331,253 research outputs found

    Effect of reinforcing submicron SiC particles on the wear of electrolytic NiP coatings Part 1. Uni-directional sliding

    Get PDF
    As-plated and annealed NiP coatings and composite NiP-SiC coatings were investigated in uni-directional ball-on-disc sliding tests. Abrasive wear was noticed in the case of composite NiP coatings containing submicron SiC particles, whereas in NiP coatings oxidational wear was active. The addition of submicron SiC particles not only increases the hardness of these electrolytic coatings but also hinders the formation of an oxide film in the sliding wear track. As a consequence, the wear loss on as-plated NiP coatings is not markedly reduced by the addition of SiC particles. On the contrary, a heat treatment at 420 °C for 1 h decreases the wear loss on both pure NiP and composite NiP-SiC coatings. During that heat treatment, Ni3P precipitates are formed in the NiP matrix and owing to this fact, the hardness of both pure NiP and composite NiP-SiC coatings increases. However, the heat treatment of composite NiP-SiC coatings induces the sensitivity for crack formation in the NiP matrix around these SiC particles. As a result, the pull out of SiC particles in the wear track occurs easily during sliding, and the wear loss of composite NiP-SiC coatings remains above the wear loss on NiP coatings

    Investigation to identify paint coatings resistive to microorganism growth

    Get PDF
    All selected coatings contain nutrients that support microbial growth and survival. Incorporation of microbiocidal agents into coatings more susceptible to attack is recommended for improved inhibition of microorganism growth and for increased protection against deterioration of coatings by microorganisms

    Porosity and Micro-Hardness of Shrouded Plasma Sprayed Titanium Coatings

    Get PDF
    Titanium and its alloys are often used as key materials for corrosion protection. A promising approach to optimize both mechanical properties and corrosion resistance is the use of coating technologies. In this paper, shrouded plasma spray was used as a useful technology to produce low oxide containing titanium coatings. A solid shroud was used to plasma spray titanium coatings to reduce the oxide content. The titanium coatings were assessed by optical microscope, scanning electron microscopy and Vickers microhardness testing. The results showed that the shrouded titanium coatings exhibited an enhanced microstructure. The presence of the shroud and shroud gas flow led to a significant reduction in coating porosity because the reduction in air entrainment with the shroud resulted in better heating of the particles. The shrouded titanium coatings had a lower value of Vickers microhardness and a relative lower standard deviation than the air plasma sprayed titanium coatings

    Porosity and Micro-Hardness of Shrouded Plasma Sprayed Titanium Coatings

    Get PDF
    Titanium and its alloys are often used as key materials for corrosion protection. A promising approach to optimize both mechanical properties and corrosion resistance is the use of coating technologies. In this paper, shrouded plasma spray was used as a useful technology to produce low oxide containing titanium coatings. A solid shroud was used to plasma spray titanium coatings to reduce the oxide content. The titanium coatings were assessed by optical microscope, scanning electron microscopy and Vickers microhardness testing. The results showed that the shrouded titanium coatings exhibited an enhanced microstructure. The presence of the shroud and shroud gas flow led to a significant reduction in coating porosity because the reduction in air entrainment with the shroud resulted in better heating of the particles. The shrouded titanium coatings had a lower value of Vickers microhardness and a relative lower standard deviation than the air plasma sprayed titanium coatings

    Correlation between thermal properties and aluminum fractions in CrAlN layers deposited by PVD technique

    Get PDF
    The CrAlN coatings are a good alternative to conventional CrN coatings especially for high temperature oxidation-resistance applications. Different CrAlN coatings were deposited on silicon (100) by PVD (Physical vapor deposition) technique from two targets (chromium and aluminum) in a reactive nitrogen atmosphere at aluminum applied negative voltage ( 300, 500, 700 and 900 V). The composition, structural, mechanical and thermal properties of the as-deposited coatings were systematically characterized by energy dispersive analysis of X-rays, X-ray diffraction, nanoindentation, and the ‘‘Mirage effect’’ experiments. The X-ray diffraction (XRD) data show that in general CrAlN coatings were crystallized in the cubic NaCl B1 structure, with the (1 1 1) and (2 0 0) diffraction peaks observed. Two-dimensional surface morphologies of CrAlN coatings were investigated by atomic force microscope (AFM). The results show that with increasing aluminum proportion the coatings became more compact and denser and their increased correspondingly, showing a maximum hardness of about 36 GPa (30 at% of Al) which is higher than that of CrN. Moreover, the results in this work demonstrate that the variation of aluminum fraction alter the resulting columnar grain morphology and porosity of the coatings. However, the thermal properties are greatly affected by these morphological alterations. The correlation between aluminum fraction in CrAlN coatings and its thermal properties revealed that the conductivity and the diffusivity are influenced primarily by size and shape distribution of the pores and secondarily by a decrease of the stitch parameter dimension

    Foreword

    Get PDF
    Coatings are vital to protect and to increase the productivity of cutting tools in high speed and dry cutting applications. During the cutting operation the temperature may exceed 1000 ºC it is therefore necessary that the coatings withstand high temperatures. A lot of development and research has been carried out during the last 30 years on finding new coating material systems providing enhanced properties such as adhesion, hardness and oxidation resistance at elevated temperatures. This thesis is based on multicomponent alloying of quaternary transition metal nitride hard coatings with a main focus on Ti-Cr-Al-N coatings. Many different coatings and compositions have been deposited using an industrial scale cathodic arc evaporation deposition system. All deposited coatings contain Al as this element is known to increase the hardness and the oxidation resistance of nitride coatings. The deterioration of the hardness in Al-containing nitride coatings is generally attributed to the transformation of cubic Al-N into hexagonal Al-N and the consequent domain coherency relaxation. This thesis investigates these phenomena on an atomic level providing a deeper understanding of and a way to engineer improved hard nitride coatings. The essence of this thesis is that by adding a third metal to a ternary nitride material system, for example one of the most frequently used Ti-Al-N, it is possible to tune and engineer the thermal stability of the cubic structure and the coherency strain which in turn affects the hardness and the oxidation resistance. The key point is that new intermediate phases in the decomposition process are generated so that the eventual detrimental phases are suppressed and delayed. More specifically, when Cr is added to the Ti-Al-N material system the coatings exhibit an age hardening process up to 1000 ºC caused by spinodal decomposition into coherent TiCr- and AlCr-rich cubic Ti-Cr-Al-N domains. This means that the unstable cubic Ti-Cr-Al-N phase decomposes via yet another unstable cubic Cr-Al-N phase before the detrimental hexagonal transformation of AlN takes place. The hardness is therefore retained up to a higher temperature compared to Ti-Al-N coatings. By utilizing multicomponent alloying through addition of Ti to Cr-Al-N coatings the hardness is retained after annealing up to 1100 ºC. This is a dramatic improvement compared to Cr-Al-N coatings. Here the Ti addition promotes the competitive spinodal decomposition into TiCr- and Al-enriched domains suppressing the detrimental hexagonal AlN formation. To investigate the effect of multicomponent alloying for other material systems with different mixing free energies and atomic sizes, Zr-containing, Zr-Cr-Al-N and Zr-Ti-Al-N, quaternary nitride coatings have also been deposited. For high Al- and high Zr-containing coatings the cubic solid solution structure is disrupted into a mix of nano-crystalline hexagonal and cubic phases with significantly lower hardness. The results show that the structure and hardness of these coatings are sensitive to the composition and in order to optimize the hardness and thermal stability the composition has to be fine-tuned. Altogether it is shown that through multicomponent alloying and through the control of the coherency strain it is possible to enhance the hardness and the oxidation resistance compared to the ternary system which may lead to new improved functional hard coatings

    Investigating the medium range order in amorphous Ta<sub>2</sub>O<sub>5</sub> coatings

    Get PDF
    Ion-beam sputtered amorphous heavy metal oxides, such as Ta2O5, are widely used as the high refractive index layer of highly reflective dielectric coatings. Such coatings are used in the ground based Laser Interferometer Gravitational-wave Observatory (LIGO), in which mechanical loss, directly related to Brownian thermal noise, from the coatings forms an important limit to the sensitivity of the LIGO detector. It has previously been shown that heat-treatment and TiO2 doping of amorphous Ta2O5 coatings causes significant changes to the levels of mechanical loss measured and is thought to result from changes in the atomic structure. This work aims to find ways to reduce the levels of mechanical loss in the coatings by understanding the atomic structure properties that are responsible for it, and thus helping to increase the LIGO detector sensitivity. Using a combination of Reduced Density Functions (RDFs) from electron diffraction and Fluctuation Electron Microscopy (FEM), we probe the medium range order (in the 2-3 nm range) of these amorphous coatings

    Correlations between the mechanical loss and atomic structure of amorphous TiO2-doped Ta2O5 coatings

    Get PDF
    &lt;p&gt;Highly reflective dielectric mirror coatings are critical components in a range of precision optics applications including frequency combs, optical atomic clocks, precision interferometry and ring laser gyroscopes. A key limitation to the performance in these applications is thermal noise, arising from the mechanical loss of the coatings. The origins of the mechanical loss from these coatings is not well understood.&lt;/p&gt; &lt;p&gt;Recent work suggests that the mechanical loss of amorphous Ta2O5 coatings can drop by as much as 40% when it is doped with TiO2. We use a combination of electron diffraction data and atomic modelling using molecular dynamics to probe the atomic structure of these coatings, and examine the correlations between changes in the atomic structure and changes in the mechanical loss of these coatings. Our results show the first correlation between changes in the mechanical loss and experimentally measured changes in the atomic structure resulting from variations in the level of TiO2 doping in TiO2-doped Ta2O5 coatings, in that increased homogeneity at the nearest-neighbour level appears to correlate with reduced mechanical loss. It is demonstrated that subtle but measurable changes in the nearest-neighbour homogeneity in an amorphous material can correlate with significant changes in macroscopic properties.&lt;/p&gt

    Surface area or diameter – which factor really determines the antibacterial activity of silver nanoparticles grown on TiO₂ coatings?

    Get PDF
    Titanium dioxide coatings were prepared on Si wafers using the sol–gel method. Four different types of coatings with silver nanoparticles (AgNPs) were synthesized. The diameter and surface density of AgNPs were conditioned by the concentration of Ag+ ions in the initial solution, time and UV illumination source. The bactericidal activity of AgNPs on the titanium dioxide coatings against the S. aureus strain were calculated as the percentage of the inhibition of bacterial growth after 24 hour incubation of microorganisms at 37°C on TiO₂ coatings with AgNPs. Control samples were coated with titanium dioxide without AgNPs. We concluded that the titanium dioxide coatings modified with silver nanoparticles had a high antibacterial activity. Moreover, we demonstrated strong dependence between surface areas of AgNPs and inhibition of bacterial growth. The obtained results evidence that the surface area of AgNPs grown on titanium dioxide coatings is a major factor determining their antimicrobial potential
    corecore