see to what extent the more 
dynamic audiovisual features can explain the perceptual results on their own. Table 
5.2 contains the descriptive statistics of the perception scores per dimension, Figure 
5.4 shows the perception scores per dimension and original addressee, and Table 5.1 
contains the estimates for all fixed effects.

5.3.2 Results

Friendliness
The average score given for the videos for the friendly-distant dimension was 3.05 (SD 
= 1.39), the videos of original addressee 4g were perceived as most friendly (mean 
= 1.91, SD = 1.02), while the videos of original addressee 11g was perceived as most 
distant (mean = 4.25, sd = 1.27). The preconception score, i.e. the score of the pictures 
of the original addressees, were rated on average with a 3.25 score (SD = 1.28). Similar 
to the results for the videos, the picture of original addressee 4g was perceived as 
most friendly (mean = 2.27, sd = 0.90), while original addressee 21g was perceived 
as most distant (mean = 4.23, SD = 1.10). The model with preconception score showed 
that preconception score had a significant effect on this dimension (b=0.220, SE=0.018, 
df=3129.000, t=11.971, p <0.001). However, also amplitude (b=-0.027, SE=0.006, 
df=871.700, t=-4.657, p <0.001), sound (b=-0.243, SE=0.070, df=2554.000, t=-3.472, p 
<0.001) and au10 (b=-0.246, SE=0.073, df=2859.000, t=-3.383, p <0.001) had a significant 
effect on the perception of friendliness. The model without preconception score showed 
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significant effects for the same variables: amplitude (b=-0.028, SE=0.006, df=816.900, 
t=-4.547, p <0.001), sound (b=-0.244, SE=0.072, df=2520.000, t=-3.412, p <0.001) and 
au10 (b=-0.246, SE=0.074, df=2857.000, t=-3.322, p <0.001). From this we can conclude 
that, although appearance as tested with the preconception score played a significant 
role, that the amplitude, sound and AU10 during a BOP influence the perception of the 
friendly-distant dimension, such that a higher amplitude, usage of sound and more 
contraction of AU 10 correlates with a higher friendliness score. See also Figure 5.5 for a 
visual representation.

Activeness
On average, participants rated the videos 3.61 (SD = 1.42) on the active-passive 
dimension. Like with the friendliness dimension, original addressee 4g was perceived 
most active (mean = 2.35, SD = 1.51), while original addressee 11g was rated as most 
passive (mean = 4.93, SD = 1.05). The mean preconception score was 3.63 (SD = 1.27), 
where the picture of original addressee 4g was rated as most active (mean 2.41, score 
= 0.94) and original addressee 26g as most passive (mean = 4.44, SD = 1.03). The model 
that included preconception score produced significant effects for preconception score 
(b=0.235, SE=0.018, df=23.350, t=12.726, p <0.001), thus appearance had a significant 
influence on the score. Next to that, amplitude (b=-0.027, SE=0.006, df=115.200, 
t=-4.874, p <0.001), frequency (b=-0.821, SE=0.273, df=1589.000, t=-3.001, p <0.001), 
sound (b=-0.311, SE=0.068, df=988.800, t=-4.542, p <0.001) had significant effects. 
When preconception score was ignored, the model also resulted in significant effects 
for amplitude (b=-0.027, SE=0.006, df=105.400, t=-4.762, p <0.001), frequency (b=-0.821, 
SE=0.280, df=1529.000, t=-2.928, p <0.001), sound (b=-0.312, SE=0.070, df=937.600, 
t=-4.448, p <0.001). So nodding behavior (amplitude and frequency) and sound both 
correlate with the perception of activeness. Frequent nodding, a higher amplitude and 
vocalisations during BOPs result in a higher activeness score.
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Table 5.2 Average scores per dimension for experiment 1 and 2
Experiment 1 Experiment 2

Preconception Video Video

Dimension: Mean SD Mean SD Mean SD

Friendly - Distant 3.25 1.28 3.05 1.39 3.61 1.45

Active - Passive 3.63 1.27 3.61 1.42 3.99 1.37

Extroversion - Introversion 3.66 1.32 3.78 1.32 3.98 1.29

Dominant - Submissive 3.59 1.25 3.89 1.20 3.87 1.31

Extroversion
The videos were rated on average 3.78 (SD = 1.32) for the extroversion-introversion 
dimension. The videos of original addressee 4g were rated as most extrovert (score = 
2.35, SD = 1.15), while the videos of original addressee 14g were rated as most introvert 
(mean = 4.85, SD = 1.03). The preconception score was 3.66 (SD = 1.32) on average, where 
original addressee 4g was perceived as most extrovert (mean = 2.84, SD = 1.21) and 11g 
as most introvert (mean = 5.11, SD = 0.90). The model extroversion-introversion score 
that included the preconception score produced significant results for preconception 
score (b=0.273, SE=0.017, df=3132.000, t=18.680, p <0.001), but also for the behavior 
related variables: amplitude (b=-0.020, SE=0.005, df=56.900, t=-3.747, p <0.001), sound 
(b=-0.264, SE=0.065, df=568.000, t=-4.087, p <0.001). The model for the extroversion-
introversion score (intercept: 4.056, SE: 0.190) without preconception score produced 
also significant effects for amplitude (b=-0.019, SE=0.005, df=48.740, t=-3.608, p <0.001) 
and sound (b=-0.266, SE=0.067, df=512.100, t=-3.961, p <0.001).

Thus amplitude and sound influence, next to the appearance of the person, the 
extroversion - introversion score. A higher amplitude, and the presence of sound 
correlate with a higher score for extroversion.

Dominance
The score for the videos was 3.89 (SD = 1.20) for the dominant-submissive dimension. 
Original addressee 21g was perceived as most dominant (mean = 3.10, SD = 1.06), as 
based on the videos. Original addressee 11g was perceived as most submissive (mean 
= 4.88, SD = 1.09). Preconception score was on average 3.59 (SD = 1.25), with original 
addressee 21g being most dominant (mean = 2.37, SD = 1.11) and original addressee 
11g most submissive (mean = 4.79, SD = 0.87). The model with preconception score 
showed significant effects for preconception score (b=0.932, SE=0.017, df=2975.000, 
t=17.188, p <0.001) and amplitude (b=-0.009, SE=0.004, df=2587.000, t=-2.272, p <0.05). 
The model without preconception score showed also significant results for amplitude 
(b=-0.008, SE=0.004, df=2988.000, t=-2.201, p <0.05). While appearance has a significant 
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correlation, amplitude also correlates with dominance: higher amplitude correlates 
with a higher perceived dominance.

5.3.3 Discussion
Our first experiment thus brought to light that the feedback behaviours significantly 
influenced the perceived personality of recorded participants, albeit that the relative 
importance of the variables we entered in our model varied as a function of the 
personality dimension we explored. Importantly, we showed that a person’s personality 
is not merely based on the first impression we get from a still image, e.g. whether an 
individual shown in a picture at first sight looks friendly or dominant, but that this 
perception is modulated by more dynamic auditory of visual cues of that person. Our 
next experiment tests whether the findings based on analyses of real humans can be 
reproduced with avatar stimuli, in which various feedback behaviours are implemented.

5.4 Experiment 2: perceived personality of avatars

5.4.1 Method

Participants
Eighty-four students from Tilburg University were recruited from the Tilburg University 
subject pool to participate in the second experiment in exchange for course credits. Ten 
students did not complete the experiment for unknown reasons. Seventy-four students 
completed the experiment (20 male, 55 female, Age: mean 21.12, SD = 2.25). None of 
those participants had participated in experiment 1. The experiment was approved 
by the Research Ethics and Data Management Committee of the Tilburg School of 
Humanities and Digital Sciences under the same identification code as experiment 1 
(REDC#2021/33). All participants gave their consent before participation.

Stimuli
The avatar experiment contained 42 videos, and contrary to the human experiment, 
did not include any still pictures. This was done because all videos in this experiment 
contained the same avatar, thus no preconception score was required. The content 
of the stimulus-videos of this experiment was exactly the same as those of the first 
experiment, except that the behavior of the original addressee in the original movie 
is now acted out by an avatar. The audio was copied from the original recordings. The 
avatar videos were created with the Furhat SDK [5], which provides a virtual simulation 
of the physical Furhat robot. First, the facial behavior of the original addressee was 
transferred onto the virtual Furhat robot. This was done by playing the original videos 
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on a computer screen while having them analyzed on an IPhone with Live Link Face 
app (version 1.1.1). Live Link Face analyzes 62 different properties of facial behavior 
(including head movement) on a 60 frames per second basis. The output of Live Link 
Face was then converted with the Furhat Gesture Capture app (version 4.3.6) and played 
out on the virtual Furhat using Furhat SDK 2.0.07. The Furhat SDK offered a collection 
of 10 different avatar-faces, so called textures. All sequences were played out on the 
default texture. Having the same face for all sequences had the advantage that texture-
specific effects did not have to be taken into account. The default texture was, in our 
opinion, the most gender-neutral option from the collection, such that it would work for 
sequences originating from both genders. In addition, compared to other textures, the 
default texture has a rather cartoonish appearance which would minimize the chance of 
a uncanny valley related experience among the participants. Furhat was recorded with 
the OBS screencapture tool (version 27.0.1)8. The 14 recordings were then synchronized 
and merged with the sound of the original video with ShotCut (version 21.01.29)9. From 
here, we used the same method as in the human experiment. We cut out three videos 
per avatar video, each containing the original addressees behavior during exactly one 
BOP.
Figure 5.6 shows a few still images from Furhat as appearing in the stimuli.

Procedure
Participants again took part in the online experiment using the online environment 
of Qualtrics (Qualtrics, 2021). Before the start of the experiment, participants read the 
instructions, signed the consent form and familiarized themselves with the task with 
two practice videos. The practice video clips of Furhat were created in the same fashion 
as the stimuli for the experiment, but using a different BOP (BOP 21). Participants were 
asked to watch the video clips and indicate how they judged the personality of the 
original addressee in the same way as described for Experiment 1. The 42 video clips 
were shown in random order. On average it took 18 minutes and 46 seconds to complete 
the experiment (SD = 19 minutes and 34 seconds).

Statistical analyses

The results of experiment 2 are analyzed in the same way as experiment 1. However, as 
experiment 2 did not include stimuli to obtain a preconception score, the results contain 
only one model.

7  https://www.furhat.io
8  https://www.obsproject.com
9  https://www.shotcut.org
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5.4.2 Results

Friendliness
On average, Furhat received a score of 3.61 (SD=1.45) for the friendly-distant score. The 
transferred behavior of original addressee 10g was perceived as most friendly (mean 
= 2.75, SD = 1.33), and 14g as most distant (mean = 4.24, SD = 1.28). The model for 
the friendly-distant score (intercept: 3.986, SE: 0.212) produced significant effects for 
amplitude (b=-0.033, SE=0.007, df=1654.000, t=-5.064, p <0.001) and au10 (b=-0.206, 
SE=0.080, df=2435.000, t=-2.578, p <0.05).

Activeness
The videos were rated, on average, with a score of 3.99 (SD = 1.37) on the active-passive 
scale. The behavior of original addressee 10g was perceived as most active (mean = 3.10, 
SD = 1.36), while that of original addressee 14g was perceived as most passive (mean 
= 4.57, SD = 1.15). The model for the active-passive score (intercept: 4.389, SE: 0.174) 
produced significant effects for amplitude (b=-0.037, SE=0.006, df=1096.000, t=-6.031, p 
<0.001) and sound (b=-0.404, SE=0.072, df=2395.000, t=-5.593, p <0.001).

Extroversion
The mean score for extroversion-introversion was 3.98 (SD = 1.29). The most extraverted 
behavior was that of original addressee 10g (mean = 3.30, SD = 1.32) and the behavior 
of original addressee 3g was perceived as most introverted (mean = 4.48, SD = 1.11). 
The model for the extroversion-introversion score (intercept: 4.315, SE: 0.136) produced 
significant effects for amplitude (b=-0.030, SE=0.006, df=530.100, t=-5.410, p <0.001) 
and sound (b=-0.495, SE=0.067, df=1355.000, t=-7.381, p <0.001).

Dominance
The mean perception for dominant-submissive was 3.87 (SD = 1.31). Original 
addressee 1g was perceived as most submissive (mean = 3.46, SD = 1.44) and that of 
original addressee 3g as most dominant (mean = 4.47, SD = 1.16). The model for the 
extroversion-introversion score (intercept: 3.990, SE: 0.124) produced significant effects 
for amplitude (b=-0.013, SE=0.006, df=290.697, t=-2.273, p <0.05), sound (b=-0.389, 
SE=0.069, df=906.322, t=-5.630, p <0.001).

5.4.3 Discussion
Our second experiment with judgments of avatars is in line with the results of our first 
experiment in which human beings were being rated, in the sense that variable feedback 
behaviors again led to differences in perceived personality of the avatars. However, we 
also noticed that the results of both experiments were slightly at variance regarding the 
significance and strength of specific auditory and visual cues. Although we have not 
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included a statistical comparison between the models in this paper, we will discuss the 
differences between the models in more detail in the general discussion section.

5.5 General discussion and conclusion

We have reported about two perception experiments, both consisting of 42 8-second 
video clips that showed a human or artificial listening original addressee. Participants 
were asked to rate the perceived personality of that original addressee in terms of 
different dimensions. The first experiment also presented participants with still images 
of the original addressees in the clips, who were likewise rated regarding the different 
personality traits. In the first experiment, the video clips contained 14 different original 
addressees during 3 different backchannel opportunity points (the moments in 
conversation that allow for feedback). In the second experiment, the same stimuli were 
shown, except that they were re-enacted by a virtual Furhat robot. The results of the 
first experiment showed that backchannel behavior influences personality perception, 
which modulated the first impressions that people obtained from the still pictures. The 
results of the second experiment show that comparable effects could be achieved when 
such behavior is re-enacted by a conversational AI system. In the following, we first 
detail more specific resemblances and differences between the outcomes of the two 
experiments, and then discuss the outcomes in a broader perspective.

An overview of the significant results from the various models can be found in Table 
5.1. While the results are quite analogous for ratings of human and artificial stimuli, we 
also observe some variability. Regarding the Friendly Distant dimension, we see that 
the model of for the human condition produced significant results for amplitude, sound 
and AU10, while the avatar model only did so for amplitude and AU10. Moreover, the 
estimate for AU10 for the human condition (-0.493) is more than double the estimate 
for the avatar condition (-0.206). For the Active - Passive dimension, the human model 
produced significant results for frequency, but the avatar model did not generate any 
significant results. For the Extroversion - Introversion dimension, both models produced 
significant effects for the variables amplitude and sound, even if sound had a higher 
estimate for the avatar condition (-0.495) than for the human condition (-0.266). And 
finally, when looking at the Dominant - Submissive dimension, we see that the human 
condition only had a significant effect for amplitude, while the avatar model also had a 
significant effect for sound as well (next to amplitude).

So while the results appear to be quite consistent over the two experiments, it may 
be worthwhile to reflect somewhat on the differences between conditions, especially 
regarding the variable effect of sound. First, it is important to note that we focused on 
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the effect of four sets of features in both human and artificial stimuli on personality 
perception, namely sound, amplitude, frequency and AU10. But while only these features 
were varying in the avatar data, the human data also contained additional variation that 
we had not investigated further (e.g., other facial expressions, hand gestures and body 
posture) that nonetheless could have affected the perception results, if only because 
they made the human data more natural. In that sense, the conditions are not entirely 
comparable, as judgments of human data may be closer to what people do in their daily 
life than judgments of artificial creatures.

Also, note that the audio variable is different from the visual features in that this one was 
identical in both conditions, whereas the visual features were modelled via the avatar 
settings, and therefore only a computational approximation of the human data. Yet, 
despite the similarity regarding the audio feature, it is interesting to observe that this 
variable does not always have similar effects in the human and avatar data on personality 
judgments. For instance, the audio data increase the perception of friendliness when 
human original addressees are judged, but not when the avatar data are scored. 
Maybe this could be due to the fact that participants, when rating this dimension of 
friendliness in avatar stimuli, are unsure about their judgments. Indeed, of the 9 avatar 
videos that contained vocalisations, the friendliness perception scores of three of those 
videos are highly variant. Maybe this is due to the fact that judges have some difficulty 
to relate the natural voice with an artificial visual appearance of the avatar, so that they 
have problems taking the audio variable into account for this variable. Other factors 
may include the effects related to the mismatch between the human voice and the 
human-looking (but rather cartoonish) avatar, as non-human systems endowed with 
real human voice may lead to expectations mismatch [148]. Moreover, it may have been 
somewhat confusing for participants to note that, although the visual appearance of 
the avatar was the same in all stimuli, the choice of voices changed.

Conversely, we observe a significant effect of the audio variable on the judgments of 
dominance with avatars, while this effect is absent in the judgments of human data. 
According to the literature, the dominance-submission is, in general, perceived through 
multiple channels: Facial expressions related to anger and aggression are perceived as 
highly dominant, while fearful expressions are related to submission [92], direct eye 
contact and upward head tilt express dominance, contrary to downward head tilt and 
averted gaze which are perceived as submissive [147]. Voice frequency is related to 
dominance as well, as men rate male voices with a lower frequency as more dominant 
[173]. In that sense, the avatar data may have represented a relatively poor approximation 
of this dimension, as many variables mentioned above were not included in the stimuli, 
so that participants may have relied to a larger extent on the audio cue, compared with 
their judgments of the human data. Also, it is important to note that voice dominance is 
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gender specific, as low voice has been shown to lead to perception of male voices only, 
whereas the Furhat character seems to look rather gender-neutral, which could have 
influenced perception as well. In a future study we could also include facial AUs related 
to expressions of fear and anger to see if those influenced the perception. How can 
the insight that personality is perceived through backchannel behavior be integrated 
into the behavior of an ECA? In case the backchannel behavior of the ECA is modeled 
based on human data, we recommend selecting the humans based on the desired 
personality of the ECA, rather than modeling the behavior based data originating 
from humans with random personalities. So e.g. if the desired personality of an ECA is 
introverted, utilize the data of people that are perceived as introverted. Additionally, 
in case of adjusting an existing backchannel generation algorithm, we would focus 
on increasing or decreasing the amplitude. As amplitude showed a significant effect 
for all four personality dimensions, we expect that magnifying the head movements 
of the avatar would lead to a more extravert, friendly, active and dominant perceived 
ECA, while reducing the head movements would lead to the opposite perception. The 
exact magnitudes to increase or decrease the amplitude is part of future research. Note 
that the non-BOPs are picked randomly. In future research, it would be interesting to 
pick less random non-BOPs, e.g. moments such as end of a sentence, or breath-based 
patterns that are recurring during the conversation, but do not co-incide with a BOP.

In conclusion, personality perception is indeed influenced by the behavior a person 
exhibits during backchannel opportunity moments. Especially the utilised amplitude for 
head nodding behavior correlates with multiple personality dimensions. These results 
suggest that it could be useful for conversational AI, and ECA developers in particular, 
to start implementing feedback behavior generation algorithms that take into account 
the reported variables (amplitude, frequency, sound and AU10) to strengthen the 
personality perception of their avatar in order to create more natural interactions and 
induce a stronger social presence with its interlocutors.
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Figure 5.4 Overview of perception scores for all original addressees in experiment 1 and 2
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Figure 5.5 Visual indication of distributions for all variables available in Avatar model

Figure 5.6 Visual impressions of the visual Furhat robot, as used during experiment 2



CHAPTER 66



General discussion and conclusion



112   |   Chapter 6

The previous chapters presented 4 different studies that were all related to the same 
question: How can insights into the way human beings interact with each other inspire 
and eventually be utilized by developers to create Embodied Conversational Agents 
(‘ECA’) that act like real humans. Each study took a different perspective to this question. 
The studies focused on different aspects of people’s communicative strategies and 
properties, with a main interest in their facial expressions, gestures and dialog acts, and 
the way people backchannel feedback. We examined how the complexity of human 
behavior could be simplified, could be transferred into the artificial intelligence of an 
ECA, and how ECAs simulating human-like behavior are perceived by observers. In this 
final chapter we will discuss the presented studies in a broader perspective, reflect on 
the theoretical implications of the findings, and give directions for future research. This 
chapter starts with a short summary of the different sub-studies.

6.1 Summary of studies

In the first study, reported in chapter 2, entitled "Spontaneous Facial Behavior Revolves 
Around Neutral Facial Displays", we investigated to what extent human behavior can be 
described by using only the most frequent behavioral patterns. Building an ECA capable 
of simulating all (theoretical) possible human behavior, including rarely occurring 
patterns, is valuable, but comes with a few drawbacks, including the time-consuming 
effort that is required to build such an ECA. We asked ourselves the question if we 
could simplify the functionalities of an ECA by only implementing the types of human 
behavior most frequently observed. This approach would not result in an ECA that is 
omnipotent, but could potentially result in an ECA that is able to behave natural in the 
most frequent situations, and can be created within a reasonable amount of time, as 
ECA developers could focus their attention and time to a limited set of patterns.

In our study we specifically looked at facial behavior. Facial behavior is traditionally 
expressed with the use of the facial action coding system ("FACS"). FACS quantifies facial 
behavior in terms of 46 different muscle(endings) that each can be contracted on a scale 
from 0 (relaxed) to 5 (fully contracted). Accordingly, 466 different facial configurations 
can be expressed within FACS, which implies an astronomically large number, equal to 
6.2e+35. To identify the most frequently occurring facial configurations we analyzed 
three different FACS-encoded datasets. In particular, we used an extreme dataset 
(people that were recorded while their painful shoulder was moved), an emotional 
dataset (people that were recorded while watching an emotion eliciting movie) and 
a social dataset (people that were playing a maptask game). For each dataset, we 
identified a number of specific facial configurations that occurred and subsequently 
counted how often each facial configuration appeared in each dataset. The results 
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showed that the most frequent facial configuration in each dataset was the neutral facial 
configuration, that is, a facial configuration where each encoded facial muscle is relaxed 
(has zero contraction). The most frequent facial configurations that did contain muscle 
contractions, included oftentimes only slight activations (1 or 2) of either the outer brow 
raiser, the lip corner puller or the brow lowerer. This work shows that a large percentage 
of the datasets can be described by only taking the most frequent facial configurations 
into account. Thus, it seems that ECA developers could in turn implement only a small 
set of facial behaviors to simulate the most frequent patterns.

Chapter 3 describes the second study called "Intrapersonal dependencies in multimodal 
behavior”, which centers on the question if behavior generation for ECAs could be 
simplified by utilizing dependencies between different behavior channels. Just like the 
face can theoretically show a semi-infinite amount of facial expressions, other channels, 
such as language, tonality, and gestures, also allow for semi-infinite expressive 
possibilities. The combination of all channels and their expressive possibilities makes 
behavior generation a challenging task. Discovering dependencies between channels 
could help limiting the number of possibilities, and therefore help in simplifying 
behavior generation. In this study we focused on two channels: the hand movements 
of the speaker (the Gesture channel) and the intentions of the speaker (the Dialog 
Acts channel). The dataset utilized in this study contained 25 hours of encoded human 
dialog, and included encodings for Gestures and Dialog Acts. Gestures were encoded 
for 5 different gestures (i.e. beat, deictic, iconic, metaphoric and symbolic gestures) over 
10 different variables. Dialog Acts were encoded for 13 different dialog acts (instruct, 
explain, check, align, reply-yes, reply-no, reply-what, acknowledgement, clarification, 
ready and unknown). For the analysis, a technique of cross recurrence quantification 
analysis (’CRQA’) was used to identify possible intrapersonal dependencies. CRQA 
involves calculating how often two channels contain activity at the same time, or 
with a delay on one of the channels. This percentage of co-occurring activity is called 
recurrence rate. As such, CRQA is able to e.g. identify how often a beat gesture starts 
500ms after an Acknowledgement dialog act started. We analyzed 506 combinations 
(23 times 22 channels) and found 130 significant results. Those results both showed a 
significant difference between a random recurrence rate and the actual recurrence rate, 
and four human raters classified them as having an effect. The results included both 
synchronized and mutual-exclusive relationships between different gestures and dialog 
acts. The results shown in this work, can aid ECA developers to build more accurate 
multimodal behavior generation systems. The last two studies concerned listening 
behavior and how such human listening behavior could be utilized by ECAs.

The study in chapter 4, called “Backchannel behavior is idiosyncratic”, reported on 
the variability found in human backchannel behavior. Although people provide 



114   |   Chapter 6

backchannels at specific moments during a conversation, how often a person utilizes 
such moment to provide feedback and in what way seems to be person-specific, 
e.g. differing between individuals who are quite expressive and others who reveal 
less behavior. However, not much research has been devoted to such idiosyncratic 
variability. Developers could utilize insights into backchannel variability to mimic natural 
feedback behavior into ECAs. Backchanneling behavior, includes head nods, ’hmms’ and 
’uhuhs’ that conversational partners provide during an interaction. Listeners provide 
backchannels during backchannel opportunity points (“BOP”), moments that are 
signaled by the speaker with a backchannel-inviting cue to indicate that a listener may 
provide feedback. A backchannel-inviting cue can occur in several forms, e.g. through 
a lowering of the pitch for a short time or by making eye-contact with the listener. The 
research utilized a previously gathered dataset consisting of 14 video recordings of 
addressees who were listening to figure descriptions from a speaker. The recordings 
were made during an o-cam paradigm based experiment, where each participant 
(addressee) played a game via a skype-like setting with the speaker. With the help of 
scripted manipulations the participants were made to believe that they were involved 
in a live interaction with the speaker, while in reality the speaker was a pre-recorded 
stimulus. In our approach we first asked a jury of 10 judges to identify the BOPs in the 
speaker stimulus. We analyzed facial, nodding and vocal behavior of each addressee 
during each BOP. We found that the behavior during BOPs was different than in other 
(non-BOP) locations. During BOPs addressees tend to have a higher nodding frequency 
and amplitude. However, facial behavior was equivalent during and outside BOPs and 
did not seem to be related to backchanneling. In addition, behavior during BOPs differed 
significantly between addressees in terms of nodding frequency and amplitude, and 
vocal behavior. On average 28% of BOPs were vocalized, with the least vocal participant 
only vocalizing in 4% of the BOPs, and the most vocal participant vocalizing in 58% of 
the BOPs. At the same time, certain BOPs appeared to elicit on average different behavior 
from the addressees, than other BOPs. For example, on average the frequency was 3.42 
upward/downward peaks per second, while certain BOPs had an average frequency of 
1.10 upward/downward peaks per second. We found that especially BOPs at the end of 
a game round received more expressive behavior in terms of nodding amplitude and 
vocalization, than the other BOPs. This research suggests that in order to equip ECAs 
with natural, believable backchannel behavior, we should take into account that not all 
BOPs are equal. And that backchannel behavior is idiosyncratic.

Chapter 5 is built on the insights regarding variability that we observed and discussed 
in chapter 4. Impressionistically, the data suggested that backchanneling behaviors 
elicited different perceptions of personality, i.e. that the frequency and type of 
backchanneling had an effect on how a specific individual would be perceived in terms 
of hs/her personality. Thus, in the two experiments presented in this chapter, we have 
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tested how backchannel behavior is correlated with personality perception. Multiple 
studies from the past show that in order to have a natural, believable ECA, that ECA 
should behave according to some consistent, congruent personality. Therefore, if 
backchanneling behavior would correlate with the perception of certain personality 
characteristics, insight into this relation would give ECA developers more control over 
the personality they want to implement in their ECAs. For this study, we have selected 
three different BOPs from the study described in chapter 4. Each BOP elicited a different 
type of behavior. We have shown short movie clips containing the behavior during the 
BOP to participants and asked how those participants to judge the personality of the 
person shown in the movie clip. The participants had to judge the personality on 4 
different dimensions, being Friendly-Distant, Active-Passive, Extroversion-Introversion 
and Dominant-Submissive. In our analysis we have looked at correlations between their 
scores on a certain dimension and the observed nodding, vocal and facial behavior. 
The result was that indeed feedback behaviors significantly influence the perceived 
personality of participants, although the variables differed for each dimensions. In a 
follow-up experiment, the behavior of the stimuli was transferred onto an avatar - the 
same avatar for each stimulus - in order to make sure that the personality perceptions 
were not influenced by other factors such as a person’s looks, gender or clothing. In 
the same fashion, the movies of the avatar were shown to participants who now had 
to judge the personality of the avatars. On a general level, the results of the human 
and the avatar experiment were equivalent in the sense that indeed, different feedback 
behaviors led to different personality perceptions.

6.2 Implications and Future work

While each chapter contains its own specific recommendations for future research, in 
this section we would like to reflect on the broader implications of our research. As 
mentioned in the introduction, multiple challenges prevent us from creating human-
like ECAs, including (i) how to trick the sensitive perception of the human interlocutor 
and (ii) how to deal with the complexity of human behavior. The central theme in this 
dissertation is to the degree of variability in human non-verbal behavior. We would like 
to discuss future research by means of two sides of this variability: The first theme, the 
uniformity of human behavior, deals with the constraints that reduce the seemingly 
limitless number of possible behavioral combinations. The second theme, the variability 
in human behavior, reflects on the other side of the same coin, and focuses on the 
variability found within that constraint range of human behavior.
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6.2.1 Uniformity of human behavior
The human body allows for many degrees of freedom. The set of possible human 
behaviors is nearly-infinite. The human face can theoretically show a semi-infinite number 
of facial configurations (chapter 2). Humans use multiple gestures in combinations with 
different dialog acts (chapter 3). And backchanneling behavior can be expressed via 
different channels, including nodding behavior and vocalizations (chapter 4). However, 
those three studies all reveal that humans in reality use only a small subset of the larger 
set of all theoretically possible behaviors. Indeed, chapter 2 shows that although the 
human face has many facial muscles which can be combined to make different facial 
configurations, most often humans show a neutral facial configuration. In the cases 
that the facial configurations were not neutral, most often only slight activations of 
one single facial muscle were shown. Chapter 3 shows a similar picture. The dialog acts 
and gestures of a speaker do not operate independently. The speaker’s intentions and 
the shown gestures are inter-dependent. Some gestures are never shown with certain 
intentions, while other gestures are often shown with certain intentions. Chapter 4 
shows, albeit that the main focus of the study was on the variations in listener feedback, 
that the listener’s feedback behavior plays out within a certain range of behavioral 
possibilities. Indeed, the frequency of a listener’s nodding behavior has a maximum, the 
amplitude has a maximum. In that sense, the results on non-verbal behavior are in line 
with what has been observed for other aspects of spoken communication. For instance, 
the repertoire of sounds that a language uses to form spoken words is incredibly limited 
compared to what speakers are able to produce with their vocal apparatus.

Distilling the minimum set of variables that are required to generate natural behavior 
for an ECA seems to be a fruitful way to face the complexity challenge. Therefore, 
future research could focus on further determining the demarcations of natural human 
behavior. What is the range of human behavior, and what are the edges of this range. 
Future research could be executed in line with chapter 2: one could look at facial 
behavior in other datasets and analyze what facial configurations are found in those 
datasets. Currently, manually-encoded FACS datasets containing spontaneous facial 
behavior are only sparsely available. However, automatic facial encoding software is 
getting more and more precise which could pave the way to encode large swaths of 
video recordings (e.g. from YouTube) containing spontaneous facial behavior.

This would make it possible to further define the range of facial configurations that is 
utilized, across cultures and contexts, which in return would enable ECA developers to 
even better define the degrees of freedom that are required in ECAs to show human 
natural facial behavior. Just as languages can differ in the settings and choice of 
phonemes, e.g. as evidenced by the fact that some phonological contrasts (e.g. the l-r 
difference) are not exploited by all languages across the globe, it could be interesting 
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to use this approach to gain further insight into cultural and linguistic variability in 
non-verbal behavior. It could also be interesting to apply chapter 2’s approach on other 
parts of behavior to identify the most occurring behaviors for other channels, such as 
gestures and head movements. For example with newly-developed software for semi-
automatic gesture encoding which would help to analyze large numbers of recordings 
of spontaneous conversational behavior. Likewise, chapter 3’s approach could also be 
utilized on other behavior channels. Cross-recurrence quantification analysis can also be 
exploited to further identify potential correlations between different modalities. Here 
again, automatic encoding of linguistic content (speech to text), facial behavior, head 
movements and gestures would potentially allow a large study into the intrapersonal 
dependencies of those modalities.

6.2.2 Variability in human behavior
Even when the previous subsection stressed the point that humans use only a limited set 
of theoretically possible non-verbal behaviors, the research in this dissertation has also 
shown that there may still be variability within these constraints, some of which could 
be due to person-dependent factors. Chapter 2 revealed that some facial configurations 
were only shown by one specific person. Chapter 4 and 5 presented results on how 
people vary in how they give feedback during conversations. While not studied in this 
dissertation, in addition to person-related factors, some variability is likely to be caused 
by circumstantial factors, such as stress, understanding and rapport-seeking strategies 
of dialogue partners.

What are the consequences of such idiosyncratic differences for developers that would 
like to create ECAs that approach the behavior of real humans? One option could be 
to only implement the most frequently occurring behaviors in the artificial characters, 
thereby ignoring the variability found in human data. To test to what extent this would 
be a valid choice, one could conduct a perception experiment (as a counterpart to what 
we did in chapter 5) where facial configurations are constrained by the variability as 
observed in the data of chapter 2. That would shed light on how an ECA is assessed 
when only the most frequently observed behaviors are implemented.

One of the challenges in creating lifelike ECAs is the sensitive perception of human 
beings able to spot tiny mistakes in an ECAs behavior, which could lead to uncanny 
valley feelings. As discussed in the previous section, utilizing only a small number of 
variables to generate human behavior would simplify behavior generation. However, 
would that small number of variables be enough to trick the sensitive perception of 
the onlooker? And would it be possible to express idiosyncratic behavior with such a 
small number of variables? Could we find a bliss point, a sweet-spot in the number of 
variables that is both small enough to face the complexity challenge, and large enough 
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to give room for all expressions needed to make a natural, and believable ECAs able 
to cross the uncanny valley? Given the idiosyncrasy found in the multiple studies, we 
conjecture that ECA developers may be better off not focusing on implementing the 
average behavior of a large group of people as such implementation would wipe-out 
all idiosyncratic behaviors, or if not, would combine idiosyncratic behaviors of multiple 
people. The question is if such an amalgam of behavior is still perceived as natural 
and believable behavior by onlookers. Again, this should be researched. What we do 
think would work out is to model the behavior of one specific human, and transfer that 
behavior into an ECA. This would ensure that all idiosyncratic behaviors are instilled in 
the ECA. Related to this approach, it would be interesting to research facial behavior 
of one specific person for a long(er) time. Such approaches are already common in the 
realms of speech synthesis, where models are trained on large datasets containing 
the voice of only one person. Studying multiple hours of recordings of one person, or 
even equipping a person with a facial tracker (such as a indie headcam system) 10 for 
an extensive amount of time could result in a better, more natural, model to feed the 
ECA. Modeling one specific person would maybe simplify the task as person-dependent 
variables such as personality may be ignored, and don’t have to be modelled into the 
ECA. However, person-related variability that may be caused by factors such as context 
and stress may have to be taken into account. An extra challenge of copying the exact 
visuals and behavior of one specific person into an ECA is that it will potentially be more 
difficult to trick the perception of onlooker that also know the human counterpart of an 
ECA, as they will probably not only detect flaws in the naturalness of the ECA, but also 
specific differences between the ECA and its human counterpart.

6.3 Conclusion

Human conversational behavior is complex, but far less complex than what a human 
body (with all its potential possibilities for movement and sound) could in principle 
show. Our dissertation has revealed that human beings tend to use only a subset of all 
possible behaviors. One possible implication of this outcome is that it facilitates the 
work of those who would like to generate human-like ECAs. Accordingly, in order to 
simplify behavior generation, ECA developers could limit the option space of an ECA to 
the limits of human conversational behavior, instead of the limits of the human body. 
Such approach would simplify behavior generation while still having the ability to 
generate natural-looking behavior. However, future research could investigate whether 
this would indeed be a fruitful alley. On the one hand, limiting the possible nonverbal 
behaviors of an ECA may make such a character appear very machine-like. So that it 
would not do justice to the variability that can still be observed in human data, that 

10  See https://facewaretech.com/cameras/indie-headcam/
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reflect different communicative styles related to personality and other factors. It could 
be researched how such variability can be used in order to make ECAs become more 
human-like, even when that may be challenging in view of the uncanny valley problem. 
As an alternative, it could be interesting to explore under what circumstances an ECA 
may produce non-verbal features that humans do not normally display, but which are 
nonetheless functional, just as other machines have features that are not necessarily 
inspired by observations on humans.
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Summary

In the future, we might talk to computers like we talk to other people, using our voice 
and body language. Computers will represent themselves like a person, will be able 
to understand and use language, gestures, facial expressions, and tone of voice to 
communicate. Creating such a human-like representation of the computer is challenging 
because human communication is a speedy process, and thus computers do not have 
much time to process and react to the communication. Also, people don’t like it when 
human-like representations make mistakes because it can make the computer seem 
weird or creepy. This dissertation revolves around the theme of how insights in how 
human beings interact with each other can be utilized to create embodied conversational 
agents (ECA, i.e. a human-like representation of a computer) that interact like real 
humans. The studies focused on different aspects of people’s communicative strategies 
and properties, with a main interest in their facial expressions, gestures and dialog acts, 
and the way people backchannel feedback. We examined how the complexity of human 
behavior could be simplified, could be transferred into the artificial intelligence of an 
ECA, and how ECAs simulating human-like behavior are perceived by observers.

The first study entitled "Spontaneous Facial Behavior Revolves Around Neutral Facial 
Displays" investigated whether human behavior can be described using only the most 
frequent patterns, focusing on facial behavior. Based on the Facial Action Coding System 
(FACS) the most frequently occurring facial configurations in three different datasets 
were identified. We found that the most frequent facial configuration in each dataset 
was the neutral facial configuration, and the most frequent facial configurations that 
did contain muscle contractions included only slight activations of a few facial muscles. 
This suggests that ECA developers may implement only a small set of facial behaviors to 
simulate the most frequent patterns.

The second study, "Intrapersonal dependencies in multimodal behavior", explored 
whether the behavior generation for ECAs could be simplified by identifying dependencies 
between different behavior channels. The study focused on the dependecies between 
hand movements of the speaker (Gesture channel) and the intentions of the speaker 
(Dialog Acts channel), using cross recurrence quantification analysis to identify possible 
intrapersonal dependencies. The study found 130 significant results of synchronized 
and mutual-exclusive relationships between different gestures and dialog acts, which 
could aid ECA developers in building more accurate multimodal behavior generation 
systems.

The third study, “Variability between and within addressees in how they produce 
audiovisual backchannels” examines the variability found in human backchannel 
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behavior, which includes head nods, ’hmms,’ and ’uhuhs’ that conversational partners 
provide during an interaction. The study found that, although listeners all tend to 
backchannel during specific points during an interaction, how often and in what way a 
person utilizes backchannels is idiosyncratic, differing between individuals.

The fourth study, “Backchannel behavior influences personality perception”, is built 
upon the third study. In this study participants rated the personality of humans and 
avatars that showed certain backchannel behavior. The study found that feedback 
behaviors significantly influence the perceived personality of participants. These results 
can be used by ECA developers to instill a stronger sense of personality into their ECAs.

This study found that people tend to use only a small part of all the possible ways 
they could communicate. This means that developers who want to create computer 
programs that act like humans can limit the program’s abilities to match only what 
humans typically do, instead of trying to make the program do everything a human 
can physically do. This could make it easier to create more natural-looking computer 
programs. But more research is needed to see if this is a good idea.
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Samenvatting

Het is te verwachten dat we in de toekomst met computers praten zoals we met 
mensen praten. Op een computerscherm zien we een als mens uitziende verschijning, 
een avatar, met bewegingen en stemgeluid gelijk aan die van een mens. De computer 
begrijpt dan niet alleen wat we zeggen, maar ook onze non-verbale communicatie, 
zoals intonatiepatronen, gezichtsuitdrukkingen en handgebaren.

Het is een uitdaging om zo’n menselijke avatar te bouwen, omdat menselijke 
communicatie snel en complex is. Voor een computer is het lastig om met dezelfde 
snelheid de boodschap te interpreteren en adequaat, op een menselijke wijze, te 
reageren. Daarnaast blijkt dat als een op een mens lijkende avatar zich niet helemaal 
menselijk gedraagt, de consequentie is dat het raar of griezelig op mensen over kan 
komen.

Het thema van dit proefschrift is hoe inzichten in menselijke communicatie kunnen 
worden gebruikt om menselijke avatars te bouwen. De vier studies in dit boek 
richten zich op verschillende aspecten van menselijke communicatie, met name op 
gezichtsuitdrukkingen, handgebaren en de wijze waarop mensen luisteren. We hebben 
onderzocht hoe de complexiteit van menselijk gedrag kan worden vereenvoudigd, hoe 
dit gedrag kan worden gebruikt in het maken van een als mens uitziende avatar, en 
welke effecten dit heeft op toeschouwers. In de eerste studie is gekeken naar de meest 
frequente gezichtsuitdrukkingen in drie verschillende datasets. De meest voorkomende 
gezichtsuitdrukking bleek een neutrale gezichtsuitdrukking te zijn, terwijl andere veel 
voorkomende gezichtsuitdrukkingen slechts enkele spieren in het gezicht gebruikten. 
Dit suggereert dat ontwikkelaars van avatars de complexiteit van gedragsgeneratie 
kunnen verkleinen door slechts een kleine set aan gezichtsuitdrukkingen te 
implementeren.

In de tweede studie hebben we gekeken of we gedragsgeneratie konden versimpelen 
door mogelijke afhankelijkheden in kaart te brengen tussen twee verschillende 
gedragskanalen, namelijk de intentie van een spreker (zogenaamde dialog acts) enerzijds 
en de handgebaren die de spreker gebruikt anderzijds. Hieruit is gebleken dat sommige 
handgebaren vaak samengaan met bepaalde dialog acts, maar ook dat bepaalde 
handgebaren nauwelijks samengaan met bepaalde dialog acts. Ontwikkelaars kunnen 
deze afhankelijkheden mogelijk gebruiken om sneller accuraat gedrag te genereren. 
In de derde studie hebben we de variabiliteit onderzocht in luistergedrag waaronder 
hoofdknikken en ’hmms’ en ’uhuhs’ die gesprekspartners tijdens een interactie geven. 
Uit deze studie bleek dat, hoewel luisteraars allemaal de neiging hebben om op 
specifieke momenten tijdens een interactie feedback te geven, de frequentie en manier 
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van feedback geven persoonsafhankelijk is. In de vierde studie hebben we de resultaten 
van de derde studie verder onderzocht door proefpersonen te laten kijken naar zowel 
luisterende mensen als luisterende avatars, en beide te beoordelen op persoonlijkheid. 
Uit deze studie bleek dat het type feedbackgedrag de waargenomen persoonlijkheid 
aanzienlijk beïnvloedt. Ontwikkelaars kunnen met deze resultaten een sterker 
gevoel van persoonlijkheid meegeven aan hun avatar door passend luistergedrag te 
implementeren, wat hoogstwaarschijnlijk leidt tot een succesvollere interactie tussen 
de avatar.

De studies in dit proefschrift laten zien dat mensen slechts een klein deel gebruiken 
van alle mogelijke manieren waarop ze zouden kunnen communiceren. Dit suggereert 
dat ontwikkelaars van avatars gedragsgeneratie kunnen versimpelen door m.n. te 
focussen op frequent gedrag. Daarnaast zijn er juist individuele gedragsverschillen 
tussen mensen die door ontwikkelaar zouden kunnen worden ingezet om de avatar 
een sterkere persoonlijkheid te geven.
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