
Fast, Multi-Scale Image Processing on a Square Spiral
Framework

John Fegan
Ulster University – Magee

Northland Road

Derry/Londonderry BT48 7JL

028 9036 6305, +44

fegan-j2@ulster.ac.uk

John Fegan
Ulster University – Magee

Northland Road

Derry/Londonderry BT48 7JL

028 9036 6305, +44

fegan-j2@ulster.ac.uk

Sonya Coleman
Ulster University – Magee

Northland Road

Derry/Londonderry BT48 7JL

028 7167 5030, +44

sa.coleman@ulster.ac.uk

Bryan Scotney
Ulster University

Cromore Road

Coleraine BT52 1SA

028 7012 4648, +44

bw.scotney@ulster.ac.uk

Dermott Kerr
Ulster University – Magee

Northland Road

Derry/Londonderry BT48 7JL

028 7167 5330, +44

d.kerr@ulster.ac.uk

Dermott Kerr
Ulster University – Magee

Northland Road

Derry/Londonderry BT48 7JL

028 7167 5330, +44

d.kerr@ulster.ac.uk

ABSTRACT

Efficient processing of digital images is a key consideration in

many machine vision tasks. Traditional image processing

approaches often struggle to meet this demand, particularly at the

initial low-level of processing image pixels. To overcome this, we

propose a spiral based processing approach which takes

inspiration from the asymmetric lattice of interlocking cells found

in the human visual system. Here we demonstrate the efficiency

of the proposed spiral approach for multi-scale feature extraction.

This is complemented by a biologically inspired image acquisition

process which is used to capture nine image frames at different

spatial locations. The results demonstrate that the biologically

inspired spiral approach offers a faster alternative to

corresponding traditional image processing approaches.

CCS Concepts

• Digital Image Processing➝Spiral Image Processing➝Square

Spiral Image Processing➝Biologically Inspired Image

Processing➝Multi-Scale Feature Extraction

Keywords

Fast Image Processing; Square Spiral Address Scheme; Eye

Tremor; Multi-Scale Feature Extraction; Edge Detection.

1. INTRODUCTION
Efficient processing of digital images is a key consideration in

many machine vision tasks where computer hardware must

operate on a stream of images under strict time constraints.

Traditional Image Processing (TIP) techniques often struggle to

meet this demand and researchers believe that image processing

performance could be improved by incorporating characteristics

found in biological vision systems. For example, in the TIP

framework, an image is captured on a rectangular lattice and the

pixels are stored according to a two-dimensional (2D) address

scheme. In contrast, the Human Visual System (HVS) senses

stimuli through an asymmetric lattice of interlocking hexagonal

cells [1]. This observation has inspired a framework where an

image is captured on a hexagonal lattice and the pixels are stored

according to a one-dimensional (1D) spiral address scheme [2].

Research has shown that this hexagonal framework can perform

image processing much faster than the TIP framework [3].

Despite this benefit, the runtime performance of the hexagonal

framework is undermined by a lack of hardware that can capture

hexagonal pixel-based images and the subsequent cost needed to

map a traditional image to a hexagonal image. To circumvent

these issues, an analogous square spiral (squiral) framework has

been proposed for use with standard image hardware [4]. In

previous research, Squiral Image Processing (SIP) was primarily

conducted using neighborhood operators that overlay an image at

a single 3 × 3 scale. Building on the research in [5] we present an

efficient approach to multi-scale feature extraction using two

alternative methods: the first approach involves using a Look Up

Table (LUT) to find the addresses of each pixel’s surrounding

neighbors; the second approach utilizes a Coarse, non-

overlapping processing strategy where only a fraction of the

pixels are processed and enlarged to produce a feature map.

2. TRADITIONAL IMAGE PROCESSING

FRAMEWORK
There are two common ways to store an image in linear computer

memory. The first way is to map the consecutive pixels of each

row or column to a contiguous array [6]; however, the contiguous

property is not preserved in two directions. By extension, an index

derived from a single parameter is insufficient to navigate the

array in two directions. In this case, two parameters are needed: a

vertical coordinate y and a horizontal coordinate x.

Copyright Notice

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/287023362?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Depending on the storage order, an index is derived as width × y +

x or height × x + y. Subsequently, a dynamic array navigation

algorithm will require multiplication at each row and addition at

each column, or vice versa. The second way to store an image in

linear computer memory is to treat each row or column as its own

array. As illustrated in Figure 1 this layout requires a separate

(Iliffe) array to locate each row or column [7]. Consequently, two

indices are needed to locate a pixel: one to locate a row or column

and another to locate a pixel relative to the start of that row or

column. This avoids the heavy computation of the previous data

structure as each pixel is indexed in two directions. Despite this

advantage, the benefits of this arrangement are outweighed by

broken continuity caused by the intermittent fetching of row or

column locations from secondary memory space. The two data

structures discussed offer simple ways to store an image and index

its pixels, but they fail to provide a contiguous sequence for each

pixel and its surrounding neighbors. For example, in order to

operate on a 3 × 3 neighborhood centered on a pixel Ix,y, both rows

and columns must be traversed. While pixels either side are within

close proximity to Ix,y, the other neighbors above and below are

located further from Ix,y in the storage structure. Although this is

not too concerning in small images, in large images the distance

between a pixel and its neighbors can be substantial which can

hinder performance [6]. The SIP framework alleviates this

problem by storing the image in a 1D array structure where the

pixels are within proximity to their nearest neighbors.

Figure 1. Iliffe Storage for a 3 × 3 Matrix

3. SQUARE SPIRAL IMAGE PROCESSING

FRAMEWORK

As illustrated in Figure 2 the SIP framework employs a sampling

scheme that partitions an image into subsets known as layers. The

first pixel, layer 0, is located at the center of an image. Thereafter

the pixel at layer 0 and its eight nearest neighbors are sampled in

an outward spiral to form layer 1. Each subsequent layer

encompasses eight clusters that surround the previous layer where

each cluster contains the same number of pixels as the previous

layer and the pixels are indexed in the same sequence as the

previous layer. In accordance with this scheme the image is

mapped to a contiguous array that perpetrates a base 9 index

scheme. Consequently, each pixel that is indexed 0 mod 9 is

stored adjacent to its eight nearest neighbors in the 1D array. This

simplifies and facilitates fast spatial processing of these pixels as

they, and importantly their nearest neighbors, can be traversed

sequentially. However, the pixels which are not indexed 0 mod 9

cannot be processed this way as they are not stored adjacent to all

of their nearest neighbors. This poses a difficulty when applying a

neighborhood operator to every pixel in an image in order to

obtain a complete output. However, this is readily overcome via a

novel procedure based on involuntary eye movements called

tremors as discussed in Section 3.1.

Figure 2. Square Spiral Sampling Scheme

3.1 Eye Tremor
In humans, involuntary eye movements called tremors are thought

to cause spatial displacement of visual stimuli which the HVS can

then sparsely interpret to derive meaning [1]. In a similar way, the

behavior of eye tremor can be simulated in the SIP framework by

capturing several image frames at different spatial locations. In

accordance with the SIP framework, nine image frames are

captured: the first frame is captured from the center of the

sampling lattice; and the eight succeeding frames are captured

from the immediate points surrounding the center. This procedure

complements the squiral sampling scheme and maps each 2D

point to a 0 mod 9 location in an array. Although this is

accomplished using nine frames instead of one, each frame is only

sparsely processed (only one-ninth of the standard processing

overhead is required), and then the nine frames are combined to

provide a complete feature map. The ability to process

neighborhoods larger than 3 × 3 pixels is more challenging

because they are partially fragmented. For example, a 9 × 9

neighborhood centered on a pixel I10 is distributed across the sub-

clusters [I10, I18], [I150, I158], [I140, I148], [I20, I38], [I70, I88], and [I160,

I168]. In Section 3.2 we present an efficient solution to overcome

this problem and achieve fast multi-scale feature extraction.

3.2 Multi-Scale Neighborhood Processing
As mentioned in Section 1, an approach to multi-scale feature

extraction using SIP was previously presented in [5]. However,

the shortcoming of this approach is that as the scale of a

neighborhood operator increases more frames need to be sampled.

For example, to process an image with a 9 × 9 neighborhood

operator, a total of 81 frames are required. For this reason, the

solution in [5] is of limited use and not considered viable for

machine vision applications. Instead we propose two alternative

approaches. The first approach involves using a LUT to store a set

of neighborhood indices for each pixel. To reiterate, the SIP

framework stores pixels beside their eight nearest neighbors in a

contiguous sequence.

By extension, when eye tremor is used each initial pixel will have

eight contiguous neighbors across nine frames. Therefore, it is

only necessary to store one-ninth of a pixel’s neighborhood

indices in a LUT as illustrated in Figure 3 Then, when an index is

retrieved, eight additional neighbors can be traversed via

sequential navigation. Despite this benefit, the performance of

using a LUT is compromised by the need to retrieve an index

from a separate location in memory. For example, in order to

retrieve a pixel from an image I, the pixel’s index i must be

fetched from a LUT L using index j such that i = Lj . To alleviate

this cost the LUT is used to assign an alias to each neighbor at Ij .

This procedure incurs a minor one-time cost (~0.103s given a

2187 × 2187 image) but it allows the neighbor at Ij to be accessed

via its alias for the remaining lifetime of the program. The second

approach on squiral based, multi-scale feature extraction is to

adjust the eye tremor procedure so that the shift between each

frame is one-third of the considered neighborhood operator’s

length. For example, if a 9 × 9 neighborhood operator is to be

applied, each frame is captured at a different cardinal or

intermediate location, three pixels from the initial center of the

sampling lattice. This will center each frame on a different 0 mod

9λ location, where 𝜆 denotes the layer of the neighborhood

operator minus one. Thus, each pixel with an index 0 mod 9λ is

stored adjacent to 9λ - 1 neighbors. As a consequence, only a

fraction of pixels can be processed contiguously with their

neighbors. Thereafter the equidistant outputs can be consolidated

or enlarged by 9λ - 1 pixels to obtain a Coarse feature map. This is

referred to as non-overlapping neighborhood processing because a

neighborhood operator does not overlay any pixel more than once

per frame.

Figure 3. Eye Tremor Look Up Table

4. IMPLEMENTATION
To implement convolution on a squiral image, a neighborhood

operator must be stored in computer memory as an array of nine

element clusters according to the SIP sampling scheme. The first

algorithm based on a LUT aliasing approach proceeds as follows:

loop through the eye tremor alias array; loop through each cluster

in the neighborhood operator; loop through each element in the

cluster; and apply each cluster element to a corresponding pixel.

Note that in this description (and in the implementation assessed

in this paper) a third loop is used to navigate the clusters in a

neighborhood operator. Incidentally, it is possible to manually

unroll this loop since each cluster is a definitive nine elements

long. In the second, non-overlapping algorithm each eye tremor

image is navigated in 9λ pixel jumps; for each pixel visited apply

the first element of the neighborhood operator; loop through 9λ - 1

adjacent pixels; and convolve with the subsequent neighborhood

operator values. A computational analysis of the above algorithms

is provided in Table 1, Table 2, and Table 3. The results indicate

that the SIP algorithm using the LUT aliasing approach is more

expensive than the non-overlapping SIP algorithm, but it is still a

respectable improvement over the TIP convolution algorithm.

5. PERFORMANCE EVALUATION
In this section, the efficiency of multi-scale SIP based feature

extraction is demonstrated using two neighborhood operators: a 3

× 3 Laplace operator; and a 9 × 9 Laplace of Gaussian (LoG)

operator. In TIP both operators are applied according to standard

convolution theory. In SIP the Laplace operator is applied using

the non-overlapping eye tremor approach described in Section 3.

The SIP LoG operator is applied using the two methods discussed

in Section 3.2: the first method being a Fine application using a

LUT and pixel aliasing; and the second method being a Coarse

application using non-overlapping convolution.

5.1 Visual Performance
For visual evaluation, feature maps for the standard test image

“peppers” are provided in Figure 4. Feature maps a and b were

obtained using TIP where a is the map obtained from the Laplace

operator and b is the map obtained from the LoG operator. Feature

maps c, d, and e were obtained using SIP where c is the map

obtained from the Laplace operator, d is the map obtained from a

Fine application of the LoG operator, and e is the map obtained

from a Coarse application of the LoG operator. Incidentally, the

native resolution of the “peppers” image is 512 × 512 pixels but

here it was padded to 729 × 729 (layer 6) pixels to accommodate

the sizing criterion of the SIP framework. For visual clarity the

outputs were normalized and thresholded. The final results were

slightly cropped to discard border anomalies. As expected, TIP

maps a and b are identical to corresponding SIP maps c and d and

have been numerically verified as such. SIP map e appears quite

similar to maps b and d. It can also be argued that map e is

visually much more meaningful than maps a and c.

Figure 4. Feature Maps

5.2 Computational Performance
Table 1 provides a computational analysis for a TIP based multi-

scale convolution approach, while Table 2 and Table 3 provide a

computational analysis for the two SIP based multi-scale

convolution approaches. In addition, an example count is provided

based on a 3 × 3 image and a 3 × 3 neighborhood operator. In the

assessment, a square region with a length Rl and an area Ra is

considered for processing. Likewise, a square neighborhood

operator with a length Kl and an area Ka is used. In the case of

squiral convolution, the attribute Ew denotes the size of a single

eye tremor frame while the attribute Kh denotes the number of

nine element clusters in a squiral neighborhood operator. The

results of the computational analysis demonstrate that the two SIP

algorithms require much less computation than the TIP algorithm.

Table 1. Analysis of TIP Convolution

Operation Assessment Count

Assignments 1+3Rl+3Rl 2+3Rl 2Kl+2Rl 2Kl 2 280

Comparisons 4+Rl+Rl 2+Rl 2Kl+Rl 2Kl 124

Subtractions Rl+Rl 2 12

Additions Rl+Rl 2+2Rl 2Kl+3Rl 2Kl 2 309

Multiplications Rl 2Kl 2 81

Table 2. Analysis of SIP Convolution (Fine)

Operation Assessment Count

Assignments 1 + 2Ra + 3RaKh + 2RaKh 208

Comparisons 3 + Ra + RaKh + 9RaKh 102

Additions Ew + 2RaKh + 27RaKh 270

Multiplications RaKh + 9RaKh 81

Table 3. Analysis of SIP Convolution (Coarse)

Operation Assessment Count

Assignments 1 + 3Ra + 2EwKa 172

Comparisons 2 + Ra + EwKa 83

Additions Ra + 3RaKa 225

Multiplications RaKa 81

5.3 Runtime Performance
Table 4 shows the runtimes for the TIP and SIP convolution

approaches discussed at the beginning of this section, with image

sizes noted in the leftmost column. The approaches were

implemented in C++ 14 and compiled using GNU g++ version

5.4.0 with default optimization. The runtimes were measured in

seconds (s) using the CPU clock and are given as the average of

one thousand executions. The experimentation system included an

Intel Core i7-4790 CPU @ 3.60GHz × 8, 16GB RAM and Ubuntu

16.04 LTS 64-bit (Linux).

Table 4. Feature Detection Runtimes

 TIP SIP

 Laplace LoG Laplace
LoG

(Fine)

LoG

(Coarse)

2432 0.002s 0.016s 0.001s 0.012s 0.001s

7292 0.017s 0.139s 0.011a 0.108s 0.012s

21872 0.158s 1.249s 0.098s 0.991s 0.102s

The runtime results show that SIP with eye tremor is faster than

TIP for neighborhood operator applications under identical

circumstances. Taken individually, an application of the Laplace

operator was approximately 40% faster using SIP compared to

TIP; an application of the LoG operator was approximately 25%

faster using SIP compared to TIP; and a Coarse application of the

LoG operator using SIP was approximately 1200% faster than the

LoG application using TIP. Interestingly, a Coarse application of

the LoG operator is significantly faster than a Fine application.

Furthermore, the visual results in Figure 4 show only a slight

degradation between the Fine and Coarse feature maps which is

not considered significant. Based on this, it is hypothesized that

Coarse neighborhood operations could be highly beneficial in

machine vision and robotics applications and will be the focus of

further work

6. CONCLUSION

The research presented in this paper has demonstrated that the SIP

framework can offer a faster alternative to the TIP framework.

Moreover, we have demonstrated two alternative ways to navigate

neighborhoods at different scales using an eye tremor inspired

approach. We assert that these alternatives are more desirable than

the squiral based, multi-scale processing method used in the

current literature and provide evidence that a spiral framework is

advantageous for real time video processing. Therefore, future

work will initially focus on real-time video processing using the

SIP framework in conjunction with eye tremor. This will lead on

to interest point detection for the SIP framework.

7. REFERENCES
[1] Róka, A., Csapó, Á., Reskó, B., Baranyi, P., “Edge Detection

Model Based on Involuntary Eye Movements of the Eye-

Retina System”, Acta Polytechnia Hungarica, vol. 4, no. 1,

pp. 31 - 46, 2007.

[2] Middleton, L., Sivaswamy, J., “Hexagonal Image Processing

- A Practical Approach”, Springer, 2005.

[3] Scotney, B., Coleman S., Gardiner, B., “Biologically

Motivated Feature Extraction Using the Spiral Architecture”,

International Conference on Image Processing, pp. 221-224,

2011.

[4] Jing, M., Scotney, B., Coleman S., McGinnity, M., “A Novel

Spiral Addressing Scheme for Rectangular Images”,

International Conference on Machine Vision Applications,

pp. 102 - 105, 2015.

[5] Jing, M., Coleman, S., Scotney, B., McGinnity M.,

“Multiscale “Squiral” (Square-Spiral) Image Processing”,

Irish Machine Vision and Image Processing Conference

Proceedings, pp. 33 – 40, 2015.

[6] Knuth, D., “The Art of Computer Programming”, 3 ed., vol.

1, Addison Wesley, 1997.

[7] Iliffe, J., “The Use of the Genie System in Numerical

Calculations”, Annual Review in Automatic Programming,

vol 2., pp. 1 – 28, 1961.

[8] Fegan, J., Coleman, S., Kerr, D., Scotney B., “Fast Corner

Detection Using a Spiral Architecture”, Irish Machine Vision

and Image Processing Conference Proceedings, pp. 51 - 57,

2016.

