Beyond Single-Deletion Correcting Codes:
Substitutions and Transpositions

Ryan Gabrys 24
ECE Department, University of California, San Diego, CA, USA

Venkatesan Guruswami S&
EECS Department, University of California, Berkeley, CA, USA

Joao Ribeiro =4
Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA

Ke Wu =24
Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA

—— Abstract

We consider the problem of designing low-redundancy codes in settings where one must correct
deletions in conjunction with substitutions or adjacent transpositions; a combination of errors that
is usually observed in DNA-based data storage. One of the most basic versions of this problem
was settled more than 50 years ago by Levenshtein, who proved that binary Varshamov-Tenengolts
codes correct one arbitrary edit error, i.e., one deletion or one substitution, with nearly optimal
redundancy. However, this approach fails to extend to many simple and natural variations of the
binary single-edit error setting. In this work, we make progress on the code design problem above in
three such variations:
We construct linear-time encodable and decodable length-n non-binary codes correcting a single
edit error with nearly optimal redundancy logn + O(loglogn), providing an alternative simpler
proof of a result by Cai, Chee, Gabrys, Kiah, and Nguyen (IEEE Trans. Inf. Theory 2021).
This is achieved by employing what we call weighted VT sketches, a new notion that may be of
independent interest.

We show the existence of a binary code correcting one deletion or one adjacent transposition
with nearly optimal redundancy logn + O(loglogn).

We construct linear-time encodable and list-decodable binary codes with list-size 2 for one deletion
and one substitution with redundancy 4logn + O(loglogn). This matches the existential bound
up to an O(loglogn) additive term.

2012 ACM Subject Classification Theory of computation — Error-correcting codes
Keywords and phrases Synchronization errors, Optimal redundancy, Explicit codes
Digital Object Identifier 10.4230/LIPIcs. APPROX/RANDOM.2022.8

Category RANDOM

Related Version Full Version: https://arxiv.org/abs/2112.09971

Funding Venkatesan Guruswami: Research supported in part by the NSF grants CCF-1814603 and
CCF-2107347. Part of the work was done while at Carnegie Mellon University.

Jodo Ribeiro: Research supported in part by the NSF grants CCF-1814603 and CCF-2107347 and
by the NSF award 1916939, DARPA SIEVE program, a gift from Ripple, a DoE NETL award, a JP
Morgan Faculty Fellowship, a PNC center for financial services innovation award, and a Cylab seed
funding award.

Ke Wu: Research supported in part by a DARPA SIEVE award, SRI Subcontract Number 53978,
and DARPA Prime Contract Number HR00110C0086.

© Ryan Gabrys, Venkatesan Guruswami, Jodo Ribeiro, and Ke Wu;
37 licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques

(APPROX/RANDOM 2022).

Editors: Amit Chakrabarti and Chaitanya Swamy; Article No. 8; pp. 8:1-8:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:ryan.gabrys@gmail.com
https://sites.google.com/view/ryangabrys/home
https://orcid.org/0000-0002-9197-3371
mailto:venkatg@berkeley.edu
http://people.eecs.berkeley.edu/~venkatg/
https://orcid.org/0000-0001-7926-3396
mailto:jlourenc@cs.cmu.edu
https://sites.google.com/site/joaorib94/
https://orcid.org/0000-0002-9870-0501
mailto:kew2@cs.cmu.edu
https://kewucs.com/
https://orcid.org/0000-0002-2756-8750
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.8
https://arxiv.org/abs/2112.09971
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2

Beyond Single-Deletion Correcting Codes

1 Introduction

Deletions, substitutions, and transpositions are some of the most common types of errors
jointly affecting information encoded in DNA-based data storage systems [27, 14]. Therefore,
it is natural to consider models capturing the interplay between these types of errors, along
with the best possible codes for these settings. More concretely, one usually seeks to pin down
the optimal redundancy required to correct such errors, and also to design fast encoding
and decoding procedures for low-redundancy codes. It is well-known that deletions are
challenging to handle even in isolation, since they cause a loss of synchronization between
sender and receiver. The situation where one aims to correct deletions in conjunction with
other reasonable types of errors is even more difficult. Our understanding of this interplay
remains scarce even in basic settings where only one or two such worst-case errors may occur.

One of the most fundamental settings where deletions interact with the other types of
errors mentioned above is that of correcting a single edit error (i.e., a deletion, insertion,
or substitution) over a binary alphabet. In this case, linear-time encodable and decodable
binary codes correcting a single edit error with nearly optimal redundancy have been known
for more than 50 years. Levenshtein [13] showed that the binary Varshamov-Tenengolts (VT)
code [24] defined as

Cz{xE{O,l}":zn:i~a:i:a mod (2n+1)} (1)

corrects one arbitrary edit error. For an appropriate choice of a, this code has redundancy
at most logn + 2, and it is not hard to see that at least logn bits of redundancy are required
to correct one edit error. Remarkably, a greedy Gilbert-Varshamov-type argument only
guarantees the existence of single-edit correcting codes with redundancy 2 logn — much higher
than what can be achieved with the VT code. We recommend Sloane’s excellent survey [18]
for a more in-depth overview of binary VT codes and their connections to combinatorics.
Although the questions of determining the optimal redundancy and giving nearly-optimal
explicit constructions of codes in the binary single-edit setting have been settled long ago,
the underlying approach fails to extend to many simple, natural variations of this setting
combining deletions with substitutions and transpositions. In this work, we make progress
on these questions in three such fundamental variations, which we proceed to describe next.

1.1 Non-binary single-edit correcting codes

We begin by considering the problem of correcting a single arbitrary edit error over a non-
binary alphabet. This setting is especially relevant due to its connection to DNA-based data
storage, which requires coding over a 4-ary alphabet. In this case, the standard VT sketch

n
f(a:):z:zxZ mod N, (2)
i=1
which allows us to correct one binary edit error in (1) with an appropriate choice of N, is no
longer enough. Instead, we present a natural extension of the binary VT code to a non-binary
alphabet via a new notion of weighted VT sketches, which yields an order-optimal result.

» Theorem 1. There erists a 4-ary' single-edit correcting code C C {0,1,2,3}" with logn +
loglogn + 7+ o(1) bits of redundancy, where o(1) — 0 when n — co. Moreover, there exists
a single edit-correcting code C C {0,1,2,3}" with logn 4+ O(loglogn) redundant bits that
supports linear-time encoding and decoding.

L A 4-ary alphabet is relevant for DNA-based data storage.

R. Gabrys, V. Guruswami, J. Ribeiro, and K. Wu

This problem was previously considered by Cai, Chee, Gabrys, Kiah, and Nguyen [2], who
proved an analogous result. Our existential result requires 6 fewer bits of redundancy than
the corresponding result from [2], and our explicit code supports linear time encoding and
decoding procedures, while the explicit code from [2] requires ©(nlogn) time encoding [22].
However, we believe that our more significant contribution in this setting is the simpler
approach we employ to prove Theorem 1 via weighted VT sketches. The technique of weighted
VT sketches seems quite natural and powerful and may be of independent interest.

We note that the existential result in Theorem 1 extends to arbitrary alphabet size ¢ with
log n + Og4(loglog n) redundant bits, but we focus on ¢ = 4 since it is the most interesting
setting and provides the clearest exposition of our techniques. More details can be found
in Section 3, where we also present a more in-depth discussion on why the standard VT
sketch (2) does not suffice in the non-binary case.

1.2 Binary codes correcting one deletion or one adjacent transposition

As our second contribution, we consider the interplay between deletions and adjacent
transpositions, which map 01 to 10 and vice-versa. An adjacent transposition may be
seen as a special case of a burst of two substitutions. Besides its relevance to DNA-based
storage, the interplay between deletions and transpositions is an interesting follow-up to
the single-edit setting discussed above because the VT sketch is highly ineffective when
dealing with transpositions, while it is the staple technique for correcting deletions and
substitutions. The issue is that, if y,y’ € {0,1}"™ are obtained from x € {0,1}" via any two
adjacent transpositions of the form 01 — 10, then f(y) = f(y’) = f(z) — 1, where we recall
f(z)=>" iz mod N is the VT sketch. This implies that knowing the VT sketch f(z)
reveals almost no information about the adjacent transposition, since correcting an adjacent
transposition is equivalent to finding its location.

In this setting, the best known redundancy lower bound is logn (the same as for single-
deletion correcting codes), while the best known existential upper bound is 2logn, obtained
by naively intersecting a single-deletion correcting code and a single-transposition correcting
code. A code with redundancy logn + O(1) was claimed in [7, Section III], but the argument
there is flawed. In this work, we determine the optimal redundancy of codes in this setting
up to an O(loglogn) additive term via a novel marker-based approach. More precisely, we
prove the following result, more details of which can be found in Section 4.

» Theorem 2. There exists a binary code C C {0,1}"™ correcting one deletion or one
transposition with redundancy logn + O(loglogn).

Since we know that every code that corrects one deletion also corrects one insertion [13],
we also conclude from Theorem 2 that there exists a binary code correcting one deletion, one
insertion, or one transposition with nearly optimal redundancy logn + O(loglogn).

1.3 Binary codes for one deletion and one substitution

To conclude, we make progress on the study of single-deletion single-substitution correcting
codes. Recent work by Smagloy, Welter, Wachter-Zeh, and Yaakobi [19] constructed efficiently
encodable and decodable binary single-deletion single-substitution correcting codes with
redundancy close to 6logn. On the other hand, it is known that 2logn redundant bits are
required, and a greedy approach shows the existence of a single-deletion single-substitution
correcting code with redundancy 4logn + O(1).

8:3

APPROX/RANDOM 2022

8:4

Beyond Single-Deletion Correcting Codes

In this setting, we ask what improvements are possible if we relax the unique decoding
requirement slightly and instead require that the code be list-decodable with list-size 2. There,
our goal is to design a low-redundancy code C C {0,1}" such that for any corrupted string
y € {0,131 U {0,1}" there are at most two codewords z, 2’ € C that can be transformed
into y via some combination of at most one deletion and one substitution. This is the
strongest possible requirement after unique decoding, which corresponds to lists of size 1.

The best known existential upper bound on the optimal redundancy in the list-decoding
setting is still 41ogn + O(1) via the Gilbert-Varshamov-type greedy algorithm. We give
an explicit list-decodable code with list-size 2 correcting one deletion and one substitution
with redundancy matching the existential bound up to an O(loglogn) additive term. At a
high level, this code is obtained by combining the standard VT sketch (2) with run-based
sketches, which have been recently used in the design of two-deletion correcting codes [9].
More precisely, we have the following result, details of which can be found in Section 5.

» Theorem 3. There exists a linear-time encodable and decodable binary list-size 2 single-
deletion single-substitution correcting code C C {0,1}" with 4logn + O(loglogn) bits of
redundancy.

Subsequently to the appearance of our work online, Song, Cai, and Nguyen [20] constructed
a list-decodable code with list-size 2 for one deletion and one substitution with redundancy
3logn + O(loglogn).

1.4 Related work

Recently, there has been a flurry of works making progress in coding-theoretic questions
analogous to the ones we consider here in other extensions of the binary single-edit error
setting. A line of work culminating in [1, 9, 17] has succeeded in constructing explicit
low-redundancy codes correcting a constant number of worst-case deletions. Constructions
focused on the two-deletion case have also been given, e.g., in [17, 6, 9]. Explicit binary codes
correcting a sublinear number of edit errors with redundancy optimal up to a constant factor
have also been constructed recently [3, 10]. Other works have considered the related setting
where one wishes to correct a burst of deletions or insertions [15, 12, 26], or a combination of
duplications and edit errors [23]. Following up on [19], codes correcting a combination of more
than one deletion and one substitution were given in [21] with sub-optimal redundancy. List-
decodable codes in settings with indel errors have also been considered before. For example,
Wachter-Zeh [25] and Guruswami, Haeupler, and Shahrasbi [8] study list-decodability from a
linear fraction of deletions and insertions.

Most relevant to our result in Section 1.3, Guruswami and Héstad [9] constructed an
explicit list-size two code correcting two deletions with redundancy 3logn + O(loglogn),
thus beating the greedy existential bound in this setting.

With respect to the interplay between deletions and transpositions, Gabrys, Yaakobi, and
Milenkovic [7] constructed codes correcting a single deletion and many adjacent transpositions.
In an incomparable regime, Schulman and Zuckerman [16], Cheng, Jin, Li, and Wu [4], and
Haeupler and Shahrasbi [11] constructed explicit codes with good redundancy correcting a
linear fraction of deletions and insertions and a nearly-linear fraction of transpositions.

2 Preliminaries

2.1 Notation and conventions

We denote sets by uppercase letters such as S and T' or uppercase calligraphic letters such as
C, and define [n] = {0,1,...,n — 1}, S=F = ULO S, and S* = J;2, S" for any set S. The
symmetric difference between two sets S and T is denoted by SAT. We use the notation

R. Gabrys, V. Guruswami, J. Ribeiro, and K. Wu

{{a,a,b}} for multisets, which may contain several copies of each element. Given two
strings = and y over a common alphabet ¥, we denote their concatenation by z||y and write
zi : j] = (zi, Tig1,- .., 25). Wesay y € X is a k-subsequence of z € X" if there are k indices
1 <4y <ig < -+ <ig < nsuch that z;; = y; for j =1,...,k, in which case we also call
an n-supersequence of y. Moreover, we say x[i : j] is an a-run of x if z[i : j] = ¢’ =" for a
symbol a € X. We denote the base-2 logarithm by log. A length-n code C is a subset of %™
for some alphabet 3 which will be clear from context. In this work, we are interested in the
redundancy of certain codes (measured in bits), which we define as nlog|X| — log[C|.

2.2 Error models and codes

Since we will be dealing with three distinct but related models of worst-case errors, we begin
by defining the relevant standard concepts in a more general way. We may define a worst-case
error model over some alphabet ¥ by specifying a family of error balls B = {B(y) C X* :
y € ¥*}, where the B(y) can be arbitrary sets. Usually, B(y) contains all strings that can
be corrupted into y by applying an allowed error pattern. We proceed to define unique
decodability of a code C C X" with respect to an error model.

» Definition 4 (Uniquely decodable code). We say a code C C X" is uniquely decodable
(with respect to B) if |[B(y) NC| <1 for all y € ¥*.

Throughout this work the underlying error model will always be clear from context, so we
do not mention it explicitly. We will also consider list-decodable codes with small list size in
Section 5, and so we require the following more general definition.

» Definition 5 (List-size ¢ decodable code). We say a code C C X" is list-size t decodable
(with respect to B) if |[B(y) NC| <t for all y € &*.

Note that uniquely decodable codes correspond exactly to list-size 1 codes. Moreover, we
remark that for the error models considered in this work and constant ¢, the best existential
bound for list-size ¢ codes coincides with the best existential bound for uniquely decodable
codes up to a constant additive term.

We proceed to describe the type of errors we consider. A deletion transforms a string
x € X" into one of its (n — 1)-subsequences. An insertion transforms a string € X" into
one of its (n + 1)-supersequences. A substitution transforms z € X" into a string 2/ € X"
that differs from z in exactly one coordinate. An adjacent transposition transforms strings
of the form ab into ba. More formally, a string x € X" is tranformed into a string 2’ € X"
with the property that zj = x4 and x}, = x}, for some k, and 2} = x; for i # k, k + 1.

We can now instantiate the above general definitions under the specific error models
considered in this paper. In the case of a single edit, B(y) contains all strings which can
be transformed into y via at most one deletion, one insertion, or one substitution. In the
case of one deletion and one substitution, B(y) contains all strings that can be transformed
into y by applying at most one deletion and at most one substitution. Finally, in the case of
one deletion or one adjacent transposition, B(y) contains all strings that can be transformed
into y by applying either at most one deletion or at most one transposition.

3 Non-binary single-edit correcting codes

In this section, we describe and analyze the code construction used to prove Theorem 1.

Before we do so, we provide some intuition behind our approach.

8:5

APPROX/RANDOM 2022

8:6

Beyond Single-Deletion Correcting Codes

3.1 The binary alphabet case as a motivating example

It is instructive to start off with the binary alphabet case and the VT code described in (1),
which motivates our approach for non-binary alphabets. More concretely, we may wonder
whether a direct generalization of C to larger alphabets also corrects a single edit error, say

C'= {rﬂ € [qg"

n
Ziﬂ%‘ =s mod (14+2¢n), VYeelq:[{i:z;=c}| =5 mod 2} ,
i=1

where [¢] = {0,1,...,¢—1} and s, so,...,8¢—1 are appropriately chosen integers. However,
this approach fails already over a ternary alphabet {0,1,2}. In fact, C’ cannot correct
worst-case deletions of 1’s because it does not allow us to distinguish between ...102...
and ...021..., which can be obtained one from the other by deleting and inserting a 1
in the underlined positions. More generally, there exist codewords z € C’ with substrings
(¢j =1,2j41,...,2k) not consisting solely of 1’s satisfying

k
> (wi—1)=0. (3)
i=j+1
This is problematic since the string z’ obtained by deleting z; = 1 from x and inserting a
1 between x and x4 is also in C’. In order to avoid the problem encountered by C’, we
instead consider a weighted VT sketch of the form

fw(w)=>i-w(z;) mod N (4)
=1

for some weight function w : [q] = Z and an appropriate modulus N. Using f;, instead of the
standard VT sketch f(z) = .7, iz; mod N in the argument above causes the condition (3)
for an uncorrectable 1-deletion to be replaced by Zf:jﬂ(w(xi) —w(1)) = 0. Then, choosing
0 <w(0) <w(l) <w(2) <--- <w(qg— 1) appropriately allows us to correct the deletion of
a 1 in 2 given knowledge of f,,(x) provided that x satisfies a simple runlength constraint.
In turn, encoding an arbitrary message z into a string = satisfying this constraint can be
done very efficiently via a direct application of the simple runlength replacement technique
from [15] using few redundant bits. Theorem 1 is then obtained by instantiating the weighted

VT sketch (4) with an appropriate weight function and modulus.

3.2 Code construction

In this section, we present our construction of a 4-ary single-edit correcting code which leads
to Theorem 1. As discussed in Section 3.1, given an arbitrary string x € {0,1,2,3}" we
consider a weighted VT sketch
f(z) = Zz cw(z;) mod [1+2n-(2logn + 12)],
i=1

where w(0) = 0, w(1) =1, w(2) = 2logn + 11, and w(3) = 2logn + 12, along with the count
sketches h.(z) = |{i : ; = ¢}| mod 2 for ¢ € {0,1,2}. Intuitively, the count sketches allow
us to cheaply narrow down exactly what type of deletion or substitution occurred (but not
its position). As we shall prove later on, successfully correcting the deletion of an a boils
down to ensuring that

k

> (w(w;) —w(a)) #0 (5)

=]

R. Gabrys, V. Guruswami, J. Ribeiro, and K. Wu

for all 1 < j < k < n such that there is i € [j, k] with z; # a. We call strings = that satisfy
this property for every a regular, and proceed to show that enforcing a simple runlength
constraint on x is sufficient to guarantee that it is regular.

» Lemma 6. Suppose z € {0,1,2,3}" satisfies the following property: If 2’ denotes the
subsequence of z obtained by deleting all 1’s and 3’s and z”” denotes the subsequence obtained
by deleting all 0’s and 2’s, it holds that all O-runs of 2’ and all 3-runs of " have length at
most logn + 3. Then, x is regular.

Proof. See the full version [5]. <

Let G C {0,1,2,3}™ denote the set of regular strings. Given the above definitions, we set
our code to be

C=6n{zxe{0,1,2,3}": f(x) = s, he(x) = s.,c € {0,1,2}} (6)
for appropriate choices of s € {0,...,1+2n-(2logn + 12)} and s, € {0,1} for ¢ =0,1,2. A
straightforward application of the probabilistic method shows that most strings are regular.

» Lemma 7. Let X be sampled uniformly at random from {0,1,2,3}". Then, we have
Pr[X is regular] > 7/8.
As a result, by the pigeonhole principle there exist choices of s, sg, $1, s such that
7-4"
C|l > .
cl= 8-23.(1+2n-(2logn + 12))

This implies that we can make it so that C has logn + loglogn + 6 4 o(1) bits of redundancy,
where 0(1) — 0 when n — oo, as desired. If n is not a power of two, then taking ceilings
yields at most one extra bit of redundancy for a total of logn + loglogn + 7+ o(1) bits, as
claimed.

It remains to show that C corrects a single edit in linear time and that a standard
modification of C admits a linear time encoder. Observe that if a codeword = € C is corrupted
into a string y by a single edit error, we can tell whether it was a deletion, insertion, or
substitution by computing |y|. Therefore, we treat each such case separately. Since correcting
one substitution in our code is analogous to correcting one substitution in the original binary
VT code, and since correcting one insertion is similar to correcting one deletion, we consider
only the case of one deletion here and leave the remaining cases to the full version [5].

3.3 Correcting one deletion

Suppose that y is obtained from z € C by deleting an a at position 4. First, note that we can
find a by computing h.(y) — he(x) for ¢ = 0,1,2. Now, let yU) denote the string obtained by
inserting an a to the left of y; (when j = n this means we insert an a at the end of y). We
have x = y(i) and our goal is to find ¢. Consider n > j > i and observe that
J
f@) = FyD) = fD) = fD) = D (wlxe) —w(a)),

l=i+1

because yp_1 = xp for £ > 4. Since z is regular, it follows that Ez:i+1(w(xg) —w(a)) #0
unless ;41 = -+ = x; = a. This suggests the following decoding algorithm: Successively
compute f(z) — f(yP) for j =n,n—1,...,1 until f(z) — f(y9)) = 0, in which case the
above argument ensures that y/) = z since we must be inserting a into the same a-run of
2 from which an a was deleted. This procedure runs in overall time O(n), since we can
compute f(z) — f(yU=b) given f(z) — f(y9)) with O(1) operations.

8:7

APPROX/RANDOM 2022

8:8

Beyond Single-Deletion Correcting Codes

3.4 A linear-time encoder

We have described a linear-time decoder that corrects a single edit error in regular strings x
assuming knowledge of the weighted VT sketch f(x) and the count sketches h.(z) for ¢ = 0,1, 2.
It remains to describe a low-redundancy linear-time encoding procedure for a slightly modified
version of our code C defined in (6). Fix an arbitrary message z € {0, 1,2,3}"™. We proceed
in two steps:

1. We encode z into a regular string = € {0,1,2,3}™4 in linear time by exploiting the
runlength replacement technique from [15];

2. We append an appropriate encoding of the sketches (which we now see as binary strings)
to x that can be recovered even if the final string is corrupted by an edit error. This adds
only O(loglogn) bits of redundancy, and allows z (and thus z) to be recovered in linear
time.

The complete analysis can be found in the full version [5].

4 Binary codes correcting one deletion or one transposition

In this section, we describe and analyze the code construction used to prove Theorem 2. As
discussed in Section 1.2, the adjacent transposition precludes the use of the standard VT
sketch. Therefore, we undertake a radically different approach.

4.1 Code construction and high-level overview of our approach

Our starting point is a marker-based segmentation approach considered by Lenz and Poly-
anskii [12] to correct bursts of deletions. We then introduce several new ideas. Roughly
speaking, our idea is to partition a string x € {0,1}" into consecutive short substrings
z{, ..., 2§ for some £ according to the occurrences of a special marker string in x. Then, by
carefully embedding hashes of each segment 2 into a VT-type sketch, adding information
about the multiset of hashes, and exploiting specific structural properties of deletions and
adjacent transpositions, we are able to determine a short interval containing the position
where the error occurred. Once this is done, a standard technique allows us to recover the
true position of the error by slightly increasing the redundancy.

We now describe the code construction in detail. For a given integer n > 0, let A =
50 4+ 1000log n and m = 1000A2 = O(log2 n). For the sake of readability, we have made no
efforts to optimize constants, and assume n is a power of two to avoid using ceilings and
floors. Given a string € {0,1}", we divide it into substrings split according to occurrences
of the marker 0011. To avoid edge cases, assume that z ends in 0011 — this will only add
4 bits to the overall redundancy. Then, this marker-based segmentation induces a vector
2% = (27, ..., zz), where 1 < ¢, < n, and each string 27 has length at least 4, ends with
0011, and 0011 only occurs once in each such string. We may assume that |2F] < A for all
i. This will only add 1 bit to the overall redundancy, as captured in the following simple
lemma.

» Lemma 8. Suppose X is uniformly random over {0,1}". Then, Pr[|2X| < A,i =
1., tx] > 1.

Our goal now will be to impose constraints on 2% so that (i) We only introduce logn +
O(loglogn) bits of redundancy, and (ii) If = is corrupted by a deletion or transposition in
2%, we can then locate a window W C [n] of size |W| = O(log* n) such that 2 C W. This
will then allow us to correct the error later on by adding O(loglogn) bits of redundancy.

R. Gabrys, V. Guruswami, J. Ribeiro, and K. Wu

Since each z¥ has length at most A = O(logn), we will exploit the fact that there exists
a hash function h with short output that allows us to correct a deletion, substitution, or
transposition in all strings of length at most 3A. This is guaranteed by the following lemma.

» Lemma 9. There exists a hash function h : {0,1}=34 — [m] with the following property: 1f
z' is obtained from z by at most two transpositions, two substitutions, or at most a deletion
and an insertion, then h(z) # h(z').

Proof. We can construct such a hash function h greedily. Let A(z) denote the set of such
strings obtained from z € {0,1}=%2. Since |A(z)| < m, we can set h(z) so that h(z) # h(2')
for all 2/ € A(2) \ {#}. <

With the intuition above and the hash function h guaranteed by Lemma 9 in mind, we
consider the VT-type sketch

L
F@)=> "5z m+h(zf)) mod (L=10n A-m+1)

j=1

along with the count sketches g (z) = ¢, mod 5 and ga(x) = >\, T; mod 3, where T; =
22:1 x; mod 2. At a high level, the sketch f(z) is the main tool we use to approximately
locate the error in . The count sketches g1 (z) and go(z) are added to allow us to detect
how many markers are created or destroyed by the error, and to distinguish between the
cases where there is no error or a transposition occurs. Thus, we define the preliminary code

z[n —3,n] =(0,0,1,1), f(x) = so,91(z) = s1,92(x) = 52, }

r_ n
¢ _{“{0’1} Vi€ (6] 2] < A

for appropriate choices of sg, s1,s2. Taking into account all constraints, the choice of A
and m, and Lemma 8, the pigeonhole principle implies that we can choose sg, s1, S2 so that
this code has at most 4 +log(10n-A-m+1)+1+2+ 241 =logn + O(loglogn) bits of
redundancy.

However, it turns out that the constraints imposed in C’ are not enough to handle a
deletion or a transposition. Intuitively, the reason for this is that, in order to make use of
the sketch f(z) when decoding, we will need additional information both about the hashes
of the segments of = that were affected by the error and the hashes of the corresponding
corrupted segments in the corrupted string y. Therefore, given a vector z* and the hash
function h guaranteed by Lemma 9, we will be interested in the associated hash multiset
Hy = {{h(z]), ..., h(2{)}} over [m]. As we shall see, a deletion or transposition will change
this multiset by at most 4 elements. Therefore, we will expurgate C’ so that any pair of
remaining codewords x and «’ satisfy either H, = H,s or |H,/AH,s| > 10. This will allow us
to recover the true hash multiset of z from the hash multiset of the corrupted string. The
following lemma shows that this expurgation adds only an extra O(logm) = O(loglogn) bits
of redundancy.

Ic’]
mio

» Lemma 10. There exists a code C C C' of size |C| > such that for any x,z’ € C we

either have H, = Hyr or |H,AH,/| > 10.

We will take our error-locating code to be the expurgated code C guaranteed by Lemma 10.

By the redundancy of C’ above and the choice of m, it follows that there exists a choice of
so and s1 such that C has logn 4+ O(loglogn) bits of redundancy. We prove the following
result, which states that, given a corrupted version of € C, we can identify a small interval
containing the position where the error occurred.

8:9

APPROX/RANDOM 2022

8:10

Beyond Single-Deletion Correcting Codes

» Theorem 11. If x € C is corrupted into y via one deletion or transposition, we can recover
from y a window W C [n] of size |W| < 10'°log* n that contains the position where the error
occurred (in the case of a transposition, we take the error location to be the smallest of the
two affected indices).

We can use Theorem 11 to prove our main Theorem 2 via standard methods (see the full
version [5]).

Fix x € C and suppose y is obtained from = via one deletion or one transposition. To
prove Theorem 11, we consider several independent cases based on the fact that a marker
cannot overlap with itself, that we can identify whether a deletion occurred by computing
ly|, and that we can identify whether a transposition occurred by comparing go(z) and ga(y).
Since the arguments are similar, we show how to locate one deletion and leave the case of
one adjacent transposition to the full version [5].

4.2 Locating one deletion

In this section, we show how we can locate one deletion appropriately. Fix = € C and suppose
that a deletion is applied to 2. The following lemma holds due to the marker structure.

» Lemma 12. A deletion either (i) Creates a new marker and does not delete any existing
markers, in which case {y =l + 1, (ii) Deletes an existing marker and does not create any
new markers, in which case £, = £, — 1, or (iii) Neither deletes existing markers nor creates
new markers, in which case £, = {,.

Note that we can distinguish between the cases detailed in Lemma 12 by comparing g (z)
and g1 (y). Thus, we analyze each case separately:

1. £, = L, In this case, we have 2¥ = (2f,...,2{ 1,2}, 20 1,...,2}), where z] is obtained
from 27 by a deletion (in particular, |z| = |2F| — 1). Therefore, it holds that
‘. »
f(@) = fly) = d(z1-m+h(z5) =Y i1z -m+h(z])) mod L
Jj=1 j=1

i(l27 |- m A+ h(27) = |zi] - m = h(2}))
i(m+h(z7) = h()),

where the second equality uses ¢, = ¢,. Let H, denote the hash multiset of y. Then,
we know that |H;AH,| < 2. Therefore, we can recover H, from H,, which means that
we can recover h(z?) — h(z;). Indeed, if h(2¥) — h(2]) = 0 then H, = H,. On the
other hand, if h(z¥) — h(2]) # 0 then |[H,AH,| = 2 and we recover both h(z}) (the
element in H, but not in H,) and h(z]) (the element in H, but not in H,). As a result,
we know m + h(zF) — h(z}). Since it also holds that m + h(z¥) — h(z}) # 0 (because
|h(zF) — h(2])| < m), we can recover ¢ from f(z)— f(y). This gives a window W of length
at most A = O(logn).

2. {y, = £y, — 1: In this case, the marker at the end of 2 is destroyed, merging z{
and z{, ;. Observe that if ¢ = £, then we can simply detect that the last marker
in x was destroyed. Therefore, we assume that ¢ < ¢,, in which case we have 2z¥ =
(2%, s 281,20 280y -5 20), where |2]| = [2f] + |2§, ;| — 1. Consequently, it holds that

R. Gabrys, V. Guruswami, J. Ribeiro, and K. Wu

Ly Ly
:Z (|25 -m+h(z Z] |2f] -m +h(2})) mod L
=]=1
= i(|2f - m+ h(27)) + (@ + D (|25 - m+ h(z50)) —illzi] - m + h(z)

Ly
Z (1271 - m + h(z5))

~
8

= (IZf\'erh(Zf))H(erh()+ h(zf) = h(z)

M
+

(\Zml m+ h(zf1))-

Note that, since |H,AH (y)| < 3, we can recover H, from H,. In particular, this means

that we know h(zf) + h(z, ;) — h(z;). Therefore, for i’ = £, —1,{, —2,...,i we can
compute the potential function
Ly
o(i') = (271 - m+ h(z])) + ' (m + h(z) + h(z) = h(z))
Jj=i'+1
ls
= (271 m+ h(z5)) +i'(m + h(z7) + h(zi1) = h(2)-
Jj=i'+2
Note that

2(0) — (f(x) = fW)I = llzEal - m+ k(=) < A-m 4+ m < 107 log? n.

Moreover, we also have

o> —1) - (m + h(z]) + h(ziy1) — h(z)

> 4m — 3m = m.

(i) =zl - m+ h(zi) -

(®)

This suggests the following procedure for recovering the window W. Sequentially compute
®(i') for i’ starting at £, —1 until we find i* > i such that |®(i")—(f(x)—f(y))| < 106 log® n.
This is guaranteed to exist since i’ = 7 satisfies this property. We claim that i* — i <
107 log n. In fact, if this is not the case then the monotonicity property in (8) implies that
|®(i) — (f(z) — f(y))| > m-107logn > 107 log® n, contradicting (7). Since |zf] < A for
every j, recovering i* also yields a window W C [n] of size |[W| = 10%logn-A = 10° log®n
containing the error position, as desired.
3. ¢y, = {, + 1: This case is very similar to the previous one (see the full version [5]).

5 Binary list-size two code for one deletion and one substitution

In this section, we describe and analyze a binary list-size two decodable code for one deletion
and one substitution, which yields Theorem 3. Departing from the approach of [19], our
construction makes use of run-based sketches combined with the standard VT sketch. Run-
based sketches have thus far been exploited in the construction of multiple-deletion correcting
codes, including list-decodable codes with small list size [9].

8:11

APPROX/RANDOM 2022

8:12

Beyond Single-Deletion Correcting Codes

5.1 Code construction

We begin by describing some required concepts: Given a string = = (z1,...,2,) € {0,1}",
we define its run string r* by first setting r§ = 0 along with ¢ = 0 and 2,41 = 1, and then
iteratively computing ¥ = r? | if x; = ;1 and ¥ =7 | +1 otherwisefori =1,...,n,n+1.

Note that every string x is uniquely determined by its run string 7* and vice-versa. Moreover,
it holds that r* defines a non-decreasing sequence and 0 < ry <iforeveryi=1,...,n,n+1.
As an example, the run string corresponding to = 011101000 is 7* = 0111234445. We call
r¥ the rank of index ¢ in x. We will denote the total number of runs in = by r(z).

The main component of our code is a combination of the standard VT sketch

f(z) = szl mod (3n+ 1) (9)

=1

with the run-based sketches

filz) = Zr;‘ mod (12n + 1), (10)
fr(x) = er(rf —1) mod (16n* + 1) (11)
i=1

originally considered in [9]. Additionally, we also consider the count sketches

h(z) = Zn:xi mod 5 and h,.(x) =r(x) mod 13. (12)

i=1

Intuitively, the count sketches are used to distinguish different error patterns. The sketch
h(z) is used to determine the value of the bit deleted and the value of the bit flipped, while
h.(z) is used to identify how the number of runs was affected by the errors. For each possible
error pattern, we use the standard VT-sketch and the run-based sketches to decode. Given
the above, our code is defined to be

C=A{ze{0,1}": f(z) = s, fi(z) = 51, f3(x) = s5, h(x)

U, hr(w) = ur}a (13)

for an appropriate choice of s € [3n + 1], s] € [12n + 1], s§ € [16n? + 1], u € [5], and
u, € [13]. By the pigeonhole principle, there is such a choice which ensures C has redundancy
4logn + O(1).

In the remainder of this section, we first provide a high-level overview of our approach
towards showing that C admits linear-time list-decoding from one deletion and one substitution
with list-size 2. Then, we analyze a special case which exemplifies our more general approach.
The remainder of our argument appears in the full version [5]. We remark that linear-
time decoding and encoding of a slightly modified version of C (which has redundancy
4log n+0(log logn) instead) follow without difficulty from this analysis via standard methods.
These algorithms are presented and analyzed in the full version [5].

5.2 High-level overview of our approach

Fix z € C, and let y be the string obtained from z after one deletion at index d and one
substitution at index e. We use z. to denote the bit flipped, and x4 to denote the bit deleted
in . When d = e, we have one deletion and no substitution. Our goal is to recover = from y.

R. Gabrys, V. Guruswami, J. Ribeiro, and K. Wu

We begin with some simple but useful remarks. First, we observe that one deletion and
no substitution can be equivalently transformed to one deletion and one substitution. Thus,

we will only consider the case in which we have one deletion and one substitution, i.e., d # e.

We present a proof of this fact in the full version [5]. Second, the following structural lemma
about the number of runs in a corrupted string will prove useful in our case analysis.

» Lemma 13. If &’ is obtained from x via one deletion, then either r(z') = r(z) or
r(z') = r(x) — 2. On the other hand, if «’ is obtained from x via one substitution, then either
r(z') =r(x), r(z') =r(x) — 2, orr(z’) =r(z) + 2.

Combining Lemma 13 with the count sketches h(x) and h,(z) and knowledge of y ensures
that we can identify not only the values of x4 and x., but also r(z). As a result, this allows
us to split our analysis into several independent cases.

The process of decoding can be thought of as inserting a bit x4, before the d-th bit in
y and flipping the (e — §)-th bit in y, where § € {0,1} is the indicator variable of whether
e > d. Our goal is to find d and e. We will begin with a candidate position pair (zilv €) with
d is as small as possible with the property that, if T denotes the string obtained from y
by inserting x4 before the d-th bit in y and flipping the bit at position e — §in y, where 5
indicates whether d < €, then f(Z) = f(z), ho(Z) = hy(2), and h.(z') = h,(Z'), where 2’
(resp. 7') denotes the string obtained from x (resp.) by deleting 4 (resp. 7). We call such
pairs valid. Intuitively, valid pairs are indistinguishable from the true error pattern (d, e)
from the perspective of the VT sketch and the count sketches, and there may be several of
them. However, crucially, many are ruled out via the run-based sketches. Note that the true
error pattern (d, e) is a valid pair, so such pairs always exist.

Roughly speaking, our strategy is to start with some valid pair (cz €) and sequentially
move to the next valid pair. This is done by moving d one index to the right and checking
whether the unique index € that ensures f(Z) = f(z) forms a valid pair (d,€). If this does
not hold, then we move d one more index to the right, and repeat the process. We call this
an elementary move. Note that since inserting a bit b into a b-run at any position gives
the same output, we may always move d to the end of the next Zg-run in y (which may be
empty). Figure 1 shows an example of an elementary move.

Jp————— AN

d e d e

Figure 1 Example of an elementary move. Suppose that the error pattern indicates that x4 = 1,
z. = 1, and the deletion does not reduce the number of runs while the substitution increases the
number of runs by two. The process starts with the left figure in which a bit 1 is inserted at position
d the end of a 1-run and the bit 1 at position e — 1 is flipped. After an elementary move, d moves
to the end of the next 1-run, and e moves to the next position that matches the error pattern

Yos41 = Yo—5-1 = 0.

Considering this step-by-step process with elementary moves proves useful because it
turns out to be feasible to track how the different sketches change in each such move. In
particular, the following equations will be useful to determine how d and € change in each
elementary move. Recall that we regard y as a string obtained via one substitution at index
e — 6 from 2’ € {0,1}"~1, where 2’ is obtained via one deletion from x at index d. Note that

8:13

APPROX/RANDOM 2022

8:14

Beyond Single-Deletion Correcting Codes

n—1
fl@)— @) =dvg+ > o} and f(a') = f(y) = (e — 0)[ze — (1 — z)].
d

Moreover, we have 2271 x) = Zil yi + 0(2z, — 1). Combining these three observations
yields
n—1
Fl@) = f(y) = dza+ Y i+ e(2we — 1). (14)
i=d

We prove that, during this sequential process, either f{ is monotonic and hence rules out all
but one valid pair (c?, €), or a convexity-type property of fJ, which implies that it takes on
each value at most twice, rules out all but at most two valid pairs. The convexity of fJ(z) is
a consequence of the following lemma.

» Lemma 14 ([9, Lemma 4.1]). Let a; and a; be two sequences of non-negative integers such
that Y21 a; = Y., a} and there is a value t such that for all i satisfying a; < a} it holds
that a} < t, and for all i satisfying a; > a it holds that o} > t. Then, either a; = a for all i,
or Y i jai(a; —1) > 3" aj(al —1).

Finally, we note that, in the high level overview above, we ignored the fact that we do
not have access to the intermediate string «’, but we need to know h,.(z’). For example, if
r(y) = r(z), then there is uncertainty about h,.(z’). In fact, it could be that both errors do
not change the number of runs, or that both errors do change the number of runs but these
cancel each other out. Since we are aiming for list-size 2 decoding, this is not problematic,
and we handle it in the final decoding procedure.

Below, we consider one special case which exemplifies how our high level approach above
can be realized. The remaining cases are analyzed in the full version [5].

5.3 Special case — Unique decoding when the number of runs increases
by two

If r(y) = r(z) + 2, then it must be that r(x) = r(z’) and r(y) = r(2’) + 2. This means that
the deletion does not change the number of runs (and thus occurred in a run of length at
least 2 in z), while the substitution affects a bit in the middle of a run of length at least 3.
In particular, we have yo—s—1 = Ye—s54+1 = 1 — ye—s. In this case, it follows that

fi(@) = fi(=") =g, @) = fily) = (1 +2(n —e+9)).
Therefore, for the run-based sketch f7(z) it holds that
fi@) = fily) =ri = (1+2(n—e+9)). (15)

We now proceed by case analysis on the value of x4 and z..

531 fx,=x4=0

In this case, when d makes an elementary move to the right, it must pass across a (1 — b)-run
of some length ¢ > 1. According to (14), position € has to move to the left by ¢ so that
f(%) = f(x). If we have d < € before one elementary move but d > ¢ after that move, we
call it a take over step. For each elementary move:

R. Gabrys, V. Guruswami, J. Ribeiro, and K. Wu

If the move is not a take over step: Then, rgv increases by 2 while 2(n — d+ 0) +1 increases
by 2¢. Therefore, (15) implies that f](Z) strictly decreases after such a move whenever
¢>1. If £ =1, then € moves by 1 to the left and f](Z) remains unchanged. However,
since we need 1 —b =y~ ¥ =1—y> ~it follows that ¢ cannot move only 1 position to
the left, and so ¢ > 1 necessarily.

If the move is a take over step: Before the move, d is on the left of a (1 —b)-run of length
¢ > 1 while ¢ > d satisfies Yy, =1—band y> , =y>=b. After the move, d moves to

€
the right of the (1 — b)-run of length ¢, while € is to the left of d. Moreover, it must be
that yy=1-band y> | = Yo, = b. To match the error pattern, the onlz possible case is
that £ = 1. To see why this is the case, note that when ¢ > 2 the index € has to move to
the left by at least £+2 to match the error pattern y~ 5 | =y~ 5, =1—y- 5 However,

this move leads to f(Z) # f(z), and thus does not yield a valid pair (d,€). When ¢ =1,
let (d1,€1) and (da, €2) denote the position pair before and after the move, respectively.
Then, these two pairs yield the same candidate solution 7 = Z5. See Figure 2 for an

. oEmEES - eEDE

d 1 51 gz dz

example.

Figure 2 An example of a take over step. If the take over happens, it must be that £ = 1. The
resulting 71 and T are the same.

Taking into account both cases above, we see that f](Z) decreases during each elementary
move, and decreases by at most 2n during the whole process. Since the value of f7(z) is
taken modulo 12n + 1, there is only a unique pair ((zE) that yields a solution such that
(@) = f{(z). Hence, f(z) and f](z) together with y uniquely determine one valid pair
(c?7 €), which in turn yields a unique candidate solution z = .

532 lIfxy=1—2x.=0»

In this case, when d makes an elementary move to the right, it must pass across a (1 — b)-run
of some length ¢ > 1. Then, € has to move to the right by ¢ so that f(Z) = f(z). During
each such move f](Z) strictly increases. For the whole process, f7(Z) increases by at most
2n. By a similar argument as above, we have that f(z) and f7(x) together with y uniquely
determine one valid pair ((i7 ¢€) which yields the correct solution = = x.

6 Open problems

Our work leaves open several natural avenues for future research. We highlight a few of them
here:
Given the effectiveness of weighted VT sketches in the construction of nearly optimal
non-binary single-edit correcting codes in Section 3 with fast encoding and decoding, it
would be interesting to find further applications of this notion.
We believe that the code we introduce and analyze in Section 5 is actually uniquely decod-
able under one deletion and one substitution. Proving this would be quite interesting, since
then we would also have explicit uniquely decodable single-deletion single-substitution
correcting codes with redundancy matching the existential bound, analogous to what is
known for two-deletion correcting codes [9].

8:15

APPROX/RANDOM 2022

8:16

Beyond Single-Deletion Correcting Codes

—— References

1

10

11

12

13

The code we designed in Section 4 fails to correct an arbitrary substitution. Roughly
speaking, the reason behind this is that one substitution may simultaneously destroy
and create a marker with a different starting point. As the clear next step, it would
be interesting to show the existence of a binary code correcting one edit error or one
transposition with redundancy logn + O(loglogn).

Joshua Brakensiek, Venkatesan Guruswami, and Samuel Zbarsky. Efficient low-redundancy
codes for correcting multiple deletions. IEEE Transactions on Information Theory, 64(5):3403—
3410, 2018. doi:10.1109/TIT.2017.2746566.

Kui Cai, Yeow Meng Chee, Ryan Gabrys, Han Mao Kiah, and Tuan Thanh Nguyen. Correcting
a single indel/edit for DNA-based data storage: Linear-time encoders and order-optimality.
IEEE Transactions on Information Theory, 67(6):3438-3451, 2021. doi:10.1109/TIT.2021.
3049627.

Kuan Cheng, Zhengzhong Jin, Xin Li, and Ke Wu. Deterministic document exchange protocols,
and almost optimal binary codes for edit errors. In 2018 IEEE 59th Annual Symposium on
Foundations of Computer Science (FOCS), pages 200-211, 2018. doi:10.1109/F0CS.2018.
00028.

Kuan Cheng, Zhengzhong Jin, Xin Li, and Ke Wu. Block edit errors with transpositions:
Deterministic document exchange protocols and almost optimal binary codes. In Christel Baier,
Toannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International
Colloquium on Automata, Languages, and Programming (ICALP), pages 37:1-37:15, 2019.
doi:10.4230/LIPIcs.ICALP.2019.37.

Ryan Gabrys, Venkatesan Guruswami, Jodo Ribeiro, and Ke Wu. Beyond single-deletion
correcting codes: Substitutions and transpositions. arXiv e-prints, December 2021. doi:
10.48550/arXiv.2112.09971.

Ryan Gabrys and Frederic Sala. Codes correcting two deletions. IEEE Transactions on
Information Theory, 65(2):965-974, 2019. doi:10.1109/TIT.2018.2876281.

Ryan Gabrys, Eitan Yaakobi, and Olgica Milenkovic. Codes in the Damerau distance for
deletion and adjacent transposition correction. IEEE Transactions on Information Theory,
64(4):2550-2570, 2018. doi:10.1109/TIT.2017.2778143.

Venkatesan Guruswami, Bernhard Haeupler, and Amirbehshad Shahrasbi. Optimally resilient
codes for list-decoding from insertions and deletions. In Proceedings of the 52nd Annual
ACM SIGACT Symposium on Theory of Computing (STOC), pages 524-537, 2020. doi:
10.1145/3357713.3384262.

Venkatesan Guruswami and Johan Hastad. Explicit two-deletion codes with redundancy
matching the existential bound. IEEE Transactions on Information Theory, 67(10):6384-6394,
2021. doi:10.1109/TIT.2021.3069446.

Bernhard Haeupler. Optimal document exchange and new codes for insertions and deletions.
In 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), pages
334-347, 2019. doi:10.1109/F0CS.2019.00029.

Bernhard Haeupler and Amirbehshad Shahrasbi. Synchronization strings: Explicit construc-
tions, local decoding, and applications. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing (STOC), pages 841-854, 2018. doi:10.1145/3188745.
3188940.

Andreas Lenz and Nikita Polyanskii. Optimal codes correcting a burst of deletions of variable
length. In 2020 IEEE International Symposium on Information Theory (ISIT), pages 757762,
2020. doi:10.1109/I181T44484.2020.9174288.

Vladimir Iosifovich Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. Doklady Akademii Nauk, 163(4):845-848, 1965.

https://doi.org/10.1109/TIT.2017.2746566
https://doi.org/10.1109/TIT.2021.3049627
https://doi.org/10.1109/TIT.2021.3049627
https://doi.org/10.1109/FOCS.2018.00028
https://doi.org/10.1109/FOCS.2018.00028
https://doi.org/10.4230/LIPIcs.ICALP.2019.37
https://doi.org/10.48550/arXiv.2112.09971
https://doi.org/10.48550/arXiv.2112.09971
https://doi.org/10.1109/TIT.2018.2876281
https://doi.org/10.1109/TIT.2017.2778143
https://doi.org/10.1145/3357713.3384262
https://doi.org/10.1145/3357713.3384262
https://doi.org/10.1109/TIT.2021.3069446
https://doi.org/10.1109/FOCS.2019.00029
https://doi.org/10.1145/3188745.3188940
https://doi.org/10.1145/3188745.3188940
https://doi.org/10.1109/ISIT44484.2020.9174288

R. Gabrys, V. Guruswami, J. Ribeiro, and K. Wu

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Lee Organick, Siena Dumas Ang, Yuan-Jyue Chen, Randolph Lopez, Sergey Yekhanin,
Konstantin Makarychev, Miklos Z Racz, Govinda Kamath, Parikshit Gopalan, Bichlien Nguyen,
et al. Random access in large-scale DNA data storage. Nature biotechnology, 36(3):242, 2018.
doi:10.1038/nbt.4079.

Clayton Schoeny, Antonia Wachter-Zeh, Ryan Gabrys, and Eitan Yaakobi. Codes correcting a
burst of deletions or insertions. IEEE Transactions on Information Theory, 63(4):1971-1985,
2017. doi:10.1109/TIT.2017.2661747.

Leonard J. Schulman and David Zuckerman. Asymptotically good codes correcting insertions,
deletions, and transpositions. IEEE Transactions on Information Theory, 45(7):2552-2557,
1999. d0i:10.1109/18.796406.

Jin Sima and Jehoshua Bruck. On optimal k-deletion correcting codes. IEEE Transactions on
Information Theory, 67(6):3360-3375, 2021. doi:10.1109/TIT.2020.3028702.

Neil J. A. Sloane. On single-deletion-correcting codes. arXiv, 2002. doi:10.48550/arXiv.

math/0207197.

Ilia Smagloy, Lorenz Welter, Antonia Wachter-Zeh, and Eitan Yaakobi. Single-deletion single-
substitution correcting codes. In 2020 IEEFE International Symposium on Information Theory
(ISIT), pages 775-780, 2020. doi:10.1109/ISIT44484.2020.9174213.

Wentu Song, Kui Cai, and Tuan Thanh Nguyen. List-decodable codes for single-deletion
single-substitution with list-size two, January 2022. doi:10.48550/arXiv.2201.02013.
Wentu Song, Nikita Polyanskii, Kui Cai, and Xuan He. On multiple-deletion multiple-
substitution correcting codes. In 2021 IEEFE International Symposium on Information Theory
(ISIT), pages 2655-2660, 2021. doi:10.1109/ISIT45174.2021.9517878.

Daniel Tan. Implementation of single-edit correcting code, 2020. URL: https://github.com/
dtch1997/single-edit-correcting-code.

Yuanyuan Tang and Farzad Farnoud. Error-correcting codes for short tandem duplication
and edit errors. IEEE Transactions on Information Theory, 68(2):871-880, 2022. doi:
10.1109/TIT.2021.3125724.

Rom R. Varshamov and Grigory M. Tenengolts. Codes which correct single asymmetric errors.
Autom. Remote Control, 26(2):286-290, 1965.

Antonia Wachter-Zeh. List decoding of insertions and deletions. IEEE Transactions on
Information Theory, 64(9):6297-6304, 2018. doi:10.1109/TIT.2017.2777471.

Shuche Wang, Jin Sima, and Farzad Farnoud. Non-binary codes for correcting a burst of
at most 2 deletions. In 2021 IEEE International Symposium on Information Theory (ISIT),
pages 2804—2809, 2021. doi:10.1109/ISIT45174.2021.9517917.

S. M. Hossein Tabatabaei Yazdi, Ryan Gabrys, and Olgica Milenkovic. Portable and
error-free DNA-based data storage. Scientific reports, 7(1):5011, 2017. doi:10.1038/
s41598-017-05188-1.

8:17

APPROX/RANDOM 2022

https://doi.org/10.1038/nbt.4079
https://doi.org/10.1109/TIT.2017.2661747
https://doi.org/10.1109/18.796406
https://doi.org/10.1109/TIT.2020.3028702
https://doi.org/10.48550/arXiv.math/0207197
https://doi.org/10.48550/arXiv.math/0207197
https://doi.org/10.1109/ISIT44484.2020.9174213
https://doi.org/10.48550/arXiv.2201.02013
https://doi.org/10.1109/ISIT45174.2021.9517878
https://github.com/dtch1997/single-edit-correcting-code
https://github.com/dtch1997/single-edit-correcting-code
https://doi.org/10.1109/TIT.2021.3125724
https://doi.org/10.1109/TIT.2021.3125724
https://doi.org/10.1109/TIT.2017.2777471
https://doi.org/10.1109/ISIT45174.2021.9517917
https://doi.org/10.1038/s41598-017-05188-1
https://doi.org/10.1038/s41598-017-05188-1

	1 Introduction
	1.1 Non-binary single-edit correcting codes
	1.2 Binary codes correcting one deletion or one adjacent transposition
	1.3 Binary codes for one deletion and one substitution
	1.4 Related work

	2 Preliminaries
	2.1 Notation and conventions
	2.2 Error models and codes

	3 Non-binary single-edit correcting codes
	3.1 The binary alphabet case as a motivating example
	3.2 Code construction
	3.3 Correcting one deletion
	3.4 A linear-time encoder

	4 Binary codes correcting one deletion or one transposition
	4.1 Code construction and high-level overview of our approach
	4.2 Locating one deletion

	5 Binary list-size two code for one deletion and one substitution
	5.1 Code construction
	5.2 High-level overview of our approach
	5.3 Special case – Unique decoding when the number of runs increases by two
	5.3.1 If x_e = x_d = b
	5.3.2 If x_d = 1-x_e = b

	6 Open problems

