2,141 research outputs found

    A decoding procedure for the Reed-Solomon codes

    Get PDF
    A decoding procedure is described for the (n,k) t-error-correcting Reed-Solomon (RS) code, and an implementation of the (31,15) RS code for the I4-TENEX central system. This code can be used for error correction in large archival memory systems. The principal features of the decoder are a Galois field arithmetic unit implemented by microprogramming a microprocessor, and syndrome calculation by using the g(x) encoding shift register. Complete decoding of the (31,15) code is expected to take less than 500 microsecs. The syndrome calculation is performed by hardware using the encoding shift register and a modified Chien search. The error location polynomial is computed by using Lin's table, which is an interpretation of Berlekamp's iterative algorithm. The error location numbers are calculated by using the Chien search. Finally, the error values are computed by using Forney's method

    Error control for reliable digital data transmission and storage systems

    Get PDF
    A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. In LSI and VLSI technology, memories are often organized on a multiple bit (or byte) per chip basis. For example, some 256K-bit DRAM's are organized in 32Kx8 bit-bytes. Byte oriented codes such as Reed Solomon (RS) codes can provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. In this paper we present some special decoding techniques for extended single-and-double-error-correcting RS codes which are capable of high speed operation. These techniques are designed to find the error locations and the error values directly from the syndrome without having to use the iterative alorithm to find the error locator polynomial. Two codes are considered: (1) a d sub min = 4 single-byte-error-correcting (SBEC), double-byte-error-detecting (DBED) RS code; and (2) a d sub min = 6 double-byte-error-correcting (DBEC), triple-byte-error-detecting (TBED) RS code

    An Iteratively Decodable Tensor Product Code with Application to Data Storage

    Full text link
    The error pattern correcting code (EPCC) can be constructed to provide a syndrome decoding table targeting the dominant error events of an inter-symbol interference channel at the output of the Viterbi detector. For the size of the syndrome table to be manageable and the list of possible error events to be reasonable in size, the codeword length of EPCC needs to be short enough. However, the rate of such a short length code will be too low for hard drive applications. To accommodate the required large redundancy, it is possible to record only a highly compressed function of the parity bits of EPCC's tensor product with a symbol correcting code. In this paper, we show that the proposed tensor error-pattern correcting code (T-EPCC) is linear time encodable and also devise a low-complexity soft iterative decoding algorithm for EPCC's tensor product with q-ary LDPC (T-EPCC-qLDPC). Simulation results show that T-EPCC-qLDPC achieves almost similar performance to single-level qLDPC with a 1/2 KB sector at 50% reduction in decoding complexity. Moreover, 1 KB T-EPCC-qLDPC surpasses the performance of 1/2 KB single-level qLDPC at the same decoder complexity.Comment: Hakim Alhussien, Jaekyun Moon, "An Iteratively Decodable Tensor Product Code with Application to Data Storage

    Statistical communication theory Final report, 1 Dec. 1963 - 31 Mar. 1967

    Get PDF
    Research and scientific reports on statistical communication theor

    Beyond Single-Deletion Correcting Codes: Substitutions and Transpositions

    Get PDF
    We consider the problem of designing low-redundancy codes in settings where one must correct deletions in conjunction with substitutions or adjacent transpositions; a combination of errors that is usually observed in DNA-based data storage. One of the most basic versions of this problem was settled more than 50 years ago by Levenshtein, who proved that binary Varshamov-Tenengolts codes correct one arbitrary edit error, i.e., one deletion or one substitution, with nearly optimal redundancy. However, this approach fails to extend to many simple and natural variations of the binary single-edit error setting. In this work, we make progress on the code design problem above in three such variations: - We construct linear-time encodable and decodable length-n non-binary codes correcting a single edit error with nearly optimal redundancy log n+O(log log n), providing an alternative simpler proof of a result by Cai, Chee, Gabrys, Kiah, and Nguyen (IEEE Trans. Inf. Theory 2021). This is achieved by employing what we call weighted VT sketches, a new notion that may be of independent interest. - We show the existence of a binary code correcting one deletion or one adjacent transposition with nearly optimal redundancy log n+O(log log n). - We construct linear-time encodable and list-decodable binary codes with list-size 2 for one deletion and one substitution with redundancy 4log n+O(log log n). This matches the existential bound up to an O(log log n) additive term

    On Linear Product Codes and Their Duals Scientific Report No. 4

    Get PDF
    Tensor products of linear codes, and product codes with dual cyclic component code
    corecore