257 research outputs found

    Relation lifting, with an application to the many-valued cover modality

    Get PDF
    We introduce basic notions and results about relation liftings on categories enriched in a commutative quantale. We derive two necessary and sufficient conditions for a 2-functor T to admit a functorial relation lifting: one is the existence of a distributive law of T over the "powerset monad" on categories, one is the preservation by T of "exactness" of certain squares. Both characterisations are generalisations of the "classical" results known for set functors: the first characterisation generalises the existence of a distributive law over the genuine powerset monad, the second generalises preservation of weak pullbacks. The results presented in this paper enable us to compute predicate liftings of endofunctors of, for example, generalised (ultra)metric spaces. We illustrate this by studying the coalgebraic cover modality in this setting.Comment: 48 pages, accepted for publication in LMC

    Sound and complete axiomatizations of coalgebraic language equivalence

    Get PDF
    Coalgebras provide a uniform framework to study dynamical systems, including several types of automata. In this paper, we make use of the coalgebraic view on systems to investigate, in a uniform way, under which conditions calculi that are sound and complete with respect to behavioral equivalence can be extended to a coarser coalgebraic language equivalence, which arises from a generalised powerset construction that determinises coalgebras. We show that soundness and completeness are established by proving that expressions modulo axioms of a calculus form the rational fixpoint of the given type functor. Our main result is that the rational fixpoint of the functor FTFT, where TT is a monad describing the branching of the systems (e.g. non-determinism, weights, probability etc.), has as a quotient the rational fixpoint of the "determinised" type functor Fˉ\bar F, a lifting of FF to the category of TT-algebras. We apply our framework to the concrete example of weighted automata, for which we present a new sound and complete calculus for weighted language equivalence. As a special case, we obtain non-deterministic automata, where we recover Rabinovich's sound and complete calculus for language equivalence.Comment: Corrected version of published journal articl

    Linear Time Logics - A Coalgebraic Perspective

    Full text link
    We describe a general approach to deriving linear time logics for a wide variety of state-based, quantitative systems, by modelling the latter as coalgebras whose type incorporates both branching behaviour and linear behaviour. Concretely, we define logics whose syntax is determined by the choice of linear behaviour and whose domain of truth values is determined by the choice of branching, and we provide two equivalent semantics for them: a step-wise semantics amenable to automata-based verification, and a path-based semantics akin to those of standard linear time logics. We also provide a semantic characterisation of the associated notion of logical equivalence, and relate it to previously-defined maximal trace semantics for such systems. Instances of our logics support reasoning about the possibility, likelihood or minimal cost of exhibiting a given linear time property. We conclude with a generalisation of the logics, dual in spirit to logics with discounting, which increases their practical appeal in the context of resource-aware computation by incorporating a notion of offsetting.Comment: Major revision of previous version: Sections 4 and 5 generalise the results in the previous version, with new proofs; Section 6 contains new result

    Codensity Lifting of Monads and its Dual

    Full text link
    We introduce a method to lift monads on the base category of a fibration to its total category. This method, which we call codensity lifting, is applicable to various fibrations which were not supported by its precursor, categorical TT-lifting. After introducing the codensity lifting, we illustrate some examples of codensity liftings of monads along the fibrations from the category of preorders, topological spaces and extended pseudometric spaces to the category of sets, and also the fibration from the category of binary relations between measurable spaces. We also introduce the dual method called density lifting of comonads. We next study the liftings of algebraic operations to the codensity liftings of monads. We also give a characterisation of the class of liftings of monads along posetal fibrations with fibred small meets as a limit of a certain large diagram.Comment: Extended version of the paper presented at CALCO 2015, accepted for publication in LMC

    Disjunctive bases: normal forms and model theory for modal logics

    Get PDF
    We present the concept of a disjunctive basis as a generic framework for normal forms in modal logic based on coalgebra. Disjunctive bases were defined in previous work on completeness for modal fixpoint logics, where they played a central role in the proof of a generic completeness theorem for coalgebraic mu-calculi. Believing the concept has a much wider significance, here we investigate it more thoroughly in its own right. We show that the presence of a disjunctive basis at the "one-step" level entails a number of good properties for a coalgebraic mu-calculus, in particular, a simulation theorem showing that every alternating automaton can be transformed into an equivalent nondeterministic one. Based on this, we prove a Lyndon theorem for the full fixpoint logic, its fixpoint-free fragment and its one-step fragment, a Uniform Interpolation result, for both the full mu-calculus and its fixpoint-free fragment, and a Janin-Walukiewicz-style characterization theorem for the mu-calculus under slightly stronger assumptions. We also raise the questions, when a disjunctive basis exists, and how disjunctive bases are related to Moss' coalgebraic "nabla" modalities. Nabla formulas provide disjunctive bases for many coalgebraic modal logics, but there are cases where disjunctive bases give useful normal forms even when nabla formulas fail to do so, our prime example being graded modal logic. We also show that disjunctive bases are preserved by forming sums, products and compositions of coalgebraic modal logics, providing tools for modular construction of modal logics admitting disjunctive bases. Finally, we consider the problem of giving a category-theoretic formulation of disjunctive bases, and provide a partial solution

    PSPACE Bounds for Rank-1 Modal Logics

    Get PDF
    For lack of general algorithmic methods that apply to wide classes of logics, establishing a complexity bound for a given modal logic is often a laborious task. The present work is a step towards a general theory of the complexity of modal logics. Our main result is that all rank-1 logics enjoy a shallow model property and thus are, under mild assumptions on the format of their axiomatisation, in PSPACE. This leads to a unified derivation of tight PSPACE-bounds for a number of logics including K, KD, coalition logic, graded modal logic, majority logic, and probabilistic modal logic. Our generic algorithm moreover finds tableau proofs that witness pleasant proof-theoretic properties including a weak subformula property. This generality is made possible by a coalgebraic semantics, which conveniently abstracts from the details of a given model class and thus allows covering a broad range of logics in a uniform way

    Canonical coalgebraic linear time logics

    Get PDF
    We extend earlier work on linear time fixpoint logics for coalgebras with branching, by showing how propositional operators arising from the choice of branching monad can be canonically added to these logics. We then consider two semantics for the uniform modal fragments of such logics: the previously-proposed, step-wise semantics and a new semantics akin to those of path-based logics. We prove that the two semantics are equivalent, and show that the canonical choice made for resolving branching in these logics is crucial for this property. We also state conditions under which similar, non-canonical logics enjoy the same property – this applies both to the choice of a branching modality and to the choice of linear time modalities. Our logics allow reasoning about linear time behaviour in systems with non-deterministic, probabilistic or weighted branching. In all these cases, the logics enhanced with propositional operators gain in expressiveness. Another contribution of our work is a reformulation of fixpoint semantics, which applies to any coalgebraic modal logic whose semantics arises from a one-step semantics

    Strongly Complete Logics for Coalgebras

    Get PDF
    Coalgebras for a functor model different types of transition systems in a uniform way. This paper focuses on a uniform account of finitary logics for set-based coalgebras. In particular, a general construction of a logic from an arbitrary set-functor is given and proven to be strongly complete under additional assumptions. We proceed in three parts. Part I argues that sifted colimit preserving functors are those functors that preserve universal algebraic structure. Our main theorem here states that a functor preserves sifted colimits if and only if it has a finitary presentation by operations and equations. Moreover, the presentation of the category of algebras for the functor is obtained compositionally from the presentations of the underlying category and of the functor. Part II investigates algebras for a functor over ind-completions and extends the theorem of J{\'o}nsson and Tarski on canonical extensions of Boolean algebras with operators to this setting. Part III shows, based on Part I, how to associate a finitary logic to any finite-sets preserving functor T. Based on Part II we prove the logic to be strongly complete under a reasonable condition on T

    Coalgebraic Methods for Object-Oriented Specification

    Get PDF
    This thesis is about coalgebraic methods in software specification and verification. It extends known techniques of coalgebraic specification to a more general level to pave the way for real world applications of software verification. There are two main contributions of the present thesis: 1. Chapter 3 proposes a generalisation of the familiar notion of coalgebra such that classes containing methods with arbitrary types (including binary methods) can be modelled with these generalised coalgebras. 2. Chapter 4 presents the specification language CCSL (short for Coalgebraic Class Specification Language), its syntax, its semantics, and a prototype compiler that translates CCSL into higher-order logic.Die Dissertation beschreibt coalgebraische Mittel und Methoden zur Softwarespezifikation und -verifikation. Die Ergebnisse dieser Dissertation vereinfachen die Anwendung coalgebraischer Spezifikations- und Verifikationstechniken und erweitern deren Anwendbarkeit. Damit werden Softwareverifikation im Allgemeinen und im Besonderen coalgebraische Methoden zur Softwareverifikation der praktischen Anwendbarkeit ein Stück nähergebracht. Diese Dissertation enthält zwei wesentliche Beiträge: 1. Im Kapitel 3 wird eine Erweiterung des klassischen Begriffs der Coalgebra vorgestellt. Diese Erweiterung erlaubt die coalgebraische Modellierung von Klassenschnittstellen mit beliebigen Methodentypen (insbesondere mit binären Methoden). 2. Im Kapitel 4 wird die coalgebraische Spezifikationssprache CCSL (Coalgebraic Class Specification Language) vorgestellt. Die Bescheibung umfasst Syntax, Semantik und einen Prototypcompiler, der CCSL Spezifikationen in Logik höherer Ordnung (passend für die Theorembeweiser PVS und Isabelle/HOL) übersetzt
    • …
    corecore