286 research outputs found

    Tackling Exascale Software Challenges in Molecular Dynamics Simulations with GROMACS

    Full text link
    GROMACS is a widely used package for biomolecular simulation, and over the last two decades it has evolved from small-scale efficiency to advanced heterogeneous acceleration and multi-level parallelism targeting some of the largest supercomputers in the world. Here, we describe some of the ways we have been able to realize this through the use of parallelization on all levels, combined with a constant focus on absolute performance. Release 4.6 of GROMACS uses SIMD acceleration on a wide range of architectures, GPU offloading acceleration, and both OpenMP and MPI parallelism within and between nodes, respectively. The recent work on acceleration made it necessary to revisit the fundamental algorithms of molecular simulation, including the concept of neighborsearching, and we discuss the present and future challenges we see for exascale simulation - in particular a very fine-grained task parallelism. We also discuss the software management, code peer review and continuous integration testing required for a project of this complexity.Comment: EASC 2014 conference proceedin

    Computational Methods in Science and Engineering : Proceedings of the Workshop SimLabs@KIT, November 29 - 30, 2010, Karlsruhe, Germany

    Get PDF
    In this proceedings volume we provide a compilation of article contributions equally covering applications from different research fields and ranging from capacity up to capability computing. Besides classical computing aspects such as parallelization, the focus of these proceedings is on multi-scale approaches and methods for tackling algorithm and data complexity. Also practical aspects regarding the usage of the HPC infrastructure and available tools and software at the SCC are presented

    SKIRT: hybrid parallelization of radiative transfer simulations

    Full text link
    We describe the design, implementation and performance of the new hybrid parallelization scheme in our Monte Carlo radiative transfer code SKIRT, which has been used extensively for modeling the continuum radiation of dusty astrophysical systems including late-type galaxies and dusty tori. The hybrid scheme combines distributed memory parallelization, using the standard Message Passing Interface (MPI) to communicate between processes, and shared memory parallelization, providing multiple execution threads within each process to avoid duplication of data structures. The synchronization between multiple threads is accomplished through atomic operations without high-level locking (also called lock-free programming). This improves the scaling behavior of the code and substantially simplifies the implementation of the hybrid scheme. The result is an extremely flexible solution that adjusts to the number of available nodes, processors and memory, and consequently performs well on a wide variety of computing architectures.Comment: 21 pages, 20 figure

    Performance of distributed multiscale simulations

    Get PDF
    Multiscale simulations model phenomena across natural scales using monolithic or component-based code, running on local or distributed resources. In this work, we investigate the performance of distributed multiscale computing of component-based models, guided by six multiscale applications with different characteristics and from several disciplines. Three modes of distributed multiscale computing are identified: supplementing local dependencies with large-scale resources, load distribution over multiple resources, and load balancing of small- and large-scale resources. We find that the first mode has the apparent benefit of increasing simulation speed, and the second mode can increase simulation speed if local resources are limited. Depending on resource reservation and model coupling topology, the third mode may result in a reduction of resource consumption

    Scalable parallel molecular dynamics algorithms for organic systems

    Get PDF
    A scalable parallel algorithm, Macro-Molecular Dynamics (MMD), has been developed for large-scale molecular dynamics simulations of organic macromolecules, based on space-time multi-resolution techniques and dynamic management of distributed lists. The algorithm also includes the calculation of long range forces using Fast Multipole Method (FMM). FMM is based on the octree data structure, in which each parent cell is divided into 8 child cells and this division continues until the cell size is equal to the non-bonded interaction cutoff length. Due to constant number of operations performed at each stage of the octree, the FMM algorithm scales as O(N). Design and analysis of MMD and FMM algorithms are presented. Scalability tests are performed on three tera-flop machines: 1024-processor Intel Xeon-based Linux cluster, SuperMike at LSU, 1184-processor IBM SP4 Marcellus and the 512-processor Compaq AlphaServer Emerald at the U.S. Army Engineer Research and Development Center (ERDC) MSRC. The tests show that the Linux cluster outperforms the SP4 for the MMD application. The tests also show significant effects of memory- and cache-sharing on the performance
    • …
    corecore