

University of Thessaly

Department of Electrical and Computer

Engineering

“Development of a concatenated channel coding

system for space communications”

“Ανάπτυξη συστήματος αλυσιδωτής

κωδικοποίησης καναλιού για διαστημικές

επικοινωνίες”

Diploma Thesis

Thomadakis Polykarpos

Supervisor:

Antonios Argyriou

Volos 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Thessaly Institutional Repository

https://core.ac.uk/display/154967066?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

In this diploma thesis our goal is to provide a comprehensive overview of the design of Reed-

Solomon and concatenated coding systems for space applications. We start with an overview of

the channel coding systems used in space communications. Next we focus on a particularly

important class of encoders/decoders namely the CCSDS concatenated coding system. We

present a detailed description of the required algebra with detailed examples. Next the steps of

the encoding and decoding process are described with details and alternative ways. Finally, we

perform a thorough performance evaluation under the AWGN channel model.

ΠΕΡΙΛΗΨΗ

Στην παρούσα διπλωματική εργασία προσπαθούμε να παρουσιάσουμε τον τρόπο χρήσης και την

αποδοτικότητα χρήσης συστημάτων αλυσιδωτής κωδικοποίησης καναλιού για εφαρμογές

διαστημικών επικοινωνιών. Αρχικα γίνεται μια ανασκόπηση για την ανάγκη χρήσης

κωδικοποίησης αλλά και για τους διάφορους τρόπους κωδικοποίησης που εφαρμόζονται στις

διαστημικές επικοινωνίες. Στην συνέχεια επικεντρωνόμαστε σε μία συγκεκριμένη μέθοδο αυτη

της αλυσιδωτής κωδικοποίησης στα πρότυπα της CCSDS. Παρουσιάζεται το απαιτούμενο

υπόβαθρο για την κατανόηση και υλοποίηση ενός τέτοιου συστήματος και στη συνέχεια

προχωράμε στην υλοποίηση του κωδικοποιητή και του αποκωδικοποιητή με τους διάφορους

εναλλακτικούς τρόπους χρησιμοποιώντας κατάλληλα παραδείγματα. Τέλος πραγματοποιείται

προσομοίωση για συγκεκριμένη υλοποίηση και αξιολογείται η επίδοση της υπό AWGN.

ACKNOWLEDGMENT

Given the completion of my thesis, I would like to thank my supervising professor, assistant

professor Argyriou Antonios, who helped me with his guidance and valuable advice.

In addition, I would like to thank my co-supervisor Athanasios Korakis for his contribution to

my thesis.

Also, I would like to thank my friends who supported and encouraged me all these years being

by my side the whole time.

Last but most importantly I would like to thank my family who gave me the chance to study all

those years with great patience and support.

Table of contents

1. INTRODUCTION... 1

2. GALOIS FIELD ALGEBRA ... 3

2.1 GROUPS .. 3

2.2 FIELDS.. 3

2.3 BINARY FIELD GF (2) .. 4

2.4 EXTENSION FIELDS GF(𝟐𝐦) ... 5

2.4.1 Primitive Polynomials p(x) .. 6

2.4.2 Addition and subtraction over GF(𝟐𝒎) .. 8

2.4.3 Multiplication and division over GF(𝟐𝒎) .. 10

2.4.4 Polynomial Arithmetic ... 11

3. REED-SOLOMON CODES .. 12

3.1 REED-SOLOMON BACKGROUND ... 12

3.1.1 Reed-Solomon Codewords .. 12

3.1.2 Reed-Solomon Polynomials... 13

3.2 REED-SOLOMON ENCODER ... 14

3.2.1 Generator Polynomial g(x) .. 15

3.2.2 An encoding example .. 16

3.3 REED-SOLOMON DECODER ... 17

3.3.1 Syndrome calculation... 19

3.3.2 Error locator polynomial .. 20

3.3.2.1 The Berlekamp-Massey algorithm .. 22

3.3.2.2 The extended Euclidean algorithm ... 24

3.3.3: Finding the error locations .. 28

3.3.3.1: The Chien search algorithm ... 28

3.3.4: Calculating the error values .. 30

3.3.4.1: Direct calculation ... 30

3.3.4.2: Forney’s algorithm ... 31

3.3.5 Decoding the codeword ... 32

4. CONVOLUTIONAL CODES.. 34

4.1 CONVOLUTIONAL ENCODER ... 34

4.2 STATES OF A CODE ... 35

4.2.1 State diagram ... 37

4.2.2 Trellis diagram ... 37

4.3 CONVOLUTIONAL DECODER ... 39

4.3.1 The Viterbi decoder ... 39

4.3.2 Truncation .. 41

5. SIMULATION AND RESULTS ... 42

5.1 SIMULATION APPROACH ... 42

5.2 SIMULATION OF THE CONVOLUTIONAL CODE ... 42

5.3 SIMULATION OF THE REED SOLOMON CODE ... 44

5.4 SIMULATION OF THE CONCATENATED CODE ... 46

5.4.1 System without an interleaver .. 46

5.4.2 System with an interleaver ... 48

5.4.3: Overall coding methods comparison .. 50

6. CONCLUSION ... 52

REFERENCES .. 53

List of figures

Figure 3-1: A Reed-Solomon codeword ... 13

Figure 3-2: Reed Solomon decoding process ... 18

Figure 3-3-3: The Berlekamp-Massey algorithm ... 23

Figure 3-4-4: The extended Euclidean algorithm ... 26

Figure 4-1: A (2, 1, 4) convolutional code .. 35

Figure 4-2: State diagram of the (2,1,4) code of fig.4-1 ... 37

Figure 4-3: Trellis diagram of the (2,1,4) code ... 38

Figure 4-4: The first 4 steps of Viterbi decoding of the (2,1,4) example 39

Figure 4-5: The final step of the decoding .. 40

Figure 5-1: The convolutional encoder ... 42

Figure 5-2: Performance of the convolutional code ... 43

Figure 5-3: Performance of the RS(255,223) code ... 45

Figure 5-4: The structure of the concatenated system .. 46

Figure 5-5: Performance of the proposed concatenated system ... 47

Figure 5-6:Interleaver's function ... 48

Figure 5-7: The system including the interleaver ... 49

Figure 5-8: Performance of the concatenated system for different interleaving depths 50

Figure 5-9: Performance comparison of different coding methods .. 51

List of tables

Table 2-2-1: Addition over GF(2)... 4

Table 2-2-2: Multiplication over GF(2) .. 5

Table 2-3:GF(16) elements using p(α) = α4 + a + 1 ... 7

Table 2-4: Addition/Subtraction over GF(16) .. 9

Table 2-5: Multiplication over GF(16) ... 10

Table 3-1: The outputs of Chien search .. 29

Table 4-1: Look up table for the encoder of fig.4-1 ... 36

1

1. INTRODUCTION

The continuous search for knowledge of our universe and its origins is increasing as technology

develops. This search for knowledge has led us to hundreds of space missions the last 50 years or

more. Valuable information is collected through these missions, information that could not be

collected from earth. To achieve this, however, a lot of challenges have to be faced by the

scientists.

During each deep space mission, reliable communication with spacecraft, to send commands or

software updates, track location and receive telemetry, images and scientific data is vital to the

success of the mission. This need for reliable communication provokes the need for constant

research and development in this area by modifying existing technologies or the invention of

new ones. There is a number of factors that aggravate this effort and have to be fought in order to

accomplish a successful space mission.

The first problem that is present in space communication is obviously the huge distances that we

encounter. Earth communications cannot even approach these distances, so it is a new problem

that has to be solved. Another important drawback is the very high latency constrained by the

speed of light and other factors. The latency in such communications can even reach a period of

days which would be prohibitive in common communications. In addition to that, the rates in

these distances have to be low, much lower than those on Earth to maintain the message

detectable and retrievable. Certainly, as the goals we set get higher the requirements to attain

them get higher, as a result the development and research has to be constant. Other constraints

met in space communications are the need for low power consumption, the size and weight, as

the spacecraft may need to stay in space for a very long period of time and it has to be active and

ready to receive messages the whole time. Appropriate hardware has to be designed with the

least possible size and weight.

2

The space environment itself of course is not friendly for our transmissions as errors are

prevalent in the messages and so error detection and possibly correction is applied to receive the

correct messages in either uplink or downlink. In order to achieve near error-free

communication, a number of methods have been developed over the last few decades. The most

common form of EDAC used in space missions is Forward Error-Correction (FEC). This method

sends additional bits (overhead), which can be used to check the consistency of the received data

and then rebuild parts of the data stream if required.

Some of the most well-known codes that are put into use for this reason are convolutional codes,

Reed-Solomon, the concatenation of those two, LDPC codes and most recently Turbo codes. In

this thesis we will focus on the theory and implementation of the concatenation of convolutional

and Reed-Solomon codes. LDPC and Turbo codes were put in use more recently and seem to

have a better performance but still many of the space missions in process use this concatenated

system and it provides a very good performance.

This thesis is structured as follows: In chapter 2 the required algebra used by Reed-Solomon is

presented, chapter 3 consists of the encoding and decoding procedure using alternative ways and

examples. In chapter 4 the basics for convolutional codes are manifested for the specific case that

is used in the simulations. In chapter 5 the implementation of the concatenated system is

presented and also the performance for different coding methods. Finally, in chapter 6 this thesis

is concluded.

3

2. GALOIS FIELD ALGEBRA

Galois field (GF) algebra is similar to conventional algebra except that GF algebra operates

within a finite field. In GF algebra it is possible to take an element, sum with another element

and obtain the resulting element only within a finite number of elements. There are some

standard algebraic laws that govern GF; these laws will be first presented to understand GF

arithmetic. GF is used in most block error correction codes one of which will be presented and

used later.

2.1 Groups

Let G be a set of elements. A binary operation * on G is a rule that assigns to each pair of

elements A and B a uniquely defined third element C=A*B in G. When such an operation is

defined, G is closed under *. This operation * is called associative if, for any A , B and C in G

A*(B*C) = (A*B)*C.

Definition 1:

A set G (on which a binary operation is defined) is defined to be a group if the following

conditions are satisfied:

1. The binary operation * is associative

2. G contains an identity element I such that, for any A in G, A*I = I*A = A.

3. For any element A in G, there exists an inverse element A' in G such that A*A' = A'*A =

I.

A group G is commutative if its binary operation * also satisfies the following condition:

A*B = B*A, for all A and B in G

This is all we need to know about groups to perform GF arithmetic.

2.2 Fields

A field is a set of elements in which we can do addition, subtraction, multiplication, and division

without leaving the set. Addition and multiplication must satisfy the commutative, associative,

and distributive laws.

4

Definition 2:

A set F together with the two binary operations "+" and "-'" is a field if the following conditions

are satisfied:

1. F is a commutative group under addition "+". The identity element with respect to

addition I is called the zero element or the additive identity I of F and is denoted by 0

(zero).

2. F is a commutative group under multiplication "∙'". The identity element with respect to

multiplication I is called the unit (or unity) element or the multiplicative identity I of F

and is denoted by 1 (one).

3. Multiplication "'∙" is distributive over addition "+"; that is, for any three elements A, B

and C in F: A'(B+C) = (A ∙B) + (A ∙C).

So a field consists of at least 2 elements the additive identity element and the multiplication

identity element. The number of elements in a field is called the order of the field. A field with a

finite number of elements is called a finite field. For every element A in a field, A∙0 = 0∙A = 0.If

A is non-zero and B is non-zero the A∙B is non-zero.

2.3 Binary Field GF (2)

Consider the set of two integers, G= {0, 1}. Let us define a binary operation, denoted as modulo-

2 addition "+", on G as follows:

Table 2-2-1: Addition over GF(2)

+ 0 1

0 0 1

1 1 0

It can be proved that this is a group. It is closed and associative under "+". The additive element

is 0, 0+1=1 and 0+0=0 .The additive inverse for 0 is 0 and for 1 it is 1, 0+0=0 and 1+1=0. So it

5

can be also seen that 1+1=0 => 1=-1 and so 1+1=1-1=-1-1=0.As a result, addition and

subtraction are equivalent in GF(2).

Consider the same set of two integers, F= {0, 1}. Let us define another binary operation, denoted

as multiplication "∙", on F as follows:

Table 2-2-2: Multiplication over GF(2)

∙ 0 1

0 0 0

1 0 1

It can be proved that this is a field under modulo-2 addition and multiplication. As previously

shown F=G is commutative under addition 0 is the addition identity. Also the non-zero elements

form a commutative group under multiplication. 1 is the multiplicative identity and 1 is the

multiplicative inverse element since 1∙1=1. In addition, multiplication is distributive over

modulo-2 addition A∙ (B+C) = (A∙B) + (A∙C), thus F is a field. This modulo-2 field is the

minimum field of finite number of elements. This field is usually called a binary or 2-ary field

and it is denoted by GF(2). The binary field GF(2) plays a crucial role in error correction coding

theory and is widely used in digital data transmission and storage systems.

2.4 Extension Fields GF(𝟐𝒎)

We are interested in prime finite fields called Galois fields GF(P). In the previous binary

operation example the minimum number of possible elements was presented which comprised

GF(2). Extension fields are GF(𝑃 𝑚) where m=2,3,4,.. and P is prime. With the design of error

correction coding based systems, we are interested in binary operations. Therefore, the focus is

mainly on binary Galois fields GF(2) and the extended binary Galois fields GF(2 𝑚) from now

on.

6

2.4.1 Primitive Polynomials p(x)

Polynomials over the binary field GF(2) are any polynomial with binary coefficients. These

polynomials are produced by their factors e.g f(x) = f0 ∙ f1∙ f2 ∙...fk. A primitive polynomial p(x)

can produce an extension field. It has to be an irreducible binary polynomial of degree m which

divides 𝑋𝑛 , where n=𝑃 𝑚-1 = 2 𝑚-1 and which does not divide 𝑋𝑖 for i<n. Any primitive

polynomial p(X) can construct the 2 𝑚 unique elements including a 0 (zero or null) element and

a 1 (one or unity) element. A degree m polynomial f(X) over GF(2𝑚) is defined to be irreducible

over GF(2𝑚) if f(X) is not divisible by any polynomial over GF(2𝑚) of degree greater than zero,

but less than m. An irreducible 3rd degree (cubic) polynomial generates an 8 x 3-bit symbol

field; an irreducible 4th degree polynomial generates 16 x 4-bit symbol field; an irreducible 8th

degree polynomial generates 256 x 8-bit symbol field etc.

Every element of a GF (2𝑚) field is a lower order polynomial of the field generating

polynomial. Each low order polynomial element of the field is of the form: P(x) =𝑏𝑛−1 𝑥
𝑛−1 +

⋯ + 𝑏2𝑥2 + 𝑏1𝑥 + 𝑏0𝑥0 where the coefficients 𝑏0to 𝑏𝑛−1are binary or decimal values.

E.g. 𝑝(𝑥) = 𝑥4 + 𝑥 + 1 is a primitive polynomial of degree m=4 and can generate a

GF(24)=GF(16) .

The primitive polynomial is irreducible so it does not have a real integer root. We can set the

primitive element α=2 to be the root so that 𝑝 (𝛼) = 𝛼4 + 𝛼 + 1 = 0 => 𝛼4 = 𝛼 + 1 since it

was earlier mentioned that 1+1=0 => 1=-1. The first elements of the field are 0 and α. Populate

the rest of the field by multiplying the previous non-zero element by α and substituting 𝛼4 for

α + 1 until the field elements start to repeat. The null and unity elements of GF(2𝑚) are equal to

those of GF(2) which are 0 and 1 respectively.

Note that the positions of the bits in the 4-bit symbols match the positions of 𝛼3, 𝛼2, 𝛼1and 𝛼0 in

the table2-3 below.

We should also note that 1+1=0 => 2=0, so 2α=0.

7

Table 2-3: GF(16) elements using 𝒑(𝜶) = 𝜶𝟒 + 𝜶 + 𝟏

Decimal Binary
Element

Polynomial
α Derivation

0 0000 0 0 First element =0

1 0001 1 𝛼0 Second element=1

2 0010 𝛼 𝛼1 𝛼 ∙1=𝛼

4 0100 𝛼2 𝛼2 𝛼 ∙𝛼 =𝛼2

8 1000 𝛼3 𝛼3 𝛼 ∙ 𝛼2 = 𝛼3

3 0011 𝛼 1 𝛼4 𝛼3 ∙ 𝛼 = 𝛼4 = 𝛼 + 1

6 0110 𝛼2 𝛼 𝛼5 𝛼 ∙ 𝛼4 = 𝛼 ∙ (𝛼 + 1) = 𝛼2 + 𝛼

12 1100 𝛼3 𝛼2 𝛼6 𝛼 ∙ 𝛼5 = 𝛼 ∙ (𝛼2 + 𝛼) = 𝛼3 + 𝛼2

11 1011 𝛼3 𝛼 1 𝛼7 𝛼 ∙ 𝛼6 = 𝛼 ∙ (𝛼3 + 𝛼2) = 𝛼4 + 𝛼3 =

𝛼3 + 𝛼 + 1

5 0101 𝛼2 1 𝛼8 𝛼 ∙ 𝛼7 = 𝛼 ∙ (𝛼3 + 𝛼 + 1) = 𝛼4 +

𝛼2 + 𝛼 = 𝛼2 + 2𝛼 + 1 = 𝛼2 + 1

10 1010 𝛼3 𝛼 𝛼9 𝑎 ∙ 𝑎8 = 𝑎 ∙ (𝑎2 + 1) = 𝑎3 + 𝑎

7 0111 𝛼2 𝛼 1 𝛼10 𝑎 ∙ 𝑎9 = 𝑎 ∙ (𝑎3 + 𝑎) = 𝑎4 + 𝑎2 =

𝛼2 + 𝛼 + 1

14 1110 𝛼3 𝛼2 𝛼 𝛼11 𝛼 ∙ 𝛼10 = 𝛼 ∙ (𝛼2 + 𝛼 + 1) =

 𝛼3 + 𝛼2 + 𝛼

15 1111 𝛼3 𝛼2 𝛼 1 𝛼12 𝛼 ∙ 𝛼11 = 𝛼 ∙ (𝛼3 + 𝛼2 + 𝛼) = 𝛼4 +

𝛼3 + 𝛼2 = 𝛼3 + 𝛼2 + 𝛼 + 1

13 1101 𝛼3 𝛼2 1 𝛼13 𝛼 ∙ 𝛼12 = 𝛼 ∙ (𝛼3 + 𝛼2 + 𝛼 + 1) =

𝛼4 + 𝛼3 + 𝛼2 + 𝛼 =

 𝛼3 + 𝛼2 + 2𝛼 + 1 =

𝛼3 + 𝛼2 + 1

9 1001 𝛼3 1 𝛼14 𝛼 ∙ 𝛼13 = 𝛼 ∙ (𝛼3 + 𝛼2 + 1) = 𝛼4 +

𝛼3 + 𝛼 = 𝛼3 + 2𝛼 + 1 = 𝛼3 + 1

8

 Notice that the recursive process repeats itself once we create more than the 2𝑚 unique field

elements. Let's show this repetition by examples.

 𝛼15 = 𝛼 ∙ 𝛼14 = 𝛼 ∙ (𝛼3 + 1) = 𝛼4 + 𝛼 = 2𝛼 + 1 = 1 = 𝛼0

 𝛼16 = 𝛼 ∙ 𝛼15 = 𝛼 ∙ 𝛼0 = 𝛼

 𝛼17 = 𝛼 ∙ 𝛼16 = 𝛼 ∙ 𝛼 = 𝛼2

 𝑒𝑡𝑐….

All these representation are equivalent, the power representation is used on multiplications and

addition uses the vector representation. These two representations are the most commonly used.

The most common way of generating the field elements α is by using α=2=(0010)=x as

demonstrated here. However, different primitive elements can also be used to generate the field

besides α=2 but only this is needed for our purposes in this thesis.

2.4.2 Addition and subtraction over GF(𝟐𝒎)

Addition and subtraction over the extended field GF(2𝑚) are performed by using exclusive-or

operation on the element’s vector representations. For example:

 𝑎4 = 0011

 + 𝑎8 = 0101

𝑎4𝑋𝑂𝑅 𝑎8 = 0110

 𝑎1 = 0010

 − 𝑎2 = 0100

𝑎1𝑋𝑂𝑅 𝑎2 = 0110

In the table below the results of addition (or subtraction) for all combinations of elements is

presented under GF(24).

9

Table 2-4: Addition/Subtraction over GF(16)

+` 1 𝜶 𝜶𝟐 𝜶𝟑 𝜶𝟒 𝜶𝟓 𝜶𝟔 𝜶𝟕 𝜶𝟖 𝜶𝟗 𝜶𝟏𝟎 𝜶𝟏𝟏 𝜶𝟏𝟐 𝜶𝟏𝟑 𝜶𝟏𝟒

1 0 𝛼4 𝛼8 𝛼14 𝛼 𝛼5 𝛼13 𝛼9 𝛼2 𝛼7 𝛼5 𝛼12 𝛼11 𝛼6 𝛼3

𝜶 𝛼4 0 𝛼5 𝛼9 1 𝛼2 𝛼11 𝛼14 𝛼10 𝛼3 𝛼8 𝛼6 𝛼13 𝛼12 𝛼7

𝜶𝟐 𝛼8 𝛼5 0 𝛼6 𝛼10 𝛼 𝛼3 𝛼12 1 𝛼11 𝛼4 𝛼9 𝛼7 𝛼14 𝛼13

𝜶𝟑 𝛼14 𝛼9 𝛼6 0 𝛼7 𝛼11 𝛼2 𝛼4 𝛼13 𝛼 𝛼12 𝛼5 𝛼10 𝛼8 1

𝜶𝟒 𝛼 1 𝛼10 𝛼7 0 𝛼8 𝛼12 𝛼3 𝛼5 𝛼14 𝛼2 𝛼13 𝛼6 𝛼11 𝛼9

𝜶𝟓 𝛼5 𝛼2 𝛼 𝛼11 𝛼8 0 𝛼9 𝛼12 𝛼4 𝛼6 1 𝛼3 𝛼14 𝛼7 𝛼12

𝜶𝟔 𝛼13 𝛼11 𝛼3 𝛼2 𝛼12 𝛼9 0 𝛼10 𝛼14 𝛼5 𝛼7 𝛼 𝛼4 1 𝛼8

𝜶𝟕 𝛼9 𝛼14 𝛼12 𝛼4 𝛼3 𝛼12 𝛼10 0 𝛼11 1 𝛼6 𝛼8 𝛼2 𝛼5 𝛼

𝜶𝟖 𝛼2 𝛼10 1 𝛼13 𝛼5 𝛼4 𝛼14 𝛼11 0 𝛼12 𝛼 𝛼7 𝛼9 𝛼3 𝛼6

𝜶𝟗 𝛼7 𝛼3 𝛼11 𝛼 𝛼14 𝛼6 𝛼5 1 𝛼12 0 𝛼13 𝛼2 𝛼8 𝛼10 𝛼4

𝜶𝟏𝟎 𝛼5 𝛼8 𝛼4 𝛼12 𝛼2 1 𝛼7 𝛼6 𝛼 𝛼13 0 𝛼14 𝛼3 𝛼9 𝛼11

𝜶𝟏𝟏 𝛼12 𝛼6 𝛼9 𝛼5 𝛼13 𝛼3 𝛼 𝛼8 𝛼7 𝛼2 𝛼14 0 1 𝛼4 𝛼10

𝜶𝟏𝟐 𝛼11 𝛼13 𝛼7 𝛼10 𝛼6 𝛼14 𝛼4 𝛼2 𝛼9 𝛼8 𝛼3 1 0 𝛼 𝛼5

𝜶𝟏𝟑 𝛼6 𝛼12 𝛼14 𝛼8 𝛼11 𝛼7 1 𝛼5 𝛼3 𝛼10 𝛼9 𝛼4 𝛼 0 𝛼2

𝜶𝟏𝟒 𝛼3 𝛼7 𝛼13 1 𝛼9 𝛼12 𝛼8 𝛼 𝛼6 𝛼4 𝛼11 𝛼10 𝛼5 𝛼2 0

10

2.4.3 Multiplication and division over GF(𝟐𝒎)

Multiplication over GF(2𝑚) is performed using the exponential representation by summarizing

the symbol’s exponents modulo 2𝑚−1. For example:

𝑎5 ∙ 𝑎2 = 𝑎5+2 = 𝑎7

𝑎5 ∙ 𝑎14 = a19 𝑚𝑜𝑑 15 = 𝑎14

In the table below the results of multiplication for all combinations of elements is presented

under GF(24).

Table 2-5: Multiplication over GF(16)

∙ 1 𝜶 𝜶𝟐 𝜶𝟑 𝜶𝟒 𝜶𝟓 𝜶𝟔 𝜶𝟕 𝜶𝟖 𝜶𝟗 𝜶𝟏𝟎 𝜶𝟏𝟏 𝜶𝟏𝟐 𝜶𝟏𝟑 𝜶𝟏𝟒

1 1 𝛼 𝛼2 𝛼3 𝛼4 𝛼5 𝛼6 𝛼7 𝛼8 𝛼9 𝛼10 𝛼11 𝛼12 𝛼13 𝛼14

𝜶 𝛼 𝛼2 𝛼3 𝛼4 𝛼5 𝛼6 𝛼7 𝛼8 𝛼9 𝛼10 𝛼11 𝛼12 𝛼13 𝛼14 1

𝜶𝟐 𝛼2 𝛼3 𝛼4 𝛼5 𝛼6 𝛼7 𝛼8 𝛼9 𝛼10 𝛼11 𝛼12 𝛼13 𝛼14 1 𝛼

𝜶𝟑 𝛼3 𝛼4 𝛼5 𝛼6 𝛼7 𝛼8 𝛼9 𝛼10 𝛼11 𝛼12 𝛼13 𝛼14 1 𝛼 𝛼2

𝜶𝟒 𝛼4 𝛼5 𝛼6 𝛼7 𝛼8 𝛼9 𝛼10 𝛼11 𝛼12 𝛼13 𝛼14 1 𝛼 𝛼2 𝛼3

𝜶𝟓 𝛼5 𝛼6 𝛼7 𝛼8 𝛼9 𝛼10 𝛼11 𝛼12 𝛼13 𝛼14 1 𝛼 𝛼2 𝛼3 𝛼4

𝜶𝟔 𝛼6 𝛼7 𝛼8 𝛼9 𝛼10 𝛼11 𝛼12 𝛼13 𝛼14 1 𝛼 𝛼2 𝛼3 𝛼4 𝛼5

𝜶𝟕 𝛼7 𝛼8 𝛼9 𝛼10 𝛼11 𝛼12 𝛼13 𝛼14 1 𝛼 𝛼2 𝛼3 𝛼4 𝛼5 𝛼6

𝜶𝟖 𝛼8 𝛼9 𝛼10 𝛼11 𝛼12 𝛼13 𝛼14 1 𝛼 𝛼2 𝛼3 𝛼4 𝛼5 𝛼6 𝛼7

𝜶𝟗 𝛼9 𝛼10 𝛼11 𝛼12 𝛼13 𝛼14 1 𝛼 𝛼2 𝛼3 𝛼4 𝛼5 𝛼6 𝛼7 𝛼8

𝜶𝟏𝟎 𝛼10 𝛼11 𝛼12 𝛼13 𝛼14 1 𝛼 𝛼2 𝛼3 𝛼4 𝛼5 𝛼6 𝛼7 𝛼8 𝛼9

𝜶𝟏𝟏 𝛼11 𝛼12 𝛼13 𝛼14 1 𝛼 𝛼2 𝛼3 𝛼4 𝛼5 𝛼6 𝛼7 𝛼8 𝛼9 𝛼10

𝜶𝟏𝟐 𝛼12 𝛼13 𝛼14 1 𝛼 𝛼2 𝛼3 𝛼4 𝛼5 𝛼6 𝛼7 𝛼8 𝛼9 𝛼10 𝛼11

𝜶𝟏𝟑 𝛼13 𝛼14 1 𝛼 𝛼2 𝛼3 𝛼4 𝛼5 𝛼6 𝛼7 𝛼8 𝛼9 𝛼10 𝛼11 𝛼12

𝜶𝟏𝟒 𝛼14 1 𝛼 𝛼2 𝛼3 𝛼4 𝛼5 𝛼6 𝛼7 𝛼8 𝛼9 𝛼10 𝛼11 𝛼12 𝛼13

11

Division over GF(2𝑚) is performed also by using the exponential representation by subtracting

the exponent of the second dividing symbol modulo 2𝑚−1. Another way to perform division is

first to find the inverse of the denominator and then perform multiplication. The inverse element

is the one that multiplication with it will result in 1. For example:

𝑎5

𝑎2
= 𝑎5−2 = 𝑎3

𝑎5

𝑎14
= α−9 𝑚𝑜𝑑 15 = 𝑎6

or

𝑎5

𝑎14
= 𝑎5 ∙ 𝑎−14 = 𝑎5 ∙ 𝑎1 = 𝑎6

We can easily find the inverse from Table 2-5 above by locating the 1s . The element on this row

is the inverse of the element in that column and vice-versa.

e.g.: 𝛼−1 -> 𝛼14

 𝛼−2 -> 𝛼13 etc…

2.4.4 Polynomial Arithmetic

The polynomials are really only representations of bit patterns with the values of the exponents

dictating the location of the bits and the coefficients specifying the values at those locations. The

polynomials allow us to visualise the arithmetic and to apply mathematical rules to the

operations that are performed.

12

3. REED-SOLOMON CODES

3.1 Reed-Solomon background

Reed-Solomon (RS) codes are non-binary, BCH, cyclic, linear block error correction codes.

 Linear block codes are block architecture, optional systematic structure, and all code words are

sums of code words. It has a block length of n symbols and a message length of k symbols. If the

code is systematic, then it also has an unaltered data field of k symbols independent of the

associated parity-check field of n-k symbols.

Cyclic codes are codes where the linear block codes properties are valid and any cyclic rotation

of a codeword is also a codeword.

A BCH code is a cyclic polynomial code over a finite field with a particularly chosen generator

polynomial. They have the same characteristics as other cyclic codes, but with an additional

characteristic; BCH codes can fairly easily be implemented into systems with any error

correction capability of t symbols along with particular choices of the message length of k

symbols and the block length of n symbols.

Reed-Solomon codes are very powerful burst error correcting codes, which means that they can

correct many errors occurring one after the other in bits. This happens because they use decimal

symbols instead of binary and the correction is made on whole symbols rather than bits.

3.1.1 Reed-Solomon Codewords

A binary based, t error correcting, primitive RS code has the following parameters:

Block length: 𝑛 = 2𝑚−1 symbols

 Number of parity-checks: 𝑛 − 𝑘 = 2𝑡 symbols

Minimum distance: 𝑑𝑚𝑖𝑛 = 2𝑡 + 1 symbols

Where 𝑚 is the number of bits per symbol 𝑛 is the codeword length and 𝑘 is the message length.

RS codewords are denoted with the expression RS [n, k]. 2 x parity symbols are required to

correct a single symbol error. Therefore, 2t = 32 would correct a 16 symbol errors.

13

Figure 3-1 illustrates a RS codeword of length n and correcting capability t, formed from k

message symbols and 2t parity check symbols.

Figure 3-1: A Reed-Solomon codeword

In decoding the RS codewords, essentially three events may happen.

a) The first event (correct decoding) happens if there are t or fewer RS symbol errors in a

codeword. In this case the decoder successfully corrects the errors and outputs the correct

information block.

b) The second event (detected error) happens if the number of RS symbol errors in a codeword is

more than t, but the corrupted codeword is not close to any other codeword within the distance of

t symbols. In this case the RS decoder fails to decode but can alert the user.

c) The third event (undetected error) happens if the number of RS symbol errors in a codeword is

more than t, and the corrupted codeword is closer to some other codeword within the distance of

t symbols. In this case the decoder is fooled, decodes incorrectly, and outputs a wrong

information block. In other words, it claims the decoded block as a correct one and by doing this

it may create up to t additional symbol errors (compared to the number of errors in the uncoded

information block)

3.1.2 Reed-Solomon Polynomials

Two polynomials over GF(2𝑚) are needed for the whole process.

The field generator polynomial f(x) which produces the GF as we mentioned on chapter 2 and

the generator polynomial g(x) of degree 2t-1 which is used to produce the parity check symbols.

14

3.2 Reed-Solomon encoder

The parity check information of 2t symbols is obtained from the message information

𝑀(𝑥) = 𝑀𝑘−1𝑥𝑘−1 + 𝑀𝑘−2𝑥𝑘−2 + ⋯ + 𝑀1𝑥1 + 𝑀0 (3.1)

by dividing with the generator polynomial

𝑔(𝑥) = 𝑥2𝑡 + 𝑔2𝑡−1𝑥2𝑡−1 + 𝑔2𝑡−2𝑥2𝑡−2 + ⋯ + 𝑔0 (3.2)

and taking the remainder (modulo function).

First we shift the message polynomial M(x) 2t symbols by multiplying with 𝑥𝑛−𝑘 = 𝑥2𝑡 then we

divide with the generator polynomial g(x) and keep the remainder, the coefficients of the

remainder are the parity check symbols. If CK(x) is the parity check:

𝐶𝐾(𝑥) = 𝑥2𝑡𝑀(𝑥)𝑚𝑜𝑑𝑔(𝑥) = 𝐶𝐾𝑛−𝑘−1𝑥𝑛−𝑘−1 + 𝐶𝐾𝑛−𝑘−2𝑥𝑛−𝑘−2 + ⋯ + 𝐶𝐾1𝑥 + 𝐶𝐾0

(3.3)

The codeword that is to be sent is produced by appending the parity check symbols to the

transmitted message. This structure (taking the message and adding parity check symbols

without changing the message symbols) is called systematic. The way to produce the codeword

is to simply add the CK(x) polynomial of degree 2t-1 (length 2t) with the shifted version of the

message polynomial which will have all zeroes in the last 2t symbols ,thus no symbols will

overlap from the two polynomials. The resulting codeword C will have a form like:

𝐶(𝑥) = 𝑀𝑘−1𝑥𝑛−1 + 𝑀𝑘−2𝑥𝑛−2 + ⋯ + 𝑀1𝑥𝑛−𝑘+1 + 𝑀0𝑥𝑛−𝑘+𝐶𝐾𝑛−𝑘−1𝑥𝑛−𝑘−1

+ 𝐶𝐾𝑛−𝑘−2𝑥𝑛−𝑘−2 + ⋯ + 𝐶𝐾1𝑥 + 𝐶𝐾0

𝐶(𝑥) = 𝐶𝑛−1𝑥𝑛−1 + 𝐶𝑛−2𝑥𝑛−2 + ⋯ + 𝐶0 (3.4)

15

3.2.1 Generator Polynomial g(x)

The polynomial which produces the parity check information CK(x) to append to the message to

be transmitted is the generator polynomial for a primitive RS code (of length 2𝑛 − 1) which is

defined from the following equation:

𝑔(𝑥) = ∏ (𝑥 + 𝑎𝑔)
𝑖

𝐹𝑅+2𝑡−1

𝑖=𝐹𝑅

 (3.5)

Where FR is the first root of the polynomial and 𝑎𝑔 is a primitive element of the field generator

f(x). 𝑎𝑔 does not need to be the same element as the one used to produce the Galois field. It can

be any primitive element of the field 𝑎𝑘, the most common implementations use FR=1 and 𝑎𝑔 =

𝛼 as seen in bibliography. The choice of these parameters may result in different complexity in

hardware design both in the encoder and the decoder.

The roots of a generator polynomial, g(x), must also be roots of the codeword generated by g(x),

because a valid codeword is of the following form:

𝑐(𝑥) = 𝑞(𝑥) 𝑔(𝑥) (3.6)

where q(x) is a message-dependent polynomial. Therefore, an arbitrary codeword, when

evaluated at any root of g(x), must yield zero, or in other words

𝑔(𝑎𝑔
𝑖) = 𝑐(𝑎𝑔

𝑖) = 0 (3.7)

where i =FR,FR+1, FR+2, . . . , FR+2t-1.

A generator polynomial g(X) can also be constructed to be a self-reciprocating polynomial. Self-

reciprocating polynomials have equivalent jth and i-jth coefficients, for example a reciprocating

polynomial is

𝑔(𝑥) = 𝑥6 + 𝑎10𝑥5
+ 𝑎14𝑥4 + 𝑎4𝑥3 + 𝑎14𝑥2 + 𝑎10𝑥 + 1 (3.8)

16

The motive to use a self-reciprocating generator polynomial is that the encoder and decoder

require less hardware.

3.2.2 An encoding example

Example 3.1:

Using as an example a RS(15,9) we will demonstrate the encoding process. Using the field

generator

𝑓(𝑥) = 𝑥4 + 𝑥 + 1

from chapter 2 and the primitive element α to construct the field and code generator:

𝑔(𝑥) = ∏ (𝑥 + 𝑎𝑔)
𝑖

𝐹𝑅+2𝑡−1

𝑖=𝐹𝑅

For 𝑎𝑔 = 𝛼 and FR=1 we get:

𝑔(𝑥) = ∏ (𝑥 + 𝑎)𝑖 = (𝑥 + 𝑎)(𝑥 + 𝑎2)(𝑥 + 𝑎3)(𝑥 + 𝑎4)(𝑥 + 𝑎5)(𝑥 + 𝑎6) =

2𝑡

𝑖=1

(𝑥2 + (𝑎 + 𝑎2)𝑥 + 𝑎3)(𝑥2 + (𝑎3 + 𝑎4)𝑥 + 𝑎7)(𝑥2 + (𝑎5 + 𝑎6)𝑥 + 𝑎11)

= (𝑥2 + 𝑎5𝑥 + 𝑎3)(𝑥2 + 𝑎7𝑥 + 𝑎7)(𝑥2 + 𝑎9𝑥 + 𝑎11)

= ⋯

𝑔(𝑥) = 𝑥6 + 𝑎10𝑥5 + 𝑎14𝑥4 + 𝑎4𝑥3 + 𝑎6𝑥2 + 𝑎9𝑥 + 𝑎6

If m bits per symbol =4 and the message to be sent is

𝑀(𝑥) = 0𝑥8 + 0𝑥7 + 0𝑥6 + 0𝑥5 + 0𝑥4 + 0𝑥3 + 0𝑥2 + 𝑎11𝑥 + 0 =

[0000000𝑎110] =0x0000000E0 in hexadecimal

We must determine CK(x) first

𝐶𝐾(𝑥) = 𝑥6(𝑎11𝑥)𝑚𝑜𝑑𝑔(𝑥)

𝐶𝐾(𝑥) = 𝑥6(𝑎11𝑥)𝑚𝑜𝑑(𝑥6 + 𝑎10𝑥5 + 𝑎14𝑥4 + 𝑎4𝑥3 + 𝑎6𝑥2 + 𝑎9𝑥 + 𝑎6)

17

𝑎11 𝑥7 |
𝑥6 + 𝑎10𝑥5 + 𝑎14𝑥4 + 𝑎4𝑥3 + 𝑎6𝑥2 + 𝑎9𝑥 + 𝑎6

𝑎11𝑥 + 𝑎6

𝑎11𝑥7 + 𝑎6𝑥6 + 𝑎10𝑥5 + 𝑥4 + 𝑎2𝑥3 + 𝑎5𝑥2 + 𝑎2𝑥 |

 𝑎6𝑥6 + 𝑎10𝑥5 + 𝑥4 + 𝑎2𝑥3 + 𝑎5𝑥2 + 𝑎2𝑥 |

 𝑎6𝑥6 + 𝑎𝑥5 + 𝑎5𝑥4 + 𝑎10𝑥3 + 𝑎12𝑥2 + 𝑥 + 𝑎12 |

= 𝑎8𝑥5 + 𝑎10𝑥4 + 𝑎4𝑥3 + 𝑎14𝑥2 + 𝑎8𝑥 + 𝑎12

So it is derived that the parity check polynomial CK is:

𝐶𝐾(𝑥) = 𝑎8𝑥5 + 𝑎10𝑥4 + 𝑎4𝑥3 + 𝑎14𝑥2 + 𝑎8𝑥 + 𝑎12

Therefore, the codeword C(x) for our message M(x) is:

𝐶(𝑥) = 𝑥6𝑀(𝑥) + 𝐶𝐾(𝑥)

𝐶(𝑥) = 𝑎11𝑥7 + 𝑎8𝑥5 + 𝑎10𝑥4 + 𝑎4𝑥3 + 𝑎14𝑥2 + 𝑎8𝑥 + 𝑎12

Or

𝐶 = [0000000𝑎110𝑎8𝑎10𝑎4𝑎14𝑎8𝑎12]

As we can see the result is a systematic codeword since the first nine symbols are the message

symbols from M(x).

3.3 Reed-Solomon decoder

The decoding process is usually more complex and difficult to understand. In Reed-Solomon

codes the procedure can be separated in 2 big steps:

1. Error detection part, in this part we calculate syndromes to detect whether there is an

error in the receive codeword or not.

2. Error correction part, this part consists of four stages:

 Find the error locator polynomial from the syndromes

 Specify the error positions from the error locator polynomial

 Calculate the error values from the syndromes and the error locator polynomial

 Correct the errors found from the previous processes

18

The whole decoding process can be described from the figure below.

Figure 3-2: Reed Solomon decoding process (adopted from [11])

Each stage of the decoder will be explained in the following sections.

Before the explanation of each stage some definitions shall be made:

 Let the transmitted codeword polynomial be C(x) formed as follow:

𝐶(𝑥) = 𝑐𝑛−1𝑥𝑛−1 + ⋯ + 𝑐1𝑥 + 𝑐0 , 𝑤ℎ𝑒𝑟𝑒 𝑐𝑖 𝑖𝑠 𝑜𝑣𝑒𝑟 𝐺𝐹(2𝑚) (3.8)

 Let the received codeword polynomial be R(x) formed as follow:

𝑅(𝑥) = 𝑟𝑛−1𝑥𝑛−1 + ⋯ + 𝑟1𝑥 + 𝑟0 , 𝑤ℎ𝑒𝑟𝑒 𝑟𝑖 𝑖𝑠 𝑜𝑣𝑒𝑟 𝐺𝐹(2𝑚) (3.9)

 Let the error polynomial be E(x) added by the channel formed as :

𝐸(𝑥) = 𝑒𝑛−1𝑥𝑛−1 + ⋯ + 𝑒1 + 𝑒0 , 𝑤ℎ𝑒𝑟𝑒 𝑒𝑖 𝑖𝑠 𝑜𝑣𝑒𝑟 𝐺𝐹(2𝑚) (3.10)

The received codeword R(x) is related with the others as shown below:

𝑅(𝑥) = 𝐶(𝑥) + 𝐸(𝑥) (3.11)

In the decoding process we try to determine E(x) and then what we need to do is subtract the

calculated E(x) from the received codeword R(x) to get the codeword C(x) and thus the message

M(x) by removing the parity check symbols CK(x):

𝐶(𝑥) = 𝑅(𝑥) − 𝐸(𝑥) (3.12)

𝑀(𝑥) = 𝐶(𝑥)𝑟𝑒𝑚𝑜𝑣𝑒(𝐶𝐾(𝑥)) (3.13)

19

3.3.1 Syndrome calculation

Syndromes in the coding applications are some individual characteristics that characterize a

particular error pattern. The syndrome polynomial S(x) is formed as:

𝑆(𝑥) = ∑ 𝑆𝑖𝑥
𝑖−𝐹𝑅

𝐹𝑅+2𝑡−1

𝑖=𝐹𝑅

 (3.14)

where FR is the first root of the generator polynomial g(x).

Each coefficient can be described as:

𝑆𝑖 = 𝑅(𝑎𝑔
𝑖) ,

 𝑖 = 𝐹𝑅, … , 𝐹𝑅 + 2𝑡 − 1 (3.15)

If all coefficients are zero then there is no error, else if there is a non-zero coefficient it means

there is an occurrence of error. For the previous RS(15,9) example 3.1:

Example 3.2:

𝐶(𝑥) = 𝑎11𝑥7 + 𝑎8𝑥5 + 𝑎10𝑥4 + 𝑎4𝑥3 + 𝑎14𝑥2 + 𝑎8𝑥 + 𝑎12

by introducing some errors to this codeword we get the erroneous codeword R(x):

𝑅(𝑥) = 𝑥8 + 𝑎11𝑥7 + 𝑎8𝑥5 + 𝑎10𝑥4 + 𝑎4𝑥3 + 𝑎3𝑥2 + 𝑎8𝑥 + 𝑎12

Notice the errors on coefficients of 𝑥8 and 𝑥2, 0 has changed to 1 and 𝑎14 to 𝑎3 respectively. For

𝑎𝑔 = 𝑎1 and FR=1 we have:

𝑆1 = 𝑅(𝑎1) = 𝑎8 + 𝑎11(𝑎7) + 𝑎8(𝑎5) + 𝑎10(𝑎4) + 𝑎4(𝑎3) + 𝑎3(𝑎2) + 𝑎8(𝑎) + 𝑎12 = ⋯ = 1

𝑆2 = 𝑅(𝑎2) = 1

𝑆3 = 𝑅(𝑎3) = 𝑎5

𝑆4 = 𝑅(𝑎4) = 1

𝑆5 = 𝑅(𝑎5) = 0

𝑆6 = 𝑅(𝑎6) = 𝑎10

20

The non-zero values indicate that there are errors in the codeword. The syndrome polynomial is

formed:

𝑆(𝑥) = 𝑎10𝑥5 + 𝑥3 + 𝑎5𝑥2 + 𝑥 + 1

Another method to find the syndrome polynomial is to first find the remainder of R(x)/g(x), then

evaluate the remainder polynomial for 𝑎𝑔
𝑖 , i=FR,…,FR+2t-1 . The results are the coefficients of

the syndrome polynomial in order from the lower x exponent to the highest.

3.3.2 Error locator polynomial

The next step, after the computing the syndrome polynomial is to calculate the error values and

their respective locations. This stage involves the solving of the 2t syndrome polynomials,

formed in the previous stage. These polynomials have T unknowns, where T is the number of

unknown errors prior to decoding. If the unknown locations are (𝑖1, 𝑖2, … , 𝑖𝑇) the error

polynomial can be expressed as,

𝐸(𝑥) = 𝑌1𝑥𝑖1 + 𝑌2𝑥𝑖2 + ⋯ + 𝑌𝑇𝑥𝑖𝑇 (3.16)

Where 𝑌𝑗 is the magnitude of the jth error at location 𝑖𝑗 . If 𝑧𝑗 is the field element associated with

the error location 𝑖𝑗 , then the syndrome coefficients are given by,

𝑆𝑖 = ∑ 𝑦𝑗𝑧𝑗
𝑖

𝑇

𝑗=1

 (3.17)

where i=FR,FR+1,…,2t+FR-1.

The expansion of this sum (3.17) gives the following set of 2t equations in the T unknown

locations 𝑧𝑗 and T unknown error magnitudes 𝑦𝑗.

𝑆1(𝑥) = 𝑦1𝑧1 + 𝑦2𝑧2 + ⋯ + 𝑦𝑇𝑧𝑇

𝑆2(𝑥) = 𝑦1𝑧1
2 + 𝑦2𝑧2

2 + ⋯ + 𝑦𝑇𝑧𝑇
2

…

𝑆2𝑡(𝑥) = 𝑦1𝑧1
2𝑡 + 𝑦2𝑧2

2𝑡 + ⋯ + 𝑦𝑇𝑧𝑇
2𝑡

 (3.18)

21

The above set of equations must have at least one solution because of the way the syndromes are

defined. This solution is unique. Thus the decoder‘s task is to find the unknowns given the

syndromes. This is equivalent to the problem in solving a system of non-linear equations.

Clearly, the direct solution of the system of nonlinear equations is too difficult for large values of

T. For this we need to find the error locator polynomial. There are two different error locator

polynomials which are related to each other. The degree of either of these polynomials

determines the total number of error symbols T which is less than or equal to the error correction

capability t.

The first one has the error locators 𝑧𝑖 … 𝑧𝑇 as its roots, which means v factors of the form

(𝑥 + 𝑧𝑖) , 𝑓𝑜𝑟 𝑖 = 1 … 𝑇

𝜎(𝑥) = (𝑥 + 𝑧1)(𝑥 + 𝑧2) … (𝑥 + 𝑧𝑇)

= 𝑥𝑇 + 𝜎1𝑥𝑇−1 + ⋯ + 𝜎𝑇

 (3.19)

where T is the number of errors.

The alternative representation has the inverse of the error locators 𝑧𝑖
−1 … 𝑧𝑇

−1 as its roots, so it has

a form of

(1 + 𝑥𝑧𝑖), 𝑓𝑜𝑟 𝑖 = 1 … 𝑇

𝛬(𝑥) = (1 + 𝑥𝑧1)(1 + 𝑥𝑧2) … (1 + 𝑥𝑧𝑇)

= 1 + 𝛬1𝑥 + ⋯ + 𝛬𝛵−1𝑥𝑇−1 + 𝛬𝑇𝑥𝑇

 (3.20)

And the relation between them is:

𝜎(𝑥) = 𝑥𝑇𝛬(𝑥−1)

(3.21)

So the coefficients 𝛬𝑖 and 𝜎𝑖 are the same.

There are 2 commonly known methods to find the locator polynomial. Berklamp-Massey

algorithm, the extended Euclidean algorithm for computing the GCD. We mainly focus on the

extended Euclidean algorithm as it is the easiest to understand, but the other will be briefly

described for completeness.

22

Our goal for each of the two algorithms is to solve the key equation

Ω(𝑥) ≡ 𝛬(𝑥)𝑆(𝑥) 𝑚𝑜𝑑 𝑥2𝑡

 (3.22)

where Ω(𝑥) is the error evaluator polynomial.

3.3.2.1 The Berlekamp-Massey algorithm

The Berlekamp-Massey algorithm relies on the fact that the matrix of equations is highly

structured. This structure is used to obtain the vector σ by a method that is conceptually more

complicated. If the vector Λ(x) is known, then the first row of the above matrix equation defines

𝑆𝐹𝑅+𝑇 in terms of 𝑆𝐹𝑅 , 𝑆𝐹𝑅+1, … , 𝑆𝐹𝑅+𝑇−1 .The second row defines 𝑆𝐹𝑅+𝑇+1 in terms of

𝑆𝐹𝑅+1, 𝑆𝐹𝑅+2, … , 𝑆𝐹𝑅+𝑇 and so forth. This sequential process can be summarized by the recursive

relation,

𝑆𝑗 = ∑ 𝛬𝑖𝑆𝑗−1

𝑇

𝑖=1

 (3.23)

where j=FR+T, FR+T+1,…, FR+2T-1.

For fixed Λ, this is equivalent to the equation of an autoregressive filter. It can be implemented

as a linear-feedback shift register that will consequently generate the known sequences of

syndromes.A flowchart of the algorithm is presented in fig.3-3. So Λ(x) is derived from this

process. If we need to calculate the Ω(x) also, it is just as simple as multiplying Λ(x) with S(x).

23

Figure 3-3-3: The Berlekamp-Massey algorithm

24

3.3.2.2 The extended Euclidean algorithm

The extended Euclidean algorithm (EEA) computes the greatest common divisor of two elements

𝑎1, 𝑎2 from a Euclidean domain E (e.g., a ring of polynomials over a field) and coefficients u, v

∈ E such that 𝑎1𝑢 + 𝑎2𝑣 = gcd(𝑎1, 𝑎2). The algorithm proceeds by dividing 𝑎𝑗 by 𝑎𝑗+1 so that

𝑎𝑗 = 𝑎𝑗+1𝑞𝑗+1 + 𝑎𝑗+2 with quotient 𝑞𝑗+1 and remainder 𝑎𝑗+2. Each step of the Euclidean

algorithm works because the division implies that 𝑔𝑐𝑑(𝑎𝑗 , 𝑎𝑗+1) = 𝑔𝑐𝑑(𝑎𝑗+1, 𝑎𝑗+2). For

polynomials, the Euclidean algorithm terminates when 𝑎𝑗 = 0. This always occurs because

𝑑𝑒𝑔(𝑎2) < 𝑑𝑒𝑔(𝑎1) holds by assumption and 𝑑𝑒𝑔(𝑎𝑗+2) < 𝑑𝑒𝑔(𝑎1) holds by induction. The

extended algorithm also computes 𝑢𝑗 , 𝑣𝑗 recursively so that 𝑎𝑗 = 𝑢𝑗𝑎1 + 𝑣𝑗𝑎2. Starting

from 𝑎3 = 𝑎1 − 𝑞2𝑎2 (𝑖. 𝑒. , 𝑢3 = 1 𝑎𝑛𝑑 𝑣3 = −𝑞2), we have the recursion 𝑎𝑗+2 = 𝑎𝑗 −

𝑞𝑗 +1𝑎𝑗+1 = (𝑢𝑗 𝑎1 + 𝑣𝑗𝑎2) − 𝑞𝑗 +1(𝑢𝑗+1𝑎1 + 𝑣𝑗 +1𝑎2). This gives the recursions

𝑢𝑗+2 = 𝑢𝑗 − 𝑞𝑗 +1𝑢𝑗+1 ⇾ 𝑢𝑗 = 𝑢𝑗−2 − 𝑞𝑗−1𝑢𝑗−1 (3.24)

𝑎𝑛𝑑

 𝑣𝑗+2 = 𝑣𝑗 − 𝑞𝑗 +1𝑣𝑗+1 ⇾ 𝑣𝑗 = 𝑣𝑗−2 − 𝑞𝑗−1𝑣𝑗−1 (3.25)

starting from 𝑢3 = 1 and 𝑣3 = −𝑞2.

The decoding of the RS codes is accomplished using a partial application of the EEA algorithm

to compute gcd(𝑥2𝑡 , 𝑆(𝑥)) . The extended part of the algorithm generates a sequence of

relationships of the form:

 𝑢𝑗(𝑥)𝑥2𝑡 + 𝑣𝑗(𝑥)𝑆(𝑥) = 𝑎𝑗(𝑥) (3.26)

where the degree of 𝑎𝑗(𝑥) is decreasing with j. At the step jj where 𝑑𝑒𝑔 (𝑎𝑗(𝑥)) < 𝑡 for the first

time the algorithm should stop. Viewing the above relationship as a congruence modulo 𝑥2𝑡

gives:

 𝑣𝑗(𝑥)𝑆(𝑥) ≡ 𝑎𝑗(𝑥) 𝑚𝑜𝑑 𝑥2𝑡 (3.27)

25

So we see that 𝑣𝑗𝑗 , 𝑎𝑗𝑗 satisfy the key equation for 𝑣𝑗𝑗 = 𝛬(𝑥) ,𝑎𝑗𝑗 = 𝛺(𝑥). Another great

advantage of the Euclidean algorithm is that we can receive both the error locator and the error

evaluator polynomials from the same algorithm. A schematic representation of the whole

algorithm can be seen below in fig.3-3.

At the initialization process we set

𝛬−1 = 0 ,

𝛬0 = 1

𝛺−1(𝑥) = 𝑥2𝑡

𝛺0(𝑥) = 𝑆(𝑥)

Since we need to get the corresponding polynomials from the gcd(𝑥2𝑡 , 𝑆(𝑥)) . Ω(𝑥) is the

remainder of the division on each step of the algorithm when its degree is lower than t the

algorithm returns , giving us Λ(x) and Ω(x) .

26

Figure 3-4-4: The extended Euclidean algorithm

Example 3.3:

Let

𝑆(𝑥) = 𝑎10𝑥5 + 𝑥3 + 𝑎5𝑥2 + 𝑥 + 1

as the previous examples 3.1 and 3.2 , and t=3.

27

𝛺−1(𝑥) = 𝑥2𝑡 = 𝑥6

𝛺0(𝑥) = 𝑆(𝑥)

Step 1:

Divide 𝑥2𝑡 by S(x):

𝑥2𝑡 = 𝑎5𝑥𝑆(𝑥) + 𝑎5𝑥4 + 𝑎10𝑥3 + 𝑎5𝑥2 + 𝑎5𝑥

𝑄0(𝑥) = 𝑎5𝑥

𝛺1(𝑥) = 𝑎5𝑥4 + 𝑎10𝑥3 + 𝑎5𝑥2 + 𝑎5𝑥

𝛬1(𝑥) = 𝑄0(𝑥) = 𝑎5𝑥

The degree of 𝛺1 (=4) is bigger than t (=3) so the algorithm continues.

Step 2:

Divide 𝛺0(𝑥) = 𝑆(𝑥) by 𝛺1(𝑥) = 𝑎5𝑥4 + 𝑎10𝑥3 + 𝑎5𝑥2 + 𝑎5𝑥

𝑆(𝑥) = (𝑎5𝑋 + 𝑎10)𝛺1(𝑥) + 1

𝑄1(𝑥) = 𝑎5𝑥 + 𝑎10

𝛺2(𝑥) = 1

𝛬2(𝑥) = 𝛬0(𝑥) − 𝛬1(𝑥)𝑄1(𝑥) = 1 + (𝑎5𝑥)(𝑎5𝑥 + 𝑎10) = 1 + 𝑎10𝑥2 + 𝑎15𝑥

𝛬2(𝑥) = 𝑎10𝑥2 + 𝑥 + 1

The degree of 𝛺2 (=0) is smaller than t (=3) so the algorithm returns.

Therefore, the error locator polynomial is:

𝛬(𝑥) = 𝑎10𝑥2 + 𝑥 + 1

and the remainder

𝛺(𝑥) = 1

is the error evaluator polynomial, which will be described in extent in the following sections.

28

3.3.3: Finding the error locations

Having calculated the error locator polynomial we are now able to locate the error positions. Our

goal is to calculate the 𝑧𝑖 error locators using Λ(x) and then the corresponding error locations 𝑥𝑖

in the erroneous received codeword. The algorithm used to determine these values is called

Chien search.

3.3.3.1: The Chien search algorithm

The Chien search calculates the outputs for all the possible inputs; it is a very simple, brute force,

search algorithm. The Chien search determines the roots of either the error-locator polynomial or

of its reciprocal. The roots of the reciprocal of the error-locator polynomial σ(x) are the error-

locator numbers 𝑧𝑖 and the inverse of the roots of the error-locator polynomial Λ(x) are the

locator numbers 𝑧𝑖.

Using the Λ(x) polynomial it can be expressed as:

Λ(x) = ∏ (𝑥 + 𝑧𝑖)
𝑇

𝑖=1

for 𝑧𝑖 = 𝑎𝑘 for some k (3.28)

All we need to do is to substitute into it the inverse of 𝑎𝑛 for each value of n in the R(x)

codeword. The exponent location that returns a value of 0 is the locator number 𝑧𝑖 . The reason

for this is that S(x) contains the error information of the entire R(x) codeword and Λ(x) is

derived using S(x). The non-erroneous coefficients do not contribute to the error component and

return a non-zero value when substituted but the coefficient that is responsible for the error

cancels out and returns 0. The error locations 𝑥𝑖 are defined from the error-locator numbers 𝑧𝑖 as

𝑥𝑖 = 𝑋log𝑎 𝑧𝑖/𝐺 where 𝐺 = 𝑙𝑜𝑔𝑎𝑎𝑔. Using 𝑎𝑔 = 𝑎 => 𝐺 = 1 but using 𝑎𝑔 = 𝑎8 => 𝐺 = 8

We can also set the G to always be equal to 1 if instead of powers of 𝑎 we use powers of 𝑎𝑔 as

inputs to the Chien search algorithm and the log base is changed to 𝑎𝑔.

29

For instance using the error locator polynomial computed in the previous step example 3.3,

Example 3.4:

𝛬(𝑥) = 𝑎10𝑥2 + 𝑥 + 1

for the erroneous received codeword

𝑅(𝑥) = 𝑥8 + 𝑎11𝑥7 + 𝑎8𝑥5 + 𝑎10𝑥4 + 𝑎4𝑥3 + 𝑎3𝑥2 + 𝑎8𝑥 + 𝑎12

produced by the correct codeword

𝐶(𝑥) = 𝑎11𝑥7 + 𝑎8𝑥5 + 𝑎10𝑥4 + 𝑎4𝑥3 + 𝑎14𝑥2 + 𝑎8𝑥 + 𝑎12

as previously, we get :

Table 3-1: The outputs of Chien search

𝛬(𝑎0) 𝑎10 + 1 + 1 𝑎10

𝛬(𝑎−1) 𝑎10(𝑎−1)2 + 𝑎−1 + 1 𝑎13

𝛬(𝑎−2) 𝑎10(𝑎−2)2 + 𝑎−2 + 1 0

𝛬(𝑎−3) 𝑎10(𝑎−3)2 + 𝑎−3 + 1 𝑎13

𝛬(𝑎−4) 𝑎10(𝑎−4)2 + 𝑎−4 + 1 𝑎7

𝛬(𝑎−5) 𝑎10(𝑎−5)2 + 𝑎−5 + 1 𝑎10

𝛬(𝑎−6) 𝑎10(𝑎−6)2 + 𝑎−6 + 1 𝑎5

𝛬(𝑎−7) 𝑎10(𝑎−7)2 + 𝑎−7 + 1 𝑎9

𝛬(𝑎−8) 𝑎10(𝑎−8)2 + 𝑎−8 + 1 0

𝛬(𝑎−9) 𝑎10(𝑎−9)2 + 𝑎−9 + 1 𝑎5

𝛬(𝑎−10) 𝑎10(𝑎−10)2 + 𝑎−10 + 1 𝑎0

𝛬(𝑎−11) 𝑎10(𝑎−11)2 + 𝑎−11 + 1 𝑎9

𝛬(𝑎−12) 𝑎10(𝑎−12)2 + 𝑎−12 + 1 𝑎7

𝛬(𝑎−13) 𝑎10(𝑎−13)2 + 𝑎−13 + 1 𝑎6

𝛬(𝑎−14) 𝑎10(𝑎−14)2 + 𝑎−14 + 1 𝑎6

30

So the error locators are 𝑧1 = 𝑎2 and 𝑧2 = 𝑎8. The locations are 𝑥1 = 𝑋log𝑎 𝑎2/1 = 𝑋2 and 𝑥2 =

𝑋log𝑎 𝑎8/1 = 𝑋8.Which are indeed the location of the two errors as we can see comparing C(x)

with R(x).

3.3.4: Calculating the error values

Two methods are available to calculate the error values, direct calculation and Forney’s

algorithm.

3.3.4.1: Direct calculation

We have already calculated the number of errors, their positions and their syndromes, so we can

solve the following equation which was previously presented.

𝑆𝑖 = ∑ 𝑦𝑗𝑧𝑗
𝑖

𝑇

𝑗=1

 (3.29)

All values are now known, except for y which is the error values. This would expand to a linear

equations set easily solved now as we only need T=number of errors, of these equations to find

y.

Using the RS(15,9) example again we only need 𝑆1 = 1 and 𝑆2 = 1 as T=2 and 𝑧1 = 𝑎2, 𝑧2 =

𝑎8 (calculated in examples 3.2 and 3.4 respectively) to find the error values, indeed :

Example 3.5:

𝑆1 = 𝑦1𝑎2 + 𝑦2𝑎8 = 1 ⇾ 𝑦1𝑎2 + 𝑦2𝑎8 = 1

𝑆2 = 𝑦1(𝑎2)2 + 𝑦2(𝑎8)2 = 1 ⇾ 𝑦1𝑎4 + 𝑦2𝑎 = 1

Solving this linear set results in 𝑦1 = 1 , 𝑦2 = 1

31

3.3.4.2: Forney’s algorithm

Methods of calculating the error values based on Forney’s algorithm are more efficient than

direct method solving the syndrome equations as described in the previous section. Forney’s

algorithm makes use of the calculated polynomials Λ(x) and Ω(x) and the error locator numbers

𝑧𝑖 to find these values. First of all it is needed to calculate the derivative of Λ(x) which a quite

easy process. The derivative Λ’(x) is found by deleting the even powers of Λ(x) and dividing the

result by x. The 𝑦𝑖 values are found by the following equation:

𝑦𝑖 = 𝑧𝑖
1−𝐹𝑅 (

𝛺(𝑧𝑖
−1)

𝛬′(𝑧𝑖
−1)

)

 (3.30)

When FR=1, the term 𝑧𝑖
1−𝐹𝑅 disappears, so the formula is often quoted in the literature as

simply (
𝛺(𝑧𝑖

−1)

𝛬′(𝑧𝑖
−1)

), which gives wrong results for any other FR. Also in many books only the

condition where FR=0 is presented so the formula is changed to 𝑧𝑖 (
𝛺(𝑧𝑖

−1)

𝛬′(𝑧𝑖
−1)

) which is also giving

the wrong impression about the general formula.

It should be noted that this equation only gives valid results for symbol locations that we know

that they contain an error, if it is applied to other locations it will produce a mistake.

For the example we have used so far we have:

Example 3.6:

𝛬′(𝑥) =
(𝑎10𝑥2 + 𝑥 + 1)

𝑥
= 1

𝛺(𝑥) = 1

We have found from Chien search that there are two errors so we need to calculate two y:

𝑧1 = 𝑎2, 𝑧2 = 𝑎8

𝑦1 = 𝑎21−1
(

𝛺(𝑎−2)

𝛬′(𝑎−2)
) = 1 (

1

1
) = 1

𝑦2 = 𝑎81−1
(

𝛺(𝑎−8)

𝛬′(𝑎−8)
) = 1 (

1

1
) = 1

The error values are 𝑦1 = 1 , 𝑦2 = 1 , the same result as the direct calculation in example 3.5.

32

3.3.5 Decoding the codeword

So far the following steps have been described:

Step 1: Calculate the syndromes

Step 2: Find the error locator polynomial Λ(x). Also find the error evaluator polynomial Ω(x).

Step 3: Perform the Chien Search to find the roots of Λ (x).

Step 4: Find the magnitude of the error values using the Forney‘s Algorithm

One last step is left to complete the whole decoding process which is to use all that information

that was extracted to actually decode the codeword. What needs to be done is to form the error

polynomial E(x) and add (or subtract) it from the received codeword R(x). To achieve this we

take the error values 𝑦𝑖 and place them in the location found by Chien search , 𝑥𝑖 = 𝑋𝑘the error

polynomial will be of the form :

𝐸(𝑥) = ∑ 𝑦𝑖𝑥𝑖

𝑇

𝑖=1

= 𝑦1𝑥1 + 𝑦2𝑥2 + ⋯ + 𝑦𝑇𝑥𝑇

The corrected codeword C’(x) is calculated by the following formula:

𝐶′(𝑥) = 𝑅(𝑥) − 𝐸(𝑥) = 𝑅(𝑥) + 𝐸(𝑥)

To obtain the message M(x) we simply strip the corrected codeword from the parity check

symbols CK(x). If the errors occurred are less or equal to t we will have obtained the correct

message.

To verify this with the example 3.1 used so far, we have:

Example 3.7:

𝑅(𝑥) = 𝑥8 + 𝑎11𝑥7 + 𝑎8𝑥5 + 𝑎10𝑥4 + 𝑎4𝑥3 + 𝑎3𝑥2 + 𝑎8𝑥 + 𝑎12

𝑦1 = 1 , 𝑦2 = 1

𝑥1 = 𝑋2

𝑥2 = 𝑋8

33

𝐸(𝑥) = ∑ 𝑦𝑖𝑥𝑖

𝑇

𝑖=1

= 1𝑋2 + 1𝑋8 = 𝑥2 + 𝑥8

Remember that the correct transmitted codeword was:

𝐶(𝑥) = 𝑎11𝑥7 + 𝑎8𝑥5 + 𝑎10𝑥4 + 𝑎4𝑥3 + 𝑎14𝑥2 + 𝑎8𝑥 + 𝑎12

Adding E(x) with R(x) we get:

𝐶′(𝑥) = 𝑅(𝑥) + 𝐸(𝑥) =

= 𝑥8 + 𝑎11𝑥7 + 𝑎8𝑥5 + 𝑎10𝑥4 + 𝑎4𝑥3 + 𝑎3𝑥2 + 𝑎8𝑥 + 𝑎12 + 𝑥2 + 𝑥8 =

= (1 + 1)𝑥8 + 𝑎11𝑥7 + 𝑎8𝑥5 + 𝑎10𝑥4 + 𝑎4𝑥3 + (𝑎3 + 1)𝑥2 + 𝑎8𝑥 + 𝑎12 =

= 𝑎11𝑥7 + 𝑎8𝑥5 + 𝑎10𝑥4 + 𝑎4𝑥3 + (𝑎14)𝑥2 + 𝑎8𝑥 + 𝑎12

Notice that C’(x) =C(x) the transmitted codeword. To receive the message itself we just strip the

parity check bits from the corrected codeword. This is the last six symbols for our example since

2t=6.

So we get our decoded message

𝑀(𝑥) = 𝑎11𝑥

Which is indeed the message transmitted.

34

4. CONVOLUTIONAL CODES

Convolutional coding is another important coding technique. This method of coding is more used

in communication channel with a memory. The implementation of convolutional codes is found

in applications, which require good performance and low computational complexity. Unlike

block codes, convolutional codes operate on code streams and the output does not depend only

on the input bits, but also on previous bits. It converts any length of message to a single

codeword. The name convolutional coding is given because the output bit stream of the encoder

is convolution of input data bit and the transfer function of the encoder.

4.1 Convolutional encoder

The encoder of convolutional codes is formed by a linear finite-state shift register. A (n, k, L)

convolutional code is represented by three parameters; n is the number of the encoder output bits,

k is the number of bits as input to the encoder, L is called the constraint length and is related to

the number of memory registers in the encoder. In general, a rate R=k/n, convolutional encoder

input (information sequence) is a sequence of k binary bits,

𝑢 = 𝑢0, 𝑢1, 𝑢2, … 𝑢𝑘 (4.1)

and the output (code sequence) is a sequence of n binary bits

𝑐 = 𝑐0, 𝑐1, 𝑐2, … , 𝑐𝑛 (4.2)

The selection of which bits are to be added to produce the output bit is called the generator

polynomial (g) for that output bit. The output sequence c, can be computed by convolving the

input sequence u with the generator polynomial g and instead of normal addition modulo-2

addition is used:

𝑐 = 𝑢 ∗ 𝑔 (4.3)

 A schematic representation of an encoder is presented in fig.5-1 below.

35

Figure 4-1: A (2, 1, 4) convolutional code (adopted from [7])

Here for each input bit 3 output bits are produced. The constraint length is L=4 and there are 2

generator polynomials 𝑔1 = (1 1 1 1) , 𝑔2 = (1 1 0 1) . So the outputs will be:

𝑐1 = 𝑚𝑜𝑑2(𝑢1 + 𝑢0 + 𝑢−1 + 𝑢−2)

𝑐2 = 𝑚𝑜𝑑2(𝑢1 + 𝑢0 + 𝑢−2)

So we see that g forms the output data.

4.2 States of a code

A convolutional coder has a finite number m of memory and consequently a finite number 2𝐿−1

of memory states. These states play an important role on the output of the encoder as for each

time the result of the encoder output depends on the current state. An example of the effect of the

states can be seen in table 5-1 below for the coder represented in fig.5-1.

36

Table 4-1: Look up table for the encoder of fig.4-1

As it is hard to retrieve the information easily from this table two ways of graphically

representing them have been invented: State diagram and trellis diagram.

Input Current State Output Next State

u S1 S2 S3 c1 c2 S1 S2 S3

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

1

1

0

1

0

0

1

1

0

0

1

0

1

1

0

0

1

1

0

0

1

1

0

1

0

0

1

1

0

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

37

4.2.1 State diagram

A state diagram is nothing more than a finite state machine with the states of the encoder as its

states , the input bits as its transition options and the output bits are represented on the transition

arrows as shown below for the same convolutional coder as before.

Figure 4-2: State diagram of the (2,1,4) code of fig.4-1 (adopted from [7])

We obtain the same information here as the look up table at table 4-1. The solid lines indicate

input bit 0 and the dashed ones input bit 1.

4.2.2 Trellis diagram

A trellis diagram is an extended representation of state diagram. For each instant of time it shows

all the possible states. A unique path through the trellis represents the input bits and output bits.

A trellis diagram consists of a node and the branches representing the state of the encoder and

the transition of state. The initial node of the trellis diagram is the starting node. A combination

of consecutive branches that connects the initial node to another node in the trellis is called a

38

path and the number of branches comprising a path is called the length of the path. The trellis

diagram is drawn by lining up all the possible states 2𝐿−1 in the vertical axis and then connect

each state to the next by the allowable codeword for that state. There are only two choices

possible at each state, determined by the arrival of either bit 0 or bit 1. It is always assumed that

the encoder is cleared and the initial state of the encoder is all zero. The arrows going upwards

represent a 0 bit and those going downwards represent a 1 bit. The output is represented on the

arrows as shown in fig.4-3.

Figure 4-3: Trellis diagram of the (2,1,4) code (adopted from [7])

To encode a message we start at the 000 state and follow the arrows according to the message we

have, the result sequence is the appending of the symbols on the corresponding arrows one after

the other.

39

4.3 Convolutional decoder

The basic idea of decoding is that when we receive a codeword it might have errors or not. From

the encoding process we know all the possible codewords for a specific number of bits which

depend on standard bit inputs. What we try to do is to map erroneous codewords to the correct

ones based on some criteria as how close it is to one of the correct codewords.

4.3.1 The Viterbi decoder

The Viterbi decoder examines an entire received sequence of given length. The decoder

computes a metric for each path of the trellis and makes a decision. All paths are computed until

two paths converge on one node, in which case we keep the one with the higher metric (ties are

broken arbitrarily). We repeat this process for every stage, and at the end we add tail bits in

order to force a return in the all-zero state. The surviving path is the decoder’s decision.

The metric that can be used is usually hamming metric or Euclidean distance. Each of these

metrics defines a different decoding decision making hard or soft respectively. Hamming metric

denotes how many bits are the same between a codeword and the input the higher the better.

For example the (2,1,4) decoding process is presented in fig.4-4,4-5 for input of (01 11 01 11 01

01 11).

Figure 4-4: The first 4 steps of Viterbi decoding of the (2,1,4) example (adopted from [7])

40

For the first 3 steps we just follow the arrows and accumulate the metrics for each path. At step 4

however, we need to discard some paths as they converge. The red lines crossed out show that

these paths are discarded as their metric is lower. We only continue the process for the surviving

paths. The result will be the following diagram in fig4-5.

Figure 4-5: The final step of the decoding (adopted from [7])

So the decoded bit sequence is 1011000. Note that the 4 zeroes in the end are there to return the

decoder to all zero state.

In essence, we are performing Maximum Likelihood Sequence Estimation (MLSE), locating in

the trellis the sequence most likely transmitted. We can also use the Viterbi algorithm with soft

decoding. In this case we use the Euclidean distance instead of the Hamming distance. The

Euclidean distance between two vectors r and s is:

𝑑 = ∑|𝑟𝑖 − 𝑠𝑖|2

𝑖

In this expression, r i are the unquantized values from the received sequence fed into the Viterbi

decoder, and s i are the fixed values corresponding to a given sequence in the trellis. We also

choose based on the lowest metric rather than the highest.

41

4.3.2 Truncation

In practice, we do not wait until the end of the source sequence to make a decision about which

sequence was transmitted. The algorithm makes a decision about bits that are “sufficiently” in

the past. In particular, at every stage we make a decision about which bits were transmitted

before 𝐿𝑇𝑟 stages, before we move to the next stage. The parameter 𝐿𝑇𝑟 is called the truncation

depth. In this way, we only retain in the memory of the decoder data about a sliding window, as

shown below. A good choice has turned out to be 𝐿𝑇𝑟 ≈6L (six constraint lengths).

42

5. SIMULATION AND RESULTS

5.1 Simulation approach

After successfully implementing the proposed decoder parameters in MATLAB simulations

were performed to analyze their effectiveness. The channel used is an AWGN channel, the

modulation is Binary phase-shift keying (BPSK) and 3 coding methods are tested. Convolutional

codes, Reed Solomon codes and their concatenation. After that an attempt is made to increase

even more the Bit error rate with usage of interleaving.

5.2 Simulation of the Convolutional code

The convolutional code can be described by the following figure fig.5-1.

Figure 5-1: The convolutional encoder (adopted from [8])

The characteristics of this coder are:

 Code rate: ½ bit per symbol

 Constraint Length : 7 bits

 Generator vectors : G1=(1111001) , G2=(1011011)

A (7,1/2) convolutional code selected for space applications in the 1970s was a standout

performer for its time. Exhaustive search over all convolutional codes with r=1/2 and K≤7 found

that only this code (not counting a few symmetric equivalents) was able to achieve a free

distance 𝑑𝑓𝑟𝑒𝑒=10

So it is a (2,1,7) encoder with an inventor in the second output bit.

The output sequence will be 𝑐1(1), 𝑐2(2) ̅̅ ̅̅ ̅̅ ̅̅

43

The decoding process uses soft maximum likelihood decision Viterbi decoder. With Viterbi

decoding, it is possible to greatly reduce the effort required for maximum likelihood decoding by

taking advantage of the special structure of the code trellis. Normally the decoder should operate

on the entire received sequence, however, this is not achievable since the long latency and

excessive memory storage required is too large. So a truncation length of 60 bits looks to be

perfect for our purpose.

The performance of this code is presented in fig.5-2 compared to the uncoded BPSK version for

the same channel and the same number of bits transmitted.

Figure 5-2: Performance of the convolutional code

44

The increase in performance is huge as expected compared to an uncoded transmission. Even on

a quite low SNR value of 1.5dB the convolutional code is able to produce a better performance

than the uncoded channel. As the SNR increases the performance of the transmission using the

convolutional code is getting much better than the uncoded channel having a gain of about 5 dB

to achieve a BER of 2 ∙ 10−7. The convolutional code produces an impressive gain for each

increase of 0.2dB which lasts from the very low SNR to high values of it. Having used the

uncoded transmission we would need twice the power used to accomplish the same results. So

the convolutional code is an outstanding choice for our purpose with relatively low complexity

and latency.

5.3 Simulation of the Reed Solomon code

The characteristics of the RS code that was used are:

 The message part is 223 symbols

 2t=32 symbols for parity check, so t=16

 So 255 symbols per codeword

The field generator polynomial is:

𝐹(𝑥) = 𝑥8 + 𝑥7 + 𝑥2 + 𝑥 + 1

 (5.1)

Over GF(2)

The code generator polynomial is:

𝑔(𝑥) = ∏ (𝑥 − 𝑎11𝑗)

127+𝑡

𝑗=128−𝑡

= ∏ (𝑥 − 𝑎11𝑗)

143

𝑗=112

Over (28) , where 𝐹(𝑎) = 0. (5.2)

So 𝑎𝑔 = 𝑎11, FR=112 and the biggest number/symbol is 255.

45

Figure 5-3: Performance of the RS(255,223) code

Figure 5-3 illustrates the performance of the proposed Reed Solomon code compared to the

uncoded BPSK transmission over an AWGN channel. The figure shows that only on a SNR

higher than 5dB the encoding process produces a considerable effect. The bound of the proposed

code is t=16, so it cannot correct an error if more than 16 have occurred on the same codeword.

Even with a quite big parity check number of symbols, the errors become sparse enough to be

corrected only on a high SNR. But when the SNR reaches values as high as 5.2dB we notice a

considerable decrease in the BER of the Reed-Solomon code which continues to decrease

sharply to achieve an important gain. Specifically a value of 3∙ 10−5 BER for a SNR of 6dB is

accomplished while the uncoded version has a BER of 3∙ 10−2 for the same SNR value, resulting

in a 𝑥103 better BER for the same transmitting power.

46

5.4 Simulation of the concatenated code

One widespread method to build a strong code while maintaining manageable decoding

complexity in space communications is to concatenate two codes, an ‘outer code’ and an ‘inner

code’. The proposed coding system consists of the Reed-Solomon outer code and the

convolutional inner code (which is Viterbi decoded). Typically, the inner convolutional code

corrects enough errors so that a high-code-rate outer code can reduce the error probability to

the desired level. The convolutional decoder usually produce errors in short bursts. This makes

the Reed Solomon code ideal to correct, since short burst errors will mostly occur in the same

symbol which will account as just one error of the 16 that are correctable. The proposed

RS(255,223) code’s symbols consist of 8 bits each, so up to 8 consecutive errors produced by the

Viterbi decoder will be clustered in one Reed Solomon symbol.

5.4.1 System without an interleaver

Figure 5-4 depicts the concatenated system used.

Figure 5-4: The structure of the concatenated system

47

Figure 5-5: Performance of the proposed concatenated system

Figure 5-5 illustrates the performance of the proposed concatenated system coding for an

AWGN channel and BPSK modulation. We can easily notice the great performance gain

received from the concatenation of the two coding methods. The performance of the

concatenated coder shows a coding gain of more than 1.5 dB from the best until now

convolutional code. The performance gain of the concatenated system is outstanding compared

to the uncoded transmission specifically it approaches a BER of 10−6 in a SNR of 3dB this

performance is approached by the uncoded version with a SNR more than three times of that.

Also the comparison between the concatenated an the Reed-Solomon code gives a coding gain of

more than 3dB. So it is essential to use such a system provided that it produces a significant

performance compared to any of the other versions of the same simulated transmission.

48

5.4.2 System with an interleaver

The concatenated system in fig.5-4 produces a significant increase in the performance of the

transmission but the gain can be increased even more by inserting an interleaver after the Reed-

Solomon coder. This will have as a result for the error bursts, which the Viterbi decoder

produces, to be spread to different Reed-Solomon codewords decreasing the number of

erroneous symbols in each individual codeword, thus improving the error correction efficiency.

The function of the interleaver is very easy. It just buffers the input symbols row by row, but

outputs them column by column. So an interleaver of length 2 will output firstly the 1st symbol of

the 1st codeword and secondly the 1st symbol of the 2nd codeword, then the 2nd symbol of the 1st

codeword and so on as shown in fig5-6.

Figure 5-6:Interleaver's function

49

This functions spreads the symbols to different timeslots so that when an error burst occurs the

damage for each codeword will be small and recoverable. However, this technique requires to

delay transmission and reception since we need D=interleaving depth codewords to be able to

decode each message.

 Figure 5-7 shows the new system with the interleaver included.

Figure 5-7: The system including the interleaver

The effect of the inclusion of the interleaver can be noticed in fig.5-8 which shows the

performance for the concatenated system using different depths of interleaving. The function of

the interleaver is so significant that it can produce coding gain of about 0.5dB. As expected the

higher the interleaving depth the better the performance is. We can say that D=5 is an optimal

value since it approaches the ideal performance, without much delay as higher depths require to

wait more for the whole D codewords to arrive. To perform this simulation the same messages

were sent but they were “cut” and sent in different portions in order to achieve the recommended

interleaving. We can see the result of this technique and it is easy to understand that the more we

spread the parts of the codewords the more rarely these parts will be erroneous since errors occur

in small bursts and it will unlikely to hit many symbols of the same codeword.

50

Figure 5-8: Performance of the concatenated system for different interleaving depths

5.4.3: Overall coding methods comparison

Figure 5-9 illustrates a comparison among all the different coding techniques that were used to

have a complete view of what performance each of them had and how much it was increased

after applying the full coding system illustrated in figure 5-7. An incredible gain of about 4dB is

noticed compared to the convolutional code, the best performer after the concatenated system.

Comparing the final system that was implanted to the uncoded transmission we can see that a

gain of about 4x in dB is produced. In conclusion, the final proposed system proves to be a very

efficient one and able to achieve a reliable communication in very bad conditions, so it can be

put in use for the many and severe difficulties met in space communications.

51

Figure 5-9: Performance comparison of different coding methods

52

6. CONCLUSION

In this thesis the concatenated CCSDS coding system was studied. The whole encoding and

decoding process was presented after first explaining the required algebra background. First the

Reed-Solomon encoder is examined and developed in Matlab as it was easier to understand and

then the decoder of this code is presented with the different approaches that exist to complete

each step of the decoding process. Afterwards, the convolutional code’s encoder and decoder is

demonstrated and implemented for our specific implementation. After successfully implementing

each code separately their concatenation is easily constructed by having the Reed-Solomon as an

outer code and the convolutional as an inner code.

Through this process the complexity of each step of the transmission is realized. We can see that

there are different ways to compute the required elements but the steps that it consists of are

constant and come in the same order to successfully transmit a message.

In addition to that, we demonstrate the performance gain that this approach produces compared

to using each coding method separately and the huge gain that the inclusion of an interleaver can

yield.

As a future work this system could be put in use for different and more complex channels to find

its performance. Also, the development of this system in hardware could be examined as the

requirements for hardware in space communications are essential and should be as less complex

and small as possible.

53

REFERENCES

[1] Clark, George C., Jr. and Cain, J. Bibb, Error-Correction Coding for Digital

Communications, New York, N.Y.: Plenum Press, 1981.

[2] S. Lin, and D.J. Costello, Error Control Coding: Fundamentals and Applications, 2nd Ed.

Upper Saddle Rivers: Prentice-Hall, N.J, 1983.

[3] E.R. Berlekamp, Algebraic Coding Theory, New York: McGraw-Hill, 1968.

[4] S. Lin, An Introduction to Error-Correcting Codes, New Jersey: Prentice-Hall, 1970

[5] V.Pless, Introduction to the Theory of Error-Correcting Codes, 3rd ed. New York: John

Wiley & Sons,1998

[6] R. Johannesson and K. S. Zigangirov, Fundamentals of Convolutional Coding,

Piscataway, NJ: IEEE Press, 1999.

[7] http://complextoreal.com/wp-content/uploads/2013/01/convo.pdf

[8] CCSDS,TM Synchronization and Channel Coding. Blue Book. Issue 2. August 2011

[9] J. P. Odenwalder. “Concatenated Reed-Solomon/Viterbi Channel Coding for Advanced

Planetary Missions, Final Report.” Contract 953866. N.p.: n.p., December 1, 1974.

[10] NASA, Tutorial on Reed-Solomon error correction coding, Technical Report , Aug 01,

1990

[11] BBC:C.K.P Clarke, Reed-Solomon error correction, July 2002

