5,207 research outputs found

    A multisensor SLAM for dense maps of large scale environments under poor lighting conditions

    Get PDF
    This thesis describes the development and implementation of a multisensor large scale autonomous mapping system for surveying tasks in underground mines. The hazardous nature of the underground mining industry has resulted in a push towards autonomous solutions to the most dangerous operations, including surveying tasks. Many existing autonomous mapping techniques rely on approaches to the Simultaneous Localization and Mapping (SLAM) problem which are not suited to the extreme characteristics of active underground mining environments. Our proposed multisensor system has been designed from the outset to address the unique challenges associated with underground SLAM. The robustness, self-containment and portability of the system maximize the potential applications.The multisensor mapping solution proposed as a result of this work is based on a fusion of omnidirectional bearing-only vision-based localization and 3D laser point cloud registration. By combining these two SLAM techniques it is possible to achieve some of the advantages of both approaches – the real-time attributes of vision-based SLAM and the dense, high precision maps obtained through 3D lasers. The result is a viable autonomous mapping solution suitable for application in challenging underground mining environments.A further improvement to the robustness of the proposed multisensor SLAM system is a consequence of incorporating colour information into vision-based localization. Underground mining environments are often dominated by dynamic sources of illumination which can cause inconsistent feature motion during localization. Colour information is utilized to identify and remove features resulting from illumination artefacts and to improve the monochrome based feature matching between frames.Finally, the proposed multisensor mapping system is implemented and evaluated in both above ground and underground scenarios. The resulting large scale maps contained a maximum offset error of ±30mm for mapping tasks with lengths over 100m

    Galaxy Image Classification Based on Citizen Science Data: A Comparative Study

    Get PDF
    Many research fields are now faced with huge volumes of data automatically generated by specialised equipment. Astronomy is a discipline that deals with large collections of images difficult to handle by experts alone. As a consequence, astronomers have been relying on the power of the crowds, as a form of citizen science, for the classification of galaxy images by amateur people. However, the new generation of telescopes that will produce images at a higher rate highlights the limitations of this approach, and the use of machine learning methods for automatic classification is considered essential. The goal of this paper is to shed light on the automated classification of galaxy images exploring two distinct machine learning strategies. First, following the classical approach consisting of feature extraction together with a classifier, we compare the state-of-the-art feature extractor for this problem, the WND-CHARM, with our proposal based on autoencoders for feature extraction on galaxy images. We then compare these results with an end-to-end classification using convolutional neural networks. To better leverage the available citizen science data, we also investigate a pre-training scheme that exploits both amateur-and expert-labelled data. Our experiments reveal that autoencoders greatly speed up feature extraction in comparison with WND-CHARM and both classification strategies, either using convolutional neural networks or feature extraction, reach comparable accuracy. The use of pre-training in convolutional neural networks, however, has allowed us to provide even better results

    Fast, Dense Feature SDM on an iPhone

    Full text link
    In this paper, we present our method for enabling dense SDM to run at over 90 FPS on a mobile device. Our contributions are two-fold. Drawing inspiration from the FFT, we propose a Sparse Compositional Regression (SCR) framework, which enables a significant speed up over classical dense regressors. Second, we propose a binary approximation to SIFT features. Binary Approximated SIFT (BASIFT) features, which are a computationally efficient approximation to SIFT, a commonly used feature with SDM. We demonstrate the performance of our algorithm on an iPhone 7, and show that we achieve similar accuracy to SDM

    DeepVoxels: Learning Persistent 3D Feature Embeddings

    Full text link
    In this work, we address the lack of 3D understanding of generative neural networks by introducing a persistent 3D feature embedding for view synthesis. To this end, we propose DeepVoxels, a learned representation that encodes the view-dependent appearance of a 3D scene without having to explicitly model its geometry. At its core, our approach is based on a Cartesian 3D grid of persistent embedded features that learn to make use of the underlying 3D scene structure. Our approach combines insights from 3D geometric computer vision with recent advances in learning image-to-image mappings based on adversarial loss functions. DeepVoxels is supervised, without requiring a 3D reconstruction of the scene, using a 2D re-rendering loss and enforces perspective and multi-view geometry in a principled manner. We apply our persistent 3D scene representation to the problem of novel view synthesis demonstrating high-quality results for a variety of challenging scenes.Comment: Video: https://www.youtube.com/watch?v=HM_WsZhoGXw Supplemental material: https://drive.google.com/file/d/1BnZRyNcVUty6-LxAstN83H79ktUq8Cjp/view?usp=sharing Code: https://github.com/vsitzmann/deepvoxels Project page: https://vsitzmann.github.io/deepvoxels

    Natural image processing and synthesis using deep learning

    Full text link
    Nous Ă©tudions dans cette thĂšse comment les rĂ©seaux de neurones profonds peuvent ĂȘtre utilisĂ©s dans diffĂ©rents domaines de la vision artificielle. La vision artificielle est un domaine interdisciplinaire qui traite de la comprĂ©hension d’images et de vidĂ©os numĂ©riques. Les problĂšmes de ce domaine ont traditionnellement Ă©tĂ© adressĂ©s avec des mĂ©thodes ad-hoc nĂ©cessitant beaucoup de rĂ©glages manuels. En effet, ces systĂšmes de vision artificiels comprenaient jusqu’à rĂ©cemment une sĂ©rie de modules optimisĂ©s indĂ©pendamment. Cette approche est trĂšs raisonnable dans la mesure oĂč, avec peu de donnĂ©es, elle bĂ©nĂ©ficient autant que possible des connaissances du chercheur. Mais cette avantage peut se rĂ©vĂ©ler ĂȘtre une limitation si certaines donnĂ©es d’entrĂ© n’ont pas Ă©tĂ© considĂ©rĂ©es dans la conception de l’algorithme. Avec des volumes et une diversitĂ© de donnĂ©es toujours plus grands, ainsi que des capacitĂ©s de calcul plus rapides et Ă©conomiques, les rĂ©seaux de neurones profonds optimisĂ©s d’un bout Ă  l’autre sont devenus une alternative attrayante. Nous dĂ©montrons leur avantage avec une sĂ©rie d’articles de recherche, chacun d’entre eux trouvant une solution Ă  base de rĂ©seaux de neurones profonds Ă  un problĂšme d’analyse ou de synthĂšse visuelle particulier. Dans le premier article, nous considĂ©rons un problĂšme de vision classique: la dĂ©tection de bords et de contours. Nous partons de l’approche classique et la rendons plus ‘neurale’ en combinant deux Ă©tapes, la dĂ©tection et la description de motifs visuels, en un seul rĂ©seau convolutionnel. Cette mĂ©thode, qui peut ainsi s’adapter Ă  de nouveaux ensembles de donnĂ©es, s’avĂšre ĂȘtre au moins aussi prĂ©cis que les mĂ©thodes conventionnelles quand il s’agit de domaines qui leur sont favorables, tout en Ă©tant beaucoup plus robuste dans des domaines plus gĂ©nĂ©rales. Dans le deuxiĂšme article, nous construisons une nouvelle architecture pour la manipulation d’images qui utilise l’idĂ©e que la majoritĂ© des pixels produits peuvent d’ĂȘtre copiĂ©s de l’image d’entrĂ©e. Cette technique bĂ©nĂ©ficie de plusieurs avantages majeurs par rapport Ă  l’approche conventionnelle en apprentissage profond. En effet, elle conserve les dĂ©tails de l’image d’origine, n’introduit pas d’aberrations grĂące Ă  la capacitĂ© limitĂ©e du rĂ©seau sous-jacent et simplifie l’apprentissage. Nous dĂ©montrons l’efficacitĂ© de cette architecture dans le cadre d’une tĂąche de correction du regard, oĂč notre systĂšme produit d’excellents rĂ©sultats. Dans le troisiĂšme article, nous nous Ă©clipsons de la vision artificielle pour Ă©tudier le problĂšme plus gĂ©nĂ©rale de l’adaptation Ă  de nouveaux domaines. Nous dĂ©veloppons un nouvel algorithme d’apprentissage, qui assure l’adaptation avec un objectif auxiliaire Ă  la tĂąche principale. Nous cherchons ainsi Ă  extraire des motifs qui permettent d’accomplir la tĂąche mais qui ne permettent pas Ă  un rĂ©seau dĂ©diĂ© de reconnaĂźtre le domaine. Ce rĂ©seau est optimisĂ© de maniĂšre simultanĂ© avec les motifs en question, et a pour tĂąche de reconnaĂźtre le domaine de provenance des motifs. Cette technique est simple Ă  implĂ©menter, et conduit pourtant Ă  l’état de l’art sur toutes les tĂąches de rĂ©fĂ©rence. Enfin, le quatriĂšme article prĂ©sente un nouveau type de modĂšle gĂ©nĂ©ratif d’images. À l’opposĂ© des approches conventionnels Ă  base de rĂ©seaux de neurones convolutionnels, notre systĂšme baptisĂ© SPIRAL dĂ©crit les images en termes de programmes bas-niveau qui sont exĂ©cutĂ©s par un logiciel de graphisme ordinaire. Entre autres, ceci permet Ă  l’algorithme de ne pas s’attarder sur les dĂ©tails de l’image, et de se concentrer plutĂŽt sur sa structure globale. L’espace latent de notre modĂšle est, par construction, interprĂ©table et permet de manipuler des images de façon prĂ©visible. Nous montrons la capacitĂ© et l’agilitĂ© de cette approche sur plusieurs bases de donnĂ©es de rĂ©fĂ©rence.In the present thesis, we study how deep neural networks can be applied to various tasks in computer vision. Computer vision is an interdisciplinary field that deals with understanding of digital images and video. Traditionally, the problems arising in this domain were tackled using heavily hand-engineered adhoc methods. A typical computer vision system up until recently consisted of a sequence of independent modules which barely talked to each other. Such an approach is quite reasonable in the case of limited data as it takes major advantage of the researcher's domain expertise. This strength turns into a weakness if some of the input scenarios are overlooked in the algorithm design process. With the rapidly increasing volumes and varieties of data and the advent of cheaper and faster computational resources end-to-end deep neural networks have become an appealing alternative to the traditional computer vision pipelines. We demonstrate this in a series of research articles, each of which considers a particular task of either image analysis or synthesis and presenting a solution based on a ``deep'' backbone. In the first article, we deal with a classic low-level vision problem of edge detection. Inspired by a top-performing non-neural approach, we take a step towards building an end-to-end system by combining feature extraction and description in a single convolutional network. The resulting fully data-driven method matches or surpasses the detection quality of the existing conventional approaches in the settings for which they were designed while being significantly more usable in the out-of-domain situations. In our second article, we introduce a custom architecture for image manipulation based on the idea that most of the pixels in the output image can be directly copied from the input. This technique bears several significant advantages over the naive black-box neural approach. It retains the level of detail of the original images, does not introduce artifacts due to insufficient capacity of the underlying neural network and simplifies training process, to name a few. We demonstrate the efficiency of the proposed architecture on the challenging gaze correction task where our system achieves excellent results. In the third article, we slightly diverge from pure computer vision and study a more general problem of domain adaption. There, we introduce a novel training-time algorithm (\ie, adaptation is attained by using an auxilliary objective in addition to the main one). We seek to extract features that maximally confuse a dedicated network called domain classifier while being useful for the task at hand. The domain classifier is learned simultaneosly with the features and attempts to tell whether those features are coming from the source or the target domain. The proposed technique is easy to implement, yet results in superior performance in all the standard benchmarks. Finally, the fourth article presents a new kind of generative model for image data. Unlike conventional neural network based approaches our system dubbed SPIRAL describes images in terms of concise low-level programs executed by off-the-shelf rendering software used by humans to create visual content. Among other things, this allows SPIRAL not to waste its capacity on minutae of datasets and focus more on the global structure. The latent space of our model is easily interpretable by design and provides means for predictable image manipulation. We test our approach on several popular datasets and demonstrate its power and flexibility

    Automated damage diagnosis of concrete jack arch beam using optimized deep stacked autoencoders and multi-sensor fusion

    Get PDF
    A novel hybrid framework of optimized deep learning models combined with multi-sensor fusion is developed for condition diagnosis of concrete arch beam. The vibration responses of structure are first processed by principal component analysis for dimensionality reduction and noise elimination. Then, the deep network based on stacked autoencoders (SAE) is established at each sensor for initial condition diagnosis, where extracted principal components and corresponding condition categories are inputs and output, respectively. To enhance diagnostic accuracy of proposed deep SAE, an enhanced whale optimization algorithm is proposed to optimize network meta-parameters. Eventually, Dempster-Shafer fusion algorithm is employed to combine initial diagnosis results from each sensor to make a final diagnosis. A miniature structural component of Sydney Harbour Bridge with artificial multiple progressive damages is tested in laboratory. The results demonstrate that the proposed method can detect structural damage accurately, even under the condition of limited sensors and high levels of uncertainties

    Lung_PAYNet: a pyramidal attention based deep learning network for lung nodule segmentation

    Get PDF
    Accurate and reliable lung nodule segmentation in computed tomography (CT) images is required for early diagnosis of lung cancer. Some of the difficulties in detecting lung nodules include the various types and shapes of lung nodules, lung nodules near other lung structures, and similar visual aspects. This study proposes a new model named Lung_PAYNet, a pyramidal attention-based architecture, for improved lung nodule segmentation in low-dose CT images. In this architecture, the encoder and decoder are designed using an inverted residual block and swish activation function. It also employs a feature pyramid attention network between the encoder and decoder to extract exact dense features for pixel classification. The proposed architecture was compared to the existing UNet architecture, and the proposed methodology yielded significant results. The proposed model was comprehensively trained and validated using the LIDC-IDRI dataset available in the public domain. The experimental results revealed that the Lung_PAYNet delivered remarkable segmentation with a Dice similarity coefficient of 95.7%, mIOU of 91.75%, sensitivity of 92.57%, and precision of 96.75%
    • 

    corecore