
University of South Wales

2060494

DATA COMPRESSION STRATEGIES FOR

RDAT/DDS MEDIA IN HOSTILE ENVIRONMENTS

OWEN DAVID JOHN THOMAS

Division of Mathematics and Computing

A submission presented in partial fulfilment of the requirements

of the University of Glarnorgan/Prifysgol Morgannwg for the

degree of Doctor of Philosophy

September 1996

Acknowledgments

This work was supported by the Higher Education Funding Council for Wales through their
DEVR initiative.

I am grateful to D. Burke, late of British Gas, for helpful discussions in the early stages of this
work.

I offer sincerest thanks to my supervisors, Alan Ryley and Derek Smith, for their steadfast
faith and patience and for their skilful guidance of my research.

11

Declaration

This is to certify that neither this thesis nor any part of it has been presented or is being

currently submitted in candidature for any degree other than the degree of Doctor of

Philosophy of the University of Glamorgan.

Candidate., L Juft~-* ' £&** <r-^ .
• ••«•»»•••••••••••••••••••••••••••••••••••••

Ill

Certificate of Research

This is to certify that, except where specific reference is made, the work presented in this
thesis is the result of the investigation undertaken by the candidate.

Director of Studies..

IV

Abstract

This thesis investigates the prevention of error propagation in magnetically recorded

compressed data when severe environmental conditions result in uncorrected channel errors.

The tape format DDS is examined and a computer simulation of its error correction procedures

is described. This software implementation uses explicit parity byte equations and these are

presented for all three Reed-Solomon codes. The simulation allows the calculation of the

uncorrected error patterns when the recording is compromised and uncorrected byte errors are

determined for given initial random and burst errors.

Some of the more familiar data compression algorithms are visited before the little known

adaptive Rice algorithm is described in detail. An analytic example is developed which

demonstrates the coding mechanism.

A synchronized piecewise compression strategy is adopted in which the synchronizing

sequences are placed periodically into the compressed data stream. The synchronizing

sequences are independent of the compression algorithm and may occur naturally in the

compressed data stream. A cyclic count is added to the compressed data stream to number the

groups of data between synchronizing sequences and prevent slippage in the data.

The Rice algorithm is employed in the strategy to compress correlated physical data. A novel

compressor is developed to compress mixed correlated physical data and text within the

synchronization strategy. This compressor uses the Rice algorithm to compress the correlated

data and a sliding window algorithm to compress the text and switches between the two

algorithms as the data type varies. The sliding window compressor T.ZR is adopted when the

same principles are applied to the robust compression of English text alone. TJ7R is modified

to improve compression of relatively small pieces of English text.

The synchronization strategy incorporating these algorithms has been simulated

computationally. This simulation is linked to that of DDS in each test performed when the

errors are both random and bursty. The decompressed data is compared to the original. The

strategy is demonstrated to be effective in preventing error propagation beyond the data

immediately affected by errors without significant damage to the compression ratio.

Contents

Introduction 1
1.1 Introduction 1

1.2 Encode for Error Control before Compression? 2

1.3 A Real Problem 4

1.4 Digital Data Storage (DDS) 4

1.5 Data Compression 9

1.6 The Research Programme 10

1.7 The Structure of the Presentation 11

The Simulation of DDS 12
2.1 Purpose of the Simulation 12

2.2 Simulation 12

2.3 Reed-Solomon Coding 13

2.3.1 Preamble 13

2.3.2 The Error Location Polynomial 14

2.3.3 The Parity Byte Equations for the DDS Reed-Solomon Codes 17

2.4 C2 Decoding 22

2.4.1 Single Byte Error Correction 25

2.4.2 Correction of Two Byte Errors 26

2.4.3 Erasure Correction 27

2.4.3.1 Modified Syndromes 31

2.5 Error Correction Performance 32

2.5.1 Evaluation of the Performance of the Computer Simulation 33

2.5.2 Implications for Data Compression 33

Data Compression 36
3.1 Data and Redundancy 36

3.2 Huffman Coding 37

3.3 Arithmetic Coding 39

VI

3.4 LZ77 Dictionary Compression 40

3.5 LZ78 Dictionary Compression 43

3.6 The Rice Algorithm 44

3.6.1 Overview of the Rice Algorithm 44

3.6.2 Preprocessing 44

3.6.2.1 Standard Form Source (s) 45

3.6.3 The Fundamental Sequence 45

3.6.4 The Basic Compressor 46

3.6.4.1 Third Extension 46

3.6.4.2 Coding of the Third Extension 46

3.6.4.3 Example 47

3.6.5 Split Samples 49

3.6.6 The Performance of the Rice Algorithm 52

3.6.7 The Split Samples Block Size 53

Robust Data Coiqptession 59
4.1 Error Propagation in Compressed Data 59

4.2 Preventing the Propagation of Errors in Compressed Data

- Piecewise Compression 60

4.2.1 Clear Codewords 62

4.2.2 A Robust Synchronizing Scheme 63

4.2.3 Error Tolerant Compressors in High Error Environments 67

4.3 Error Tolerant Compression of Correlated Physical Data 67

4.3.1 The Error Tolerant Compressor 68

4.3.2 Compression Performance 69

4.3.3 Random Errors 70

4.3.4 Burst Errors 72

4.4 Error Tolerant Compression of Mixed Correlated Physical and Text

Data 76

4.4.1 The Error Tolerant Compressor 76

4.4.2 Compression Performance 80

4.4.3 Random Errors 82

4.4.4 Burst Errors 82

4.5 Error Tolerant Compression of Text Data 83

Vll

4.5.1 LZB 84

4.5.2 T7B Piecewise Compression Performance 86

4.5.3 Error Propagation in LZB 88

4.5.4 The Error Tolerant Compressor 90

4.5.4.1 Random Errors 92

4.5.4.2 Burst Errors 93

4.6 Broad Mathematical Model of Data Recovery for Strong

Synchronization 94

5 DDS-3 Revisited 96
5.1 Preamble 96

5.2 The Parity Byte Equations 96

5.3 Uncorrected Burst Error Patterns 103

5.4 Implications for the Present Robust Data Compression Strategy 104

6 Conclusions 105
6.1 Review of the Thesis 105

6.2 New Results 106

6.3 Users and Data 107

6.4 The Parameters of the Strategy 109

6.5 Practicalities of Integrating the Strategy with DDS 110

6.6 Prevention of Slippage in Static Binary Prefix Codes 111

6.7 Future Developments 112

References

Copy of Publication

Vlll

Td like two dozen eggs, seven pounds of potatoes, three loaves of

bread, a cabbage and four large onions. Have you got that? It's not a

lot so you don't have to take the car - the walk'll do you good'.

Some time later - 'I wish I'd written a list, this doesn't seem right at

all; three dozen cabbages, two large eggs, four loaves of bread,

seventeen pounds of potatoes and ... a radish! I wonder if they sell

spinach.'

1

Chapter One

Introduction

1.1 Introduction

This thesis examines the effects of errors on coded information. The coding is a serial

combination of data compression and coding for error control. Data compression extracts

redundancy from the data leaving behind the information. Lossless compression allows the

original data to be recovered intact at a later stage. Coding for error control requires the

addition to the data, be it compressed or otherwise, of 'functions' of the data. The quantity of

functions added determines the extent to which errors can be corrected. The whole of the

examination reported here is summarized in the diagram below

errors

The error control encoding and decoding of the digital tape medium DDS (Digital Data

Storage) are 'givens' [1]. The challenge undertaken is to devise compression and

decompression strategies which still perform effectively, or indeed perform at all, when errors

remain uncorrected. This thesis offers, perhaps uniquely, an end-to-end simulation of the

[CHAP.1] Introduction 2

above, in which techniques and algorithms of varying degrees of celebrity are combined in

an unusual way.

1.2 Encode for Error Control before Corrpression?

The newcomer to this area of research, without the benefit of any work to which he might

refer, may puzzle over the order in which data compression and error control occur. The

following arguments should convince him that there can only be one order.

The two possibilities are shown below:

Case A

P Q R S T
——> Compress ——> Encode ——> Decode ——> Decompress —>

GaseB

P Q R S T
——> Encode ——> Compress ——> Decompress ——> Decode -

The errors are introduced into both systems at point R

Let m(s) = The average number of errors output if s errors are input to decompressor -

normally m(s)>s

(|)(s) = The average number of errors output if s errors are input to decoder.

(|)(0) = (j)(l) = (j)(2)... = (j)(e) = 0 i.e. the decoder can correct up to e errors.

Consider now the number of bits per 'block' following the data through the systems. CR1 and

CR2 are the compression ratios (compression ratio=compressed size over uncompressed size)

in case A and case B respectively (<1 in each case).

[CHAP .1] In troduc tion 3

Case P Q R S T

A k/Cl k n k k/Cl

B k/C2 n/C2 n n/C2 k/C2

Aigument 1 C2 > Cl because of a loss of semantic features on encoding and particularly

interleaving e.g. loss of runs for run length encoding, loss of Ziv Lempel repetitions - the

output of the encoder would be a binary string which would have to be compressed into

another binary string for storage.

Aigument 2 Consider random errors and assume Cl = C2. If there are t errors per block then

Output enuis per block

t 0 1 2 3 e e+1 e+2 e+5

Case A 0 0 0 0...0 0.................. 0 m(<|)(e+l) m(<Ke+2)) m(<Ke+S))

Case BO 0 0 0...0 (|<m(r+l)) (j<m(e)) (|<m(e+l)) (|<m(e+2)) <|Xm(e+5))

where r represents the maximum number of errors which, when input into the decompressor,

allows the number of propagated errors to fall within the error correction capability of the

decoder.

The functions m and (j> are both fairly unpredictable but in normal circumstances the results

for t = r+1, r+2 e give case A the advantage. Therefore both arguments show that case A

is the better.

[CHAP.1] Introduction 4

1.3 A Real Problem

DDS drives and tapes are an example of a proprietary recording technology that is both

readily accessible and portable. Such factors help make DDS an important tool for the

engineer. However, proprietary data storage devices are designed for use within a normal

working environment such as an office or laboratory. Were the engineer to wish to capture,

compress and record data remotely in a hostile environment, such as, for example, in an

underground pipeline or on board a spacecraft, he would discover that these same devices do

not operate with consistent reliability. The incidence of errors caused by the effects of

phenomena such as vibration, moisture, temperature fluctuations, dust and radiation might

cross the threshold of correctability. Any uncorrected channel errors arising out of the failure

of the device to cope with the adverse conditions encountered could have devastating

consequences for the compressed data. Conventional compression algorithms have an

unfortunate tendency to propagate errors throughout all the data that is subsequently

decompressed. This creates a need for a compression strategy which can be applied to the data

independently of the recording system and which limits the propagation of errors.

1.4 Digital Data Storage (DDS)

DDS offers [1] high data density - a 60m tape, contained in a cartridge measuring

approximately 3 in. by 2 in. by '/2 in., is able to store 1.3 Gbyte of data. The integrity

requirements of data for computer applications make effective error control essential. The DDS

format adds further error control procedures to the digital audio format [2] of 4mm tape. Error

[CHAP.l] Introduction 5

control of the audio format is contained within the tracks themselves. The DDS format permits

the use of any combination of the following:

4 read-after-write

* third level of Reed-Solomon error control coding

4 multiple-group-writing

Read-after-write allows the reading of the data immediately after writing - if there are any

errors uncorrected by the error control, it is written repeatedly, up to 128 times, until it is free

of errors. The third level of error control protects the tracks and can correct any two data

tracks within a group of forty four. Multiple-group-writing rewrites a group a fixed number

of times before the next group is written. If errors are found in reading a group then a

repetition of the group can be read. In a hostile environment it would be desirable to use all

three of the above measures but each measure reduces the storage capacity of the tape.

Existing data compression strategies could, perhaps, allow these measures to be used so that

the effective storage capacity of the tape is not too dissimilar to that for uncompressed data

in a non-hostile environment. It is likely, however, that in a hostile environment the more

mechanical procedures of repeated writings to the tape would be affected by errors in the same

manner as the original so that only the third level of error control coding is truly effective.

Moreover, in hostile environments data gathering is intrinsically difficult which makes

repeated data gathering unattractive. Hence maximum data gathering capacity is required.

Therefore, the use of the third level of error control coding alone might be the preferred

option. In this thesis it will be assumed that the third level of Reed-Solomon error control

coding is the only option invoked.

DDS structures the data into sequentially numbered Basic Groups of 126632 bytes and this

is the smallest unit that can be coded as a whole if the format is used to maximum effect. The

[CHAP.1] Introduction 6

encoding process may be summarized as follows, where Cl, C2 and C3 label the three Reed-

Solomon RS(n,k,d) codes - d is the minimum distance of the codes:

Data

C3 coding - RS(46,44,3)

Randomization
>l-

C2 coding - RS(32,26,7))
>F) interleaving

Cl coding - RS(32,28,5))

Modulation
•*•

Tape

This multi-ordered Reed Solomon coding requires that the parity bytes generated in the C3

coding are protected by the C2 coding. Similarly, the parity bytes generated by the C2 coding

are grouped with data bytes and protected by Cl coding. Prior to any coding the Basic Group

is broken into 22 Sub-Groups each of 5756 bytes. The C3 parity bytes are calculated across

the Basic Group - the C3 codeword consists of two data bytes from each Sub-Group plus two

parity bytes. The data in every Sub-Group is written in a single Frame (2 contiguous Tracks)

onto the tape. The burst error correction of the Reed-Solomon codes is reinforced by

interleaving. Consequently, a long burst error corrupts a few bytes in many codewords rather

than many bytes in just a few codewords.

In the DOS format the Cl and C2 parity bytes and the data which they protect are arranged

as shown below [1] - the interleave depth of Cl is two bytes and the interleave depth of C2

is four blocks:

[CHAP. 1] Introduction 7

Ser.
no.

0123456789. C jgs--•-••-•-••-••••

Block number'

5555555555 6677777777

:>X*>5*><S»«G<HM£«^>«^»

1111111111
1122222222

16 f&m

±3£Sj3^S§:ji:j:
~- - - .-.*--.w£*££3:£''£l' »»:

£<&-.

19

21
22
23
24 ;:•

26 i>
27 A
28 *
29 i>
30 ;:;
31 1

where

•j:j = data bytes

g: = C2 parity bytes

| = Cl parity bytes

The data bytes contain 34 DDS 'housekeeping1 bytes.

Each serially numbered row contains four C2 codewords. The first has a byte in each of

blocks 0, 4, 8,... etc., the second has a byte in each of blocks 1, 5, 9,... etc. and so on. Every

even numbered block, together with the block following, holds two complete Cl codewords.

The bytes of each Cl codeword are placed in alternate serially numbered rows, firstly filling

down through the even numbered block and then filling down through the odd numbered

block. The innermost Cl code can locate and correct two symbol errors. If there are more than

two errors then all symbols within the word are flagged as potential errors and passed onto

the C2 code. The C2 code, with its six parity bytes per codeword, is capable of locating and

correcting three symbol errors. In practice, however, only at most two symbols are corrected

[CHAP. 1] Introduction 8

in this way to prevent miscorrections [2]. If there are more than two symbol errors the

symbols to which the Cl flags are attached are assumed to be in error. The C2 code can

correct up to six errors if the locations are known (i.e. erasures) and if there are more than six

erasures all symbols in the codeword are flagged and passed onto the C3 code. The interleave

depth of C2 at four blocks means that an error covering up to twenty four blocks could be

corrected without resort to C3. Such an error is equivalent to a longitudinal corruption of

width around 0.3mm, The Cl and C2 parity bytes are calculated for the data within individual

Sub-Groups and are stored within the same Frame. The C3 parity bytes are coded in the same

way as the data and are stored in a Frame at the end of the Group. The C3 code can,

therefore, correct any two tracks in a Basic Group.

C3 Frame

22 Frames

The DDS-2 format [3] employs the same Reed-Solomon error control codes and interleaving

as the DDS-1 format. The principal differences between the formats are:

* 1.5 times more tracks per unit length of tape than DDS-1;

4 longer tape (120m);

4 read-after-write repeats up to 256 times;

* marginally different track angle.

[CHAP. 1] Introduction 9

The size of the Basic Group in the DDS-3 format [4] is 384296 bytes which is broken down

into twenty two Sub-Groups as in DDS-2 and DDS-1. Of the three Reed-Solomon error

control codes employed, C2 and C3 are nominally the same as those in the earlier formats.

In the new C2 code the parity bytes are at the ends of the codeword rather than in the centre.

The new Cl code is RS(62,56,7) i.e. a three error locating and correcting code. The interleave

depth of Cl is two bytes and the interleave depth of C2 is three Fragments (Blocks). Amongst

further differences between this and the DDS-2 format are:

4 doubling of the storage capacity of each track;

* less 'housekeeping1 data on each track;

4 longer tape (125m)

These changes constitute a threefold increase in storage capacity per unit length of tape over

that of DDS-2 - the new 125m tape will store 12GB of uncompressed user data.

Compliance with this new standard will not require that a drive be able to read or write the

earlier DDS formats. In practice, initially at least, compatibility with the earlier formats is

provided by manufacturers [5].

This thesis concentrates on DDS-1.

1.5 Data Compression

The option exists to compress data before recording on a DDS tape. The standard which

applies when compression is used with DDS is known as DDS-DC [6]. The standard specifies

the 'housekeeping1 aspects of handling compressed data. It does not specify any one

[CHAP.l] Introduction 10

compression algorithm for use with this format. At around the time of the Standard's

introduction there were two algorithms competing for pre-eminence - Hewlett Packard's DCLZ

algorithm and the sliding window algorithm LZS of Stac Electronics [7]. Since then the DCLZ

algorithm seems to have become a de facto industry standard algorithm for hardware

compression of DDS tapes [8,9]. Indeed, the DDS-2 Standard refers to DCLZ simply as an

exconple of a data compression algorithm for use with this format.

1.6 The Research Programme

At the outset it was decided that a simulation of the error control procedures of DDS was

required so that the environment-dependent error patterns could be calculated. This simulation

would allow the local behaviour of the compression strategies in the presence of errors to be

determined. A synchronized piecewise approach was chosen as the basis for the compression

strategy so that errors will propagate only as far as the next synchronizing sequence. Piecewise

compression usually results in the weakening of the compression performance. The

combination of this effect with the addition of the redundancy added to ensure synchronization

has to be weighed against the improved data recovery. The Rice algorithm [10] was

investigated firstly as it operates in a piecewise fashion and is adaptive. Adaptive algorithms

are preferred since any overhead such as a probability table is susceptible to errors and, if

affected, errors would propagate on decompression even if the code itself were unaffected.

This fact, at once, ruled out the use of self-synchronizing Huffman [11] codes since such

codes are necessarily static in nature. Notwithstanding this fact, self synchronization can never

be guaranteed nor can the absence of 'slippage' in the decompressed data Slippage refers to

the loss of positioning in the decompressed data relative to the original arising as a

[CHAP.l] Introduction 11

consequence of there having been either more or fewer values decompressed than originally

compressed. The prevention of slippage in the decompressed data was a core requirement in

the design specification of the compression strategies. The Rice algorithm compresses

correlated physical data. The project acquired a DDS tape containing a mixture of correlated

physical data and text data which was captured remotely in a potentially hostile environment.

It was, therefore, considered to be particularly important that this data be compressed

effectively and this is achieved with a novel eclectic compressor. The piecewise compression

of English text was investigated even though it is unlikely such data would be recorded in a

hostile environment. The attainment of satisfactory performance in this case provides a 'proof

of principle' for the compression of more compressible text data such as graphics.

1.7 The Structure of the Presentation

Chapter Two introduces Reed-Solomon codes and describes the simulation of the error control

encoding and decoding of DDS. The six erasure correction capability of C2 is detailed The

performance of DDS in the presence of burst errors and high random error rates is discussed

The third chapter begins with a discussion of the types of data and redundancy and then

proceeds to describe the better known compression algorithms. The chapter concludes with

a comprehensive account of the highly relevant but little known Rice algorithm. The principal

results are presented in Chapter Four. The phenomenon of error propagation in compressed

data is introduced firstly, heralding an examination of the means of prevention. Fully

synchronized compression strategies for correlated physical, mixed correlated physical and text

data and English text data are described in turn. Results for data recovery in varying hostile

environments are presented.

12

Chapter Two

The Simulation of DBS

2.1 Purpose of the Simulation

The purpose of this work is to provide a practical solution to the very real problem of poor

data recovery from compressed DDS tapes operating outside normal environmental parameters.

This work can only claim to do so if it has been tested successfully in the presence of realistic

error patterns. In the absence of the necessary hardware to recreate such patterns the next best

step is to simulate the behaviour of the hardware computationally. The errors may, indeed, be

random bit errors, as in the theoretical work of some researchers, but it is more likely in

practice that the errors will be complex burst errors. The simulation of the error control coding

of DDS with the input of appropriate raw errors provides the error patterns to be encountered

by the data compression techniques.

2.2 Simulation

The simulation has formed a major part of the work completed The standard specifies the

encoding of DDS. It is interesting to note that the standard does not specify the decoding

procedures. The task of simulating the encoding of DDS computationally, as specified by the

standard, was made easier than it might otherwise have been as a fellow researcher in the

[CHAP. 2] The Simulation of DDS 13

division had already simulated CDROM [12]. He followed the CDROM standard and located

the literature on decoding RS codes with four parity bytes. The error control coding of

CDROM and DDS are similar in many respects - both use Reed-Solomon error control coding

and interleaving strategies and so some of the CDROM software was adapted, with little

difficulty, for use in the DDS simulation.

2.3 Reed-Solomon Coding

2.3.1 Preamble

The Reed-Solomon codes used in DDS (and CDROM) are GF(2*) codes, that is, the symbols

used are of eight bits [1]. The polynomial which defines calculation in the Galois fields for

all the codes isp = x8 + x4 + x3 +x2 + landthe primitive element a is (00000010). In the

decoding procedures syndromes S; are calculated and any non-zero syndromes indicate the

presence of errors. The positions of the errors can be determined as each symbol in a

codeword is multiplied by a different power of a in the encoding process. As an illustration

of this consider the following example of a Reed-Solomon decoding procedure:-

Suppose the Reed-Solomon codeword is composed of five data bytes A-E followed by parity

bytes P and Q. Then

SO = A + B + C + D + E + P + Q
and

S, = of A + ot'B + tfC + o?D + oflE + a'P + ofQ.

If there is an error in symbol B then

S,/So = OcVo? = 0s (see Equation 2.4)

[CHAP. 2] The Simulation of DDS 14

giving the location of the symbol in error. The correct symbol value is determined by adding

S0 to the symbol in error.

2.3.2 The Error Location Polynonial

Suppose there are n symbols V; from the Galois field (2U) in a Reed-Solomon codeword of

which r are parity check symbols. Then

n-1

£0*^=0 (2.1)
1=0

where j runs from 0 to (r-1).

The syndromes Sj are

(2.2)

where the V;* are the symbols received. The error Ej is the difference between the received

symbol and the original symbol.

E=(V-V) (2.3)

Substituting for the received symbol in the equation for the syndromes gives

[CHAP.2] The Simulation of DDS 15

(2 ' 4)

The error location polynomial may be constructed as follows, where v is the actual number

of errors and {1} is the set of error locations:

V t (2 - 5)
m=o

If v < t, where t is the number of symbol errors the code can correct (t = (d - l)/2), then am

will be zero for m>v.

If a! is substituted for x in the above equation, then

t
J] an,anil =Q (2.6)
m=0

for i e {I}.

It may be shown [13] that

J^o^S^O (2.7)
m=0

for k = 0, 1, ... , (t - 1). This equation may be written equivalently as

[CHAP.2] The Simulation of DDS 16

50 5, . .

51 S2 . .

S t

2 t-1.

=o (2.8)

If the matrix M, formed by eliminating the last column of the t x (t+1) matrix, M, above is

non-singular then, using Cramer's rule

_ A

(2.9)
°c A tt

for m = 0 to (t-1) and where /\ is the determinant of M,. ^ is the determinant of the matrix

formed by replacing the m* column in the matrix M(with the last column of the matrix M for

m=0, 1,... , (t - 1) where the sign of each element is reversed. If there are less than t errors

then the above equation may be replaced by [13]

o v A v
(2.10)

where

= 0 for m>V

for m<v.

Ob = 1 so all am may be found.

The modified error location polynomial, for i e {I}, becomes

[CHAP.2] The Simulation of DDS 17

(2.11)

2.3.3 The Parity Byte Equations for the DDS Reed-Solomon Codes

The implementation of the Reed-Solomon encoding in the DDS simulation requires the

calculation of the parity byte equations. In the usual way the parity bytes satisfy the equation

H * V = 0 (2.12)

where H is the parity check matrix and V is the vector whose components are the bytes of the

Reed-Solomon codeword and are labelled V,,V2 etc. and * means matrix multiplication. The

parity byte equations are calculated by solving the above equation manually.

The parity check matrix for the C3 code is [1]

1 1 1 ... i i i (2>13)
a 45 a 44 a 43 ... a 2 a 1

where the number of rows equals the number of parity bytes and V is

[VI V2 V3 ... V44 PI P2\ (2.14)

The C3 parity bytes were found to be

[CHAP.2] The Simulation of DDS 18

20

"31 "33

41 44 (2.15)

10

36 '37

+O 88 v3a +a 167 3̂9 +o 114 v40 +o76 v41 +a 199 v42 -t-o 26 v43 -t-o 1 v44 (2.16)

The C2 parity check matrix is [1]

• 1
a 31
a 62
a 93
a 124
o 155

1
a 30
a 60
a 90
a 120
a 150

1
a 29
a 58
a 87
o 116
a 145

28
a 56
a 84

112
a 140

a

1 1
a 1

a 6 a 3 1
o 8 a 4 1
a 10 a 5 1

(2.17)

[CHAP. 2] The Simulation of DDS 19

and V1 is

[VI V2 V3 ... V13 Ql Q2 ... Q6 V14 . . . V26] (2.18)

The six C2 parity bytes are

(2.19)

o 187 V11 +a 169 1̂2 +o°y13 +a 151 V20 +a 1BO V21 +o 149 V22 +a 208 V23 +a 204 V24 +a 150 V25

(2.20)

O3 =a 151 V1 +a 102 V2 +o 149 V3 -t-a 252 V4 +tt221 V5 +a 166 V-6 +o 80 V7 +a 64 Va +a 45 V9 +o45 y10

(2.21)

[CHAP.2] The Simulation of DDS 20

a 116 V27+ <x 166 v28 +o 192 V29 +a 84 V3D +a 32 3̂1 +ct 76 V32 (2.22)

The Cl parity check matrix is [1]

(2.23)

"30 31 32 (2.24)

1111
a 31 a 30 a 29 a 28
a 62 a 60 a 58 a 56
a 93 a 90 a 87 a 84

ll
a 2 a 1

2
3 1

a 4 a 2 1
a 6 a

(2.25)

[CHAP. 2] The Simulation of DDS 21

and V1 is

[VI V2 V3 ... V28 PI P2 P3 P4] (2.26)

The four Cl parity bytes are

a 95 V20 +a B8 v21 +o 43 v22 +o 134 v23 -t-a 205 v24 +a 143 V25 -t-a 131 V26 +o 163 2̂7 -t-

(2.27)

P2 =o 205 vrL +a 252 U2 +a 218 v3 +a 199 V4 +« 202 v5 +a 41 V6 +a 136 V7 +a 106 vB +a 119 v9

(2.28)

[CHAP. 2] The Simulation of DDS 22

(2.29)

o 94 v20 +a 49 v21 +a 140 v22 +a 211 v23 -*-o 149 v24 -i-o 137 V25 +o 169 V26 +o B1 V27

(2.30)

2.4 C2 Decoding

The DDS decoding may be summarized as follows

[CHAP.2] The Simulation of DDS 23

Tape

demodulation

Cl decoding)
•1-) deinterleaving

C2 decoding)
4-

derandomization

C3 decoding

Data

The C2 Reed-Solomon decoding of DDS with six parity bytes per codeword is the most

complex single decoding procedure of both DDS and CDROM The solution techniques of C2

decoding encompass all those of Cl and C3 decoding and more besides. Therefore, only Cl

decoding will be described.

The innermost Cl code flags symbols deemed to be at risk i.e. the symbols contained in a Cl

codeword with more than two symbols in error. The C2 code addresses these flagged symbols

i.e. erasures; the flags can be used to correct up to six erasures. The C2 decoding procedures

are [14]:

1 N(e) < 2 N(e) error correction

2 N(e) > 2, N(F) = 1 or 2 N(F) erasure correction and 2 error correction

3 N(e) > 2, N(F) = 3 or 4 N(F) erasure correction and 1 error correction

4 N(e) > 2, N(F) = 5 or 6 N(F) erasure correction

where N(e) is the number of detected errors and N(F) is the number of flags; an erasure is an

error for which the location is known but the magnitude is not. Three error location and

correction is not used for fear of miscorrection [2] - there would be no spare syndromes to be

used as a consistency check.

[CHAP.2] The Simulation of DDS 24

The C2 code is a three error locating and correcting code (i.e. t = 3). The equation for the

coefficients of the error location polynomial is:

= 0 (2.31)

The determinants and A are

A 33 =S2 (S^S3 +S2 S2) +S3 (SQ S3 +S±S2) +54 (s^ +S2 SQ) (2.32)

(2.33)

(2.34)

(2.35)

The error location polynomial is

(2.36)

If there are two errors then the error location polynomial is

(2.37)

where

[CHAP. 2] The Simulation of DDS 25

?0 (2.38)

_?2 (2.39)

A 20 =s^+SzSt (2.40)
£ U J. J f. £,

In the case of just a single error then the error location polynomial is

A 11 a i +A 10 = 0 (2.41)

where

A^SO (2.42)

A 10 =S, (2.43)

2.4.1 Single Byte Enor Correction

This is performed as in Section 2.3.1. There is a single byte error if and only if

(2.44)

i.e. the syndromes all agree on the location of the error. If the above relationships hold then

it can be seen that the coefficient z^3 in the three error location polynomial and the coefficient

[CHAP. 2] The Simulation of DDS 26

in the two error location polynomial are both zero. The correct symbol is obtained by

adding S0 to the symbol in error.

2.4.2 Collection of Two Byte Enois

In DDS the error location polynomial reduces to a quadratic if

S2 (S^+S^) +S3 (S0 S^S.,S2) +54 (SiSi+SzSo) =0 (2.45)

The error location polynomial becomes

(S?+S0S2)x2 +(SiS2 +SQS^x+(S2-+SiS3 } =0 (2.46)

and is solved following the procedure within the paper of Ko and Tjhung [15].

Substitute

(2.47)

where

(2

The error location polynomial becomes

[CHAP.2] The Simulation of DDS 27

(2.49)

and

(2.50)

Only one constant in the error location polynomial now depends upon the codeword. The error

location polynomial is solved using a table look-up approach. Suppose that fa(y) and fb(y) are

the roots of the error location polynomial. Then

(2.51)

The locations of the errors are

(2.52)

(2.53)

The error magnitudes may then be found from Equation 2.4.

2.4.3 Erasure Correction

If there are five or six flagged bytes the flags may be used to correct five or six bytes. The

Equation 2.4 becomes

[CHAP. 2] Ihe Simulation of DDS 28

a b ct<

33
43
53

a. 2c a zd a 2e a 2f

a 3c a 3d a 3e a 3£

5e

EC
Ed
Ee
Ef

(2.54)

The errors may be found through the process of Gaussian elimination. A simpler set of purely

hypothetical equations may be used to illustrate this process in GF(28). Suppose there are three

equations

The modulo 2 arithmetic means that there is no distinction between addition and subtraction.

The elimination of the coefficients of E^ in the second and third equations yields

2a2c =) Eb+(a 2a +a

Eliminating the coefficient of E,, in this last equation gives

(a a +cc c) (a

The set of three equations becomes

(a a +u b) Eb+(a a +a c)

[CHAP.2] The Simulation of DDS 29

These equations may be written in matrix form as

11
0 (a a +
0 0 (a a +« c)

sa
sfc
EC.

=
1 0 0
010
0 a* 1

1 00
a 3 1 0
0 a 8 1.

S0'

Si
52.

The application of Gaussian elimination to Equation 2.4 yields:

11 1
0 a*»a' a c+a'

0 0 (B C »B'| IB'
00 0
00 0
oo o

(2.55)

where

i i
a*+a' B'*B'

(B"+B-> CB^B") (B'*B*) (a'-i-a*)
(B"*B') (a atB*) (a'-faT IB'»B') [B'+B") (a-*

0 (a'+a'J (a'*B») (a-i-a') i

0 0

B'+B-
(B'*B') (B'*B»)

lB r*B'l (B'I-B*) (B'tB^)
ta'J (a'+a*) (B*»B C) IB'+B")

) (B'»B*) (a'+a') (a'*a d) (B'*B'|

Be
Ed
Be
Sf

Pi
02 =AT1 *M2*M3 *M4 *M5* (2.56)

and

[CHAP.2] The Simulation of DDS 30

Ml =

M2 =

M3 =

M4 =

1
0
0: o
0

p

1
0
0
0
0

p

1
0
0
0
0

p

1
0
0
0
0
0

0
1
0
0
0
0

0
1
0
0
0
0

0
1
0
0
0
0

0
1
a"

0
0
0

0
0
1
0
0
0

0
0
1
0
0
0

0
0
1

« c
0
0

0
0
1

a*
0
0

0
0
0
1
0

o o"
0 0
0 0
0 0
1 0

0 « e 1.

0
0
0
1
a d
0

0
0
0
1

o c
0

0
0
0

' 1
a j
0

0 0"
0 0
0 0
0 0
1 0

O d 1

o o'
0 0
0 0
0 0
1 0
« c 1.

0 0"
0 0
0 0
0 0

b 1 0
a* 1.

(2.57)

(2.58)

(2.59)

(2.60)

[CHAP.2] The Simulation of DDS 31

'1
a*
0
0
0
0

0
1

a*

0
0
0

0
0
1
a*

0
0

0
0
0
1

ot a

0

0
0
0
0
1
a a

0
0
0
0
0
1

(2.61)

Given the flags and the syndromes the errors can be calculated If there are five flags then '.

is zero.

2.4.3.1 Modified Syndromes

If there are more than two detected errors and one, two, three or four flags then modified

syndromes [16] have to be determined for use in the error location strategies of the procedures

for correction of one and two byte errors. The locations so generated are combined with those

indicated by the flags for erasure correction.

For example, if there are two flags then the error location polynomial may be expressed as:

Then the j* modified syndrome = BO S^j + B, S,+j + S^ , for j = 0 to 3.

In general, if there are i flags then error positions of, of... are known and can be inserted into

the relevant matrices. Then

[CHAP.2] The Simulation of DDS 32

j = (M1*M2*M3*M4*M5] (2.62)

where the superscript * labels the modified syndromes and j runs from 0 to 5-i. The matrix

M1*M2*M3*M4*M5 is lower triangular.

2.5 Error Correction Performance

The errors which affect the data stored on a tape fall within two categories - random errors

and burst errors. Errors do not, generally, fall exclusively within one or other category but are

a combination of both. Random errors are exactly that; they are errors each affecting a single

bit caused by, for example, random electrical fluctuations or random variations in the medium

manufacturing process. Burst errors are, potentially, more devastating. In a burst error a large

number of bits are affected, usually with a single cause e.g. a scratch on the surface of the

medium or perturbation of the write heads. The error correction strategies employed by DDS

are designed to be effective in correcting both types of error. The error correction performance

has been analyzed in the literature [17,18]. A typical random bit error rate that arises in media

testing is one bit error in a hundred thousand bits. Even at a hundred times this error rate the

three levels of error control coding can provide an output with an error rate of one symbol in

1035 - very effective indeed The two levels of error control of the audio format allow the

correction of a burst up to 0.3 mm wide running parallel to the edge of the tape or of a burst

up to 2.6 mm wide running perpendicular to the edge of the tape. If the widths of the bursts

[CHAP. 2] The Simulation of DDS 33

of errors are any larger then not even the third level of error control coding can correct them.

The third level of error control coding, by its very nature, is effective in correcting helical

burst errors i.e. errors occurring along the tracks as the data is written (the tracks are written

at an angle of 6.35 degrees to the edge of the tape) but, again, only two tracks may be

corrected in a group of 44 data tracks.

2.5.1 Evaluation of the Performance of the Computer Simulation

The simulation of the encoding and decoding procedures of DDS was written in PASCAL and

run on a Dec Alpha as it provides the memory and high-speed computation required Random

errors, lying within the expected correction capability of DDS, were introduced into the data

before decoding. The simulation did correct random errors up to the limit of the expected

correction capability of DDS. The largest burst error that DDS is expected to correct was

introduced into the data before decoding and, again, the simulation performed as anticipated

and corrected the entire burst (of up to 6336 bits per track [17]).

2.5.2 Implications for Data Compression

Random error rates beyond those explored in the literature were input into the simulation and

the resultant uncorrected errors were calculated. Uncorrected errors were readily observed in

[CHAP. 2] The Simulation of DDS 34

the simulations when the bit random error rate was 0.004 and greater. The results of this

exercise are shown below (there were 32 simulations at each error rate):

bit random eiror rate conccted symbol enor rate

0.01 0.023
0.009 0.013
0.008 0.0059
0.007 0.0025
0.006 0.0013
0.005 0.00037
0.004 0.000015

Longitudinal corruptions with widths in excess of that which can be corrected by the DDS

format were input into the simulation. The maximum width of longitudinal error correctable

by DDS is 0.3 mm [17] or 24 blocks i.e. a block has an effective width of Vgo mm. At a

corruption width of ̂ IK mm, for example, there were 16 error-free runs of 108 bytes and 11

error-free runs of 124 bytes in a Frame. Recalling that there are 5756 data bytes in a Frame

it can be seen that error-free runs amount to 53.7% of the total data. The effects of larger

corruptions are summarised in the table below:

corruption numbers of significant error-free runs of

width (mm) output data bytes per Frame

25/80 16 of 108, 11 of 124
26/80 27 of 108
27/80 16 of 100, 11 of 108

28/80 27 of 100

29/80 16 of 92, 11 of 100

[CHAP. 2] The Simulation of DDS 35

The interleaving in DDS is designed to disperse the erroneous bytes of a burst error over

many codewords to increase the magnitude of the maximum correctable burst. The interleaving

has unfortunate implications for compressed data in the presence of excessive corruption even

when its size only marginally exceeds that of the maximum correctable burst. As shown

above, only relatively short runs of error-free bytes are produced on decoding, containing

around half of the total data bytes. The significance of the above table will become apparent

later when data compression strategies are linked to the DDS simulation.

36

Chapter Three

Data Compression

3.1 Data and Redundancy

Digital data may be broadly classified as either correlated physical data or text data. Correlated

physical data is the result of the analogue-to-digital conversion of measurements of physical

properties - for example, the brightness levels in an image or the temperature at a point in a

continuum. Laeser et al [19] state that, as far as images are concerned, '... adjacent pixels

usually have brightness levels that are close in value'. Similarly, the temperature difference

between two neighbouring points in a continuum is likely to be small compared to the

absolute values of the temperatures. Laeser et al highlight the fact mat compression of

correlated data can be achieved simply by coding the differences between adjacent values,

given an absolute starting value or DC value. The removal of the correlation between adjacent

values through the difference calculation generates, in effect, text data.

In text data, itself, any particular character is not linked to that preceding or following it in

terms of numerical magnitude but rather through the recurrence of particular patterns within

the text as a whole. Compression of a group of characters, known as a phrase, is possible if

reference to a previous occurrence of the same phrase can be made by a code which is shorter

than the phrase it replaces; i.e., dictionary-based compression. Compression of text is also

possible by assigning short codes to characters occurring frequently and longer codes to

characters which occur less often i.e. statistical compression. An example of statistical

[CHAP. 3] Data Compression 37

compression is the Morse code for coding English text. Letters occurring frequently such as

'e' and't' are assigned the shortest codes while less frequently occurring characters such as 'x'

and 'z' are assigned longer codes. Dictionary-based compression and statistical compression

may both be static or adoptive. Static statistical compression, for example, requires that the

frequency of occurrence of individual characters be determined in a first pass over the data.

Then, with the codes computed from the frequencies, the data may be coded on a second pass.

Static statistical compression incurs an overhead penalty in the form of a table of characters

and their individual fluencies/probabilities. Adaptive statistical compression adjusts the

frequencies and recomputes the codes as each character is encountered on a single pass, i.e.

it adapts to the data

3.2 Huff man Coding

Huffman coding is an example of a statistical data compression algorithm. The Huffman

algorithm involves the construction of a binary tree. At each stage of the algorithm the two

lowest probabilities are combined and treated as a single new probability. This is continued

until a single value (1.0) is reached The Huffman code for each symbol is generated by

working backwards to that symbol, labelling the path from a combined value with a 0 or a 1.

[CHAP.3] Data. Conpression 38

Example
1 1

a o 25 ______________________ 0 58 _____ 1 0'
b 0.22 -——— 0.42 ———————————

0 I
r O 90 _ _^ \j m^\j ™—~ _________

1 0
d 0.17 —-—-————____ 0.33 ——

1 0
e 0.10————0.16-———

0
f 0.06 ———

The upper paths have been labelled with a 1 and the lower with a 0. Working backwards from

right to left the codes for the characters are:

a 11
b 01
c 00
d 101
e 1001
f 1000

[CHAP. 3] Data Compression 39

3.3 Arithmetic Coding

Huffman coding necessarily represents each symbol by an integral number of bits. Each

symbol must be represented by at least one bit irrespective of its probability. Arithmetic

coding codes groups of symbols rather than individual symbols and in effect represents

individual symbols with fractions of bits. Every symbol is allocated a segment of the range

[0,1) in direct proportion to its probability of occurrence. As each symbol is encountered the

working range is reduced to the proportion allocated to that symbol.

Example

Assume the following symbols and their respective probabilities of occurrence:

a
b
c
d
e
f

0.1
0.4
0.1
0.1
0.2
0.1

[0.0,0.1)
[0.1,0.5)
[0.5,0.6)
[0.6,0.7)
[0.7,0.9)
[0.9,1.0)

Let the sequence to be coded be cabdeb. Coding begins:

[CHAP. 3] Data Compression 40

start [0,1)
c [0.5,0.6)
a [0.5,0.51)
b [0.501,0.505)
d [0.5034,0.5038)
e [0.50368,0.50376)
b [0.503688,0.50372)

The sequence is then represented by any number within this final range.

3.4 LZ77 Dictionaiy Compression

LZ77 uses a sliding window [20] consisting of two parts. The first of these is the larger of the

two and forms a dictionary which is used to code the second part. This second part is known

as the look-ahead buffer and the LZ77 algorithm matches strings of symbols in the look-ahead

buffer with the same strings in the dictionary. The strings are coded by tokens or 'triples'

consisting of

a. the position of the start of the string in the dictionary

b. the length of the string

c. the first symbol in the look-ahead buffer that follows the string.

As an example consider the sequence

acbababbabcaeaC ba abbabccabaca

[CHAP. 3] Data Compression 41

where the large bold characters form the look-ahead buffer and the preceding form the

dictionary. The first four characters in the look-ahead buffer occur in the dictionary at position

one. These characters may be coded as [1 - 4 - 'a']. The window then moves five characters

along:

abbabcaeacbaa b b a b C C abaca

The first five characters in the look-ahead buffer occur in the dictionary at position two. These

characters may be coded as [2 - 5 - 'c1].

The offset-position - length pair is termed a 'pointer1 . If a character is encountered for the first

time then then the pointer component of the triple is wasted The LZSS [21,22] compressor

allows a 'free mixture of pointers and characters'. LZSS dispenses with the character following

the pointer and prefixes pointers and characters with a single bit for their identification. If

LZSS were used to compress a large file then few characters would be expected to be coded

alone and the output would consist mainly of pointers.

Consider the LZSS coding of the same sequence as above:

acbababbabcaeaC ba abbabccabaca

Once again the first four characters in the look-ahead buffer occur at position one. The output

is: T * [1 - 4]. The window now moves four characters along:

babbabcaeacba a b b a be C a b a c a

[CHAP. 3] Data Compression 42

The first six characters in the look-ahead buffer occur at position two. The output is:

T* [2-6].

There is a break even point in LZSS. If £, is the number of bits used to represent the

displacement and T is the number of bits used to represent the match length then the smallest

match length coded by a pointer is [~(1 + ^ + t)/(l + 8)~| (fq~| is the least integer not smaller

than q); i.e. if (1 + £, + T) = a(l + 8) for n < a < n + 1 (n integer) then it is more economical

to code matches of length n as individual characters.

In LZSS the elements of the pointer are of a constant fixed length. T.7R [21] phases in the

offset position so that if, for example, there are fifty symbols in the dictionary thus far, then

the offset position need only be f logj 50 ~| = 6 bits in length - there is no preloading of the

dictionary. The match length in T.7R is represented by a simple variable length code, y. The

following is a slight variation on the code y although the codeword lengths are the same:

7(n)

1
2

3

4

5

6

7

8

etc.

1

010

Oil

00100

00101

00110

00111

0001000

[CHAP.3] Data Compression 43

If p represents the smallest number of characters coded in a pointer then a match of length m

is coded as y(m-p+l). The length of y(m-p+l) is 2Llog2(m-p+l)J + 1 bits (|_qj is the

greatest integer not larger than q). The best value of p should be determined by experiment.

3.5 LZ78 Dictionaiy Compression

LZ78 compression [23] uses the whole string of the previously seen symbols as a dictionary

and not a small part of it as in LZ77. As in LZ77, however, LZ78 codes strings with tokens.

These tokens consist of:

a. label of previously seen string

b. symbol following previously seen string

The new string is added to the dictionary. The mechanics of this algorithm can be understood

by considering a simple example.

The input string is 'abbcccdddd'.

Symbol(s) Token Dictionaiy

Cbded
a
b
be
c
cd
d
dd

Label
0
0
2
0
4
0
6

Symbol
a
b
c
c
d
d
d

Number
1
2
3
4
5
6
7

Strin
a
b
be
c
cd
d
dd

[CHAP.3] Data Compression 44

3.6 The Rice Algorithm

3.6.1 Overview of the Rice Algorithm

The Rice Algorithm was developed in the 1970's by R F. Rice of the Jet Propulsion

Laboratory in California for use in deep space missions [24,25,26,27,28].

This algorithm performs data compression by reducing the statistical redundancy of the data

and works adaptively by selecting the optimal of several Huffman-equivalent [29] codes on

blocks of J samples.

The algorithm works in two stages. The first of these is termed preprocessing and is designed

to remove the correlation between the samples. The second stage compresses the processed

data in groups, choosing for each group the optimum code.

X REVERSIBLE 5 =5,62..5r ADAPTIVE
—————> ——————> VARIABLE
Input PREHIOCESSCR Standard source LENGTH Code
data block block CODER block

3.6.2 Reprocessing

The preprocessing stage removes the correlation within the data and outputs samples that are

independent and with a probability distribution that facilitates good compression by the second

stage.

The first part of the preprocessor is a simple differencing calculation. The input data block,

X, of integers is transformed into a block of differences

[CHAP. 3] Data Compression 45

where A=xr KM-

The second part maps each 4 into a standard source Sj with the following operations

§ = 24 o<4<6

&>2|4l-l -6<4<0

5j = 6+ 1 4 I otherwise

where 0 = min^.,, x^ - X;.,) and x,^ = 2" - 1, for n-bit data.

The 8 will closely approximate a Standard Form Source, as defined in the next section.

3.6.2.1 Standaid From Source (s)

A Standard Form Source has the following properties:-

a) Samples of s are positive integers 0,1,2......

b) Samples of s are independent

c) The probabilities of source symbols are ordered such that

P(Sj=0) >P(srl)>P(sr2)

i.e. the smaller integers are more likely to occur.

3.6.3 The Rmdamental Sequence

The Fundamental Sequence denoted by \}/, is the starting point for all Rice compression. The

fundamental sequence coding of a positive integer m is simply m zeroes followed by a 1. The

[CHAP. 3] Data Compression 46

fundamental sequence coding of a sequence of integers x=x,x2x3...x, is the concatenation of

the individual fundamental sequences corresponding to each integer.

Example: if the sequence x = 203104 then the fundamental sequence corresponding to x is

\j/,(x) = 0011000101100001

3.6.4 The Basic Compressor

The Basic Compressor is able to compress data lying within a relatively narrow entropy range.

Despite its having been superseded by Split Samples coding [3031], which can compress data

over a far greater entropy range, the Basic Compressor is included here for completeness. In

order to understand the Basic Compressor options it is necessary to define some terms.

3.6.4.1 Thiid Extension

The third extension of a sequence of O's and 1's is the grouping of these symbols into groups

of three with the last group packed with zeroes if necessary. For example, the third extension

of the sequence 11010110001 is 110 101 100 010.

3.6.4.2 Coding of the Thiid Extension

The third extensions are coded according to the following table:

[CHAP. 3] Data. Conpression 47

Third Extension Code
000

001

010

100

on
101

110

111

1
001

010

on
00000

00001

00010

00011

The Basic Compressor consists of four coding options:

\j/0(x) coded third extension of the complement of the fundamental sequence

corresponding to x,

vi/j(x) the fundamental sequence corresponding to x.

\}/,(x) coded third extension of the fundamental sequence corresponding to x.

\|^(x) the binary equivalent of x.

The option chosen to code a particular sequence will, obviously, be the option that produces

the shortest code. The complete coding for that sequence will be the two bit identifier of the

option used followed by the code \\f{ .

The complement is used in the first of these four options as it allows the efficient coding of

strings of zeroes. If the data were s = 000000 then the fundamental sequence code for s would

be 111111 and its cornplement would be 000000. The option v^, would be 11.

3.6.4.3 Example

Consider the sequence s = 12041003.

[CHAP. 3] Data Compression 48

The fundamental sequence corresponding to s is

vj/, = 0100110000101110001

The complement of vy, is

comrXvj/!) = 1011001111010001110

and the third extension of the complement is

compCvj/,)3 = 101 100 111 101 000 111 000

This last sequence can be coded using the above table to find

\K, = 0000101100011000011000111

The third extension of the fundamental sequence is

\|/,3 = 010 Oil 000 010 111 000 100

which can be coded using the above table to give

Vft = 010000001010000111011

The binary representation of the sequence is

Vft = 001010000100001000000011

The lengths of the code options computed above are:

vj/0 = 25 bits

Vft = 19 bits

Vft = 21 bits

Vft = 24 bits

The shortest complete coding of the example sequence is the fundamental sequence preceded

by the two-bit identifier of the option used

010100110000101110001

Fortunately, it is not necessary to apply each code option and then choose the one which

produces the shortest code. There is a decision rule based on the length of the fundamental

sequence.

[CHAP.3] Data. Compression 49

The length, F, of the fundamental sequence for a sequence of J integers is

F = J + EXJ

Define variables LO,L1,L2,L3 corresponding to the four code options:

LO = (F/3) + 2(F - J)

L1=F

L2 = (F/3) + 2J

L3=Jn

The option chosen to code the data block is simply the option corresponding to the smallest

variable Li.

3.6.5 Split Samples

The technique of split samples uses the fundamental sequence as a starting point and allows

the efficient coding of higher entropy data than that which can be coded efficiently by the

basic compressor. Consider the following data values and their respective probabilities:

Value

0

1

2

3

4

5

Prob.
n 55 _ _ ——
\Ji~s-*

1
025 __ —— —
\J,4f~S

1
0.12—— ——— (

1
0.05- 0.08-

1
0.02—0.03— 0

1
0.01--- 0

I
1.0 1

0.45 -0
1

).2— 0
1

-0

Huffman Code

1

01

001

0001

00001

00000

Fund. Seq.

1

01

001

0001

00001

000001

[CHAP.3] Data Compression 50

The fundamental sequence coding of these data is only very slightly less efficient than the

Huffman code and for J data samples with this probability distribution the fundamental

sequence would be the code option chosen. Now suppose that the data 5 are

16 12 10 7 2 0 1 7

The fundamental sequence for these data would be 63 bits long. The five bit binary coding

of these data is

16

12

10

7

2

0

1

7

10000

01100

01010

00111

00010

00000

00001

00111

Split samples assumes that the least significant bits of the binary code are random and

therefore cannot be compressed. If the k least significant bits are split off then the data may

be expressed as

where IVf are the most significant bits, * now denotes concatenation and I* are the least

significant bits. As k increases the Mr" retain the standard form source probability ordering -

the 6 are assumed to be preprocessed

If the two least significant bits are assumed to be random then the most significant bits are

(base 10):

4321 0001

If these are now coded using Huffman coding then

[CHAP. 3] Data Compression 51

Value Freq. Huffman Code Fund Seq.

1

1
2

3

4

— * O

1 0 |
2 _____ S- -

1 0

1 0|
1—2—

1—

i

001

0001

0000

1

01

001

0001

00001

Fundamental sequence coding of the most significant bits is efficient and the optimal split

samples code of the original data is then the fundamental sequence for the most significant

bits plus the least significant bits :-

^1,2(8) = v|/,(]Vf) * Lj i.e. 00001000100101111010000101110000111 - 35 bits

and this is more efficient than the simple base 2 representation of 40 bits. The entropy where

\j/,jk achieves its best performance is:

Hgk « k + 2 bits per sample.

As with the Basic Compressor there is a decision rule so that there is no need to compute each

possible option and choose the shortest.

If F0 is the length of fundamental sequence without sample splitting, J is the number of sample

values to be compressed and k is the number of least significant bits per sample then the

boundaries to adjacent \|/ljc decision regions are given by:

F0 = J/2 + J(2k+1) bits

Any \|/1Jt option will generate a longer code than v^ the data itself, if:

F0 > [(n-k)2k+1 + 1-2*] J/2

where n is the number of bits required to represent the uncompressed data [10,32]. For a six

option compressor with n-bit data the decision regions are :

[CHAP. 3] Data. Compression 52

Option ID Option

000
001
010
on
100
101

MA..

¥1,3

Region

F0 < 5J/2
5J/2 < F0 < 9J/2
9J/2 < F0 < 17J/2
17J/2<F0 <33J/2
33J/2<F0 <(32n-143)J/2
(32n-143)J/2<F0

3.6.6 The Performance of the Rice Algorithm

The Rice algorithm performs well in comparison with other, better known algorithms. This

has been illustrated by Venbrux et al [33] in the lossless compression of image data. The

results of their comparative work are summarized below:

Q.

O
O

1

0.8

0.6

0.4

0.2

0 1
B

Fig. 3.1 Relative Performance of the Rice Algorithm (comp, ratio = output size/input size)

[CHAP. 3] Data Compression 53

where

A LZ78 without preprocessing

B Adaptive Huffinan without preprocessing

C Arithmetic without preprocessing

D LZ78 with preprocessing

E Adaptive Huffinan with preprocessing

F Arithmetic with preprocessing

G Rice coding

It can be seen that the performance of Rice coding is comparable with that of arithmetic

coding with preprocessing for this sort of data Rice coding has the advantage of being more

easily integrated into an error tolerant scheme.

3.6.7 The Split Sanies Block Size

The block size J is an important variable in the Rice algorithm. A low value allows the

compressor to adapt more quickly to changes in data entropy. Too low a value means that the

overhead of the code option ID becomes significant. Values of fifteen or sixteen are generally

accepted as ideal [33].

Yeh et al [29] have shown how the Rice algorithm can be related to a Huffman code for data

having a Laplacian distributioa They also show how the optimum Rice option changes as the

parameter of the Laplacian distribution changes.

The following example demonstrates how the optimum Rice option adjusts as the data

distribution changes. The optimum Rice block length is thereby determined

[CHAP.3] Data. Compression 54

Example

Suppose the data are 5, = i, i = 1 ... 2M This is a rather specific sequence but it does allow

a fully analytic solution to be obtained

Let the block length J be J = 2". The length of the fundamental sequence without sample

splitting for the j"1 block of J is given by

FD =i7+ J^J i=J>— ((j-l) J+1+JJ-) =— (3J-+i7a (2j-l)) (3.1)
2 2

The number of split bits required for block j, kj, is found from:

iT if t~T — Jtj+i /*a ** \ — +J2 J <Fn £ — +J2 j (3.2)
2 °J 2

Therefore k is the integer below

log
j

=log2 (i+J-(j--|))

Putting J=2n and rearranging, kj is the integer below

U-4 + -M (3.4)

[CHAP. 3] Data Compression 55

If n > 2 then the following kj values are found:

J H

1 n-l
2 n
3 n+1
4 n+1
5 n+2
6 n+2
7 n+2
8 n+2
9 n+3
10 n+3
etc.

The estimated length of the \|/u Rice code option [10] is

" (3.5)

There are 2M'n blocks of J values. The sum L of the lengths of the Rice options is (M ^ n)

— (3 . 2"+2 2n) \ + — (l-2" (n" l!) + (n-1) 2" +
2 / 2

-1)) +- (l-2- (n+

(3.6)

[CHAP. 3] Data. Compression 56

where 2a° +b=j.

L=2+2 n~i+n2 n + ^f IE' (2 1 ~a +i?2 ml -a +rz2 n +a2 n +2"-1 -2 n-a) (3.7)

- 1)2a-2)
a=l

(3.8)

a=l

Using Sn = x + x2 + x3 + ... + x" = (x^1 - x)/(x-l)

and Tn = x + 2X2 + 3X3 + ... + nx" = (nx1*1 - SJ/Cx-1)

2+(j2 + l) (2 M-2") + (Af-J2-l) 2 M+2n (3.9)

(3.10)

(If M = 5 and n = 3 then a manual split-samples coding of the data is 168 bits long - if M =

5 and n = 3 are placed into the above expression then L = 168)

The number of bits per sample value is given by

tl (3.11)

where N is the number of options within the compressor.

[CHAP. 3] Data Compression 57

So that the analysis is valid there must be a sufficient number of options to allow the optimum

number of split bits to be chosen:- the number of options must be greater than or equal to

M+2.

Compression performance is optimized if

l 0.12)

is minimized.

Let Z, = 2™ - n + 2Mflog2Noptl2-n

2 is a minimum if

After some manipulation it is found that

2 2n-4.2n-4.2^1og2 .Nopt l<0 (3.13)

and

2 2n -2 . 2 n -2l log2JVODC l> 0 (3 . 14)

Therefore

+ 2Mflog2Noptl) < 2" < 2 + 2^1 + 2Mflog2Nj) (3.15)"opt'>

or

I0g2(l + \fcl + 2Mflog2Noptl)) < n < 1 + Io6(l + >tl + 21og2NDpt (3.16)

[CHAP. 3] Data Compression 58

Sample Results

1 If M = 10 and N^ = 16 then 6.02 < n < 7.02, i.e. n = 7 (J = 128) for optimum

performance.

2 IfM = 6andNopl = 8 then 3.90 < n < 4.90, i.e. n = 4 (J = 16) for optimum

performance.

3 If M= 30 and 1^=32 then 16.16<n< 17.16, i.e. n- 17 (J = 131072) for optimum

performance.

In the second sample result the data values 1 to 64 are broken into four blocks of 16 for the

best compression performance. In the first result the same values 1 to 64 are compressed

together with the values 65 to 128 in a single block for optimum performance. Similarly, in

the third result the first 1024 (210) values are now compressed in a single block with 130048

other values.

59

Chapter Four

Robust Data Compression

4.1 Error Propagation in Compressed Data

Lelewer andtfirschberg [34], in their review of data compression, considered the susceptibility

to errors of data compression schemes. They examined the tendency of some Huffman codes

to self-synchronize. This property is illustrated in a later section. Ferguson and Rabinowitz

[11] gave an example of a situation in which the Huffman code can never synchronize.

Suppose the Huffman code is:

A 01
B 10
C 11
D 000
E 001

and consider the following sequence repeated an infinite number of times:

ADABCDABCDBECAABDECA

Now suppose the second bit is in error so that the decoder receives

000 000 11 01 10 000 11 01 10 001 000 11 10 10 11 000 000 11 10 1

The first three bits are decoded to give D. Decoding the above sequence alone leaves the very

last bit, i.e. the second bit of the last A to be combined with the bits at the start of the

[CHAP.4] Robust Data Compression 60

repeated sequence to form a codeword. The first three bits of the repeated sequence, when

preceded by the last bit of the prior sequence are decoded to give BB exactly, with no spare

bits. The cycle repeats and the decoder stays out of synchronization permanently.

One of the most recent of the many attempts to improve the self-synchronization of Huffman

codes is that due to Escott and Perkins [35] who improved upon the codes of Ferguson and

Rabinowitz. The total inability of arithmetic codes to tolerate errors was recognised by

Lelewer and Hirschberg, Teuhola and Raita [36] and Kobler [37]. Lelewer and Hirschberg

state that 'there is no evidence that adaptive methods are self-synchronizing. This includes,

of course, the methods of Ziv and Lempel; Woolley [38] gave a detailed account of how

errors would affect data compressed using LZ78. The Rice algorithm was originally designed

for the compression of pictures captured in space missions on a line by line basis so that a

whole line might be lost through error propagation. Rice suggests that [39] 'these effects can

be countered to a certain extent by incorporating more frequent updates ... '.

4.2 Preventing the Propagation of Enois in Compressed Data - Piecewise

Compression

The process of locating the start of a valid coding after the occurrence of errors can be

difficult. This process shall be termed weak synchronization. Strong synchronization shall refer

to the process where synchronization is achieved without slippage in the output data. A self-

synchronizing Huffman code will provide examples of each form of synchronization. The code

is:

[CHAP.4] Robust Data. Compression 61

a 1

b 01

c 001

d 000

The sequence a.d.a.c.a.b is coded as 1.000.1.001.1.01.

If the first 1 becomes a 0 then decoding gives 000.01.001.1.01 or db.c.a.b. Weak self-

synchronization has occurred since there is slippage in the decoded symbols. If the first 0

becomes a 1 then decoding gives 1.1.001.001.1.01 or a.a.c.c.a.b. Strong self-synchronization

has occurred since the number of decoded symbols matches the number of encoded symbols.

The basic strategy explored in this chapter is to perform piecewise compression with relatively

frequent synchronization. A piecewise approach confines an error to the piece in which the

error occurs. Synchronizing sequences at the ends of the pieces act as barriers to error

propagation. There is no alternative to the piecewise compression approach with adaptive

compression algorithms since locating the start of a valid codeword is not enough. The

interpretation of that codeword depends upon the interpretation of the preceding code. An

incorrect interpretation of the code preceding a codeword will cause that codeword to be

interpreted incorrectly. Piecewise compression requires that synchronization be forced rather

than awaited, as with self-synchronizing HuSman codes. Forcing weak synchronization

requires the addition of redundancy to the compressed data stream in the form of a

synchronizing sequence/bit pattern.

[CHAP. 4] Robust Data Ccnpression 62

4.2.1 dear Cbdewoids

A codeword, here, refers to a synchronizing sequence/bit pattern. In the context of Huffman

codes a clear codeword is a bit sequence which cannot be formed by the concatenation of

other codewords but could be formed through the effect of errors. The definition of clear

codewords here needs to be extended. The Rice algorithm allows, as a final option, the passing

through of the data. Therefore, a clear codeword in the present case is a bit pattern which

cannot be formed through the concatenation of split samples components and/or the data. The

reading of the clear codeword provides the starting point for future correct code interpretation.

Clear codewords have been developed for synchronization in digital video applications [40]

where the clear codeword was introduced as part of the code itself in the construction process.

It is worthwhile investigating clear codewords for synchronization of Rice coding.

In the digital video application the clear codeword was a string of 1's with a 0 at the end and

so a word with a similar construction is sought for the Rice algorithm and evaluated. Note that

if the Rice algorithm cannot compress the data then the data is passed through uncompressed

and every possible combination of O's and 1's could be generated through the concatenation

of the data values. The clear codeword sought is a string of 1's or a string of O's so such

patterns should not be allowed. Long sequences of 1's or O's in the compressed data can be

prevented if the strings corresponding to the uncompressed data values are separated by a 0

or a 1 respectively. In the last chapter it was seen that the boundaries to adjacent \|/ljk decision

regions are given by F0 = J/2 + J(2k+1) bits. The maximum length of Fundamental sequence

codes occurring may be found by assuming that the sample values consist of J-l zero data

values plus one non-zero integer. If \|/,.k is the option chosen then the maximum possible

length of fundamental sequence (FS^J is

2-k [J/2 + J(2k+') - J] + 1 = 2J - J(2^») + 1

[CHAP.4] Robust Data Compression 63

where multiplying on the left hand side by 2'k is the binary equivalent of moving the decimal

point k places to the left.

If J is sixteen and the compressor has six options (k^ = 4) then F^ is 33 bits (32 O's and

a 1). A good candidate for a clear codeword would appear to be a string of O's followed by

a 1 and which is longer than FS^. If the data do pass uncompressed then the values would

be separated with a 1. The length of the required clear codeword could be reduced to a value

nearer FS^ by preventing the formation of long strings of O's through concatenation of the

least significant bits and the ID codes would also require some modification, e.g to disallow

000. However, the clear synchronizing codewords for Rice coding are not efficient. The

codewords are relatively long and further redundancy is required to make them work. As well

as these shortcomings, the codewords could be formed by chance when the code is affected

by errors. Mere recognition of a clear codeword, therefore, would not be sufficient to establish

synchronization. It seems that codewords should only give an indication of synchronization

rather than a guarantee. That being so, far shorter codewords could serve this purpose. This

chapter develops this theme of using short synchronizing sequences which might occur

naturally in the compressed data stream. False synchronization is minimized by additional

means. These sequences are used not only with Rice coding but also with mixed Rice/LZ77

coding and LZB.

4.2.2 A Itobust Synchronizing Scheme

The following scheme is designed to recover when the synchronizing pattern occurs naturally

in the data. It is possible to use a pattern which occurs naturally in the data as a synchronizing

sequence if it is placed periocKcdly into the data stream. Correct, weak synchronization can

[CHAP. 4] Robust Data Compression 64

be achieved if the synchronizing bit patterns occur at expected positions. The compressed data

stream takes the form:

... sync compressed data sync compressed data sync ...

The synchronization scheme is represented below:

Locate synchronizing bit pattern

t

T Decompress Data T

tit

T Does synchronizing bit pattern follow T

T immediately? ———— n — —>

t iy

<———————— Output Data

This synchronization scheme provides only weak synchronization. The establishment of strong

synchronization requires the addition of a little more redundancy. A repeated cyclic count is

introduced to number the groups of data between synchronizing sequences and establish strong

synchronization. If an error occurs and data is lost the count allows the data that is

decompressed subsequently to be placed correctly into the output data stream by shifting along

by the number of values lost. The compressed data stream now takes the form:

sync compressed data count-count sync compressed data count...count sync...

[CHAP.4] Robust Data Compression 65

The count is of a fixed length of eight bits. The Reed-Solomon symbols of the error correction

codes are of eight bits so that a single symbol error will usually affect up to two counts. The

count is, therefore, written more than twice to make the reading of a valid count much more

likely. For example, if the count is written four times then the count is:

a. One of four identical counts; or

b. One of three identical counts; or

c. One of two identical counts, the other two being different one from the other.

The complete synchronization scheme becomes:

I

Locate synchronizing bit pattern <———

_—————————-^ t

T Decompress Data T

tit

t Is there a majority cyclic count? - n —>\

t iy t

t Does synchronizing bit pattern follow t

t immediately? ———— n — ->

t iy

«———————— Output Data

An alternative form of cyclic count was considered and tested. A number of zero bits equal

to the count itself was inserted into the bit stream. The count would be determined simply by

counting the number of bits between the end of the compressed data code and the following

synchronizing sequence. Magnitude errors affecting the count bits would, in theory, be

inconsequential since only the number of count bits is important. Unfortunately, trials of this

[CHAP.4] Robust Data Compression 66

form of count, even with quite modest error rates, proved unsatisfactory. Errors affecting one

or more variable length components of the compressed data changed the 'length' of the code

so that the number of count bits was misread.

A great advantage of the form of count adopted is that it is, itself, a form of synchronizing

sequence. The use of mathematically-based error correction codes to protect the count would

necessarily assume that the detected synchronizing sequence immediately following be an

actual synchronizing sequence before decoding could begin. The form of count adopted makes

no such assumption and it is only when a valid count is detected that the test for the following

synchronizing sequence is undertaken. This is a very powerful guard against false

synchronization. Also, if the count were protected by error correction and synchronization is

otherwise deemed to have been established it is conceivable that severe errors could cause

false error correction. There would be no way of determining whether or not this had taken

place and the count produced would be assumed 'correct'. Mare powerful codes could be

employed but these would be far longer than the form of count adopted. Moreover, the time

taken to decode such codes would be prohibitive.

A 'global1 strategy for decoding a group of cyclic counts could also be considered. A major

disadvantage of any such strategy is that the data would need to be buffered on

decompression. One such strategy might take a group of cyclic counts and protect the group

with parity to form a codeword for error correction. The cyclic counts and parity would be

collected together for error correction. Apart from time taken for error correction, the major

drawback of this approach is that if errors were to cause the loss of synchronization, even

briefly, then one or more counts would not be picked up and there would be vacant positions

in the codeword. Error correction would be impossible.

[CHAP. 4] Robust Data Compression 67

4.2.3 Enor Tolerant Compressor-, in High Enor Environments

This chapter describes the use of several different compression algorithms in the proposed

synchronized piecewise compression strategy. The data type and piece size vary also. The

power of the synchronized compression strategy in every case is best illustrated when it is

subject to random errors. Conceivably there may only be a single resynchronization required

after an isolated burst error. Frequent random errors will force the strategy to regain

synchronization on an ongoing basis. Typical random bit error rates range from 104 to 10"5

which fall well within the error correction capability of DDS [17]. It is not inconceivable that

in high levels of radiation higher random bit error rates could be induced. Uncorrected random

errors are readily observed in the DDS simulation when the random bit error rate exceeds

0.004. In the next section confirmation of the power of the synchronization scheme in the case

of random errors will be followed by an examination of data recovery in the presence of more

realistic burst errors.

4.3 Enor Tolerant Compression of Correlated Physical Data

The Rice algorithm has been chosen as the basis for the strategy to compress correlated

physical data as, by its very nature, it works piecewise so that the overall piecewise

compression strategy may be employed without otherwise reducing compression performance.

[CHAP. 4] Robust Data Compression 68

4.3.1 The Error Tolerant Compressor

A computer simulation of the robust data compression scheme described earlier in this chapter

has been developed in which compression is performed using the Rice algorithm. Recall that

very short synchronizing sequences are used which might appear naturally in the compressed

data. Periodic insertion of the sequence into the compressed data stream allows weak

synchronization to be established. The insertion of a cyclic count allows the conversion from

weak to strong synchronization. The compression program asks the user for the Rice block

length, J, and for the number of Rice blocks, Fs, between synchronizations. The complete

compressed data stream which is used in producing the results presented here is:

... sync refid code ... id code ref count count count count sync ...

where id is the identifier of the Rice option used. The synchronizing sequence is relatively

short- 10011101. This was chosen deliberately to have low correlation for a few bits slippage.

The reference starting value is repeated as a check for errors. If there is a mismatch then

synchronization is deemed not to have been established

The simulation has been written in PASCAL which is run in conjunction with the simulation

of DDS. The end-to-end simulation is run in four stages for ease of file management:

1 Compression of the data

2 DDS encoding of the compressed data

3 Introduction of errors and DDS decoding of data and errors

4 Decompression of decoded data and comparison with original

[CHAP.4] Robust Data Compression 69

4.3.2 Compression Perfoimance

The robust synchronization scheme, incorporating the Rice algorithm for the compression of

sampled correlated physical data, has been tested. The test data was a set of eight-bit terrain

elevations on a rectangular grid. Consider five different cases in which the Rice block length

and the number of blocks between synchronizations is varied. Compression performance in

each case is shown below where T denotes the number of values compressed into a DDS

Basic Group of 126632 bytes. The value T represents the total number of compressed data

values appearing between synchronizing sequences summed over the Basic Group. If the very

last data byte of the Basic Group does not contain a synchronizing sequence then there will

be some compressed data in the Basic Group which does not fall between two synchronizing

sequences. That data is not counted.

Case Rice block F, T Compressed Compressed
length Size Size

(bits per value) (bits per value)
adjust non-adjust

I 12 10 244541 4.1424 3.7460
n 16 4 227110 4.4608 3.7221
m 16 8 247422 4.0944 3.7223
IV 16 16 261883 3.8680 3.6816
V 16 24 266035 3.8080 3.6833

The compression performance improves as the number Fs of blocks between synchronizations

increases. This improvement has arisen since the overhead decreases when Fs increases.

[CHAP. 4] Robust Data. Compression 7Q

4.3.3 Random Errois

The performance of the strategy in the presence of random errors was investigated with the

parameters of cases I and n above. These were chosen to test the resynchronization strategy

most rigorously. Random bit error rates as high as 0.01 were considered in thirty two

simulations at each error rate. No loss of synchronization was observed. The corrected byte

error rates are shown in Section 2.5.2. It was conjectured that if R represents the proportion

of values decompressed correctly and be represents the corrected byte error rate then:

R = (l-be)N

The validity of this relationship was confirmed by taking logarithms and performing regression

analysis. In case I and case n the coefficient of determination was very close to one. In case

I the value of N was calculated to be 40.356 and in case n the value of N was 25.527. In case

n, for example, if the corrected byte error rate is 0.0013 then 97.73% of the data is recovered

correctly. This relationship is reasonable because if there are P bytes, say, between

synchronization sequences, then the probability that every byte is correct is (1 -

In Section 4.2.3 it was argued that a high random error rate would best test the power of the

synchronization strategy. An example of compressed data in case n is shown below after DDS

decoding in a high random error rate environment where the initial random error rate was

0.007. Little s signifies an error-free byte which contains all or part of a synchronizing

sequence and little t represents an erroneous byte which contains all or part of a synchronizing

sequence. All other error-free bytes are denoted by a '-' and all other erroneous bytes are

labelled '*'. The superscripts label the preceding Rice block.

[CHAP. 4] Robust Data Compression 71

SSJ
-ss5*- -ss"

ssi
-ss11. -ts1

.**- -ss-1

--ss19 ——————————————————_-__.-______*_ SS20_

-ss21*---------—---—_*______*-_
>23__-ss

-ss,24

The decompression of the above yields the following where error-free data values are denoted

by a'-' and erroneous or 'missing1 values are denoted by a '*'. The superscripts label the ends

of the decompressed Rice blocks.

**********2.

********************«.

___________*************************

__________________________**********

.5***********************************

*****13.

***************15 -

17.

18******************************

20 _*******************

-23.

[CHAP. 4] Robust Data Compression 72

Blocks 1, 3, 5, 7, 8, 11,14, 16, 17, 18, 23 and 24 are error-free on exit from the decoder and

so are decompressed correctly. The compressed blocks 2,4 and 10 each contain a single byte

error and around hah0 of the data in each case is decompressed correctly. Blocks 6, 9, 15, 19,

21 and 22 contain one or more errors in the compressed data and the whole of each block is

lost save in the case of block 21 where a single value (the reference value) is recovered

correctly. The synchronizing sequence between blocks 12 and 13 is in error and so each block

is lost with the present synchronizing scheme. Note that in block 20 there is single byte error

affecting the cyclic count. The repetition code protecting the count deals with this and the

whole of block 20 is recovered correctly.

4.3.4 BurctEnois

The interleaving within the DOS encoding improves the error correction capability of the

codes. However, when errors are uncorrected by C3 they are dispersed throughout the data on

deinterleaving. The data bytes within an erroneous Track (half a Frame) will be spread

throughout the Sub-Group. The data bytes corrupted by a longitudinal corruption the length

of a coded Basic Group and which remain uncorrected will be spread throughout the Basic

Group on decoding. The C3 code is able to correct any two tracks in a Basic Group. If strong

synchronization is to be maintained when there are more than two Tracks in error a complete

period of the cyclic count must not be lost. The strategy is clear - to increase the number of

consecutive Frames whose corruption can be tolerated, the number of coded values between

synchronizing sequences must be increased This is data dependent as for higher entropy data

the lengths of the codes will be longer. Define Nf to be the maximum number of consecutive

[CHAP. 4] Robust Data Comp:ressian 73

Frames whose corruption through the loss of entire Tracks allows strong synchronization to

be maintained. The value of Nf in each of cases n to V are:

Case Nf
n i
m 2
IV 5
V 8

Since there is no interleaving between Frames then it follows that data recovery is proportional

to the number of uncorrupted Frames.

The error control procedures of DDS are able to correct a longitudinal corruption up to 0.3

mm wide. Corruption widths are increased in steps of Vgo mm in the simulation of the error

control procedures of DDS. Longitudinal corruptions the length of a Basic Group or more,

cannot be tolerated in cases IV and V. Data recovery in cases n and ffl is illustrated below.

>. 250000

8 g 200000
8 150000

= P 0u
0)

Case II
2 g 100000 .- • Case III

"I o. 50000

21 23 25 27 29 31

width of data corruption (1/80 mm)

Hg. 4.1 Data Recoveiy within a DDS Basic Group in die Presence of a Longitudinal

Corruption

[CHAP.4] Robust Data Compression 74

In case n the compressed data stream between synchronizing sequences is smaller than in case

El so that more intact individual compressed data streams appear between deinterleaved errors.

Hence the number of values recovered correctly is greater in case n. The errors do not

propagate beyond the Basic Group.

A lateral corruption has been input into the DDS simulation and data recovery in case n has

been determined. This investigation is illustrated below:

46 tracks=lBasic Group
lateral corruption

c2 parity

The C2 code can correct a burst of up to 24 blocks (p 8). Correction of 24 blocks would be

achieved if the first block in the burst had an even serial number. In this case no Cl

codewords not wholly contained within Hie same 24 blocks would be corrupted (p 7). If the

first block were to have an odd serial number then corruption of 24 blocks would lead to

uncorrectable Cl codewords in the block immediately preceding the burst and the block

immediately following the burst. This would be uncorrectable by the C2 code since some C2

codewords would contain seven symbol errors. Consideration of the geometry and dimensions

of the tracks suggested that a lateral corruption is best simulated by incrementing by one the

serial number of the start block in each succeeding track affected by the burst. Data recovery

in the presence of a lateral corruption is illustrated in the graph below. Start 1 labels a

corruption with a starting position as in the diagram above. Start 2 labels a corruption with

[CHAP. 4] Robust Data. Compression 75

a starting position shifted to the left of that in the above diagram by about V6* of the length

of the 'user data1 part of a track. A corruption with a width of 24 blocks would be alternately

correctable and uncorrectable in succeeding tracks.

s >>
3 **^ s
* t
o 8
§>!j
"c >
O o

|s

1UU |

80 -

60 .

40

20

0
<«•

1

' • • • •^ • • • •
• • • • •

——— l ——— l ——— l ——— i ——— l ——— l
•*r LO CD i-- oo 01

•

•

Start 1
Start 2

CM CM CM CM CM CM CM

width of data corruption (1/9 mm)

Fig. 4.2 Data Recovery within a DOS Basic Group in the Presence of a Lateral

Corruption

Data recovery in the presence of a lateral corruption is greater than in the presence of the

equivalent (in terms of blocks) longitudinal corruption. As may be seen in the earlier diagram

a lateral corruption will affect the 'non-data' C2 parity while a longitudinal corruption may not.

a

[CHAP.4] Robust Data Compression 76

4.4 Enor Tolerant Compression of Mixed Correlated Physical and Text Date

The compression of two quite different types of data requires an eclectic compressor. The

compressor must identify the type of data which it is encountering and then select

compression algorithm which can perform effective compression of that data.

The Rice algorithm may be regarded as possessing an in-built text detector since if the

algorithm is unable to compress the data, as would be the case for text, then, as a final option

the data is passed through uncompressed. The approach adopted here is to use the statistically-

based Rice algorithm to compress the whole of the data. However, the final option is replaced

by compression based upon the LZ77 dictionary algorithm [20]. Hence LZ77 must be made

to work more efficiently when compressing small pieces.

4.4.1 Hie Error Tolerant Compressor

If an LZ77 based algorithm were used to compress a large file then few characters would not

fall within a previously seen phrase. The output of the LZ77 derivative, LZSS [21,22] would

consist mainly of pointers i.e. the pair identifying the position of the start of the match in the

dictionary and the match length. Since the volume of data to be compressed by the proposed

strategy may be only tens of characters, consecutive pointers in the output code are unlikely.

The proposed text compressor, therefore, is LZSS but with pointers followed by characters as

in the triples of LZ77. The pointer in LZ77 is a waste of capacity when there is no matching

phrase. An example of the code produced by the proposed compressor follows later in this

section.

[CHAP. 4] Robust Data Compression 77

The implementation of the proposed strategy will be described with reference to the following

example. Suppose that there are four Rice blocks of five samples each between

synchronizations and that the strategy encounters the following:

ref blockl MockZ Wock3 Hock4

10 10 11 11 12 13 98 6 70 31 20 21 22 24 25 26 98 6 70 32 60

where ref is the starting value for the preprocessing of the Rice algorithm. The Rice algorithm

detects automatically that blockl and block3 comprise correlated samples since the blocks can

be compressed by sample splitting. Blockl and block3 are examined firstly. The differences

and preprocessed values for blockl and block3 are:

blockl block3

differences 01011 11211

preprocessed values 02022 22422

The first option of the Rice compressor, fundamental sequence coding of the samples without

sample splitting, is chosen by the algorithm to compress blockl, yielding:

1 001 1 001 001

Similarly, the algorithm chooses the second option of the Rice compressor (with one split bit)

to compress block3 to give

01 01 001 01 01 * 0 0 0 0 0

[CHAP.4] Robust Data Compression 78

The Rice algorithm determines, by default, that block2 and block4 comprise text data since

these blocks cannot be compressed by sample splitting. When data is deemed to be text data,

the dictionary compression of the raw, unpreprocessed data is attempted. Preprocessing is not

used because it would shorten runs of characters and recurring groups of characters would be

shortened. This is best illustrated with a simple example:

suppose the data is

... 2 4 7 7 7 7 9

preprocessing would yield

...7460004

i.e. the run length has been shortened from four to three.

The dictionary is preloaded with 'O's and the look-ahead buffer is empty. At the start of the

compression of groups of blocks between synchronizations there can be no matching phrase

and since there are no 'O's in block2 the dictionary compressor passes the values in this block

straight through. Each symbol is prefixed by a single bit, 0, to denote a character rather than

a pointer followed by a character. At the start of the compression of block4 the dictionary is

look ahead buffer

... 0 0 0 0 0 98 6 70 31 20 | 98 6 70 32 60

The first three characters in the look ahead buffer appear in the dictionary. Block4 is encoded

as:

< 1 'offset into dictionary '3' '32' >< 0 '60' >

where

[CHAP.4] Robust Data. Compression 79

1 is the bit indicating that a pointer follows

'3' is the match length

'32' is the character immediately following the match in the look ahead buffer

0 is the bit indicating that a character follows

'60' is the last character in the look ahead buffer

By contrast LZ77 would code the look ahead buffer as

< 'offset into dictionary1 '3' '32' > < 'offset into dictionary '0' '60' >

while LZSS would code the look ahead buffer with

< 1 'offset into dictionary '3' >< 0 '32'> < 0 '60' >

The compression program asks the user for the Rice block length, J, and for the number of

Rice blocks, Fs, between synchronizations. The complete compressed data stream which is

used in producing the results presented here is:

<——— Fs—— -»

... sync refid code ... id code ref count count count count sync ...

where id is the identifier of the Rice option used. The synchronizing sequence is again

10011101.

In order to assess the performance of this scheme a simulation has again been written in

PASCAL and is run in conjunction with the simulation of DDS. The end-to-end simulation

is run in the same four stages of the earlier tests.

Robust Data Compression 80[CHAP. 4]

4.4.2 Compression Performance

The test data is part of that generated in an industrial measurement procedure and each value

is of eight bits. The following diagram illustrates the mix of 'housekeeping1 text and correlated

physical data.

0)

>
3><
JQ

250
200
150
100
50

0
20 40 60

sequential reference

Fig. 4.3 The IVfix of Data

Bytes one to twenty nine are text data while bytes thirty to sixty are correlated physical data

values. The entropy of the unpreprocessed data is around 5.1 bits per value and a 'continuous'

LZSS coding with a 2K buffer achieves a performance of 3.33 bits per value. The Rice block

length used in producing the following figures is sixteen. The number of options is varied;

three, four, five and eight option compressors are considered. The options for an r-option

compressor are split samples coding with 0 ... r-2 split bits and LZ77 coding. The numbers

of values compressed into a DOS Basic Group using these compressors are shown below

222138

225750

223557

200208

255715

253659

49:51

50:50

51:49

81:19

51:49

51:49

4.5608

4.4872

4.5312

5.0600

3.9616

3.9936

[CHAP.4] Robust Data Compression 81

together with the percentage of the number of blocks compressed using split samples (ss) to

the number of blocks compressed using LZ77:

Percentage Compressed
Case no. of no. of blocks no. of values of use of ss Size

options between syncs compressed to use of LZ77 (bits per value)

I 3 8
H 4 8
m 5 8
IV 8 8
V 4 16
VI 4 16

In case VI the dictionary is preloaded with the least frequently occurring symbol which arises

0.00005% of the time, as against zero, which is the most frequently symbol, occurring 11.54%

of the time, in cases I to V. This makes it clear that no prior knowledge of the data is required

for the attainment of powerful compressor performance. A compressor with four options and

sixteen blocks between synchronizations provides the best performance of the compressors

tested. The difference between cases n and V is due to the improved performance of LZ77

when the dictionary is able to become longer between synchronizations. The differences in

performance between cases I and n and also between cases HI and IV arise solely from

variations in individual compressor option performances since the option ID overhead is of

the same length in the respective cases. There are blocks of data which are compressed by

y 777 jn case I but compressed by split samples with two split bits in case n. Recall that split

samples with k split bits works best for entropies of around k+2 bits per sample. The poorer

performance in case I suggests that split samples outperforms LZ77 at entropies of around four

bits per sample. In case in, LZ77 compression is used on data which case IV compresses by

[CHAP.4] Robust Data Compression 82

split samples with from four to six split bits. The improved performance of case HI indicates

that LZ77 performs better than split samples from entropies of around six bits per sample

through to eight bits per sample.

4.4.3 Random Enois

An investigation of the performance of this strategy in the presence of random errors as in

Section 4.3.3 was performed in cases n and IV above. The same form of relationship of the

previous section emerged again between the corrected byte error rate and the proportion of

values decompressed correctly i.e. if R represents the proportion of values decompressed

correctly and be represents the corrected byte error rate then:

R=(l-be)N

In case n the value of N was calculated to be 26.626 and in case IV the value of N was

32.529. So, for example, in case H, with a corrected byte error rate of 0.00037, the proportion

of values decompressed correctly is 0.9902.

4.4.4 BmstEnois

The data bytes within a data corruption the length of a coded Basic Group which remain

uncorrected will be spread throughout the Basic Group on decoding. The error control

procedures of DOS are able to correct a data corruption up to 0.3 mm wide. Widths are

[CHAP.4] Robust Data. Compression 83

increased in steps of V^ mm in the simulation. Data corruptions the length of a Basic Group

or more, cannot be tolerated in cases IV and V since the length of the code between

synchronizations is too long to appear between deinterleaved errors. Data recovery in case I

is illustrated below:

CO ^o> >>
2 o
> t
o 8
11
i|
£ 2

100 * *

80 .

60 -

40 -

20 _

0

*****««^
4- i —— i — -i —— i —— i —— i — —— i — -i —— i —

CO
CM CM

r-
CM

O)
CM

CO
CO

width of data corruption (1/80 mm)

Fig. 4.4 Data loss within a DDS Basic Group

The pattern of data recovery is similar to that in the case of pure correlated physical data. The

errors do not propagate beyond the end of the Basic Group.

4.5 Eiror Tolerant Compression of Text Data

Dictionary-based compressors offer the most effective compression of text data. Performance

figures for the compression of text with several different compressors may be found in the

literature. The book of Nelson [22], for example, quotes figures showing that LZSS

compresses certain text files to around 40% of their original size while Huffman coding and

[CHAP. 4] Robust Data. Coirpression 84

arithmetic coding compress the same files to around 60% of their original size. The use of

dictionary-based compressors with the piecewise compression strategy, however, will attenuate

compression performance since the dictionary will never be of optimum size. Of the two Ziv

Lempel compressors an LZ77-based compressor is favoured over an LZ78-based compressor

since the former begins to perform compression almost immediately after start-up. The LZSS

compressor has been described earlier [§3.4] together with the improvements made by LZB.

4.5.1 IZB

The advantages of using LZR when performing piecewise compression may be appreciated

through the examination of a simple example. Consider the coding of the following sequence

in isolation using both LZSS and LZB.

Position 01234567

Character ababbabc

Consider the use by LZSS of six bits for the displacement and four bits for the match length

so that the smallest match length coded by a pointer is f(l + 6 + 4)/(l + 8)] = 2. In LZSS

the match length is coded as match length minus 2. For this example, the minimum match

length that is coded by LZB, p, is fixed at 2.

[CHAP. 4] Robust Data. Compression 85

Characters coiled LZSS LZB

a 1 'a1 1 'a1
b 1'b' 1 'b'

ab 0 000000 0000 0 0 1

bab 0 000001 0001 0 01 010
c 1 'c' 1 V

The advantages of using LZB rather than LZSS are strikingly apparent. The code for the

displacement into the dictionary and the code for the match length are both shorter in this

example when T.7B is used. During piecewise compression such space saving advantages

accumulate since there many such start-ups. The 'continuous' compression of large files would

not demonstrate such a great advantage since the displacement codes will be the same length

once the sliding window has filled up. Moreover, the variable length coding of the match

length may begin to claw back some of the advantage gained when long matches are found.

[CHAP.4] Robust Data Compression 86

4.5.2 LZB Piecewise Compression Performance

The LZB algorithm was programmed in PASCAL to perform piecewise compression. The

piecewise LZB compression of 'Bookl' of the Calgary data compression corpus [41] was

performed. The parameter 'p' of LZB is fixed at two in all cases save for compression using

a piece size of 16K. The best compression performance with a piece size of 16K is achieved

when p is increased from two to three after 8K (2 13) values have been compressed within each

piece. Compression revealed the following frequency distribution of match lengths:

Match
Length

2

3

4

5

6
7
8
9
10
11
12
13
14
15
16
17

29

127885

39734
16355

7325

3178
1516

828

485

273
158
93
67

53

29

29

78

210

123605

49170

21665

10160

4835
2428

1328

805

446

246

162

97

70
50

33

102

Piece size (bytes)
211 212 213

108069

55521

26590

13419

6942
3564

1949

1220

652

367

243

133

97

76

37

135

86114

57631

30638

17087

9332
5006
2766

1680

933

526
332

187

129

101

53

168

63187

54726

33308

20543

11763

6786

3835
2294

1308

720

451

233

185

116

66

207

Variable p
214

31588

27270

16734

10313

5962
3413

1942

1169

662

356
198

116

80

62

31

104

13890 *

21534

17681
13197

8583
5227

3174
1941

1104

658
418

226

150
107

62

142

[CHAP. 4] Robust Data. Compression 87

* the number of matches of length two in this case is shown for information only since they

are ignored by the compressor. It is evident from the above table that as the piece size

increases so the distribution of match lengths skews so that more long matches are found.

The performance, in bits per sample, of piecewise LZB on three files of eight bit data from

the Calgary data compression corpus for varying piece sizes is shown below:

File name Bookl Book2 News

Number of individual characters 82 % 98

Entropy (bits per sample) 4.53 4.79 5.19

Perfoitnance at piece size
measured in K- Y2 5.72 5.35 5.76

1 5.30 4.86 5.31
2 4.98 4.48 4.87
4 4.73 4.18 4.48
8 4.53 3.94 4.25

16 4.22 3.66 3.97

LZB (Fenwick [42]) 3.86 3.28 3.55

The entropy acts as a lower bound on the performance of a Huffrnan code. A piece size of 2K

allows LZR to outperform Huffman coding in two of the three cases above. In reality, the

performance differential is greater still, since Huffman coding has the encumbrance of a

probability table. Generally speaking, it may thought that, at the very least, text should be

compressed to around half of its original size before such a performance may be regarded as

satisfactory. Some text may not allow such compression to be achieved. Each of the three

texts examined above do allow such a performance with 'continuous compression'. The

piecewise compression of files Book2 and News allow compression ratios of nearly 0.5 with

pieces of size 8K and 16K respectively. Although the piecewise compression of Bookl did

not exhibit the same performance with any of the piece sizes tested, the performance for this

[CHAP.4] Robust Data Compression 88

file did approach that of'continuous1 LZB most closely. The compressed size with a piece size

of 16K was 9.3% greater than that of 'continuous1 compression for Bookl while the same

figures for Book2 and News were 11.6% and 11.8% respectively.

4.5.3 Eiror Propagation in LZB

The LZB code comprises a mixture of flag-pointer and flag-character pairs. The effects of

errors in the various components are summarized below:

1 erroneous flag loss of compressed code synchronization leading to total scrambling

of subsequent data

2 erroneous character may propagate if referenced by later pointers

3 erroneous offset - may propagate if referenced by later pointers

- may reference non-existent locations in dictionary

4 erroneous length - loss of data synchronization - slippage

- loss of code synchronization if leading zeroes corrupted

- loss of data synchronization followed by later loss of code

synchronization since interpretation of displacement dependent upon

number of values compressed.

[CHAP. 4] Robust Data Compression 89

Most of the effects of the above errors are not easily demonstrated since a lot of scrambled

rubbish is produced. However, an example of propagation due to an erroneous offset is shown

below:

Original Text

The Ccnterville Ghost

A Hylo-Ideolistic Romance

WHEN Mr. Hiran B. Otis, the American Minister, bought Ccnterville Chase,

every one told him he was doing a very foolish thing, as there was no doubt

at all that the place -was haunted. Indeed, Lord Canterville himself, who

was a man of the most punctilious honour, had felt it his duty to mention

the fact to Mr. Otis when they came to discuss terms.

We have not cared to live in the place ourselves,' said Lord Canterville,

"since my grand-aunt, the Dowager Duchess of Bolton, was frightened into a

fit, from which she never really recovered, by two skeleton hands being

placed on her shoulders as she was dressing for dinner, and I feel bound to

tell you, Mr. Otis, that the ghost has been seen by several living members

of my family, as well as by the rector of the parish, the Rev. Augustus

Dampier, who is a Fellow of King's College, Cambridge. After the

unfortunate accident to the Duchess, none of our younger servants would

stay with us, and Lady Canterville often got very little sleep at night, in

consequence of the mysterious noises that came from the corridor and the

library.'

ComjptedText

The Canterville Ghost
A Hylo-ldedistic Romance
WHEN Mr. Hiram B. Otis, te CAmerican Minister, bought Canterville Chase,

every one told him e Cwas doing a very foolish teing, aster Cwas no doubt

at all teat te CplaceCwas eaunted. Indeed, Lord Canterville himself, who

was a man of te CmostCpunctilious eonour. ead feltCitChis duty toCmention

te Cfcct toCMr. Otis when te y came toCdiscuss terms.

'We have not car d toClive in te CplaceCourselves,' said Lord Canterville,

"sinceCmy grand-aunt, te CDowagerCDuce ss of Bolton, was frighten d intoCa

[CHAP. 4] Robust Data. Compression 90

fit, from which she never r dly r covered, by twoCskeleton hands being

placed on her shoulders as she wee dressing for dinner, and I feel bound to

tell you, Mr. Otis, teat te CghostChas been seen by severalCliving members

of my family, as well as by te Cr ctor of te Cparish, te CRev. Augustus

Dampier, who is a Fellow of King's College, Cambridge. After te

unfortunat Caccident toCte CDuce ss, none of our younger servants would

stay with us, and Lady Canterville oftenCgot very little sleep at night, in

consequenceCof te Cmysterious nois s teat came from te Ccorridor and te

library.'

The 'he ' within 'the America^ is referenced to the same phrase in the title. A single bit error

has shifted the reference forwards by one position so that 'e C is now copied on

decompression.

4.5.4 The Enor Tolerant Compressor

The core of the compressor is the algorithm LZB. A second form of variable length coding

for the match lengths is included as an option. The inclusion of a second option for the coding

of the match lengths is suggested by the distribution of match lengths found in Section 4.5.2.

The distribution of match lengths, with smaller piece sizes, approximates a Laplacian

distribution which the Rice algorithm is able to exploit with the fundamental sequence code.

This can be seen clearly in the following example where the match lengths of the piecewise

LZB coding of Bookl with a IK piece have been coded:

[CHAP. 4] Robust Data Compression 91

Match
Length

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Total It

Frequency

123605

49170

21665

10160

4835

2428

1328

805

446

246

162

97

70

50

33

102

Mi£th (bits)

Huffman
Code

1

01

001
0001

00001

000001

0000001

00000001

000000001

00000000011

00000000001

000000000101

000000000001

0000000000001

0000000000000

000000000100

394868

Fundamental
Sequence

1

01

001

0001

00001

000001

0000001

00000001

000000001

0000000001

00000000001

000000000001

0000000000001

00000000000001

000000000000001

QOOOOOQOOOOOOOOl

395216

They
Code

1

010

on
00100

00101

00110

00111

0001000

0001001

0001010

0001011

0001100

0001101

0001110

0001111

000010000

444146

Clearly, the fundamental sequence code is almost as good as Huffman and the y code is not

competitive here. The compressor performs T.7R compression on each piece in the normal way

and writes the compressed code to a buffer. In parallel, and at no extra run-time penalty as

far as searching for matches is concerned, the fundamental sequence coding of the Rice

algorithm is applied to the adjusted match lengths and the compressed code is written to a

second buffer. The compressor then chooses the shorter code for this piece and inserts it into

the main compressed data stream preceded by a single-bit flag to identify the variable length

code employed.

[CHAP. 4] Robust Data. Compression 92

In order to achieve robustness in a similar way to that of the earlier compressors the

compressed data stream takes the form

... sync flag-bit h-code count count count count sync ...

The synchronizing sequence has been increased in length for the error resistant compressor

from the eight bits of the two prior compressors to fourteen bits - 10011101010110 for the

following reason. The compressed code between synchronizing sequences is a great deal

longer than in the compressors for correlated physical data and mixed correlated physical data

and text. If synchronization is lost the eight bit pattern would be detected far more frequently

than in the prior compressors and, in triggering the resynchronizing scheme each time

synchronization is lost, the decompressor would be slowed markedly. The cyclic count and

the form of its coding is retained.

4.5.4.1 Random Errois

The table in Section 4.5.2 reveals that the compression performance of LZB on the file News

with a piece size of 2K is very similar to its performance on file Book2 with a piece size of

IK. Compression of Bookl with a piece size of 3K exhibits a similar performance. The use

of the synchronizing scheme in each of these three cases shows directly how piece size affects

data recovery. It turns out that the same expression for data recovery in the presence of

random errors which applied to correlated physical data and to mixed correlated physical data

and text also applies in the case of pure text data; i.e. if R is the proportion of values

decompressed correctly and bc is the corrected byte error rate then

[CHAP.4] Robust Data Compression 93

R = d-be)N

The exponent, N, is found by taking logarithms and performing regression analysis. The

results of this exercise are shown below.

Bookl@3K News@2K Book2@lK

Values compressed into Basic Group 208896 202752 205824

Compressed size(bits per value) 4.85 5.00 4.92

Ratio of use of ES code to gamma code 100:0 44:56 73:27

Exponent 386 286 145

Predicted proportion of values 0.8669 0.8996 0.9477

decompressed correctly at byte error

rate of 0.00037

It can be seen that the fundamental sequence coding of the match lengths proved to be the

shorter option for the majority of pieces compressed The option to use fundamental sequence

coding allows a small improvement in performance over 'straight1 LZB. The improvement has

not been measured.

4.5.4.2 BinstEnois

The codes between synchronizations in the case of pure text data are necessarily long to allow

acceptable compression performance. This precludes any data recovery from within Frames

affected by longitudinal scratches since the codes are too long to appear between deinterleaved

errors. The long codes do allow strong synchronization to be maintained when the tapes is

[CHAP.4] Robust Data Compression 94

affected by quite large burst errors. For example, the compression of Bookl with a piece size

of 3K shows that (208896/(3x210)) = 68 blocks may be compressed into a Basic Group.

Recalling that the count period is 256, it can be seen that strong synchronization can be

maintained when three whole Basic Groups are corrupted by errors.

4.6 Broad Mathematical Model of Data Recovery for Strong Synchronization

There are around 10,000 Basic Groups on a 60m tape. A compressed data file is stored on the

tape as an Entity. The number of Basic Groups which make up an Entity, of course, depends

upon the size of the data file. If an error occurs on the tape, errors will only propagate to the

end of the Entity and not to the end of the tape.

Let Entities comprise an average of N Basic Groups. Suppose an error corrupts an entire Basic

Group so that no data is recovered from the Basic Group in which the error occurs. Let the

probability of a Basic Group being uncorrupted be p.

Gise 1 - Synchronization and a cyclic count

Errors will not propagate beyond the 'end1 of a Basic Group. There may be some 'edge effects'

in the following Basic Group where data recovery will start from the first valid synchronizing

sequence.

The number of Basic Groups recovered is approximately Np.

[CHAP. 4] Robust Data Compression 95

Case 2 - No synchronization

If an error occurs in a Basic Group all subsequent Basic Groups in the Entity will be lost.

Af-1

E(recovery) =Np N+^2 ip i (1-p)
i=l

E(recovery) = 1-p

If there are 100 Basic Groups in an Entity and the probability of a Basic Group's being

uncorrupted is 0.9 then case 1 yields 90 Basic Groups and case 2 yields 9 Basic Groups.

96

Chapter Five

DDS-3 Revisited

5.1 Preamble

The tape format DDS-3 was described briefly in Chapter One. This chapter lays the foundation

for a possible future simulation, based upon that of DDS-1, of this latest format by providing

the parity byte equations and providing an indication of the impact of uncorrected burst errors

on data compressed using the present strategy.

5.2 Hie Parity Byte Equations

The Cl parity check matrix is [4]

a 61 a
»122

60

1
58

a !83 a lBO

a 59 a
a 118 a 116
a 177 a 174
a 236 a 232

a 50 a 45 a 40 a 35

111

a 2 a 1
a 4 a 2 1
a 6 a 3 1
a 8 a 4 1
a 10 a 5 1

(5.1)

[CHAP. 5] DDS-3 Revisited 97

and VT is

[VI V2 V3 ... V56 PI P2 P3 ... P6] (5.2)

A computer program has been written to solve the equation H*V = 0 (here * means matrix

multiplication again). The program has been shown to be running correctly by reproducing the

equations in Chapter Two which were previously produced by hand. The DDS-3 Cl parity

bytes are:

(5.3)

[CHAP.5] DDS-3 Revisited 98

(5.4)

(5.5)

[CHAP.5] DDS-3 Revisited 99

10

(5.6)

(5.7)

[CHAP.5] DDS-3 Revisited 100

'10

(5.8)

The above equations have been tested by the calculation of syndromes for error-free

codewords. The production of all-zero syndromes verifies the above equations. The Cl

codeword of DDS-3 and the C2 codeword of DDS-1 share a common characteristic - the six

parity bytes in the respective codewords occupy consecutive positions. This characteristic has

produced similarities in the parity byte equations. The coefficients of the first thirteen data

bytes in the parity byte equations for the C2 codeword of DDS-1 are the same as those of the

last thirteen data bytes in the parity byte equations for the Cl code of DDS-3.

The C2 parity check matrix is [4]

[CHAP.5] DDS-3 Revisited 101

Ill
a 31 a 30 a29 a

1
28

56

a 93 a 90 a 87 a 84
a 124 a 120 a 116 a 112
a 155 a 150 a 145 a 140

i r
a 1
a 2 1
a 3 1

a 10 a 5 1

(5.9)

and V7 is

[Ql Q2 Q3 V4 V5 V6 ... V29 Q4 Q5 Q6] (5.10)

The C2 parity byte equations are:

14

02 =
^

23

(5.12)

[CHAP. 5] DDS-3 Revisited 102

(5.13)

(5.14)

(5.15)

'23

[CHAP.5] DDS-3 Revisited 103

The C2 parity byte equations have also been verified by the production of all-zero syndromes

for error-free codewords.

5.3 Unconected Binst Enor Patterns

It is possible to obtain the patterns of erroneous bytes in decoded data in some simple cases

without a full simulation of the error control procedures of DDS-3. It will be assumed that the

optional C3 code is not used or else is ineffective due to the number of tracks affected. The

interleave depth of the C2 code is three Fragments (recall from Chapter One that a Fragment

is the DDS-3 equivalent of the Block of DOS-1) so that the six C2 parity bytes will allow

correction of a burst of eighteen Fragments; this corresponds to a longitudinal corruption 4/9

mm wide. If the minimum size of burst considered is twenty four Fragments then there can

be no C2 error correction in any of the codewords affected (Cl is assumed to be overwhelmed

and so passes on flags to C2). The interleaving of DDS-3 has been simulated computationally

and the effects of burst errors on a Frame have been calculated by de-interleaving the

erroneous Fragments. The results are shown below, hi all cases there are 112 error-free runs

of the length stated and 110 runs of erroneous bytes of the length stated plus two runs of

erroneous bytes with a length two bytes less than that stated.

[CHAP.5] DDS-3 Revisited 104

Burst size Length of error-free Length of urns of

(Fragments) tans (bytes) enoneous bytes

24 108 48

30 96 60

36 84 72

42 72 84

There are 17468 data bytes in a DDS-3 Frame so the above figures show that in the case of

a burst one third larger than the maximum correctable around 69% of the recorded data bytes

are recovered error-free. This contrasts markedly with DDS-1 where a burst only l/2 * larger

than the maximum correctable allowed error-free recovery of a little over hah0 of the recorded

data bytes in usable runs. This contrast must be due to the less complex interleaving employed

in DDS-3 (for example, unlike DDS-1, there is no interleaving between tracks) so that

uncorrected errors are not dispersed so widely.

5.4 Implications for the Present Robust Data Compression Strategy

The results of the last section demonstrate that a greater proportion of compressed data per

Frame will be recovered in the case of DDS-3 than is the case with DDS-1 when the present

strategy is employed with the same compression and synchronization parameters. It is possible,

therefore, to maintain strong synchronization in the present compression strategy when using

DDS-3 without changing the parameters of the strategy used with DDS-1.

105

Chapter Six

Conclusions

6.1 Review of the Thesis

Chapter OUR saw the introduction to the problem of error propagation in compressed data

recorded on DDS tapes operating in hostile environments. The error control procedures of

DDS were reviewed. Chapter Two described the Reed-Solomon error control coding of DDS

and the decoding of the most complex of the three codes employed was detailed The error

correction capability of the simulation of DDS was found to correspond to that claimed for

the format in the literature. Severe errors were input into the simulation and the uncorrected

errors were calculated. In Chapter Three some of the better known data compression

algorithms were described. The little known Rice algorithm was introduced as it was to find

an important role in this work. Chapter Four described a compression strategy which limited

the propagation of errors and prevented slippage in the decompressed data and which was

independent of the compression algorithm. Compression algorithms were described which

perform efficient piecewise compression of correlated physical data, mixed correlated physical

and text data and English text. In each of these three cases the strategy was tested in the

presence of both random and burst errors. Although unusually harsh, the random error tests

demonstrated the ability of the strategy to establish strong resynchronization on a continuous

basis. The effects of more realistic burst errors were investigated and the data recovery

determined. Chapter Five paved the way for a simulation of the latest format DDS-3.

[CHAP.6] Conclusions 106

6.2 New Results

The use of conventional data compression in situations where the error control coding of the

channel may let through uncorrected errors always risks the loss of all the data following such

events. This thesis has demonstrated a viable alternative in which the effects of errors are

confined to only a relatively small quantity of data following the error. Not only has error

propagation been prevented but slippage in the decompressed data has also been eliminated.

The DDS format is able to do this only on an entity by entity basis. The present strategy can

prevent slippage within entities. This strategy has been rigorously tested for an actual channel

and for realistic error patterns in the end-to-end simulation. The end-to-end simulation has

brought together some quite distinct and diverse algorithms and methods. There are no reports

of such simulations in the literature. In the course of the development of the computer model

of the error control procedures of DDS the behaviour of the format in the presence of high

random error rates was investigated. These results, again, are seemingly absent from the

literature. The compressors employed within the strategy are also noteworthy. The compressor

designed for correlated physical data is an implementation of the Rice algorithm - with

synchronization. This implementation allows a completely free choice of block length.

Hardware implementations tend to be more restrictive as far as the choice of block length is

concerned. A value of sixteen bytes seems to be typical. The compressor designed for mixed

correlated physical and text data is unusual as it switches between two quite distinct

algorithms as the data type varies. The LZB text compressor has been shown to be able to

perform surprisingly efficient compression of relatively small pieces of English text. LZB has

been modified to perform even more efficiently, albeit very slightly.

In summary, this work has involved:

[CHAP.6] Conclusions 107

complete simulation of an industry standard medium

devising a scheme to resynchronize strongly i.e. at correct position in output data

stream

producing an overall strategy which limits error propagation at little cost in terms of

compression performance

devising a compression strategy which is both robust and effective for hybrid data and

testing on a sample of real industrial data

exploring the parameters of the strategy with regard to compression ratio and

synchronization

linking the simulations of the robust compression strategies directly to the DBS

simulation for end-to-end simulations where the final output data is compared to the

original.

6.3 Useis and Data

Any compression strategy which seeks to limit error propagation will lose some data prior to

resynchronization. Self-synchronizing Huffman codes produce an unpredictable number of

erroneous symbols following a single bit error. This is a form of data loss. The adaptive

compression of the present work led, almost axiomatically, to the piecewise approach. Errors

affecting data compressed using this strategy may cause the loss of entire pieces, although

slippage can be avoided.

Terrain elevation maps are one example of correlated physical data and so piece sizes might

vary widely as compression performance per se is largely independent of piece size. Errors

might arise in the initial measurement and recording in a hostile environment or the errors

[CHAP.6] Conclusions 108

might arise in the reading in a hostile environment. Lack of slippage in this data would be of

paramount importance if measurements were made on a predetermined grid. If the data were

recorded one dimensionally on a row by row basis on a rectangular grid then loss of part or

all of a line of data without slippage could be countered through interpolation, since the data

is correlated. However, if the resolution of the grid were designed to pick up even the sharpest

possible change in elevation and if such changes fell within the line lost then these changes

could not be approximated through interpolation.

Computer programs written in high level computer languages such as FORTRAN or PASCAL

are clearly text. Absolutely no loss of text data in this application can be tolerated since the

programs would not even compile properly let alone run correctly. On the other hand some

loss of data can be tolerated in computer graphics data although here, again, prevention of

slippage is vital. Graphics that did not consist of digitized photographs but instead were

artificially generated images could be considered in the same way as text. If, for example, a

road map represented a motorway with a black line on a white background then adjacent black

and white pixels on a line would be a common phrase. The significance of the loss of data

here is a judgement based upon surrounding patterns. A 'gap' appearing in a road through data

loss should not be critical.

In some applications slippage might be regarded as unimportant. For example, the data might

be correlated physical data recorded as x-y-z triples on an irregular grid or English text. It is

possible to identify leaks and weaknesses in a pipeline by sending through mechanical devices

to measure magnetically any variations in the thickness of the pipe wall. The output generated

is the correlated physical data of the measurements and data identifying the position of the

measurement. Avoidance of slippage could be vital in this application. Circumferential

measurements are one dimensional but any weakness is likely to leave a two-dimensional

[CHAP.6] Conclusions 109

signature. The resolution of the measurement grid is, again, important and only consideration

of that can determine if data loss is tolerable.

6.4 The Parameters of the Strategy

The design of a strategy needs to consider two parameters - the quantity of data to be

compressed between synchronization sequences and the period of the cyclic count. The period

of the count used in generating the results presented in this thesis has been fixed at 256 - the

period of a count corresponds to the eight bits of a byte and might be regarded as 'standard'.

The choices for these parameters will depend upon the environment in which the strategy is

to operate. Operation in an environment generating frequent short bursts, say two or three

corruptions within Frames per Basic Group, would be best served with a strategy with

relatively small quantities of data between synchronizations and a 'standard' count period of

256. Compressed data would be recovered between deinterleaved errors and the count period

would be adequate to maintain strong synchronization. Operation in an environment liable to

cause loss of many consecutive Frames would suggest use of larger quantities of data between

synchronizations since there is little scope for the recovery of data between deinterleaved

errors. This would allow better overall compression performance since the overhead is

lessened and, as far as text is concerned, compression performance is improved. Increasing the

quantity of data between synchronizations increases the number of Frames spanned by the

'standard' cyclic count period.

[CHAP. 6] Conclusions

6.5 Practicalities of Integrating the Strategy with DDS

There is no standard data compression algorithm for use with the DDS format so that the

strategy presented here may be implemented in conjunction with DDS by anyone who may

care to do so. Even if an algorithm such as DCLZ (Data Compression Lempel Ziv)[43], for

example, were to become the industry standard the present strategy could still be employed

if data compression were not made automatic. The practitioner could implement the present

compression strategy in software rather than hardware as with DCLZ. The present strategy

combined with the DDS format makes a versatile recording tool. A 60 metre DDS tape will

store 1.3 Gbyte of user data. The compression of data to half its original size, which has been

shown to be achievable by the present strategy for the data tested, allows the recording of 2.6

Gbyte of data on the tape. The immediate descendant of the DDS format, DDS-2, employs

the same error correction and interleaving. The principal difference is the greater recording

density of the newer format. A DDS-2 tape can store 4 Gbyte of uncompressed user data (this

is clearly preferable to the possible 2.6 Gbyte of compressed data of DDS). It follows that the

recording manifestation of a blemish of a particular size on the tape is of greater consequence,

particularly as far as error propagation in compressed data is concerned, with format DDS-2.

In an environment where blemishes of a particular size are liable to occur, the switch to DDS-

2 should be accompanied by a change in the parameters of the compression strategy used with

DDS. For example, the period of the cyclic count could be increased to ensure that strong

synchronization is maintained. Compression of data to half its original size can result in the

recording of 8 Gbyte of user data on a DDS-2 tape.

The present strategy for robust data compression is sufficiently developed to be usable now

and in Chapter Five it was shown that the present strategy could also be implemented with

DDS-3 without change. It would be preferable to implement the strategy in hardware for

[CHAP. 6] Conclusions HI

reasons of speed and convenience but if required the developed software could be used to

compress data prior to recording and decompress data when the tape is read.

6.6 Prevention of Slippage in Static Binaiy Prefix Codes

In the literature much of the work reported on the synchronization of compressed data has

concentrated on Huffman codes. The occurrence of symbol slippage in self-synchronizing

Huffman codes decoded following an error has been demonstrated in this thesis. An

investigation into the prevention of such symbol slippage in binary prefix codes has recently

been reported in the literature [44]. That work proposes the use of clear extended

synchronizing codewords (ESC's) to detect as well as correct loss of code synchronization. As

the term would suggest, construction of an ESC incurs an overhead penalty. The self-

synchronization property of some Huffman codes cannot allow the occurrence of an error to

be detected The detection of the occurrence of the loss of code synchronization enables

checks to be made on the state of symbol synchronization if the ESC is used as a marker and

placed at regular positions in the bit stream. If an error occurs in the ESC or if errors cause

the appearance of an ESC elsewhere in the bit stream then this paper suggests using a fixed

length codeword as a counter of the occurrence of ESC's, inserted into the bit stream after the

ESC.

[CHAP.6] Conclusions 112

6.7 Future Developments

The most obvious next step would be to assess the use of the developed strategy for the

compression of data in real hostile environments. It is envisaged that the facilities so to do

would only be readily available to interested parties within industry.

There are three separate error tolerant compressors, one for each of the data types investigated.

Ideally, all three would be combined into a single 'intelligent compressor'. The error tolerant

compressor designed for mixed data could be used for wholly correlated physical data as it

stands. The difficulty lies in allowing English text to be tackled with a compressor which

groups the data into blocks of perhaps as few as the sixteen or so values of the Rice

algorithm. The look ahead buffer of a sliding window text compressor is typically around

sixteen bytes in length. So, rather than using sliding window compression to compress a block

in isolation it should be possible to scan ahead for the next block of text and append that to

the current block so that the look ahead buffer is always around optimum size. If the data

comprised only English text then that would present no difficulty.

There may be other modifications that can be made to improve compression performance. The

extra complexity and run-time required are not often justified by the gains in performance

when trying to improve upon already efficient algorithms such as LZB.

References

1. European Computer Manufacturers Association (ECMA)(June 1990). 3.81mm Wide

Magnetic Tape Cartridge For Information Interchange - Helical Scan Recording - DOS

Format. Standard ECMA -139.

2. Watkinson, John (1994). The Art of Digitd Audio (2nd edn). Focal Press, Oxford.

3. European Computer Manufacturers Association (ECMA)(June 1995). 3.81mm Wide

Magnetic Tape Cartridge For Information Interchange - Helical Scan Recording -

DDS-2 Format Using 120m Length Tapes. Standard ECMA-198, 2nd Edition,

4. European Computer Manufacturers Association (ECMA)(March 18th 1996). Standard

ECMA-XXX 3.81mm Wide Magnetic Tape Cartridge For Information

Interchange - Helical Scan Recording - DDS-3 Format Using 125m Length Tapes.

Working Document TC17/96/13.

5. Hewlett-Packard Company Press Release (1995). HP First To Market With 24GB

DDS-3 DAT Drive. http://www.hp.com:80/pressrel/oct95/23oct95j.html

6. European Computer Manufacturers Association (ECMA)(June 1992). 3.81mm Wide

Magnetic Tape Cartridge For Information Interchange - Helical Scan Recording -

DDS-DC Format Using 60m And 90m Length Tapes. Standard ECMA-150, 2nd

Edition,

7. Simpson, David (1992). DATs all, folks. Systems Integration, Vol.25, pp. 40-51.

8. Sony Electronics Inc. (1996). Tape Streamer SDK-5000/M

http://w\v\v.selsony. com/SEL/ccpg/storage/tcpe/t5000. html

9. Hewlett-Packard Company (1995). HP 35480A DAT Drive.

http://ww\v. dmo. hp. com/tape/35480a htm

10. Rice, R.F., Yen, P.S. and Miller, W. (1991). Algorithms for a Very High Speed

Noiseless Coding Module. JPL Publicaion 91-1.

11. Ferguson, Thomas J. and Rabinowitz, Joshua H. (1984). Self-Synchronizing Hufftnan

Codes. IEEE Transactions on Information Theory, Vol. IT-30, No. 4, pp. 687-693.

12. Roberts, J.D. (1996). The Limiting Error Correction Capabilities of the CDROM. PhD

Thesis. The University of Glamorgan.

13. Patel, Arvind M (1986). On-the-fly decoder for multiple byte errors. IBM J. Res.

Develop., Vol. 30, No.3, pp. 259-269.

14. Hayashi, K., Arai, T., Noguchi, T., Okamoto, H. and Kobayashi, M (1986). Error

Correction Method for R-Dat and its Evaluation. ICASSP 86, Tokyo, pp. 9-12.

15 Ko, C.C. and Tjhung, T.T. (1989). Simple Programmable Processor for Decoding

Reed-Solomon Codes in Compact Disc Devices at High Speed. International Journal

of Electronics, 67(1), pp. 15-25.

16. Hoffman, D.G., Leonard, D.A., Linder, C.C., Phelps, KT., Rodger, C.A. and Wall.

J.R (1991). Coding Theory - The Essentials (1st edn). Marcel Dekker. New York.

17. DOS Manufacturers Group (1988). DDS Format Description. A1-B6.

18. Van Gelder, T. (1989). Data Storage Using DAT. Electronika, 37(18), pp. 21-31.

19. Laeser, RP., McLaughlin, W.I. and Wolff, D.M (1986). Engineering Voyager 2's

Encounter with Uranus. Scientific American 255(5), pp. 34-43.

20. Ziv, Jacob and Lempel, Abraham (1977). A Universal Algorithm for Sequential Data

Compression. IEEE Transactions on Information Theory, Vol. IT-23, No. 3, pp. 337-

343.

21. Bell, Timothy C, Cleary, John G. and Witten, lan H. (1990). Text Compression.

Prentice Hall, New Jersey.

22. Nelson, Mark (1991). The Data Compression Book. Prentice Hall and M&T Books.

23. Ziv, Jacob and Lempel, Abraham (1978). Compression of Individual Sequences via

Variable-Rate Coding. IEEE Transactions on Information Theory. Vol. IT-24, No. 5,

pp. 530-536.

24. Rice, RF. and Plaunt, J.R (1971). Adaptive Variable-Length Coding for Efficient

Compression of Spacecraft Television Data. IEEE Transactions on Communications

Technology, COM-19(6), pp. 889-897.

25. Rice, Robert F. (1972). Channel Coding/Decoding Alternatives for Compressed TV

Data on Advanced Planetary Missions. Proc. of the 5th Inter. Conf. on Svs. Sci., pp.

60-62.

26. Rice, Robert F. (1974). Channel Coding and Data Compression System Considerations

for Efficient Communication of Planetary Imaging Data. JPL Technical Memorandum

33-695.

27. Rice, Robert F. (1979). Practical universal noiseless coding. SPIE Vol. 207

Applications of Digital Image Processing III, pp. 247-267.

28. Rice, Robert F., Ffibert E., Lee J.J. and Schlutsmeyer A. (1979). Block Adaptive Rate

Controlled Image Data Compression. Proceedings of 1979

National Telecommunications Conference, Washington, pp. 53.5.1-53.5.6.

29. Yeh Pen-Shu, Rice Robert and Mller Warner (1991). On the Optimality of Code

Options for a Universal Noiseless Coder. JPL Publication 91-2.

30. Rice, Robert F. (1979). Some Practical Universal Noiseless Coding Techniques. JPL

Publication 79-22.

31 Rice, Robert F. (1982). End-to-End Imaging Information Rate Advantages of Various

Alternative Communication Systems. JPL Publication 82-61.

32. Rice, RobertF. (1991). Some Practical Universal Noiseless Coding Techniques, PART

m Module PSI14, K+. JPL Publication 91-3.

33. Venbrux Jack, Yeh Pen-Shu and Liu Muye N. (1992). A VLSI Chip Set for High-

Speed Lossless Data Compression. IEEE Transactions on Circuits and Systems for

Video Technology, Vol. 2. No. 4, pp. 381-391.

34. Lelewer, Debra A. and Hirschberg, Daniel S. (1987). Data Compression. ACM

Computing Surveys, Vol. 19, No. 3, pp. 261-296.

35. Escott, Adrian E. and Perkins, Stephanie (1995). Constructing good binary

synchronous Huffman codes. Proceedings 1995 International Symposium on

Synchronization, Essen, Germany, pp. 105-110 .

36. Teuhola J. and Raita T. (1991). Piecewise Arithmetic Coding. Proceedings of the first

International Data Compression Conference (IEEE DCC '91), pp. 33-42.

37. Kobler, Ben (1991). Techniques for Containing Error Propagation in

Compression/decompression Schemes. NASA Space and Earth Science Data

Compression Workshop, NASA Conference Publication 3130, pp. 73-74.

38. Woolley S.I. (1994). Error Statistics and Data Compression in Digital Instrumentation

Recording Systems. PhD Thesis. University of Manchester.

39. Rice, Robert F. and Lee, Jun-Ji (1983). Some Practical Universal Noiseless Coding

Techniques, Part H. JPL Publication 83-17.

40 Lei, Shaw-Mn (1991). The construction of efficient variable-length codes with clear

synchronizing codewords for digital video applications. SPIE Vol. 1605 Visual

Communications and Image Processing '91: Visual Communication, pp. 863-873.

41. Calgary Data Compression Corpus.

ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression. corpus/

42. Fenwick, Peter M (1993). Ziv-Lempel Encoding with Multi-bit Flags. Proceedings

of the IEEE Data Compression Conference, Snowbird, Utah, pp. 138-147.

43. European Computer Manufacturers Association (ECMA)(June 1991). Data Compession

for Information Interchange - Adaptive Coding with Embedded Dictionary - DCLZ

Algorithm. Standard ECMA -151.

44. Lam, Wai-Man and Kulkami, Sanjeev R. (1996). Extended Synchronizing Codewords

for Binary Prefix Codes. IEEE Transactions on Information Theory, Vol. 42, No. 3,

pp. 984-987.

Copy of Publication

'Synchronized Lossless Data Compression for DDS Tape Storage'.

Proceedings 1995 Intemational Symposium on Synchronization, December 14-15,1995, Essen,

Germany, pp. 12-15. ISBN 90-74249-07-8

Synchronized Lossless Data Compression for DDS
Tape Storage

O.DJ. Thomas, D.H. Smith, A. Ryley

Division of Mathematics and Computing, University of Glamorgan,

Pontypridd, Mid Glamorgan, CF37 1DL, Wales, United Kingdom.

Tel. 0044 1443 482250 Fax. 0044 1443 482711

email < ODJTHOMA > ©glam.ac.uk
Abstract

A data compression strategy with frequent resynchronization which limits the propagation

of errors is presented. The strategy is applied to RDAT-DDS digital tape storage devices. The

decompressed data is compared to the original when errors in the channel are uncorrected.

1 Introduction

Proprietary storage devices find application in remote data acquisition, often in hostile environments. Residual

channel errors can have catastrophic consequences if data compression is used. The challenge is to accept the

limitations of the channel in hostile environments and develop a data compression strategy that checks the

propagation of errors. The situation under investigation is summarized below:

errors

|comprc5s|—>|Encodeh-->|decode|—>|decompressh>

The development of a deterministic computer model of the error control procedures of RDAT-DDS digital

tape storage (DDS) enables the uncorrected error patterns to be calculated for given input errors that reflect

realistically the effects of the environment. This provides a truer test of the compression strategy than

idealized bit errors. This paper describes the integration of a robust data compression strategy incorporating

frequent resynchronization with a model of the error control procedures of an actual channel.

The encoding procedures of DDS are prescribed in an international standard [1]. The decoding procedures

are not so prescribed but are documented in the literature [2,3,4].

2 The Rice Algorithm

The propagation of errors in decompressed data can be prevented by performing piecewise compression. An

adaptive scheme is needed since information such as a probability table would require significant overhead

for its protection and is in any case a significant overhead itself for the piece sizes contemplated. Piecewise

compression reduces the performance of some of the well known adaptive algorithms. The solution is to use

an algorithm that is designed to compress effectively very small blocks of data and the Rice algorithm [5,6,7]

does exactly that. This algorithm performs data compression by reducing the statistical redundancy of the data

and works adaptively by selecting the optimal of several Huffman-equivalent codes on blocks of, for example,

sixteen values. The algorithm works in two stages. The first of these is termed preprocessing and is designed

to remove the correlation between the analogue samples by calculating the differences between adjacent values.

The second stage compresses the processed data in blocks choosing for each block the optimum code. The
bit stream for the compressed data takes the form

ref id code id code...
where ref is the reference starting values (to enable the original data to be reconstructed from the coded

differences), id is the identifier of the code option used and code is the complete code for the data block.

3 Synchronization of the Decompressor and the Output Data Stream

The Rice Algorithm produces a variable length code. As with other variable length codes the process of

locating a valid coding after the occurrence of errors can be difficult. This process, here, shall be termed -weak

synchronization. Strong synchronization shall be the term used to describe the occurrence of weak

synchronization -without slippage in the output data stream. Each form of synchronization may be illustrated

with the use of a self-synchronizing Huffman code. The code is:

a 1
b 01
c 001
d 000

The sequence a.d.a.c.a.b, using the above, is coded as 1.000.1.001.1.01. If the first 1 becomes a 0 then decoding

gives 000.01.001.1.01 or d.b.c.a.b. Weak synchronization is said to have occurred since there is slippage in the

decoded symbols. If the first 0 becomes a 1 then decoding gives 1.1.001.001.1.01 or a.a.c.c.a.b. Strong

synchronization is said to have occurred since the number of decoded symbols matches the number of

encoded symbols.
The piecewise compression strategy requires that synchronization be forced rather than awaited as with self-

synchronizing Huffman codes. This is achieved by the addition to the compressed data stream of redundancy

in the form of a synchronizing sequence. The term sequence is used quite deliberately since there is no

attempt to reserve a code for synchronization. The synchronizing sequences alone will only provide weak

synchronization. The establishment of strong synchronization requires the addition of more redundancy. A

cyclic count is introduced to number the groups of data between synchronizing sequences. If an error occurs

and data is lost then the count allows the data that is decompressed subsequently to be placed correctly into

the output data stream by shifting along by the number of values lost.
The complete compressed data stream used in producing the results presented in this paper is

... sync ref id code....id code ref count count count count sync...

The synchronization scheme is represented as:

locate synchronizing sequence-

decompress data

do references values match ——— ̂ -
Iy

Is there a majority cyclic count —— »fj-
[y

does synchronizing sequence follow
Immediately ————————————— >jj-

— output data

The synchronization sequence used is relatively short at only eight bits in length. A longer sequence would

add unnecessary redundancy but a shorter sequence would increase the number of false synchronizations after

an error, which would slow decompression; there is no hard-and-fast rule governing the length of the

sequence. The reference value is repeated since it is of fixed length and synchronization could be established

if it were affected by errors. The cyclic count is of a fixed length of eight bits and so requires repetition also.

The Reed-Solomon symbols of the error correction codes are of eight bits so that a single symbol error might

affect up to two counts. The count, therefore, is written four times to make the reading of a valid count much
more likely.
It is clear from the structure of the compressed data stream that the priority of the decompression scheme

is to maintain the integrity of the cyclic count and, hence, strong synchronization. Data that is decompressed

will be discarded if there is no valid count.

4 Results

The test data used in the production of the results presented here was part of a database of terrain modelling

data and consists of eight-bit elevations on a rectangular grid.

4.1 Random Errors

The DDS format is able to correct the bit errors that occur in practice with extremely high reliability.

Abnormally high bit error rates were input into the simulation to test the performance of the compression

strategy. The graphs in the literature do not cover random bit error rates beyond around 0.003. The results

shown below were produced using a Rice block length of 12 and there are 10 blocks between

synchronizations. The compression ratio was 0.5178.

bit random error rate corrected symbol error rate % values recovered correctly

0.01 0.023 38.18
0.009 0.013 58.27
0.008 0.0059 77.65
0.007 0.0025 90.19
0.006 0.0013 95.28
0.005 0.00037 98.60
0.004 0.000015 99.94

4.2 Burst Errors

The results for burst errors were produced using a more usual block length of sixteen values and the number

of blocks between synchronizations (Nb) considered were 4,8,16 and 24. DDS structures the data into Basic

Groups of 126632 bytes. The number of values compressed into a Basic Group (Nv) and the compression ratio

(Cr) are shown below:

Kb
4
8
16
24

Nv
227110
247422
261883
266035

Cr
0.5576
0.5118
0.4835
0.4769

Tta erro, con.ro! proced^ of DDS « «. » corr« a lo»g———— ——A "P » 0.3———* [Q Scra,ch

widths are increased in increments of 1/80 mm in the simulation as this is the minimum that can be
simulated. The strategy was ineffective in dealing with uncorrectable scratches when Nb was 16 or 24. The
numbers of values recovered correctly when Nb is 4 and 8 are shown below:

„, £• 250000
| <u 200000
£ 8 150000
° "g 100000
0) C

0)>•° " 50000
o n
£ °

O CM ^T <D CO O CM!;. CM CM CM CM CM CO CO
I scratch width (1/80 mm)

I;;'-

The coding between synchronizations is small enough to appear between deinterleaved errors when Nb is 4
or 8 and so allows a significant proportion of values to be recovered correctly.
The performance of the synchronized lossless compression described here must be placed in context. The use
of a conventional compression strategy in a hostile environment might result in the loss of almost all the data
through error propagation. The scheme presented here can ensure that only the compressed data that is
directly affected by errors is lost.

Bibliography

1. European Computer Manufacturers Association (ECMA) (1992). 3.81mm Wide Magnetic Tape
Cartridge For Information Interchange - Helical Scan Recording - DDS-DC Format Using 60m And

90m Length Tapes.

2. Ko, C.C. and Tjhung, T.T. (1989). Simple Programmable Processor for Decoding Reed-Solomon
Codes in Compact Disc Devices at High Speed. International Journal of Electronics, 67(1), pp. 15-25.

3. Hoffman, D.G., Leonard, D.A, Linder, C.C, Phelps, K.T, Rodger, C.A. and Wall, J.R. (1991).
Coding Theory - The Essentials (1st edn). Marcel Dekker, New York.

4. Watkinson, John (1994). The Art of Digital Audio (2nd edn). Focal Press, Oxford.

5 Rice R F and Plaunt, J.R. (1971). Adaptive Variable-Length Coding for Efficient Compression of
Spacecraft Television Data. IEEE Transactions on Communication Technology, COM-19(6), pp. 889-897.

6. Rice, R.F, Yeh, P.S. and Miller, W. (1991). Algorithms for a Very High Speed Noiseless Coding

Module. JPL Publication 91-1.

V nbrux Tack Yeh Pen-Shu and Liu Muye N. (1992). A VLSI Chip Set for High-Speed Lossless Data
Transactions on Ctrcuits and Systems for Video Technology, Vol. 2, No.4, pp. 381-

391.

8. Van Gelder, T. (1989). Data Storage Using DAT. Electromka, 37(18), pp. 21-31.

