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ABSTRACT 

Efficient processing of digital images is a key consideration in 

many machine vision tasks. Traditional image processing 

approaches often struggle to meet this demand, particularly at the 

initial low-level of processing image pixels. To overcome this, we 

propose a spiral based processing approach which takes 

inspiration from the asymmetric lattice of interlocking cells found 

in the human visual system. Here we demonstrate the efficiency 

of the proposed spiral approach for multi-scale feature extraction. 

This is complemented by a biologically inspired image acquisition 

process which is used to capture nine image frames at different 

spatial locations. The results demonstrate that the biologically 

inspired spiral approach offers a faster alternative to 

corresponding traditional image processing approaches. 
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1. INTRODUCTION 
Efficient processing of digital images is a key consideration in 

many machine vision tasks where computer hardware must 

operate on a stream of images under strict time constraints. 

 

Traditional Image Processing (TIP) techniques often struggle to 

meet this demand and researchers believe that image processing 

performance could be improved by incorporating characteristics 

found in biological vision systems. For example, in the TIP 

framework, an image is captured on a rectangular lattice and the 

pixels are stored according to a two-dimensional (2D) address 

scheme. In contrast, the Human Visual System (HVS) senses 

stimuli through an asymmetric lattice of interlocking hexagonal 

cells [1]. This observation has inspired a framework where an 

image is captured on a hexagonal lattice and the pixels are stored 

according to a one-dimensional (1D) spiral address scheme [2]. 

Research has shown that this hexagonal framework can perform 

image processing much faster than the TIP framework [3]. 

Despite this benefit, the runtime performance of the hexagonal 

framework is undermined by a lack of hardware that can capture 

hexagonal pixel-based images and the subsequent cost needed to 

map a traditional image to a hexagonal image. To circumvent 

these issues, an analogous square spiral (squiral) framework has 

been proposed for use with standard image hardware [4]. In 

previous research, Squiral Image Processing (SIP) was primarily 

conducted using neighborhood operators that overlay an image at 

a single 3 × 3 scale. Building on the research in [5] we present an 

efficient approach to multi-scale feature extraction using two 

alternative methods: the first approach involves using a Look Up 

Table (LUT) to find the addresses of each pixel’s surrounding 

neighbors; the second approach utilizes a Coarse, non-

overlapping processing strategy where only a fraction of the 

pixels are processed and enlarged to produce a feature map. 

2. TRADITIONAL IMAGE PROCESSING 

FRAMEWORK 
There are two common ways to store an image in linear computer 

memory. The first way is to map the consecutive pixels of each 

row or column to a contiguous array [6]; however, the contiguous 

property is not preserved in two directions. By extension, an index 

derived from a single parameter is insufficient to navigate the 

array in two directions. In this case, two parameters are needed: a 

vertical coordinate y and a horizontal coordinate x. 
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Depending on the storage order, an index is derived as width × y + 

x or height × x + y. Subsequently, a dynamic array navigation 

algorithm will require multiplication at each row and addition at 

each column, or vice versa. The second way to store an image in 

linear computer memory is to treat each row or column as its own 

array. As illustrated in Figure 1 this layout requires a separate 

(Iliffe) array to locate each row or column [7]. Consequently, two 

indices are needed to locate a pixel: one to locate a row or column 

and another to locate a pixel relative to the start of that row or 

column. This avoids the heavy computation of the previous data 

structure as each pixel is indexed in two directions. Despite this 

advantage, the benefits of this arrangement are outweighed by 

broken continuity caused by the intermittent fetching of row or 

column locations from secondary memory space. The two data 

structures discussed offer simple ways to store an image and index 

its pixels, but they fail to provide a contiguous sequence for each 

pixel and its surrounding neighbors. For example, in order to 

operate on a 3 × 3 neighborhood centered on a pixel Ix,y, both rows 

and columns must be traversed. While pixels either side are within 

close proximity to Ix,y, the other neighbors above and below are 

located further from Ix,y in the storage structure. Although this is 

not too concerning in small images, in large images the distance 

between a pixel and its neighbors can be substantial which can 

hinder performance [6]. The SIP framework alleviates this 

problem by storing the image in a 1D array structure where the 

pixels are within proximity to their nearest neighbors. 

 

Figure 1. Iliffe Storage for a 3 × 3 Matrix 

3. SQUARE SPIRAL IMAGE PROCESSING 

FRAMEWORK 

As illustrated in Figure 2 the SIP framework employs a sampling 

scheme that partitions an image into subsets known as layers. The 

first pixel, layer 0, is located at the center of an image. Thereafter 

the pixel at layer 0 and its eight nearest neighbors are sampled in 

an outward spiral to form layer 1. Each subsequent layer 

encompasses eight clusters that surround the previous layer where 

each cluster contains the same number of pixels as the previous 

layer and the pixels are indexed in the same sequence as the 

previous layer. In accordance with this scheme the image is 

mapped to a contiguous array that perpetrates a base 9 index 

scheme. Consequently, each pixel that is indexed 0 mod 9 is 

stored adjacent to its eight nearest neighbors in the 1D array. This 

simplifies and facilitates fast spatial processing of these pixels as 

they, and importantly their nearest neighbors, can be traversed 

sequentially. However, the pixels which are not indexed 0 mod 9 

cannot be processed this way as they are not stored adjacent to all 

of their nearest neighbors. This poses a difficulty when applying a 

neighborhood operator to every pixel in an image in order to 

obtain a complete output. However, this is readily overcome via a 

novel procedure based on involuntary eye movements called 

tremors as discussed in Section 3.1. 

 

 

Figure 2. Square Spiral Sampling Scheme 

3.1 Eye Tremor 
In humans, involuntary eye movements called tremors are thought 

to cause spatial displacement of visual stimuli which the HVS can 

then sparsely interpret to derive meaning [1]. In a similar way, the 

behavior of eye tremor can be simulated in the SIP framework by 

capturing several image frames at different spatial locations. In 

accordance with the SIP framework, nine image frames are 

captured: the first frame is captured from the center of the 

sampling lattice; and the eight succeeding frames are captured 

from the immediate points surrounding the center. This procedure 

complements the squiral sampling scheme and maps each 2D 

point to a 0 mod 9 location in an array. Although this is 

accomplished using nine frames instead of one, each frame is only 

sparsely processed (only one-ninth of the standard processing 

overhead is required), and then the nine frames are combined to 

provide a complete feature map. The ability to process 

neighborhoods larger than 3 × 3 pixels is more challenging 

because they are partially fragmented. For example, a 9 × 9 

neighborhood centered on a pixel I10 is distributed across the sub-

clusters [I10, I18], [I150, I158], [I140, I148], [I20, I38], [I70, I88], and [I160, 

I168]. In Section 3.2 we present an efficient solution to overcome 

this problem and achieve fast multi-scale feature extraction. 

3.2 Multi-Scale Neighborhood Processing 
As mentioned in Section 1, an approach to multi-scale feature 

extraction using SIP was previously presented in [5]. However, 

the shortcoming of this approach is that as the scale of a 

neighborhood operator increases more frames need to be sampled. 

For example, to process an image with a 9 × 9 neighborhood 

operator, a total of 81 frames are required. For this reason, the 

solution in [5] is of limited use and not considered viable for 

machine vision applications. Instead we propose two alternative 

approaches. The first approach involves using a LUT to store a set 

of neighborhood indices for each pixel. To reiterate, the SIP 

framework stores pixels beside their eight nearest neighbors in a 

contiguous sequence. 



 

By extension, when eye tremor is used each initial pixel will have 

eight contiguous neighbors across nine frames. Therefore, it is 

only necessary to store one-ninth of a pixel’s neighborhood 

indices in a LUT as illustrated in Figure 3 Then, when an index is 

retrieved, eight additional neighbors can be traversed via 

sequential navigation. Despite this benefit, the performance of 

using a LUT is compromised by the need to retrieve an index 

from a separate location in memory. For example, in order to 

retrieve a pixel from an image I, the pixel’s index i must be 

fetched from a LUT L using index j such that i = Lj . To alleviate 

this cost the LUT is used to assign an alias to each neighbor at Ij . 

This procedure incurs a minor one-time cost (~0.103s given a 

2187 × 2187 image) but it allows the neighbor at Ij to be accessed 

via its alias for the remaining lifetime of the program. The second 

approach on squiral based, multi-scale feature extraction is to 

adjust the eye tremor procedure so that the shift between each 

frame is one-third of the considered neighborhood operator’s 

length. For example, if a 9 × 9 neighborhood operator is to be 

applied, each frame is captured at a different cardinal or 

intermediate location, three pixels from the initial center of the 

sampling lattice. This will center each frame on a different 0 mod 

9λ location, where 𝜆 denotes the layer of the neighborhood 

operator minus one. Thus, each pixel with an index 0 mod 9λ is 

stored adjacent to 9λ - 1 neighbors. As a consequence, only a 

fraction of pixels can be processed contiguously with their 

neighbors. Thereafter the equidistant outputs can be consolidated 

or enlarged by 9λ - 1 pixels to obtain a Coarse feature map. This is 

referred to as non-overlapping neighborhood processing because a 

neighborhood operator does not overlay any pixel more than once 

per frame. 

 

Figure 3. Eye Tremor Look Up Table 

4. IMPLEMENTATION 
To implement convolution on a squiral image, a neighborhood 

operator must be stored in computer memory as an array of nine 

element clusters according to the SIP sampling scheme. The first 

algorithm based on a LUT aliasing approach proceeds as follows: 

loop through the eye tremor alias array; loop through each cluster 

in the neighborhood operator; loop through each element in the 

cluster; and apply each cluster element to a corresponding pixel. 

Note that in this description (and in the implementation assessed 

in this paper) a third loop is used to navigate the clusters in a 

neighborhood operator. Incidentally, it is possible to manually 

unroll this loop since each cluster is a definitive nine elements 

long. In the second, non-overlapping algorithm each eye tremor 

image is navigated in 9λ pixel jumps; for each pixel visited apply 

the first element of the neighborhood operator; loop through 9λ - 1 

adjacent pixels; and convolve with the subsequent neighborhood 

operator values. A computational analysis of the above algorithms 

is provided in Table 1, Table 2, and Table 3. The results indicate 

that the SIP algorithm using the LUT aliasing approach is more 

expensive than the non-overlapping SIP algorithm, but it is still a 

respectable improvement over the TIP convolution algorithm. 

5. PERFORMANCE EVALUATION 
In this section, the efficiency of multi-scale SIP based feature 

extraction is demonstrated using two neighborhood operators: a 3 

× 3 Laplace operator; and a 9 × 9 Laplace of Gaussian (LoG) 

operator. In TIP both operators are applied according to standard 

convolution theory. In SIP the Laplace operator is applied using 

the non-overlapping eye tremor approach described in Section 3. 

The SIP LoG operator is applied using the two methods discussed 

in Section 3.2: the first method being a Fine application using a 

LUT and pixel aliasing; and the second method being a Coarse 

application using non-overlapping convolution. 

5.1 Visual Performance 
For visual evaluation, feature maps for the standard test image 

“peppers” are provided in Figure 4. Feature maps a and b were 

obtained using TIP where a is the map obtained from the Laplace 

operator and b is the map obtained from the LoG operator. Feature 

maps c, d, and e were obtained using SIP where c is the map 

obtained from the Laplace operator, d is the map obtained from a 

Fine application of the LoG operator, and e is the map obtained 

from a Coarse application of the LoG operator. Incidentally, the 

native resolution of the “peppers” image is 512 × 512 pixels but 

here it was padded to 729 × 729 (layer 6) pixels to accommodate 

the sizing criterion of the SIP framework. For visual clarity the 

outputs were normalized and thresholded. The final results were 

slightly cropped to discard border anomalies. As expected, TIP 

maps a and b are identical to corresponding SIP maps c and d and 

have been numerically verified as such. SIP map e appears quite 

similar to maps b and d. It can also be argued that map e is 

visually much more meaningful than maps a and c. 



 

 

Figure 4. Feature Maps 

5.2 Computational Performance 
Table 1 provides a computational analysis for a TIP based multi-

scale convolution approach, while Table 2 and Table 3 provide a 

computational analysis for the two SIP based multi-scale 

convolution approaches. In addition, an example count is provided 

based on a 3 × 3 image and a 3 × 3 neighborhood operator. In the 

assessment, a square region with a length Rl and an area Ra is 

considered for processing. Likewise, a square neighborhood 

operator with a length Kl and an area Ka is used. In the case of 

squiral convolution, the attribute Ew denotes the size of a single 

eye tremor frame while the attribute Kh denotes the number of 

nine element clusters in a squiral neighborhood operator. The 

results of the computational analysis demonstrate that the two SIP 

algorithms require much less computation than the TIP algorithm. 

Table 1. Analysis of TIP Convolution 

Operation Assessment Count 

Assignments 1+3Rl+3Rl 2+3Rl 2Kl+2Rl 2Kl 2 280 

Comparisons 4+Rl+Rl 2+Rl 2Kl+Rl 2Kl 124 

Subtractions Rl+Rl 2 12 

Additions Rl+Rl 2+2Rl 2Kl+3Rl 2Kl 2 309 

Multiplications Rl 2Kl 2 81 

Table 2. Analysis of SIP Convolution (Fine) 

Operation Assessment Count 

Assignments 1 + 2Ra + 3RaKh + 2RaKh 208 

Comparisons 3 + Ra + RaKh + 9RaKh 102 

Additions Ew + 2RaKh + 27RaKh 270 

Multiplications RaKh + 9RaKh 81 

Table 3. Analysis of SIP Convolution (Coarse) 

Operation Assessment Count 

Assignments 1 + 3Ra + 2EwKa 172 

Comparisons 2 + Ra + EwKa 83 

Additions Ra + 3RaKa 225 

Multiplications RaKa 81 

5.3 Runtime Performance 
Table 4 shows the runtimes for the TIP and SIP convolution 

approaches discussed at the beginning of this section, with image 

sizes noted in the leftmost column. The approaches were 

implemented in C++ 14 and compiled using GNU g++ version 

5.4.0 with default optimization. The runtimes were measured in 

seconds (s) using the CPU clock and are given as the average of 

one thousand executions. The experimentation system included an 

Intel Core i7-4790 CPU @ 3.60GHz × 8, 16GB RAM and Ubuntu 

16.04 LTS 64-bit (Linux). 

Table 4. Feature Detection Runtimes 

 TIP SIP 

 Laplace LoG Laplace 
LoG 

(Fine) 

LoG 

(Coarse) 

2432 0.002s 0.016s 0.001s 0.012s 0.001s 

7292 0.017s 0.139s 0.011a 0.108s 0.012s 

21872 0.158s 1.249s 0.098s 0.991s 0.102s 

 

The runtime results show that SIP with eye tremor is faster than 

TIP for neighborhood operator applications under identical 

circumstances. Taken individually, an application of the Laplace 

operator was approximately 40% faster using SIP compared to 

TIP; an application of the LoG operator was approximately 25% 

faster using SIP compared to TIP; and a Coarse application of the 

LoG operator using SIP was approximately 1200% faster than the 

LoG application using TIP. Interestingly, a Coarse application of 

the LoG operator is significantly faster than a Fine application. 

Furthermore, the visual results in Figure 4 show only a slight 

degradation between the Fine and Coarse feature maps which is 

not considered significant. Based on this, it is hypothesized that 

Coarse neighborhood operations could be highly beneficial in 

machine vision and robotics applications and will be the focus of 

further work 

6. CONCLUSION 

The research presented in this paper has demonstrated that the SIP 

framework can offer a faster alternative to the TIP framework. 

Moreover, we have demonstrated two alternative ways to navigate 

neighborhoods at different scales using an eye tremor inspired 

approach. We assert that these alternatives are more desirable than 

the squiral based, multi-scale processing method used in the 

current literature and provide evidence that a spiral framework is 

advantageous for real time video processing. Therefore, future 

work will initially focus on real-time video processing using the 

SIP framework in conjunction with eye tremor. This will lead on 

to interest point detection for the SIP framework. 
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