
FINAL REPORT

ERROR CONTROL FOR RELIABLE DIGITAL

DATA TRANSMISSION AND STORAGE SYSTEMS

NASA Grant NAG 2-202

(N A S A - C R - 1 7 6 9 2 5) E R R O E CCN1ECI FOB R E L I A B L E N86-29552
DIGITAL D A T A T R A N S M I S S I O N A N L S T O R A G E
S Y S T E M S Final Repor t (Illincis lest, of
lech.) SH p CSCI 09B Unclas

G3/61

Daniel J. Costello, Jr.

Robert H. Deng

Department of Electrical § Computer Engineering
Illinois Institute of Technology

Chicago, IL 60616

September 30, 1985

https://ntrs.nasa.gov/search.jsp?R=19860020080 2020-03-20T14:35:22+00:00Z

Jr & K.H. Deng

REPORT

PART 1

Decoding of Emended
Reed Solomon Codes)

DECODING OF EXTENDED SINGLE-AND-DOUBLE-ERROR-CORRECTING

REED SOLOMON CODES*

by

Huijie Deng and Daniel J. Costello, Jr.

Department of Electrical $ Computer Engineering
Illinois Institute of Technology

Chicago, Illinois 60616

(312) 567-3404

Revised

June 1985

Submitted to the IEEE Transactions on Computers

This work was supported by NASA under Grant NAG 2-202,

ABSTRACT

A problem in designing semiconductor memories is to provide some measure of

error control without requiring excessive coding overhead or decoding time. In

LSI and VLSI technology, memories are often organized on a multiple bit (or

byte) per chip basis. For example, some 256K-bit DRAM's are organized in 32Kx8

bit-bytes. Byte oriented codes such as Reed Solomon (RS) codes can provide

efficient low overhead error control for such memories. However, the standard

iterative algorithm for decoding RS codes is too slow for these applications.

In this paper we present some special decoding techniques for extended

single-and-double-error-correcting RS codes which are capable of high speed oper-

ation. These techniques are designed to find, the error locations and the error

values directly from the syndrome without having to use the iterative algorithm

to find the error locator polynomial. Two codes are considered: 1) a d . =4

single-byte-error-correcting (SBEC)} double-byte-error-detecting (DBED) RS

code; and 2) a d . =6 double-byte-error-correcting (DBEC), triple-byte-error-

detecting (TBED) RS code.

I. INTRODUCTION

Error control has long been used to improve the reliability of computer

memory systems [1] .. The most common approach has been to use a variation of the

Hamming codes such as the single-error-correcting and double-error-detecting

(SEC-DED) binary codes first introduced by Hsaio [2]. These codes are particu-

larly effective for correcting and detecting errors in memories with a 1 bit

per chip organization. In these memories a single chip failure can affect at

most one bit in a codeword. ,;

Large scale integration (LSI) and very large scale integration (VLSI)

memory systems offer significant advantages in size, speed, and weight over ;

earlier memory systems. These memories are normally packaged with a multiple

bit (or byte) per chip organization. For example, some 256K-bit dynamic random

access memories (DRAM's) are organized in 32K*8 bit-bytes. In this case a^

single chip failure can affect several or all of the bits in a byte, thus ex-

ceeding the error-correcting and detecting capability of SEC-DED codes.

Several papers have been written recently trying to extend the SEC-DED

codes to include byte errors [3-9]. In this paper we investigate the use of

Reed-Solomon (RS) codes for correcting and detecting byte errors in computer

memorie's. RS codes are a class of nonbinary codes with symbols in the Galois

field of 2m elements (GF(2m)). These codes are maximum distance separable (MDS),

and thus can provide efficient .low overhead error control for byte-organized

memories, since symbol error correction in GF(2) is equivalent to correcting

an m-bit byte. . .

For computer memory applications, decoding must be fast and efficient. A

typical RS decoding procedure is to first calculate the error syndromes,.then ,

use: the iterative algorithm [10] to form an error locator .polynomial, and . . .

finally to search for the roots of the error locator polynomial, find the error

values, and make the actual corrections. The calculation of the error locator

polynomial is a major step in decoding RS codes, and it remains a bottle-neck

for high speed decoding, since most errors are single errors and checking, for

multiple errors is time consuming. High-speed decoding can be achieved by using

the table-lookup method [1]. However, even for moderate code lengths, the im-

plementation of table-lookup decoding is impractical, since either a large

amount of storage or very complex logical circuitry is needed.

In this paper we investigate some special high-speed decoding techniques

for extended single-and-double-byte-error-correcting RS codes. These techniques

are designed to locate and correct the errors directly without having to find

the error locator polynomial. The occurrences of errors are determined by

directly testing the weight of the syndrome, denoted by w(s_). Let E be the

number of byte errors. In decoding a single-byte-error-correcting (SBEG),

double-byte-error-detecting (DEED) RS code with 3 partiy symbols, if w(s_) = 1,

we show that E = 1. If w(s) = 2, then E _> 2. If w(s_) = 3, a simple test is

required to determine if E = 1 or E _> 2. Thus decoding can be carried out in

parallel, which in effect increases the decoding speed. The detailed procedure

is presented in Section II. Section III contains our main result, where a

double-byte-error-correcting (DBEC), triple-byte-error-detecting (TBED) RS code

decoding technique is described. Double byte error correction is done by form-

ing a quadratic equation x + x + K = 0, the solution of which gives the two

error byte locations. The constant K can be determined directly from the syn-

drome. In this equation, only K contains information about the error loca-

tions. If a short table is used, with two error locations as two entries cor-

responding to each value of K, the decoding speed can be made even higher.

Finally, in Section IV, we summarize our results.

II. DECODING OF A d . =4 SBEC-DBED CODEmm

In this section we present a method for decoding an extended Reed-Solomon

(RS) code over GF(2) with minimum distance d . =4. This code can be used to

correct any single byte error and simultaneously detect any double byte error.

Thus it is called an SBEC-DBED code. Fast encoding and decoding can be acheived

due to some nice features of the code described below.

The d . =4 Extended RS Code and Its Propertiesmm

It has been shown [11] that there exists an (n+3, n) d . =4 extended RS. . L J . V. > J

code over GF(2) with parity-check matrix given by

(1)

where I_ _ is.the 3*3 identity matrix,
—

"11 1 1
i 2 3l a a a

2 4 6
l a a a

1
n-1

a
2n-2a .

(2)

a is a primitive element of GF(2), and n <_ 2 -I. Because d . =4, the code

can be used for correcting any single byte error and simultaneously detecting

all double byte errors [1].

From (1) and (2) we see that the ti_ matrix has the following important

properties.

1) Ji is in systematic form. Hence G_ - the generator matrix - is also in

systematic form:

= [MT j l _] ,
•I- i

(3)

T .where H is the transpose of ti , and where ̂ is the nxn,identity matrix. This

implies that the parity-check symbols and the syndrome.can be generated by the

same circuit .

2) The first nonzero element of every column of H_ is the unit element

a =1 . (The advantage of this property will be seen later.)

3) The number of nonzero elements in each row of H is equal.

Property 3) simplifies the implementation of the encoder and the decoder

[1]- ..

Error Correction and Error Detection

Let v_ = (v , v , ••-, v _) be a code vector that is written into memory.

Let r_ = (r r ---- , r +2) be the corresponding (possibly noisy) vector that

is read from memory. Because of possible chip failures, r_ may be different from

v_. The modulo-2 vector sum

^ = r_ + v = (eQ, e1, ..., e), (4)

where e. ^ 0 for r. ^ v. and e. = 0 for r. = v. , is called the error pattern.

When r_ is read, the decoder computes the syndrome s_,

s1 = r HT = (v+e)HT = (SQ, sr sj. (5)

TSince v H =0, the syndrome s, computed from the vector r, depends only on the

error pattern e_, and not on the code vector v_.

a) Single byte error correction

Let s denote the syndrome corresponding to a single byte error. Then

from (5) we have
"~ s

s = e.h. =—s i—i
S2

0
(6)

i~ V»
where e. is the error value at location i, and h. is the i— column of tl, .. •

0 <_ i j_ n+2. Note that the first nonzero element of every column of H, is the

unit element a , and e^0 = e±. Therefore the error value e. is given directly

by the first nonzero element of the syndrome.

The problem of locating the error is reduced to finding a column h. of H

which satisfies (6) (see Chien [12]). This can be done in the following way.

Check the elements of the syndrome s to see

1) if SQ £ 0, = 0, then i = 0,

2) if Sl

3) if s2

Otherwise, since

0, SQ = s2 = 0, then i = 1,

0, SQ = s = 0, then i = 2.

s = e.h. = e.-s i—i i

1

i-3a
"? f-i 7"\

a2Ci-3)

=

~ s o ~
sl

J2.

we have

i-3

, for 3 _< i <_ n+2,

(7)

and i gives the error location. Define

A 2
u = s

and note that (7) is equivalent to

u = 0 for s. ± 0

b) Double byte error detection

je{0, 1, 2},

(8)

Let s^ denote the syndrome corresponding to a double byte error. Because

the code is SBEC and DEED, it follows that [1] :

^ ̂ ' ... / ... ,C10}

for any single and double byte errors. Double byte error detection can be ,, .„

done in the following way. If . . , ;,...-<_. . .

s = 0, s j« 0, s ^ 0, where i , i , i e{0, 1, 2),
xl X2 3 i ^ i

or if ;
Sl S2s. j« 0, for 1 = 0 , 1 , 2 , and -i ji -£ , (12)

1 0 S 1

then two or more byte errors are detected. Note that (12) implies that

U = Sl2 + S0S2 * °'

Summarizing the above discussion, we have the following Decoding Scheme for

the SBEC-DBED Code (see Fig. 1):

1) If w(s) = 0, no errors are detected. If w(s_) = 1, E = 1, and

error correction is done in step 2). Ifw(s) =2, E > 2 , and errors

are detected. If w(s_) =3, E _> 1, and decoding proceeds in

step 3) . .V

2) If s. £ 0, je{0,l,2>, then e^ = s. and i = j .

2 !

3) Set u = s1 + sns?* If u = 0, E = 1, and calculating

a = S../S- gives the error location i. Set the error
10 j '

value e. =s. Ifu/^0, E _ > 2 , and errors are detected.

Figure 2 is a block diagram of the SBEC-DBED decoder.

III. DECODING OF A d . =6 DBEC-TBED CODEmm

In this section we first present a special high speed decoding technique

for the DBEC-TBED RS code with d . =6. Then a slightly modified technique is

applied to decoding the extended RS code with two extra information symbols.

The d = 6 RS Code and Its Properties

The generator polynomial for the d . = 6 RS code is given by ••-, . . .

2 .
g(x) = I (x-Hx1), (13)

— i=-2 : .. ;

where a is a primitive element of GF(2).

code specified by (13) can be written as

The parity-check matrix, H of the

_

1

1

1

1

1

-2
a

a

1

a

2
a

f* i ™ '

, -2r f -2.(a) • • • (a)

2 n-1
(a") ••• (a")

1 ••• 1

2 n-1
• (a) ••• (a)

9 _ -i
2 2

C O ' • • C «)

(14)

where n _< 2 -1. Because the code has d . = 6, it is capable of correcting any

two or fewer byte errors and simultaneously detecting any combination of three

byte errors [1] .

When r = v + e is read, the decoder computes the syndrome s,

= Cs-2' S-l' V

The syndrome corresponding to a single byte error is

S-2 = eia

-i

S0 = ei

Sl = eia

C15)

(16.1)

(16.2)

(16.3)

(16.4)

(16.5)

where e. is the error value and i is the error location, 0 _< i _<_ n-1, and the

syndrome corresponding to a double byte error is . . . ' - . . .

s_2 = eia~
 1 + e^a" J , (17.1)

s_1 = eia~
1 + ê a'3 , (17.2)

SQ - e. + e. , (17.3)

s-ĵ = e^1 + e.aj , (17.4)

S2 = ei21 + eja2j ' C17'5:i

where 0 <_ i < j <_ n-1.

Before proceeding, we need to prove some properties of the d . = 6 RS

code which will be used later.

Property 1. Let s, = (s „, s , s , s , s) be the syndrome corresponding to a

double byte error. Let N denote the number of zero elements in s,. Then
—d

N _ < 2 , (18)

and the equality holds in only two cases:

1) s_: = s2 = 0;

2) s, = s _ 2 = 0 .

Proof: See Appendix A.

T
Property 2. Let s, = (s 2, s , s , s , s_) . Then

S2S-2 + SQ2 * ° '

S;Ls_2 + s_lSo ^ 0, (19.2)

S0S1 + S2S-1 ̂ °'

for all double byte errors. .

Proof: This can be obtained directly from property 1. ;._-...

Decoding Using the Quadratic Equation ; ' ; ,

In this subsection we show that the well known quadratic equation over

8

GF(2) can be used to decode the d . = 6 RS code. If a is a primitive element

of GF(2m); then a"1 .+ a"j ^ 0, 0 <_ i < j <_ 2m-2. From (17.1) and (17.3) we

have

e. =

det

„
0

S-2

det
1

a

1

a"
2j

s „ + s_a
•

1

a ^

(a'1 +
2

From (17.2) and (17.3) we have

det

e. =
1 1

a'1 a'3'

+ a"

Therefore

-2

a + a •"
. 2

. 2
After multiplying both sides by (a + a

equation becomes

s 1 (a +a) + s _a cr + s

0 and simplifying, the above

= 0. (20)

In the same way, from (17.3)-(17.5), we can obtain

(21)

Now define

= so2 + s-isr

= S2S-2 + S0 '

= SlS-2 + S-1S0'

S2S-1'

(22.1)

(22.2)

.(22.3)

.(22.4)

Solving (20) and (21) for a +a and a a , we obtain

, A i j '2b = a +a = — ,

Y
c £ a1a3 =— , (23.2)

Y3

for y ^ 0. Therefore a and a are the roots of

2
y + by + c = 0. (24)

This is the well-known quadratic equation over GF(2). We will see later that

it plays an important role in decoding. Therefore we call it the "decoding

equation". Equation (24) can be rewritten as ;

x2 + x + K = 0, (25)

by letting .•
y = xb, -s, (26)

where ' . .;-

K = c/b2. /.. (27)

The formula for the roots of the quadratic equation is (-b ± /b -4c)/2.

Unfortunately, for finite fields of characteristic two, this formula is not

applicable because the denominator is zero. However, there are several known

approaches to solving this equation [10,13,14,15]. The method given in [14]

is probably the best approach, and we present it in Appendix B.

Decoding the DBEC-TBED Code

Suppose that a single byte error with error value e. at location i occurs.

From (16.1)-(16.5) we see that

s. / 0, for i = -2, -1, 0, 1, 2, .(28.1)

and
s , srt s, s,, . . ;

a . - • ' (28.2)
S0 Sl

10

Note that (28.2) is equivalent to Y-, = Y? = J, = 0. That is, whenever a single

byte error occurs, s. ̂ 0 for i = -2, -1, 0, 1, 2, and j = j = y, =0. From
X i O H1

(16.3) and (16.4) we have

s
a1 =-i- , (29.1)

= S 0 '
(29.2)

where i gives the error location and e. is the error value of a single byte

error.

If a. double byte error occurs, from property 2 and (22.2)- (22.4) we know

that Y2 7* 0» Y3 t 0, and j £ 0. Therefore b and c in (23.1) and (23.2) exist.

Hence (24) has two roots, a and a . In other words, whenever a double byte

error occurs, its error locations can be found by solving the decoding equation

i < j _ ^ 2 -2, when a is a primitive element ofSince a +or £ 0, for

mGF(2), (17-.3) and (17.4) imply that

det
S0 1

e. =

det
a a

i J 'a + a
(30.1)

and

ej = so + V (30.2).

where e. and e. are the error values at locations i and j of the double

byte error.

Let s_ denote the syndrome corresponding to a triple byte error. Then [1]

l^ld^JLf ' ; C31)

Based on (31) and properties 1 and 2, we see that if more than two elements :

11

of the syndrome £ = (s -, s , s~, s.., s,) equal zero, but at least one of them

does not equal zero; or if y2> Y-T> Y4 are
 not all equal to zero, but at least

one of them does equal zero; or if the decoding equation (24) does not have

roots in GF(2); then at least three byte errors have occurred.

Decoding Scheme for the DBEC-TBED RS Code (see Figure 3):

. T j
Read T_, and calculate the syndrome s_ = r_ hL = (s _, s .. , s , s1 , s»).

"^ £ ~ £ ~ i . U JL Z.

Let W(T̂ ') and w(y") denote the Hamming weights of _y_' = (Y-i > Y,» Y4)

l" = (Y2« Y3, Y4), respectively.

1) If w(s) = 0, no errors are detected. If w(s) = 1 or 2,

E _> 3 errors are detected. If w(s_) = 3 or 4, E _> 2, and

decoding proceeds in step 3). If w(s_) =5, E _> 1, and de-

coding proceeds in step 2).
1

2) Compute _y' . If w(jy') = 0, E = 1, and calculating a1 = —
S0

gives the error location i. Set the error value e. = sn.

Ifw(y') ̂ 0, E > 2 errors are detected, and decoding

proceeds in step 3).

3) Compute y.". If w(y") = 3, compute K and T2 (K). If

T_(K) =0, E = 2, and we must solve (25) to find the roots

i i i i ia and cr . Compute e. = (s_a + s..)/(a +aj) and e. = s-+ e. ,

and correct a double byte error with error values e. and

e. at locations i and j, respectively. If w(y_") ̂ 3, or

T (K) = 1, E _> 3 errors are detected.

Figure 4 is a block diagram of the DBEC-TBED decoder.

Decoding o f t h e Extended Code ; ; . , : . ;

The parity-check matrix H given in (14) can be extended to form a new

parity-check matrix_given by . - •

12

-2

1 0

0 0

° °0 0

0 1

(32)

The code specified by H_ is an (n+2 , n-3) d . =6 extended RS code, where
o 111 j. n

n _< 2 -1 [16,17,18]. If the errors are confined to location 0 through. n-1, all

the previous results apply.

Now assume that errors occur at location n or n+1. then we obtain the

following results. ' ' -

1) If s_2 s_1 = SQ = S]_ = = 0, (33)

then a single byte error occurred with error value e = s _ at location n.

2) If s2 * s_2 = s_1 = SQ = S]L = 0, (34)

then a single byte error occurred with error value e = s at location n+1.

3) If s± f 0, for i = -1, 0, 1, 2,

and

Sl S2

(35.1)

(35.2)

then a double byte error occurred with error values e. = s. and e = s „ +

s a at locations i and n, respectively, where i is obtained from a = —.
U S0
Note that (35.2) implies that 7 =0, y? t 0, and y =0.

-L O r̂

4) If s.. ^ 0, for i = -2, -1, 0, 1,

and

-2 S0 Sl

(36.1)

(36.2)

i.e., Y, =0, Y, =0. and Yd ^ °»
 then ̂ d°uble byte error occurred with error ,,

- L O ^ . . . —

values e. = s and e , = sn + sna at locations i and n+1, respectively,. ;.
i 0 n+1 20 :

" 1 •

where i is obtained from a = —- . : -. . • -. •'•' • .'.
0

13

5) If s_2 f 0, s2 j£ 0, and s_1 = SQ = s{ = 0, (37)

then a double byte error occurred with error values e = s 0 and e n = s0 atn -2 n+1 2

locations n and n+1, respectively.

Now we combine the discussion in this subsection with that of the previous

subsection to obtain the following.

Decoding Scheme for the Extended DBEC-TBED Code (see Figure 5):

T T
From the vector r_, compute the syndrome s_ = _£ jl, = (s 9, s .., s_, s.. , s^

Again let w(s_), W(_Y'), and w(y") denote the Hamming weights of s_ =

T
(s_2' s-i» SQ' Sl* S2') ' -' = ^l' Y3' Y4^' and l" = (Y2, Y3, Y4) respec-

tively.

1) If w(si_) = 0, no errors are detected. If w(s_) = 1, E _> 1, and

decoding proceeds in step 2). If w(s) = 2, E > 2, and decoding

proceeds in step 3). If w(s_) = 3, E _> 2, and decoding proceeds

in step 6). If w(s_) =4, E _> 2, and decoding proceeds in step 5).

If w(s_) =5, E _> 1, and decoding proceeds in step 4).

2) If s _ / 0, E = 1, and a single byte error is corrected with error

value e = s _ at location n. If s_ j* 0, E = 1, and a single byte

error is corrected with error value e , = s_ at location n+1.
n+1 2

Otherwise, E _>_ 3 errors are detected.

3) If s _ j* 0 and s» f 0, E = 2, and a double byte error is corrected
— ̂ ^

with error values e = s _ and e , = s0 at locations n and.n+1,n -2 n+1 2

respectively. Otherwise, E > 3 errors are detected.

s
4) Compute y.1 . If w(y/) = 0, E = 1, and computing a1 = — gives the

0
error location i. Set the error value e. = S-. If w(y/) ^0,

go to step 5). .. - • ' ;

14

5) Compute y/ . If W(Y/) = 1, then:

(i) If Y? 7s 0, E = 2, and a double byte error is corrected

with error values e. = s~ and e = s _ + sna~
 1 at

locations i and n, respectively, where i is given by

i Sla = —.
S0

(ii) If Y, ^ 0, E = 2 and a double byte error is corrected

with error values e. = 5.. and e , = s_ + s_.a 1 ati 0 n+1 2 0

locations i and n+1, respectively, where a = —.
S0

(iii) If Y-, / 0, E _> 3 errors are detected.

If W(Y;) £ 1, E >_ 2 errors are detected, and decoding proceeds in

step 6).

6) Compute j". If w(j") =3, compute K and T2(K). If T2 (K) = 0,

E = 2 and we must solve (25) to find the roots a and a and

then correct a double byte error with error values e. =

(s or + s,)/(a +a), e. = sn + e. at locations i and j, respec-

tively. If W(Y") ^ 3, or T_CK) = 1, E > 3 errors are detected.

IV. CONCLUSIONS

We have presented new decoding techniques for two byte oriented RS codes.

These decoding techniques are based directly on the syndrome, and do not in-

volve applying the iterative algorithm to find the error locator polynomial.

Hence high-speed decoding can be achieved, making these codes well suited for

correction and detection in byte-organized computer memory ssytems such as LSI

and VLSI chips. . : .

The* d . =4 code is capable of single-byte-error-correction (SBEC) and

double-byte-error-detection (DBED) and can be extended to include three addi-

15

V. REFERENCES

[1] S. Lin and D.J. Costello, Jr., Error Control Coding: Fundamentals and
Applications , Prentice-Hall, New Jersey, 1983. ;

[2] M.Y. Hsiao, "A Class of Optimal Minimum Odd-Weight-Column SEC-DED Codes",
IBM J. Res. Dev. , 14, pp. 395-401, July 1970.

[3] D.C. Bossen, "b-Adjacent Error Correction", IBM J. Res. Develop. , 14,
pp. 402-408, July 1970.

[4] D.C. Bossen, L.C. Chang, and C.L. Chen, "Measurement and Generation of Error
Correcting Codes for Package Failures", IEEE Trans. Comput . , C-27, pp. 201-
204, March 1978. ...

[5] S.M. Reddy, "A Class of Linear Codes for Error Control in Byte-per-Card
Organized Digital Systems", IEEE Trans. Comput . , C-27, pp. 455-459, May
1978.

[6] T.T. Dao, "SEC-DED Nonbinary Code for Fault-Tolerant Byte-Organized Memory
Implemented with Quaternary Logic", IEEE Trans. Comput . , C-30, pp. 662-666,
Sept. 1981.

[7] S. Keneda and E. Fujiwara, "Single Byte Error Correcting-Double Byte Error
Detecting Codes for Memory Systems", IEEE Trans. Comput . , C-31, pp. 596-
602, July 1982.

[8] L.A. Dunning and M.R. Varanasi, "Code Constructions for Error Control in
Byte Organized Memory Systems", IEEE Trans. Comput . , C-32, pp. 535-542,
June 1983.

[9] C.L. Chen, "Error-Correcting Codes with Byte Error- Detection Capability",
IEEE Trans. Comput . , C-32, pp. 615-621, July 1983.

[10] E.R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New York, 1968.

[11] F.J. MacWilliams and N.J.A. Sloane, Theory of Error-Correcting Codes, North
Holland, Amsterdam, 1978.

[12] R.T. Chien, "Block-Coding Techniques for Reliable Data. Transmission", IEEE
Trans . on Comm. Tech. , COM- 19 (Part II), pp. 743-751; Oct. 1971.

[13] R.T. Chien, "Cyclic Decoding Procedures for BCH Codes", IEEE Trans. Inform.
Theory, IT- 10, pp. 357-363, Oct. 1964.

[14] C.L. Chen, "Formulas for the Solutions of Quadratic Equations", IEEE
Trans . Inform. Theory, IT-28, pp. 792-794, Sept. 1982.

[15] E.R. Berlekamp, H. Ramsey, and G. Solomon, "On the Solution of Algebraic
Equations Over Finite Fields", Inform. Contr., 18, pp. 553-564, Oct. 1967. ..

[16] T. Kasami, S. Lin, and W.W. Peterson, "Some Results on Weight Distributions
of BCH Codes", IEEE Trans. Inform. Theory, IT- 12, p. .274, April 1966.

v,r*;r r.% -••— . PRECEDING PAGE BLANK MOT FILMED

17

[17] T. Kasami, S. Lin, and W.W. Peterson, "Some Results on Cyclic Codes Which
are Invariant Under the Affine Group", Scientific Report. AFCRL-66-662, Air
Force Cambridge Research Labs., Bedford, MA, 1966.

[18] J.K. Wolf, "Adding Two Information Symbols to Certain Nonbinary BCH Codes
and Some Applications", Bell Sys. Tech. £., 48, pp. 2405-2424, 1969.

18

No Error Yes

Figure 1. SBEC-DBED decoder error location calculator

19

vo vi Vn+l V2

Data Buffer

0 , n+1- ., n+2

Syndrome Generator

Error location and value calculator

(Single error location) (Error value)

o n+1 n+2

Double error

Figure 2. Block diagram of a SBEC-DBED decoder

1

20

E = 1

Figure 3. DBEC-TBED decoder error location calculator

21

Syndrome Generator

'-2

Error locations

calculator

Error values

calculator

Decoded Data

Figure 4. Block diagram of a DBEC-TBED decoder

22

ro

A |

UJ

co
•H

o
•p
4>
Q

o
+J
cd

i—i

o
i—i
cd
o
in
eo

o
o

O
M
!-i
0)

0)
TJ
O
u
0)
•o
o
tu
oa
E-
i

03
Q

0)

0)

X
tu

0)
!H

bO

APPENDIX A

Proof of Property 1: It can easily been seen that the vectors (ct~ , a" •'o,

(a"1, a'-1), (1, 1), (a1, aj) and (a 1, a -1), where 0 <_ i < j _< 2m-2, are always

pairwise linearly independent except for the following two pairs:

,, , -i -j, , 2i 21..
1) (a , a J), (a , a);

2) (a1, a.3), (a 1, of ̂) .

These two pairs are linearly independent for some values of i and j.

First we show that if sn =0, then s, ̂ 0, k = -2, -1,1,2. Suppose s, = 0
U K K

for some k ^ 0. From (17.1)-(17.5), we have

s.
0

s.k _

~

" 0 "

0
= e.

" 1

kia
+ e .

1

kja

where e. j* 0, e. t 0, and k = -2, -1, 1, 2. But (1, 1) and (akl, akj) are lin-

early independent, and this implies that the above equation is impossible. Hence.

s k t o , k = - 2 , - 1 , 1 , 2 . • • • ; * .

Next we show that if s 1 =0 (or s_ = 0), then s, ^ 0, k = -2, 0, 1, and

s_ (or s O can be either zero or nonzero. It is easy to show that s, j^'O,

k = -2, 0, 1, in the same way as above. Because (a , a 3) and (a , a) are

linearly dependent for some i and j, there exists g.. ^ 0, fL ̂ 0, g, , B2eGF(2),

and some i < j, such that ' : ••:.

0

_o _

= el
a

a

P^_

"cf j

_a+ J -

Let e. = g- and e. = B_. From (17.2) and (17.5) we see-that the above equation

becomes '•• • . .'.:t.i.-. .̂-., -.,'

A-l

s-l
_ S 2

=

0

0
= e.i

-ia

+2ia
+ e .

"a'* "

_a+2\

Therefore, s = s = 0 for some i and j.

By exactly the same argument as above, we can prove that if s (or s) = 0,

then s, j*0, k = -l, 0, 2, and s (or s) can be either zero or nonzero. This

completes the proof that N = 2, Q.E.D.

A-2

APPENDIX B

In this appendix we present a method for solving the quadratic equation (25)

which is based on [14].

Let 3 be any element of GF(2), and define

A m~1 ?i
T2(B) = I & • (B.I)
Z i=0

T_(8) is known as the trace of g. It is either zero or one [14]. Equation (25)

has solutions in GF(2m) if and only if T2(K) = 0 [10,15]. For even m, define

(m-2)/2 2i
T (fB) I B , m even. (B.2)

i=0

If (25) has solutions, T (K) is either zero or one [14].

Suppose T2(K) = 0, i.e., (25) has solutions. Let x, be a solution of (25).

Then x_ = 1 + x.. is the other solution, and we have the following results [14] :

1) m odd

-J 9i
!- I' = IK2
1 jeJ iel

where I = {1,3,5, ••-, m-2}, J = {0,2,4, ••-, m-1}.

2) m = 2 modulo 4

(m-6)/4 _ -2+4i
x = I (K+r)

Z , for T (K) = 0, (B.4.1)
1 i=0

(m-6)/4 ,
x. = a. + I (K+KV , for T (K) = 1, (B.4.2)
1 i=0

where a is a solution of the equation a.. + a.. + 1 = 0.

3) m = 0 modulo 4

m-1 (m/4)-l 72i+m/2
x. = S + SZ + r (1 + J r) , for T (K) = 1, (B.5)1 ---- i=o

B-l

where
(22i-l+m/2

For T4(K) = 0, select an element 8 of GF(2
m) such that T (&) = 1, compute

Kj = 8+g , and solve z + z + K 1 + K = 0 using (B.5) with K replaced

by K.^ + K. Then x = £+z is a solution of (25), where z is obtained

from (B.5). For m = 4, 8, 12, (B.5) reduces to the following forms:

m = 4, xl = K
8 + K12;

m = 8 , xx = K33
 + K66 .+ K129

 + K132;

m = 12, x = K2048(l + K64 + K256
 + K1024)

+ K129 * K258
 + K513

 + K1026
 + K516

 + K1032

B-2

,D.J.,Costello, Jr. § R.H. Deng
NASA Grant NAG 2-202

FINAL REPORT

PART II

(Optimal Schortened BCH Codes for Computer Memory Systems)

OPTIMAL SHORTENED BCH CODES FOR COMPUTER MEMORY SYSTEMS

Abstract: This paper presents a method for constructing optimal and nearly
optimal shortened BCH codes which are suitable for applications to computer
memory systems. The optimal codes we found minimize the hardware required for
implementation compared with all the other shortened BCH codes.

I. INTRODUCTION

Error-correcting codes are widely used to improve the system-level relia-

bility of computer main storage or control storage. The IBM system 7030, built

in 1961, was the first IBM computer system to use a single-error-correcting

and double-error-detecting (SEC-DED) Hamming code with minimum distance d . =4

for its core memory [1]. However, core memories are very reliable, especially

since the technology has advanced to a mature state. In the 1970's, semicon-

ductor memories were used to replace core memories. Semiconductor memories are

faster than core memories in speed; however, they are less reliable than core

memories due to their high density per chip and their exposure to radiation,

which induces soft failures (errors). As a result, the use of error-correcting

codes for improving semiconductor memory reliability became a standard design

feature. The improvement in reliability is especially evident when the memory

system is organized on 1-bit-per-card basis (bit-oriented memory). With this

organization, most error patterns (or multiple-bit failures caused by a mal- .

function) on each card appear as if they were single errors.

The most commonly used error-correcting codes have been the minimum odd-

weight-column SEC-DED codes first constructed by Hsiao [2]. Hsiao's construc-

tion is optimal in the sense that its. parity-check matrix, denoted by H ,

satifies the following requirements. ,

1. The total number of 1's in the H~ matrix is a minimum.

2. The number of 1's in each row of HJ. is equal (or at least close)

to the average number (i.e., the total number of 1's in hL divided

by the number of rows in H_) .

Let N. be the number of 1's in the ith row of the parity-check matrix.

Let L. be the number Of logic levels required to generate the ith parity-

check bit with b-input modulo-2 adders (or b-input XOR gates). Let L. . be the

number of logic levels required to generate the ith syndrome bit with b-input

modulo-2 adders. Then we have [1,2]

where fXl denotes the smallest integer greater than or equal to X. From (1)

and (2) , we see that the two requirements mentioned above minimize the number

of logic levels required to generate the parity and syndrome bits, and hence

hardware required for implementation of the code.

In practice, some computer memory systems require higher reliability than

that the SEC-DED codes can provide. These codes should have minimum distance

d . >4, and should also satisfy the above two requirements, so that fast en-

coding and decoding, which are the most critical on-line processes in the

memory operations, can be achieved. Unfortunately, general methods for con-

structing such codes are still unknown. In this paper we present an algorithm

for shortening the BCH codes [1]. In section II, we give some lower bounds on

the total number of 1's in a parity-check matrix H, and on the average number: -;

-2-

of 1's in each row of H_. In Section III, we present our algorithm, along with

the shortened BCH codes we found. Finally, we summarize our results in Section

IV.

II. LOWER BOUNDS ON THE NUMBER OF 1'S IN THE PARITY-CHECK MATRIX

Throughout this paper, we only consider systematic linear codes, because

they are the most commonly used codes in practice. The code construction is

best described in terms of the parity-check matrix 1H. An (n,k) systematic

linear code is uniquely specified by its parity-check matrix ,. which is given

by

where I , is the (n-k)x(n-k) identity matrix,
~̂ l"~K

2= [V V ••". a*] (4)

is an (n-k)xk matrix, and q_. , 1 <_i _<k, is the ith column of ̂Q.

TH: Let T and A denote the total number of 1 ' s in tl and the average number of

1's in each row of H, respectively. Let m be the unique positive integer such

that

. - - a ,
I (.) + m = k, (5)

i=d L -1 i J *• }
nun

where X, satisfies

a ' £+1 .
•I (n- k) < k ̂ I c n:k) (6)

i=d . -1 x i=d . -1 i

mm mm . .

and where d . is the minimum distance of the code. Then T and A can be lower
mm

bounded by - . : . i ' ,•

-3-

mm

£ ,
I i (n:K) + C *+i)m + C n-k),

i=d . -1mm

S, , ,
if • I c n :k) <k i I c n:k)

i=d . -1 i=d . -1mm mm

mm

a
I i (nTK) +

i=d . -1mm

. T, - 1,if r c i) <k i . I c n : k) . cs)
• T i J- -« . . -i T -i.i=d . -1 i=d . -1mm mm

Proof: Since the code'has minimum distance d . , the number of 1's in eachmm'
n-kcolumn of (^ must be at least d . -1. If k _< (,), the total number of 1's
min

in Q is at least k(d . -1). Adding the (n~k) 1's in the identity part of (3)

to k(d.n-1), we obtain the first part of (7). The second part can be proved

in a similar way. (8) follows from the fact that E_ has (n-k) rows.

An (n,k) systematic linear code is said to be optimal, for a given d . ,

if the total number of 1's in its parity-check matrix meet the lower bound of

(7), and the maximum number of 1's in each row is FA], where A meets the lower :

bound of (8). As mentioned in section I, no general method:is known for con- .: ; .

structing optimal codes with d . >4. Instead, we seek a'method for shorten- • . " ifl

ing the BCH codes in" the hope that shortened BCH codes..can ̂ satisfy'the two: re-'r." -;h-.̂

quirements of sectioni.I. >-.v; •--.-r-.-r:T!-; ..:: •••.;--;:.;•.-; ;

-4-

Let

"-1 =[In-k ! Ql 3 (9)

be the parity-check matrix of an (n,k) systematic BCH code with minimum distance

dmin' Where

is an (n-k)xk matrix. The shortened BCH code is an (n-w,k-w) code specified by

its parity-check matrix

where

=r (w+1) (w+1) (w+1) ,
J

is an (n-k)x(k-w) matrix which is obtained by deleting w columns from Q,, where

0<w<k. The shortened code has minimum distance at least d . .mm

Define

, _ , ...,.
Z K

as a column weight vector, where CW. ̂ ' is the Hamming weight of the ith columni

of Q, . Arrange CW. *• , 1 < i <k, in such a way that— j. i — —

CW. < CW. < ... < CW. ,
h - X2 - - \

If the i, . tli, i, +2th_,..., i,th_ columns, i.e., the w heaviest columns,

are deleted from C> , then the total number of 1's in H . is minimized. Let

T, and A, denote the total number of 1 ' s in H and the average number of 1 ' s

in each row of H - , * respectively. Then we have

k-w
Ti !•"£' CW.(1) H- n-k, (13)

-5-

and

A, (1)11 [I cwi / (n-k)] +1 • (14)

A shortened (n-w, k-w) systematic BCH codes is said to be optimal for a given

d . if T, meets the lower bound of (13) and the maximum number of 1's inmm 1

each row of H , is FA,1, where A meets the lower bound of (14).
—w+1 • 1" i

III SHORTENED BCH CODE CONSTRUCTION ALGORITHM

k '() shortened (n-w, k-w) systematic BCH codes can be obtained from an

(n,k) systematic BCH code. To obtain the best code, the most straightforward
k

approach is to try the () possibilities, and pick up the best one. Unfor- ..'

tunately, even for moderate k and w, this approach is impossible due to the huge

amount of computation. In the following, we present an algorithm for construct-

ing shortened BCH codes. Our results show that some optimal and many nearly

optimal shortened BCH codes can be found easily by this algorithm.

Define

i . . ., RW _

as a row weight vector,where RW. ^ is the Hamming weight of the jth row of R..

The algorithm first sets w, the number of columns to be deleted from QL and then

selects an arbitrary nonnegative real number u > 0.

Step 1. Calcualte RW^ ^ and C

Set

and calculate

= max { RW. , 1 < j < n-k }max . j — J —

-J--, p , 1 <. j ± n-k,
RWUJ

max

-6-

(1)

(1)
(1) _

n-kts

and

*£C1)-cwf1)-S4
(1)T-3.C1). i-<.*:ik>

fl)T fllwhere g. is the transpose of g;- •*.
— J6 •— J6

if

then the Ath column of Q, is deleted. By deleting the Jlth column of 0 , we
^ — "J_ • - j_

obtain an (n-k)x(k-l) matrix

and a new (n-k)x(n-l) parity-check matrix

In general, after i < w steps, we have an (n-k)x(n-i) parity-check matrix

where

which is an (n-k)x(k-i) matrix obtained by deleting i columns from Q,,

Step i+1. Calculate •'-•<-^.\ - ->-'<••. "-""•

-7-

and

Set

RWCl+1) = max {RW. Cl

max . j , 1 < j < n-k},' — J — '

arid calulate

RW.

J RW (i+1)
max

i (i+1)A =

r (i+Dixie

, (i+1)
X2e

•

Vke

and

If

$& — ̂ i ' x — J —

then the &_th column o£ Q^. , is deleted,

matrix

Form an (n-k)x(n-i-l) parity-check

_ k ; Q +3

where

is an (n-k)x(k-i-l) matrix obtained by deleting the Jlthj column from

-8-

If i+.l..<..w, the above procedure is continued. If i+l=w, H_.+ 7 is the desired

parity-check matrix of an (n-w, k-w) shortened BCH code. A block diagram of

the algorithm is shown in Fig. 1.

In this algorithm, y is a key parameter in finding the best shortened BCH

codes. The larger the value of y, the smaller the maximum row weight RW*-W+ '',
IHcLX

but the total number of 1's in the parity-check matrix is larger. On the other

hand, if y=0, the w columns of H, with the most 1's will be deleted, thus mini-

mizing the total number of 1's in the parity-check matrix of the shortened BCH

code. But the requirement that the number of 1's in each row be equal usually

can't be satisfied. Which requirement is more important depends on the parti-

cular situation, and the value of y can be adjusted accordingly.

Table 1 gives a list of the parameters of the shortened BCH codes found
i i

by the algorithm, where n = n-w, k = k-w. The (47,32) and (81,64) codes are

seen to be optimal according to the definition from Section II, and the other

codes are nearly optimal. Fig. 2 - Fig. 5 show the parity-check matrices of the

shortened BCH codes with minimum distance d . =5, 6, 7, and 8, respectively.

Fig. 6 is a block diagram of the decoder. The encoder is identical to the upper

part of the decoder with the input parity bits deleted.

IV CONCLUSION

In this paper we have presented a method of constructing optimal and nearly

optimal shortened BCH codes. Some lower bounds on the parameters of the parity-

check matrix were given. An efficient algorithm for shortening the BCH codes

was obtained. Some of the codes found by the algorithm were optimal in the

sense of meeting the lower bounds on the parameters of the parity-check matrix.

The algorithm was -computed on -a, VAX/780 computer. For moderate values of n and w

running time was only a few seconds. .

-9-

REFERENCES

[1] S. Lin, and D.J. Costello, Jr., Error Control Coding: Fundamentals and
Applications, Prentice-Hall, Inc., New Jersey; 1983.

12] M.Y. Hsiao "A Class of Optimal Minimum Odd-Weight-Column SEC-DED Codes",
IBM J. Res. Dev.. 14, July 1970.

-10-

TABLE 1 PARAMETERS OF A LIST OF SHORTENED BCH CODES

1 t
n k

28 16

44 32

46 32

78 64

80 64

29 16

45 32

47 32

79 64

81 64

34 16

50 32

85 64

88 64

35 16
i'i.

51 32

86 64

89 64

w d .nun

35

19

81

49

175

34

18

80

48

174

29

13

42

167

28

12

41

166

5

. 5

5

5

5

6

6

6

6

6

7

7

7

7

8

8

8

8

Total number Lower bound

of 1's in H on T,
• J.

88

188.

180

401

368

101

215

215

445

409

124

242

575

591

133

261

656

673

86

187

180

394

367

101

213

215

439

409

120

238

571

586

131

257

656

663

Lower bound

on T

76

140

142

270

272

.93

173

175

335

337

114

210

405

408

131

243

470

473

Average

of 1's

7

15

12

28

23

7

16

14

29

24

6

13

27

24

7

13

29

26

number

per row

.33

.67

.86

.64

.00

.77

.54

.33

.67

.06

.89

.44

.38

.63

.00

.74

.82

.92

Lower bound

on AI

7.

15.

12.

2&.

22.

7.

16.

14.

29.

24.

6.

13.

27.

24.

6.

13.

29.

26.

17

58

86

14

94

77

38

33

27

06

67

22

19

42

89

53

82

52

Lower bound

on A

6.33

11.67 .

10.14

19.29

17.00

7.15

13.31

11.67

22.33

19.82

6.33

11.67

19.29

17.00

6i89

12.79

21.36

18.92

Maximum number

of 1 ' s per row

8

17

14

30

24

9

18

15

31

25

8

17

29

26

8

16

32

28

-11-

i+1

Read n, k, w,
y, H} Q

Calculate

W(i), CW(i)

. Calculate

Find £,, s .t.

Delete the £—
column from Q.

Figure 1. Block diagram of the algorithm for
shortening the BCH codes.

-12-

H =

6

1

0

4

0

4

Il2 6

7

1

2

1

4

2

0

5

0

2

2

1

1

6

6

1

5

7

1

0

3

4

•5

0

4

1

2

4

6

0

4

6

3

5

2

5

2

1

4

2

1

4

6

3

1

0

0

0

0

4

6

3

1

0

4

4

4

0

0

4

0

4

0

4

0

Fig.. 2.1 Parity-check matrix of a, (28,16) d . =5 code

-13-

H =

5

2

1

5

7

6

i-12 3

1

5

2

4

2

2

5

1

6

5

6

3

7

5

4

0

3

5

2

4

2

4

2

1

5

2

5

6

2

1

4

2

0

1

1

0

4

7

3

4

2

1

4

2

0

1

5

6

3

0

4

7

3

7

5

2

4

5

3

7

1

1

2

4

6

3

1

4

7

0

1

4

4

5

6

4

2

0

4

6

3

5

2

5

2

1

4

2

1

2

7

1

0

4

0

0

0

6

7

5

4

3

1

5

4

0

3

0

1

2

1

6

6

0

4

6

6

2

0

4

2

4

2

4

2

Fig. 2.2 Parity-check matrix of a (44, 32). dffli =5 code

-14-

H =
±14

7

4

1

0

6

0

2

0

2

6

3

1

1

4

2

5

2

5

2

1

0

0

0

0

0

6

5

4

2

1

4

2

5

0

6

1

0

2

1

2

1

4

2

1

7

0

0

4

0

2

5

2

1

6

1

7

5

3

1

0

0

0

1

4

6

2

1

0

5

2

1

6

6

4

2

3

1

5

0 '

0

2

5

1

6

4

2

1

0

4

2

1

4

2

5

2

1

0

0

1

I

0

5

2

1

0

4

2

1

5

2

4

2

1

0

4

7

3

5

3

5

2

0

0

4

6

2

0

4

2

1

4

6

7

7

7

3

1

0

0

0

0

0

0

0

4

0

2

4

4

6

6

6

2

2

Fig. 2.3 Parity-check matrix of a (46,32) d . =5 code

-15-

O \ - P » O I — '

NJ
I — • N) ^ . O O O O t s J C n N J t n K >

P

X1
O
<D
O

H-
X

O
Hi

•-J
00

p
II
tn
O
O
CU
(0

tsj tn Oi

O O O O to

O l — I

-16-

tn O t->

H-
OQ

en

1
n
(D
o

p
rt
t-i
H-
X

o
Hi

00
o

H-

II
tn

O
O
O.
<D

<Jv NJ

-17-

H =

5

1

6

6

5

2

I 4

6

6

2

0

1

3

6

5

0

4

6

7

1

4

2

3

1

0

4

0

1

5

3

0

0

5

6

2

0

5

7

3

4

6

3

5

2

5

2

1

4

2

1

0

0

1

0

0

4

6

3

4

2

5

2

1

5

2

0

4

0

0

0

0

4

0

0

4

0

4

4

Fig. 3.1 Parity-Check Matrix of a (29, 16) d . =6 code

-18-

H =

4

0

6

5

6

3

-13 7

5

6

3

3

1

0

2

3

1

2

5

2

7

7

5

0

6

5

4

3

3

4

5

3

5

0

5

4

4

0

2'

7

4

2

1

0

4

6

3

1

4

6

3

1

0

3

3

1

6

2

1

2

4

4

1

3

7

4

0

6

7

5

0

2

7

3

3

3

5

4

4

2

3

1

6

5

2

1

4

6

5

4

4

0

0

0

4

6

3

5

2

5

2

1

4

2

1

6

5

2

7

3

5

0

0

2

7

1

6

5

6

1

4

0

4

6

1

0

6

1

2

7

5

2

6

6

4

6

2

2

4

4

4

4

0

6

Fig. 3.2 Parity-check matrix of a (45, 32) d . =6 code

-19-

H =

6

3

1

4

6

1

0

-15 4

4

2

5

0

0

2

5

4

2

5

2

1

0

0

0

0

0

4

6

7

3

1

4

3

0

0

5

7

2

5

6

2

5

2

0

5

3

4

2

1

4

2

1

4

2

1

4

2

5

2

1

0

3

1

0

7

0

0

4

1

3

5

1

0

4

2

6

0

0

4

6

3

5

2

1

0

4

6

7

7

3

1

4

6

3

1

4 "

6

7

3

5

2

5

2

1

0

0

2

3

1

6

5

2

3

5

4

6

1

4

2

5

0

1

0

6

6

2

5

6

0

7

1

3

1

4

0

7

7

2

5

0

2

0

1

6

0

5

0

1

1

1

6

4

6

2

0

0

2

6

4

2

4

0

4

2

6

0

Fig. 3.3 Parity-check matrix of a (47, 32) d . =6 code

-20-

H-
OQ

"0
P
i-i
H-
rt
X
I
o

(D
O

PS
rt

Oo
CL

lac

tn

en

ui

-21-

C n t O O O l — '

Tl
H-

OQ

tn

Xi
o
5"
(D
O

rt
i-i

X

o

00
O O O O l — '

o\
O I-1 NJ

CL

H-
3

o
o
Cu O O O O O O l — '

O O O I — '

I — N J J ^ O O O

-22-

H =

1
4

2

0

0

4

3

4

2
T
-18 5

6

6

3

1

1

1

4

2

0

4

6

7

3

1

0

4

6

3

1

0

0

4

2

1

0

0

1

0

0

0

5

6

7

3

0

0

5

6

2

1

1

1

4

2

3

0

5

5

4

2

0

1

6

2

1

0

4

0

2

6

0

7

2

5

0

4

0

0

4

4

2 .

5

0

4

2

5

2

3

7

1

4

4

0

0

4

0

0

4

0

0

0

0

4

0

4

0

4

0

Fig. 4.1 Parity-check matrix of a (34, 16) d . =7 code

-23-

H =

4

2

1

0

4

2

5

2

I 5

6

7

3

1

0

0

4

2

1

4

2

1

0

0

0

4

2

1

4

2

1

4

6

7

7

3

1

4

6

7

3

1

0

4

6

3

1

0

0

4

2

1

0

0

0

0

0

0

4

6

7

3

1

0

4

6

3

1

0

0

4

2

1

6

3

3

1

4

0

6

5

0

0

6

1

0

6

5

6

1

0

3

0

5

5

4

2

0

1

6

2

1

0

4

0

2

6

0

7

1

4

2

4

2

0

4

6

3

4

2

4

3

4

3

1

5

2

2

6

1

3

0

1

2

2

1

7

2

1

1

4

2

6

5

5

2

7

5

4

2

5

0

2

5

0

0

4

2

5

6

1

6

5

7

4

1

2

1

1

3

6

2

2

0

1

0

0

4

5

0

6

0

4

2

4

2

4

6

6

2

0

0

0

4

2

0

d
4

2

Fig. 4.2 Parity-check matrix of a (50, 32) d . =7 code

-24-

OQ

-0
p
H

N3

o
o>
n

3
P

H-
X

00
tn

H-
3

O
O
D-
(D

NJ

O O O O O O O

-25-

H-
OQ

i-i
H-
ft-
X

ISC
II

Is)

O O O

O O I-* O

o

ff)

0 0

O K) O N) •*» O O O I-"

X

O
H,
fu

OO
00

H-
3

o
o
CL
(D

O O O O O o -P* O O O O -b. 'O O O

-26-

H =

0

4

2

1

0

4

2

5

2

Iig 5

6

• 7

3

1

0

0

4

2

1

1

5

3

0

0

0

1
4

2

0

5

2

0

5

6

7

6

2

0

1

0

4

6

6

3

0

0

5

3

0

0

4

2

1

5

2

5

2

5

1

4

2

3

0

2

1

0

2

2

4

3

6

1

4

1

6

6

1

2

5

4

3

1-

5

2

2

6

2

1

0

0

4

1

4

0

6

0

4

0

4

0

4

4

4

0

0

0

0

4

0

0

0

4

0

0

Fig. 5.1 Parity-check matrix of a (35, 16) d . =8 code

-27-

H =

4

2

1

0

4

2

5

2

5

122 6

7

3

1

0

0

4

2

1

0

2

1

0

4

0

0

2

5

0

6

1

4

6

7

3

3

1

0

4

1

1

4

2

1

0

1

1

5

2

0

4

2

0

5

7

7

7

3

3

7

5

6

4

0

1

2

2

4

5

0

2

5

4

1

4

4

6

0

4

6

7

3

1

0

4

2

1

0

4

2

1

4

2

5

2

1

5

2

1

0

0

4 •

2

0

4

6

2

1

0'

1

4

7

2

5

3

6

5

7

2

1

4

6

7

5

0

1

5

0

6

0

1

5

4

2

1

1

4

6

3

• 4

2

1

4

6

2

4

7

2

1

0

5

6

2

1

4

6

3

0

4

3

1

5

3

0

0

0

4

2

4

2

5

2

2

5

2

1

6

3

3

5

4

4

4

2

1

0

0

2

1

0

4

0

0

4

2

4

2

4

6

6

2

0

0

0

4

2

0

0

4

2

Fig. 5.2 Parity-check matrix of a (51, 32) d . =8 code

-28-

O \ O i — '

TJ
H-

p
i-i
H-
r*-
X
O

o

i-i
H-
X

00

0\
O O O O O

3
H-
3

00

o
o
p.
CD

NJ W

O O O l — '

-29-

1=
II

OP

to
Cn

O-i

tn

*.

T)
- t ^ . l - ' O J

X
I
o
(D
n

I
ct

X

O

00

3
M-
3

II
00

O
O

(D
O \ O O O \ W M K) N J O

O I—• t-O O O t-*

O O -l̂ - O O- : O-

-30-

Cl C2
c c cn-k n-k+1 n-k+2 n

1 I I 1 I
Parity Register Information Register

Parity/Syndrome Calculation Circuit

5n-k— c

Error-pattern-detecting circuit
(a combinational logic circuit)

n

corrected output

Figure 6. Block diagram of the decoder.

-31-

D.J. Costello, Jr. § R.H. Deng
'NASA Grant NAG 2-202

FINAL REPORT

PART III

(Burst Error Correction in Laser Memory Systems)

BURST ERROR CORRECTION IN LASER MEMORY SYSTEMS

I. INTRODUCTION

In computer memory systems, errors often occur in bursts. For example, in

NASA's laser memory system, the disk can contain a double burst error with

lengths a _< 8 bits and b _< 11 bits or a single burst error with length c _< 14

bits. In this paper, we show that by interleaving two d . =6 Reed-Solomonr . mm

(RS) codes with symbols from GF(2), almost all double burst errors of lengths

a _< m+1 and b _< 2m+l can be corrected using erasure decoding, as well as any

single burst error of length c < 3m+2.

Code interleaving distributes the error detection and correction burden

among the two component codes and thus lowers the overall redundancy require-

ment. Erasure decoding uses the information inherent in the interleaving scheme

to achieve further improvement in code performance [1]. More importantly,

higher speed decoding is possible as opposed to using more powerful codes.

The generator polynomial for the d . = 6 RS code is given by [2,3]

g(x) = I (x+a),
i=-2

(1)

where a is a primitive element of GF(2). The parity-check matrix !-[of the

code specified by (1) can be written as

H =

—
1 a'2

1 a'1

1 1

1 a

_1 a2

2
(a~) • • •

2
(a) • • •

1 • - •

2
(a) • • •

2
(a) • • •

I ~

c*-2)
1

C^1) "

1

CcO""1

1(«2) -

(2)

where n _< 2 -1 is the code length. If the code is used for error correction and

detection, we say that the decoder operates in the normal mode. The code is

then capable of correcting any two or fewer errors and simultaneously detecting

any combination of three errors [2,3]. A high-speed decoding procedure for the

decoder operating in the normal mode is given in [4]. If, however, the code is

used for correcting errors as well as erasures, then all combinations of t errors

and e erasures are correctable provided that [3]

2t + e < d . , (3)mm' v '

and we say that the decoder is operating in the erasure mode.
"! f ~

Let v •v, • «• v be a codeword generated by the i-th encoder. As'shown

in Figure 1, code symbols from each encoder are sent alternately using a multi-

1 2 1 2 1 2
plexer resulting in the sequence v. v. v. v. ... v :.v . This sequence is

then read into the memory where burst noise is introduced.

At the memory output, each code symbol v. is replaced by its noise cor-

rupted version r. . The memory output sequence r rn r. r. ••'• r ..r is

then demultiplexed into the respective codewords for decoding. The two decoders

can operate in either the normal mode or the erasure mode. When the memory out-

put sequence is deinterleaved, assume decoder 1 first operates in the normal

mode, i.e., it does independent decoding. If the errors in _r = (r r ... r

are correctable, then after error correction the error location information is

fed into decoder 2 through the mode selector, and decoder 2 will operate in the

erasure mode. That is, it does erasure decoding by using the error location in-

formation provided by decoder 1. On the other hand, if the errors in £ are

not correctable but can be detected, decoder 1 stops decoding and decoder 2

2 2 2 2
starts operating in the normal mode. If the errors in £ = (r. ,. r.. ,..•••'•• ,rn_p

are correctable, then the error location information from decoder 2 is fed into

decoder 1. By using this information, decoder 1 will .do erasure .decoding, and i/;

the errors in r_ will be corrected.

To have a better idea of how the decoder works, let us look at some partic-

1 2 1 2 1 2ular cases. Assume that r_ = (r r r r ••• r r) contains two bursts of

lengths a _< m+1 and b _< 2m+l. Then the burst of length a _< m+1 can affect at

most two symbols in r_ and the burst of length b <_ 2m+l can affect at most three

symbols in r, as shown below.

, 1 2 1 2 1 2 1 2 1 2 1 2 ,r = (r.. r,. r r, ••• r. r. ••• r. nr. r. r. ••• r ,r ..)— v 0 0 1 1 . 11 j-1 j-1 j j n-1 n-1'

in error in error

The two code words that result from deinterleaving r are shown below.

1 , 1 1 1 1 1 ,r = (rn r.. • •• r. r. ••• r ..)
- *• 0 1 i j n-lj

in error in error

2 . 2 2 2
r = (r0 rx ••• r.

in error in error

Let decoder 1 operate in the normal mode first. Because r contains two

errors at locations i and j, respectively, they can always be corrected. Then

2
the symbols at locations i-1, i, j-1, and j in r are erased. Note that the

symbols at location i, j-1, and j are in error. By operating decoder 2 in the
2

erasure mode, the four erasures in r_ can be corrected. If, however, decoder 2

operates in the normal mode first instead of decoder 1, because r_ contains

three errors, they will be detected but not be corrected. Then decoder 2 stops

decoding, and decoder 1 starts operating in the normal mode. The same decoding

procedure as described above will now follow. .-. :,c . . '...,.:•' . •_....-..

As another example, again suppose that r_ contains two bursts, but the first

2 2 2burst only affects r. , and the second burst only affects r. and r. , as shown

below.

, 1 2 1 2 1 2 1 2 1 2 1 2 ,r = fr~ r,. r, r, ••• r. r. ••• r. ,r. ,r. r. ••• r ,r ,)- l 0 0 1 1 11 j-1 j-1 j 3 n-1 n-l'

in error in error

Let decoder 1 operate in the normal mode first. Then no errors will be detected

in _r , and when decoder. 2 starts operating in the normal mode the three errors in

2 • >
_r will be detected but cannot be corrected. Fortunately,, situations like this

are rare, as we will show in the next -section.

The decoding procedure for a decoder operating in the normal mode is pre-

sented in [4]. Therefore, in the following, we focus our attention only on

erasure decoding.

II. ERASURE DECODING PROCEDURE

Let _r = v1 + e1 be the input to the i-th decoder. The decoder first com-

putes the syndrome s_ , ••.''.

Without loss of generality, assume that after the deinterleaving of the

output sequence, decoder 1 operates in the normal mode. Let t and e denote the

2
number of errors and the number of erasures in r_ , respectively. Then there

exists the following possibilities:

(1) No errors are detected in _r . If this is the case, then decoder 2

starts operating in the normal mode. If t _< 2, the errors will be

corrected. If, however, t = 3, the decoder will fail. .Suppose -. ,.

that each error bit within a burst takes on a value of .1 with prqb- -:.-;

ability 1/2. Then this failure probability is given^by ; -'; ;, '•;'?. "• "••_ -.

4

m m+l-i
I Go)

i=l L

m., m 1 i 1 m+l-i 1 m
ir< . X t i - £) u|) xi)1=1

m
m -, m+l-i i
I ei) [i - (7)] >., (5)

1 .(2) One error at location k in £ is detected and corrected. The symbols

at locations k-1 and k in £ are erased. Then decoder 2 starts

operating in the erasure mode. Three cases can occur .

(i) e = 2, t = 0.

s^ = e c
S£ VlC

a = -2, -i, o, i, 2. C6)

From (6), the error values at locations k-1 and k are given by

"k-1

k-1

(2) k (2). , kri -1,- J + a s J} I a (l+o (7.1)

and

C, — 3-. T c , ,
k 0 k-1'

respectively,

(ii) e = 2, t = 1, where the error is at location j ̂ k-1, k.

(2)
£ = ek-la eka

„ T i n ia ' = ~ "

(7.2)

Define

(2) k,. -1, (2) 2k- 1 (2)
j = sj J + a (1+a)s£ J + a s^,

(2) kri -1, (2) 2k- 1 (2)
2 = S2 *• ^sl a S0

Then the error locator a and the error value e. can be found

from [3]:

a = VTl ' (9)

and

1 1 s'j2-'

k-1 k (2)a a s

2 (k-1) 2k (2)a a s0

1 1 1

k-1 k ja a a

2(k-l) 2k 2j
a a a

To2
, j k-!A , j k,(a +a)(a +a)

(10.1)

The other error values are given by

'k-1
6ja

1

k-1
a

(2) .
H Sl :

1

k
a

(e. + SQ
(2) + eja

j 1), (10.2)

and

(iii) e = 2, t = 2, where the errors are at locations j and i (^ k-1, k) ,

respectively. Because

2t+e = 4+2 = 6 = d . ,mm

2
this error pattern in r_ cannot be corrected, 'and the prob

ability of this failure occurring is given by

.. m .m . m .i. m+l-i
P
2
 =

i = l - " • " 1 = 1 ' *

(3) Two adjacent errors in r_ are detected and corrected. Then r_ con-

tains at most two byte errors, which can always be corrected by

operating decoder 2 in the normal mode.

(4) Two nonadjacent errors in _r at locations i and j.are detected and

2
corrected. Then the symbols at locations i-1, i, j-1, and j in r_

are erased, and decoder 2 does erasure decoding.

S — (^ n 4* i3 a + P rv + f^ cv, ™~ C . « L* T ^ C - V J > T^ v • ^ \Jt T^C.H >
£ 1-1 1 J-l J '

A =• -2, -1, 0, 1, 2. (12)

Solving (12) for the error values yields

(i) ei_1 = A/B, (13.1)

where

A = (s- + S)(a
j-1

 + a
i)(aj + ̂ (1 + a'

1)
£

a'1) + a
2i+3j(l + a'

3) +

a'2) + a i+3j(l + a"1) + a
3i+j (1 + a'1)], ,/

and

B = c^Cl + a~2)(a21 + a^Xc^ + a1'1)̂ '1 + a1);

(ii) 6i = C/D, (13.2)

where

+ ei_1)a
3j"1 + (Sl + ei_1a

i'1)a2JCl + a'1) .

D =

Ciii) e._ 1 = [a(s .e.̂ + e.)

+ Sl
(2) + ̂ (e-̂ cT1 + e..)] / aj (1 + a"1); (13.3)

and

(iv) e.. = s + ei_1 + e± + e.. . (13.4)

(5) Three errors are detected in r_ . Then decoder 2 starts operating

in the normal mode, and the error location information is fed into

decoder 1. Decoder 1 then does erasure decoding, as described in

(l)-(4), the only difference being that if an error at location i

2 1in £ is corrected, the symbols in T_ at locations i and i+1 rather

than at locations i-1 and i are erased.

Let P be the probability that two bursts of lengths a = m+1 and b = 2m+l

occur. Then the probability of decoding failure, from (5) and (11), is given

by
m „ i m+l-i

m m m1

• { (y) * It1 ~ Cy)]}• (14)
2 i=l ^

If m = 8, then (14) yields

,-3PE s 3.3PX10
 J .

Before proceeding, we need to prove the following property. Let e and t

denote the number of erasures and the number of errors in r , respectively:

Property: If e = 2 and

0 0 'l *-2 J 1 <• 0 -1 1 2

then t = 0 or t > 1.

Proof: We have to show t ^ 1. It is sufficient to show that [3]

-1 -2

= 0.

Because

-1 0 2
, 0

by our assumption, the property is true.

Based on the above discussion, our decoding procedure can be summarized as

follows. Assume that _r is first decoded by decoder 1 in the normal mode.

1 2
(1) No errors are detected in r_ . Decoder 2 starts decoding r_ in /. ; ' ;

the normal mode. i..;-..- >:<.•*-^H ,-.,;...;:-.

2
If two or fewer errors occur in r_ , they are corrected.

2
If three errors occur in r_ , they are detected but cannot be

corrected.

(2) One error at location k in r_ is corrected. The symbols at locations

2k-1 and k in r are erased.

(2)If A = 0, two erasures are corrected with error values e',
K~ i

and ev given by (7.1) and (7.2), respectively.K \
fl ~\ • '

If A £ 0, two erasures and one error are corrected with 'error

values e , e , and e. given by (10.1), (10.2), and (10.3),

respectively, where the error location j is given by (9).

(3) Two adjacent errors in r_ are corrected. Decoder 2 starts decoding

2r in the normal mode.

(4) Two nonadjacent errors in _r at locations i and j are'corrected. The

2
symbols at locations i-1, i, j-1, and j in r are erased. Four

erasures are corrected with error values e. .. , e. , e. 1 ,- and e. given

by (13.1), (13.2), (13.3), and (13.4), respectively.

1 2(5) Three errors are detected in r_ . Decoder 2 starts decoding r_ in the

normal mode.

2 1If no errors are detected in r_ , stop. The errors in r_ cannot be

corrected.

2
If one error at location k in r is corrected, the symbols at

1 (2)locations k and k+1 in £ are erased. Replace _s_ , k-1, and k

by s^1-*, k, and k+1, respectively, in (9) and (10.1)-(10.3). De-.

coder 1 corrects two erasures and one error with error values e, , ,

e , and e. given by (10.1)-(10.3), where the error location j ..
K. • J. j : • '

is given by (9). ;.; •,'.:•::•:;-•/ (̂

10

If two errors at locations i and j in r_ are corrected, the

symbols at locations i, i+1, j, and j+1 in r_ are erased. Replace

£*• -', i-l, i, j-1, and j by s^ ', i, i+1, j, and j+1, respectively,

in (13.1)-(13.4). Decoder 1 corrects four erasures with error

values e., e.+ , e., and e.+ given by (10.1)-(10.4), respec-

tively.

11

REFERENCES

[1] K.S. Leung and L.R. Welch, "Erasure Decoding in Burst-Error Channels",
IEEE Trans. Inform. Theory, Vol. IT-27, No. 2, pp. 160-167, March 1980.

[2] S. Lin and D.J. Costello, Jr., Error Control Coding: Fundamentals and
Applications, Prentice-Hall, Inc., New Jersey, 1983.

[3] W.W. Peterson and E.J. Weldon, Error-Correcting Codes , 2nd ed., MIT
Press, Cambridge, MA, 1972.

[4] H. Deng and D.J. Costello, Jr., "Reed Solomon Codes for Error Control in
Byte Organized Computer Memory Systems", submitted to IEEE Trans, on
Computers, August 1985.

12

Encoder 1 Vi • • " V V
1 0

Encoder 2
i

2 2

2 1
Vn-lVn-l

2 1 2 1v v v v
1 1 0 0

To memory

2 1
r r
n-1 n-1

2 1 2 1r T Ti i ro :

From memory

n-1
Decoder 1

Mode Selector

2 2

Decoder 2

Error
location
Information

Figure 1. Encoding-decoding block diagram

13

D.J. Costello, Jr. § R.H. Deng
'NASA Grant NAG 2-202

FINAL REPORT

PART IV

(High Speed Decoding of Extended

Triple-Byte-Error-Correcting Reed-Solomon Codes)

HIGH SPEED DECODING OF EXTENDED

TRIPLE-BYTE-ERROR-CORRECTING REED-SOLOMON CODES

I. INTRODUCTION

Reed-Solomon (RS) codes are a class of nonbinary codes with symbols or bytes

from the Galois field of 2 elements (GF(2)). They are maximum distance separa-

ble, and thus can provide efficient low overhead error control for byte-organized

memories, since symbol error correction in GF(2) is equivalent to correcting an

m-bit byte. Chen et al. [1] presented a simplified high speed decoding scheme

for Reed-Solomon codes capable of correcting up to three byte errors in code

words made up of k data and n-k parity-check bytes. In this paper, we modify

Chen's scheme to decode extended triple-byte-error-correcting (TBEC) Reed-Solomon

codes.

A typical RS decoding procedure is to first claculate the syndrome, then

find the error location polynomial and search for its roots, and finally compute

the error values and make the actual corrections. Finding the error location

polynomial remains the major bottleneck in high-speed decoding of RS codes. Some

general solutions to this problem are known, such as those described in [2,3].

It is also possible to obtain particular solutions for specific applications.

The method described in [1] is based on the idea of checking for single errors

first and correcting them prior to checking for multiple errors. Since most

errors are single errors and checking for multiple errors is time consuming, this

method is not only high-speed but also simple to implement.

In practice, it is also desirable that the coding overhead be as low as

possible without sacrificing the error correcting capability. Extended .RS codes . .

provide two more information bytes than ordinary RS codes, and therefore a lower, ;..-' .

coding overhead, while retaining the same error correcting; capability v.ir.Ir

report, we modify the decoding scheme given in [1] to extended Triple-Byte-Error-

Correcting (TBEC) RS codes. The decoder first tests if the second syndrome symbol

S1 = 0. If S1 t 0, the assumption is made that a single byte error has occurred.

The assumption is verified quickly by the decoder. If the error is not a single

byte error the decoder goes on to determine if a double byte error has occurred.

If not, it then goes on to determine if there is a triple byte error.

II. PRELIMINARIES

The TBEC Reed-Solomon code has 6 parity-check bytes or symbols, and minimum

distance d . =7. The code symbols are elements of GF(2), the finite field of

2 elements, where m is the number of bits in each symbol. The generator poly-

nomial g(X) of the code is [3]

g(X) = n (X+a1), . . Cl)
1=0

where a is a primitive element of GF(2). The code length n is assumed to be

less than or equal to 2 -1. The parity-check matrix of the code can be written

as

H =

"l

1

1

1

1

_!

1

a

2
a

7+ja

4a

5a

1

(a)

2 2

(a)

_ 2
CO

2
(a4)

(a5)

1

(a)n~2

n-2
CO

_ n-2
CO

n-2
(a")

(a5)""2

1

(•x)"-1

(.
2)n"1

3 n

C«)
n-1

(a4)

Ca5)""1 .

C2)

Let V_ = (v , v , •••, v) and R. = (r , r , —, r) be the transmitted ,.

codeword and the received vector, respectively. The difference :between:_R, and; .?

V is the error vector JE = (e , e , •••, e), i.e.,

= V + E = (v0+e0, v1+elf •••,

The syndrome vector is, by definition,

S. = R HT = _E HT = (SQ,

and depends only on the error vector, not on the particular transmitted code-

word. From this definition we have

S. = Je (aV.
j

(3)

(4)

Let X. =

tion number.

or represent the error location j. X. is called the error loca-

Knowing X. is equivalent to knowing the error location j. Then

5. = ̂ e.X1
i £ 3 J

0 < i < 5.

The error-location polynomial c(X) is defined as

a(X) = n(X-Xi) = X
e + a1X

e"1 + ... + a ,
i

•>•«•"• "_ > (.6)

where e is the number of errors in the received codeword. The coefficients of

cr(X) are related to the syndromes S. by the following equations [2]:

S. + o.S. + ••• + a ,S. , + a S. = 0 , 0 = i = 5-e. (7)i+e 1 i+e-1 e-1 i+l e i

The extended triple-byte-error-correcting Reed-Solomon code is an

(n+2, n-4) code, whose parity-check matrix is given by [4,5,6]

1 0

0 0

H 0 0

0 0

0 0

0 1

(8)

where Q is given by (2). We again have

! = Ji!iE = (ro' rl' ""' ^l^-E = *-eO' el' ""'

— fQ Q Q ^ ^ ^ "^- i&Q, j>1, &2, &3, &4, b5J.

It is easily seen from (8) and (5) that

C _ Y P + P f Q i ^
0 ~ ^ i n ' (.y<J-J

n-1
S. = I e . X 1 , for 1 <_ i <_ 4, (9.2)
1 j=0 J J

S5 = 5! e.X.5 + e +,. ' (9.3)
j=0 J D n+

Note that the error at location n only contributes to Sn, and the error at

location n+1 only to S^.

III. THE MODIFIED DECODING SCHEME

For the extended code, we denote e as the number of errors at locations

0 through n-1, e1 as the number of errors at locations n and n+1, and E = e+e'

as the total number of errors in a received vector, respectively. Obviously,

if the errors are all confined to locations 0 to n-1, (7) is still valid.

Then we can write out the equations of (7) explicitly for the following three

cases:

Case 1) E = e = 1:

S l + a l S 0 = ° '

52 * o1S1 = 0,

53 + 0lS2 = 0, (10)

s4 + Ols3 . o,

s + Os = o. ,

Case 2) E = e = 2:

S2 * olSl + a2SQ = 0,

S3 + a^ + o^ - 0,

(11)
54 + alS3 + G2S2 = °'

55 + °1S4 + °2S3 ' °'

Case 3) E = e = 3: • .

53 + alS2 + °2S1 + °3S0 = °-

54 + °1S3 + °2S2 + °3S1 = °»

55 + alS4 + a2S3 + a3S2 = 0.

Now let us consider the cases when some of the errors are located at posi-

tions n or n+l. There exist eight possibilities. It follows from (9.1) -(9. 3)

and (7) that:

Case 4) E = e' = 1 at location n:

Sn 5* 0, S. = 0, for 1 < i < 5. (13)
U 1 ••"• — ~

Case 5) E = e' = 1 at location n+l: .•. .< . .. , ,. ,.

S. = 0, for 0 < i < 4, Sc 5^ 0. ; ,, ;; . £14)
— — - "

Case 6) E = e' = 2 at locations n and n+1 :

SQ ^ 0, Si = 0, 1 1 i 1 4, S5 ̂ 0. (15)

Case 7) E = 2, e = l , e ' = l , at locations j, 0 <_ j <_ n-1, and n:

s1 + 0^ * o,

S2

= 0, (16)

= 0.

Case 8) E = 2, e = 1 , e' = 1, at locations j, 0 £ j £n-l, and n+1:

+ a1S1 = 0,

+ 0^2 = 0, (17)

+ a^ = 0,

+ 0S / 0.

Case 9) E = 3,e = l , e ' = 2 , at locations j, 0 <_ j <_ n-1, n, and n+1:

S2 + alSl = °'

S3 + alS2 = °'

0.

Case 10) E = 3, e = 2, e' = 1, at locations j , k, 0 <_ j < k <_ n-1, and n:

0,

= 0,

S4 + °1S3

(19)

S5 + alS4 + °2S3 = °-

Case 11) E = 3 , e = 2 , e ' = l , at locations j, k, 0 <_ j < k _< n-1, and n+1:

= 0,

S3 + °1S2 + °2S1 = °'

= 0,

S5 + °1S4 + °2S3 * °'

Our problem is to find a simple way to solve for a. based on the above

equations. Let S , S,, and S denote the syndrome vectors for single, double,

and triple byte error patterns, respectively. Then [3]

(20)

(21)

The following properties of the syndromes are important to our decoding pro-

cedure. First, suppose that the error locations are confined to positions 0

through n- 1 .

Property 1 : If S ^ 0 and S S + $2 =0, then e = 1, or e _> 3.

Proof: Because S ^0, e 1 0, and we have to show that e
- - X

sufficient to show that the determinant

2. From [2], it is

S2 Sl

S3 S2
= ^ * S1S3 =

Since S + S S = 0 by assumption, Property 1 is true.
£* .L O

Property 2: If Sj i 0, S,^ + S^ = 0, and S1S4 + S^ = 0, then e = 1 or e > 3.

Proof: From Property 1, we only have to show e / 3. From [2], it is sufficient

to show that the determinant

52 Sl S0

53 S2 Sl

54 S3 S2

Sls4)

S2(S2 = 0,

2 2
Since S..S + S =0 and S S + S2S = 0 by assumption, A = SQ(S + S S).

2 2Also, since S^ = S and S S = S_S , then S = S2 /Sj and S = S-S./S- (unless

S2 = S = S = 0). Therefore

S S S

Property 3: Let A = 0, c = , and + -S)/A

(a and a when e = 2).

then e = 2, or e > 3.

If D = S + + CT2S0 = ° °r D2 = S5 + °1S4 + a2S3 = °>

Proof: Since A ^ 0, e jt 0, and e

e ^ 3. Since the determinant

1 [2], and it is sufficient to show that

52 Sl S0

53 S2 Sl

54 S3 S2

S0(S3 + S2s4) Sls4) - S2cs2

S
2

A = A

it follows that e £ 3 [2]. Similarly, we can show that if D2 = 0, e •£ 3.

Now let us consider the cases when the errors can occur at any location.

Keep in mind that an error at location n can only affect Sn and an error at loca-

tion n+1 can only affect S<-.
O

Property 4: If SQ f 0 and Si = 0, 1 1 i jf. 5, then E = e
1 = 1 with error location

at position n, or E > 3.

Proof: Since S 5^ 0, E ̂ 0 and we need only show that E ̂ 2 and E ̂ 3. From

Case 4), we see that if E = e1 =1 .with error location at position n, then Sn i- 0

and S. =0, 1 < i < 5. E ± 2 and E ̂ 3 follow from (21). Similar arguments can
1 ~~

be used to obtain the next two properties.

Property 5: If S- ^ 0 and S, =0, 0 _< i _< 4, then E = e1 =1 with error loca-
J JL. "~"

tion at position n+1, or E > 3.

Property 6: If S_ ?* 0, S,. ̂ 0, and S. =0, 1 .1 i _f. 4, then E = e' =2 with two

error locations at positions n and n+1, respectively, or E > 3.

2
Property 7: Assume S^ ? 0, S S + S2 =0, and S S + S2S = 0, and let a =

S /S (a when e = 1), T = S.. + a S , and T2 = S + ĉ S.. Then

(1) If T = 0 and T = 0, then E = e = 1, o r E > 3 .

(2) If T ? 0 and T = 0, then E = 2, e = 1, and e' = 1, with two error

locations at positions j, 0 _<_ j _< n-1, and n, respectively, or E > 3.

(3) If T = 0 and T ? 0, then E = 2, e = 1, and e1 = 1 with error loca-

tions at positions j, 0 <_ j _< n-1, and n+1, respectively, or E > 3.

(4) If T ^ 0 and T £ 0, then E = 3, e = 1, and e' = 2 with error loca-

tions at j , 0 _< j <_ n-1, n and n+1, respectively, or E > 3.

Proof: By Property 2, (1), (2), (3), and (4) follow from Case 1), Case 7),

Case 8), and Case 9),- respectively.

Property 8: Let A = S + S^ ^ 0, o^ = (S2S3 + S^J/A, a2 = (S2S4 + S)/A

(a and a_ when e = 2), D = S + a S + a2Sn> and D2 = S5 + °1S4 + °2SV Then

(1) If D = 0 and D = 0, then E = e = 2 o r E > 3 .

(2) If D £ 0 and D = 0, then E = 3, e = 2, and e' = 1 with error loca-

tions at positions j, k, 0_^j < k ̂ n-1, and n, respectively, or E > 3.

(3) If D = 0 and D ^ 0, then E = 3, e = 2, and e' = 1 with error loca-

tions at positions j, k, 0 <_ j < k <_ n-1, and n+1, respectively, or

E > 3. ; - :. .

(4) If D ^ 0 and D ^ 0, then E _> e >_ 3.

Proof: By Property 3, (1)> C2)> and (3) follow from Case 2), Case 10), and

Case 11), respectively. (4) follows from Property 3, and (1), (2), and (3).

Property 9: If S. ± 0 and S..= 0 for some i and j such that i £ j and 1 < i,
i J ~

j _<^ 4, then E _>_ e _> 2. . • ,

Proof: First note that e / 0. If e = 1, then.S. = e,^1. ± 0, for 1 < i < 4.1 3 3

Since some S. = 0, e ^ 1. Hence e > 2 and E j> e >_ 2.

Property 10: If S = S_ = 0 and S ^ 0, then E _> 3.

Proof: Property 10 follows from Properties 1 and 9

Property 11: If Sn = S = S = 0 and S ^ 0, then E > 3.
"" ' ' '"' \J J. L, O • •

Proof: From Property 10, E >^ 3, and we need only show that E ̂ 3. It is

sufficient to show that . - •-.

10

A
3

52 Sl S0

53 S2 Sl

54 S3 S2

= 0.

Since A_ = 0 by assumption, e ^ 3 and E ̂ 3.

Property 12: If S = S_ = S = 0 and S / 0, then E > 3.

Proof: Since S. , 1 _< i _< 4, is not affected by errors at locations n and n+1, if

S = S2 = S = 0 and S ? 0, it is easy to see that equations (10), (11), and (12)

are not valid. Therefore e £ I, e ? 2, and e ^ 3 and we must have E _> e > 3.

Based on the properties presented above, the procedure shown in Fig. 1 can

be used to calculate the coefficients of the error- location polynomial (if e ̂ 0)

and to find the error locations (if e / 0).

(1) If S1 £ 0, then E >_ e _> 1, and the next step is (2). If S =0 and

S_ f 0, then E _> e _> 2, and the next step is (3). If S = S_ = 0 and

S ^ 0, then E _> e _> 3 and the next step is (7). If S = S_ = S = 0

and S. ? 0, then E > 3 (detected errors). If S. =0, 1 _< i _< 4, then

E _> 0 and e = 0, and the next step is (8).

(2) S ? 0. Set a = S /S . If S + aS ^ 0, then E ̂ e >_ 2 and the next

step is (3). If S + aS_ = 0 and S + aS ^ 0, then E _> e >_ 3 and the
J £ T" O '""" ~~

next step is (5). If S + oS = 0 and S + aS = 0, then E >_ e = 1,

and the next step is (6) .

(3) A = S2
2 + S1S3 j« 0. Set a1 = (S^ + S1S4)/A, a2 = (S^ + S^)/A,

D = S + aS + aS, and = S + a + a.' •••. '. - •- J. :

11

If D: =.D2 = 0, then E = e = 2.

If Vl £ 0 and D2 = 0, then E = 3, e = 2 and e' = 1, with one error

location at position n.

If D = 0 and D ± 0, then E = 3, e = 2, and e' = 1, with one error

location at position n+1.

If D ^ 0 and D / 0, then E = e = 3 and the next step is

(4) Set a3 = D2/D1, a2 = 02 + a3 (S1S2 + SQS3)/A, and

°1 = °1 + °3 (S0S2 + S1

'(5) Set A = S2S3 + S1S and

If DI =0, then E > 3 (detected errors).

If D ^ 0, then E = e = 3, and we set

, and

°2 = C°3S0 + °1S2 +

Set T = S + aS and T = S + 0S .

If T = 0 and T = 0, then E = e = 1.

If T ± 0 and T = 0, then E = 2, e = 1, and e = 1, with one error

location at position n.

t
If T =0 and T ^ 0, then E = 2, e = 1, and e =1, with one error

location at position n+1.

If T ^ 0 and T ^ 0, then E = 3, e = 1, and e = 2, with two error

locations at positions n and n+1, respectively.

(7) Sj_ = S2 = 0, S3 t 0.

If Sfl = 0, then E > 3 (detected errors).

If S / 0, then E = e = 3, and we set

12

= VS3' °2 = CS5 + °lV/S3' and °3 = W

(8) Sx = S2 = S3 = S4 = 0.

If S = S = 0, then E = 0 (no errors).

If S- ± 0 and S = 0, then E = e =1, with the error location at

position n.

If S- = 0 and S,. ± 0, then E = e =1, with the error location at

position n+1.
i

If Sn £ 0 and S^ ̂ 0, then E = e =2, with the two error locations
\J O

at positions n and n+1, respectively.

An overall diagram for the decoding of extended TBEC Reed-Solomon codes is

shown in Fig. 2. The symbols read from the storage media are stored in the data

buffer while decoding proceeds. In the first step of decoding, syndromes Sn, S.. ,

S9, S , S., and S,. are generated. The syndromes are then stored in the syndrome
^ o t o

buffer. The OR gates at the output of the syndrome buffer determine if errors

exist. If errors exist, the decoder starts the error correction procedure. The

error-location polynomial calculator calculates the error-location polynomial

using the procedure shown in Fig. 1. The error-location calculator

then finds the roots of the error-location polynomial. This can be done by using

the methods described in References 7 and 8. Finally the error values calculator

determines the value of the errors at each error location. The error locations

and the error values are used to modify the symbols at the output of the data

buffer.

IV. CONCLUSION

In this report we have presented a decoding scheme for extended triple-byte-

error-correcting Reed-Solomon codes. The scheme is especially, applicable to com-

puter systems where-high speed decoding is the basic .requirement.... .,; .^ ,: ,•; vh -;r.".-.•-

13

REFERENCES

[1] C.L. Chen and M.Y. Hsiao, "High Speed Decoding of Reed-Solomon Codes", U.S.
Patent 4, 142, 174, February 27, 1979.

[2] W.W. Peterson and E.J. Weldon, Jr., Error-Correcting Codes, second ed.
Cambridge, MA: MIT Press, 1972.

[3] S. Lin and D.J. Costello, Jr., Error Control Coding: Fundamentals and
Applications, Prentice-Hall, New Jersey, 1983.

[4] T. Kasami, S. Lin, and W.W. Peterson, "Some Results on Weight Distributions
of BCH Codes", IEEE Trans. Inf. Theory, IT-12(2), p. 274, April 1966.

[5] T. Kasami, S. Lin, and W.W. Peterson, "Some Results on Cyclic Codes Which
Are Invariant Under the Affine Group", Scientific Report AFCRL-66-62, Air
Force Cambridge Research Labs., Bedford, MA, 1966.

[6] J.K. Wolf, "Adding Two Information Symbols to Certain Nonbinary BCH Codes
and Some Applications", Bell Syst. Tech. J_., 48, pp. -2405-2424, 1969.

[7] C.L. Chen, "Formulas for the Solutions of Quadratic Equations", IEEE Trans.
Inform. Theory, IT-28, pp. 792-794, September 1982.

[8] L.R. Welch, "Fast Algorithms for Finding Roots of Cubic Polynomials over
Finite Fields", Presented at 1985 IEEE International Symposium on Information
Theory, June 1985, Brighton, England.

14

c c
V b L , s2 , S3> V S5

E > 3
Set

0-1 9 0o , OT

i

E = e = 3

Yes

E=3, e=2, e =1

Figure 1.

15

Syndrome
Generator

Syndrome
Buffer

Data Buffer

No Error

Error-location
Polynomial
Calculator

Error Locations
Calculator

Error Values
Calculator

Corrected

. Data

Figure 2.

16

tional information symbols. The d . = 6 code is capable of double-byte-error-

correction (DBEC) and triple-byte-error-detection (TBED) and can" be extended to

include two additional information symbols. The decoding method applies to the

extended codes with only slight modification.

Code efficiency is high since only three parity symbols are used in the

d . =4 code and only five in the d . =6 code. In addition, the basic codemm] mm '

length n can be selected to match the organization of the memory (as long as

n = 2 -1) without changing the decoding method. However, efficiency is maxi-

mized when n = 2 -1 is chosen.

16

