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Chapter 1

Introduction

This thesis has two main subjects: generalised coinduction schemata and speci-
fication formats for probabilistic systems. We shall start this introduction with
a quick overview of the thesis in order to explain the common background and
relation of both parts. In the following Sections 1.1 – 1.5 we then introduce the
work in more detail.

The two subjects are both based on the categorical modelling of dynamic sys-
tems and potentially infinite data structures as coalgebras of a functor [JR96,
Rut00b]. With different choices for this functor, coalgebras describe systems
with different types of behaviour, such as, for instance, labelled transition sys-
tems or infinite data streams.1 Therefore we often use the term behaviour func-
tor in this context.

The coalgebraic approach allows us to develop a general theory of dynamic
systems, largely independent of their concrete behaviour type. It offers, for
instance, an abstract notion of behavioural equivalence expressed in terms of
coalgebraic bisimulations [AM89]. Moreover, in many interesting cases, we can
uniformly characterise an abstract domain for behaviours of the type under
consideration as a final coalgebra of the corresponding behaviour functor. A
coalgebra is called final if for any coalgebra of the same functor there exists a
unique homomorphism, i.e. a behaviour preserving map, from that coalgebra to
the final one. This implies that for any state in any concrete system there is
precisely one state of a final coalgebra showing the same behaviour.

The defining property of a final coalgebra gives rise to a coinduction principle,
which can be used both to define abstract behaviours and to prove them equal.
Unfortunately, these elementary principles are rather rigid: with them alone
many specifications cannot be expressed directly and many equivalences cannot
be proved elegantly. To remedy this situation, various generalisations of the

1The term behaviour is more appropriate for a process than for a data structure, but we
shall use it in both cases, identifying a data structure with the process that decomposes it.

1



2 CHAPTER 1. INTRODUCTION

basic coinduction definition and proof principles have been considered [Mil89,
Geu92, VU98, San98, UV99]. We focus on these extended principles in the first
main part of our work. We shall show that several of the known generalised
principles can be viewed uniformly as different instances of the same abstract
schema. This provides a deeper understanding of the underlying ideas and
facilitates validity proofs. Moreover, the approach allows the derivation of new
principles, as we shall demonstrate as well. This abstract schema is expressed
in terms of the categorical notion of a distributive law between two functors.

As our second main subject, we introduce well-behaved operator specification
formats for probabilistic transition systems. One needs these operators to con-
struct systems and reason about them in a compositional manner. For the
latter, the operators should be well behaved, for instance, in the sense that the
behaviour of a composed system should not change if one component is replaced
by an equivalent one. Our formats facilitate the definition of composition op-
erators with such properties: we prove that every specification respecting the
format is valid, i.e. it defines the operators uniquely; moreover, these operators
satisfy well-behavedness properties such as the one above. In the literature,
formats for well-behaved specifications have mainly been studied for nondeter-
ministic systems, for which various transition rule formats have been proposed
and successfully applied (see [AFV01] for an overview). For probabilistic sys-
tems, however, formats of that kind have not been proposed.

In general, working with probabilities is more complicated than working with
pure nondeterminism: when probabilities are given, transitions to the possible
successor states cannot be treated independently anymore, since the probabil-
ities associated to the individual transitions need to sum up to one. It turned
out that, in order to cope with this complication, a categorical theory of well-
behaved operator specifications [TP97] is rather helpful. In this abstract frame-
work, an operator specification is a distributive law between two functors, the
first of which is derived from the signature of the operators and the second
from the behaviour type under consideration. We already encountered such
distributive laws in the study of generalised coinduction principles.

To model probabilistic operator specifications categorically, it is important to
observe that various kinds of probabilistic systems are coalgebras for suitable
behaviour functors [VR99, Mos99, BSV03]. It moreover turned out that, as
it was the case for LTSs, the notion of bisimilarity arising from this coalge-
braic presentation yields the same process equivalence than the original notion
of probabilistic bisimilarity. In order to obtain concrete specification formats,
we need to be able to give concrete characterisations of the corresponding dis-
tributive laws, which are natural transformations of a certain type. To this
end we first decompose the natural transformations under consideration using
a collection of representation lemmata. This method allows us to derive well-
behaved operator specification formats not only for probabilistic systems, but
also for other types of systems and data structures that can be modelled as
coalgebras, as we demonstrate with deterministic automata [Rut98] and infinite
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data streams [Rut01].

Both parts of our work are thus applications of distributive laws in the coal-
gebraic study of dynamic systems. And when we instantiate our results on
generalised coinduction with the distributive laws resulting from the setting of
operator specification formats we obtain new well-behavedness statements for
the operator specifications covered: guarded recursive equations with the de-
fined operators have solutions, which are determined up to bisimilarity, and for
those operators a bisimulation up-to-context technique [San98] is valid.

Next to the main subjects mentioned above, we also devote one chapter of
this thesis to a detailed explanation of the categorical theory of well-behaved
operator specification formats. We do so to provide the background for our
work but also because we need to extend the theory presented in the literature
for our purposes.

Although we work with categorical notions throughout this thesis, we limit
ourselves to the use of basic concepts and do not assume a strong familiarity
with the field. In particular, our formats for probabilistic systems and their
properties are expressed as is common practice in process theory, i.e. without
using categorical definitions. We expect that they will be of interest also for
readers who work with these systems without using coalgebraic techniques.

The remainder of this introduction is organised as follows. We start by moti-
vating the coalgebraic modelling of dynamic systems (Section 1.1). Then we
explain our work on generalised coinduction principles (Section 1.2) and speci-
fication formats for probabilistic systems (Section 1.3). Finally, we summarise
related work (Section 1.4) and our contributions (Section 1.5).

1.1 Coalgebraic modelling

To illustrate the coalgebraic modelling of dynamic systems we consider labelled
transition systems (LTS) as they are studied, for instance, in process algebra
[BW90, Fok00]. Given a set of labels L, an LTS is a pair

〈P, ( a−→ ⊆ P × P )a∈L〉

of a set of states P and a family of transition relations
a−→ for each label

a ∈ L. We draw a picture of such a system below, where we use the notation
p

a−→ q for 〈p, q〉 ∈ a−→ .

p1b c

p2 aa p3

p4b c

(1.1)

If p
a−→ q then we call q an a-successor of p, and if p has a-successors then we

say that a is enabled in p. Note that since a state of an LTS may have more than
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one a-successor for a label a – such as p2 in the above picture – the systems are
potentially nondeterministic.

We assume that an observer of the system cannot see directly which state it is
in. He can obtain information about the current state only by checking which
labels are enabled and by successively inspecting all successor states for the
different labels in the same manner. We call two states behavioural equivalent if
they cannot be distinguished this way, such as the states p1 and p4 in the above
system. More precisely, with the type of observation explained above, the notion
of behavioural equivalence is that of (strong) bisimilarity [Mil80, Mil89, Par81].
This is the most widely accepted process equivalence for LTSs. We restrict
ourselves to strong bisimilarity here, but note that other notions are considered
in the literature as well, such as weak bisimilarity or trace equivalence (see e.g.
[Gla90, Gla93, Gla01]).

To motivate the coalgebraic presentation of labelled transition systems, note
that the symmetric presentation of the transition structure as a family of binary
relations does actually not reflect our idea of the system behaviour properly: the
latter is determined by the outgoing transitions of a state, the ingoing ones are
ignored. This directed interpretation is expressed better by the presentation of
an LTS as a pair

〈P, α : P → (PP )L〉, (1.2)

where PP = {P ′ | P ′ ⊆ P} denotes the powerset of P . Here P is the same
set of states as before, but instead of the transition relations we now consider a
transition function α, which assigns to each state a description of the outgoing
transitions of that state. The relation of the two presentations is described by
the following equivalence:

p
a−→ q ⇐⇒ q ∈ α(p)(a)

The presentation of an LTS as in (1.2) generalises to an abstract description of
dynamic systems as coalgebras, which are pairs

〈P, α : P → BP 〉, (1.3)

where the set BP is constructed in a systematic way from P . The set-theoretic
construction B is described by the notion of a functor from category theory
[ML97], and we call the above pair a coalgebra of the functor B, the set P its
carrier, and α its structure map.

This view led to a study of universal coalgebra [Rut00b] as an abstract theory
of dynamic systems. It also provides, for every functor, a general notion of be-
haviour preserving maps between two systems. These so-called homomorphisms
are functions from one carrier set to the other which respect the structure maps.
Similarly, there is a coalgebraic notion of a bisimulation [AM89] as a binary re-
lation on the carrier sets of two coalgebras interacting nicely with the structure
maps. For the interpretation of the abstract results in the concrete case of
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LTSs it is essential to observe that coalgebraic bisimilarity for the correspond-
ing behaviour functor coincides with the (strong) bisimilarity mentioned above
[RT94].

The so-called final coalgebras, which are defined by the property that there
exists precisely one homomorphism from any given coalgebra to the final one,
can be shown to provide an abstract domain for behaviours of the type under
consideration. The finality condition implies that any possible system behaviour
is uniquely represented in the final coalgebra in the sense that any state in any
coalgebra is bisimilar to precisely one state in the final coalgebra. Finality is the
basis for so-called coinductive definitions and proofs, as we shall explain in the
coming section. The theory of coalgebras provides results about the existence
of final coalgebras for rich classes of functors.

1.2 Generalised coinduction

In this section we explain the coinduction definition and proof principle in its
basic form and discuss extensions. Here we shall use final coalgebras to model
infinite data structures. As an example, we consider finite and infinite lists over
elements of some set A, namely

A∞ := {〈a1, . . . , an〉 | n ∈ N, ai ∈ A} ∪ {〈a1, a2, . . .〉 | ai ∈ A}.

These are often referred to as sequences or, in functional programming, lazy
lists. We write ε ∈ A∞ for the empty sequence and (a : l) ∈ A∞ for a sequence
with a first element a ∈ A followed by a lazy list l ∈ A∞. In the latter case we
call a the head and l the tail of the sequence.

1.2.1 Coinductive definition principles

Suppose that, for a given function g : A → A, we want to define the function
mapg : A∞ → A∞ that applies g to all elements of a given sequence. The
function mapg should satisfy the clauses

mapg(ε) := ε and mapg(a : l) := g(a) : mapg(l). (1.4)

The problem with this “definition” is that it is circular: the second clause
specifies the result of mapg in terms of mapg itself. Therefore it is not obvious
that there exists a function satisfying these identities, and, if so, whether it is
uniquely determined.

Before we discuss the problem in the given form, we recall the usual approach
in the case of only finite lists, i.e. for

A∗ := {〈a1, . . . , an〉 | n ∈ N, ai ∈ A}.
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Here we would reason inductively to show the validity of the specification of
mapg: the reference to mapg(l) in the term defining mapg(a : l) is not troublesome
because the list l is shorter than the original list a : l. This guarantees that
after unfolding the definition of mapg a finite number of times we will eventually
encounter an application of mapg to the empty sequence, so the unfolding process
will terminate, which means that the result is uniquely determined.

If we allow infinite sequences, however, this reasoning based on the termination
of the unfolding process fails, because it may actually not terminate. To show
that the definition is valid still, we shift our attention from the reduction of
the argument list to the construction of the resulting sequence: unfolding the
definition of mapg applied to a sequence of the type a : l, we obtain a part of
the result, namely the first element g(a), and a description of the remaining
sequence, namely mapg(l). Unfolding the latter, we obtain the second element
of the result, and so on. An infinite unfolding process will thus reveal longer and
longer prefixes of the result, and so every element of it is uniquely determined
eventually. This way of reasoning is called coinductive.

Note the change of focus from inductive to coinductive reasoning: if the function
to be specified occurs again in the term defining it, the induction principle re-
quires that by repeatedly unfolding the definition the arguments become smaller
and smaller, whereas the coinduction principle requires that more and more in-
formation about the result is revealed; induction constrains the argument l of
the occurrence of mapg in the defining term g(a) : mapg(l), whereas coinduction
looks at the context in which mapg occurs, which is the prefix operation g(a) : . . .
in our case.

To provide a clear mathematical foundation for the above coinductive reasoning,
we model lazy lists over A coalgebraically [HJ98]. Writing 1 = {∗} for an
arbitrary singleton set and X + Y for the disjoint union of the two sets X and
Y , sequences arise as the behaviour of dynamic systems that are given by a pair

〈P, α : P → 1 + (A× P )〉 (1.5)

of a set of states P and a transition function α (cf. equation (1.3)), i.e. a coal-
gebra of the functor

BX := 1 + (A×X). (1.6)

For any state p ∈ P of such a system we either have α(p) = ∗, which means that
the system has terminated in the state p, or α(p) = 〈a, p′〉 for some a ∈ A and
p′ ∈ P , which means that in p the system produces the value a and assumes a
next state p′. An observer of the system notices the sequence of produced values.
Depending on whether or not the system will eventually stop, this sequence is
finite or infinite.

The sequences A∞ are turned into a coalgebra 〈A∞, ω : A∞ → 1 + (A×A∞)〉
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of the functor B from (1.6) by defining

ω(〈a1, . . . , an〉) =

{

∗ if n = 0

〈a1, 〈a2, . . . , an〉〉 otherwise

ω(〈a1, a2, a3, . . .〉) = 〈a1, 〈a2, a3, . . .〉〉

As an instance of the general definition, a function h : P → A∞ is a homomor-
phism from any coalgebra 〈P, α〉 as in (1.5) to 〈A∞, ω〉 if for all p ∈ P we have
h(p) = ε if α(p) = ∗ and h(p) = a : h(p′) if α(p) = 〈a, p′〉. It is easy to see that
for any 〈P, α〉 there is precisely one function h with this property, which is the
one that maps p ∈ P to the sequence h(p) of values the system would produce
when started in p. So the coalgebra 〈A∞, ω〉 is final.
The finality yields a definition principle for sequences: in order to specify a
function h : P → A∞ it suffices to provide the function α from (1.5). The
homomorphism property translates into a specification format: we uniquely
determine the function h by giving for each p ∈ P an equation

h(p) = ε or h(p) = a : h(p′) for some a ∈ A and p′ ∈ P . (1.7)

For coalgebras of arbitrary functors, we call the specification format obtained
from such a direct translation of the finality property the coiteration schema,
and a specification in that format is called coiterative. As we can see, the
specification of mapg in (1.4) is in the format in (1.7), so it is coiterative. The
coalgebra 〈P, α〉 induced by the specification is

〈A∞, (id1 + 〈g, idA∞〉) ◦ ω : A∞ → 1 + (A×A∞)〉.

Many specifications of interesting functions, however, are not coiterative. As a
rather simple example, we consider the function zip : A∞ × A∞ → A∞ that
interleaves two sequences:

zip(ε, l′) = l′

zip(a : l, l′) = a : zip(l′, l)

The specification is not coiterative since the sequence l′ given as the result in the
first identity is not necessarily empty, as required by the format in (1.7). So the
coiteration schema is not expressive enough to capture the given specification
of zip directly.

We thus try to find definition schemata which are more liberal than coiteration.
A schema that covers the example of zip has already been proposed: it is
the primitive corecursion schema (see e.g. [Geu92, VU98]), which arises as the
categorical dual of primitive recursion. The dual of course-of-value iteration
yields a coinductive definition schema as well [UV99], which covers other non-
coiterative specifications.
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We mention both examples here to illustrate that different specifications may
require different extended coiteration schemata, and each of them needs to be
proved valid (see e.g. [UV99]). As a step towards a more uniform description,
Lenisa [Len99a] observed that various non-coiterative functions can be writ-
ten as a coiterative function precomposed with the unit η of a pointed functor
〈T, η〉, which is a functor T together with a natural transformation η : Id⇒ T.
She exploits this fact to establish properties of functions defined by different
schemata.

Lenisa presented functions obtained from several extended coiteration schemata
in a uniform way. We carry the idea further and show that those schemata them-
selves, together with the validity proofs, arise as instances of a novel generalised
coinduction schema. With this observation we provide a better understanding
and simpler justifications of existing extended schemata, as we shall show for
the duals of primitive recursion and course-of-value iteration above and the def-
inition of a language by a nondeterministic automaton. But moreover we view
our approach as a tool to develop and analyse further principles. As an example,
we derive a new principle in which certain auxiliary operators may be used in a
coiterative definition. The functions defined by this principle can be interpreted
as solutions of guarded recursive equations. The means to characterise the class
of auxiliary operators that may be used in this context shall be provided by
our work on operator specification formats, which we are going to sketch in the
following section.

Our generalised coinduction schema is parameterised by a distributive law λ
of some functor S over the behaviour functor B under consideration, and we
therefore call it the λ-coiteration schema. As it were, the functor S describes
an additional syntax for the resulting schema, the semantics of which is defined
by the distributive law λ.

1.2.2 Coinductive proof principles

For a large class of functors we can prove that on the carrier of a final coalgebra
bisimilarity and equality coincide. This yields the following coinduction proof
principle: to show that two states of a final coalgebra are equal, it suffices to
exhibit a bisimulation relating them.

We can apply this principle to sequences, since they form a final coalgebra of the
functor B from (1.6), as we mentioned above. Before we give an example, we first
spell out the coalgebraic notion of a bisimulation for this case: a bisimulation
between sequences is a relation R ⊆ A∞ × A∞ such that for all 〈l, l′〉 ∈ R we
have that either (a) l and l′ are both empty, or (b) they have the same first
element and the tails are related by R again. As an example, we prove

mapg(mapg′(l)) = map(g◦g′)(l)

for all functions g, g′ : A→ A and sequences l ∈ A∞. To establish the identity,
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we show that, for two functions g, g′ : A→ A, the relation

R := {〈mapg(mapg′(l)), map(g◦g′)(l)〉 | l ∈ A∞}

is a bisimulation: for l = ε we calculate

mapg(mapg′(ε)) = ε = map(g◦g′)(ε),

so the corresponding pair satisfies case (a) above; for l = a : l′ we find

mapg(mapg′(a : l′)) = mapg(g
′(a) : mapg′(l

′))

= g(g′(a)) : mapg(mapg′(l
′))

map(g◦g′)(a : l′) = g(g′(a)) : map(g◦g′)(l
′)

which means that the pair satisfies case (b), since both sequences have g(g ′(a))
as the first element and the two tails mapg(mapg′(l

′)) and map(g◦g′)(l
′) are re-

lated by R again. Thus we have established that for all l ∈ A∞ the sequences
mapg(mapg′(l)) and map(g◦g′)(l) are bisimilar, which implies that they are equal.

In many cases, however, the construction of a bisimulation is less straightfor-
ward: it is not always sufficient to include the pairs arising from the equa-
tions one wants to prove. In particular, we are often forced to consider pairs
which appear superfluous like in the following simple example. Given a function
g : A→ A, we want to prove

mapg(zip(l, l
′)) = zip(mapg(l), mapg(l

′))

for all l, l′ ∈ A∞. Proceeding as above example above, we try to show that the
relation

R := {〈mapg(zip(l, l′)), zip(mapg(l), mapg(l′))〉 | l, l′ ∈ A∞}

is a bisimulation. For l = ε and l′ ∈ A∞ both expressions simplify to mapg(l
′),

so these streams related by R are obviously identical. Still we formally need to
check the assumption on a bisimulation for them. This can be avoided by using
a generalised proof principle based on what we call bisimulations up-to-equality.
Note that the problem in this simple example is not so severe in that the above
relation can still be shown to be a bisimulation. In other examples we need to
consider a much larger relation in order to establish this property.

For LTSs there exist various proof principles based on weaker notions than that
of a bisimulation, often called bisimulations up-to-. . . [Mil89]. An important
example is a bisimulations up-to-context technique [San98].

We show that the idea behind our generic λ-coiteration definition principle also
yields generalised coinduction proof principles: for a given distributive law λ,
we generalise bisimulations to λ-bisimulations and prove that, under mild as-
sumptions, λ-bisimulations are sufficient to prove bisimilarity. The advantage
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of this approach again is that once we have established the validity of the gen-
eral schema, several different extended principles become available. As different
instances we obtain the above mentioned bisimulation up-to-equality and bisim-
ulation up-to-context principles. Our result about bisimulation up-to-context
shows that the principle is valid for contexts built with a larger class of oper-
ators on LTSs than it was known before, and it makes the technique available
for other types of systems.

1.3 Formats for probabilistic systems

As the second main contribution of this thesis, we introduce the first speci-
fication formats to define well-behaved composition operators for probabilistic
systems. The transition structure of such a system defines a probability for each
of the transitions leaving a system state. Different from nondeterministic sys-
tems, which give us only qualitative information about the possible transitions
of the system, probabilistic systems provide quantitative information about how
the choice between the different transitions will be made. They serve, for in-
stance, as semantic models for probabilistic algorithms. Probabilities are also
needed for performance analysis [BHK01], where one studies aspects such as the
average throughput of a system, its resource utilisation, or its reliability in the
presence of faulty system components.

Another reason to add quantitative information to transition systems is the
need to describe the timing of the transitions. And sometimes this timing is
probabilistic (see e.g. [Ber99]). In this thesis we use probabilities only for the
choice of the actual transition, no timing is considered. But the categorical
machinery we employ has independently been applied to timed systems by Kick
[Kic02a, Kic02b, Kic03].

Adding probabilistic information to the example LTS in (1.1) we may obtain
the following probabilistic transition system (PTS) [LS91], where the transition
probabilities are written in square brackets. We draw the probabilistic transi-
tions as double arrows in order to distinguish them from the nondeterministic
ones.

p1b[1] c[1]

p2 a[ 13 ]a[ 23 ] p3

p4b[1] c[1]

We have added probability distributions over all transitions leaving one state
with the same label. Alternatively, we could for each state specify one prob-
ability distribution over all its outgoing transitions, so that one distribution
would range over the two transitions from state p1 for instance. Then we would
obtain a generative system, which chooses the transition label probabilistically
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as well, instead of the above reactive system, which reacts probabilistically to
labels provided by the environment (both names are from [GSS95]). As this
discussion already suggests, the variety of different probabilistic system types
that we can find in the literature is much larger than that of nondeterministic
systems. We consider two kinds from this variety: the above PTS and the more
complex probabilistic automata of Segala [SL94, Seg95b], which combine non-
deterministic and probabilistic choice and which we refer to as Segala systems.

Probabilistic systems of various types, including PTS and Segala systems, can be
modelled as coalgebras of suitable behaviour functors [VR99, Mos99, BSV03,
BSV04]. Moreover, these coalgebraic definitions yield notions of bisimilarity
which coincide with probabilistic bisimilarity as it has been defined in concrete
terms for several system types.

In order to construct probabilistic systems and reason about them composition-
ally, we need well-behaved composition operators. As an example, we consider
the specification of an asynchronous parallel composition for PTS, which is pa-
rameterised by the probability r ∈ [0, 1] that the left component reacts on an
input label which is enabled for both components (so the right one reacts with
probability r̄ := 1 − r in that case). We specify the operator by the following
rules for all a ∈ L and u ∈ (0, 1]:

x
a[u]
=⇒ x′ y

a−9

x ‖r y
a[u]
=⇒ x′ ‖r y

x
a−9 y

a[v]
=⇒ y′

x ‖r y
a[v]
=⇒ x ‖r y′

x
a[u]
=⇒ x′ y

a−→
x ‖r y

a[r·u]
=⇒ x′ ‖r y

x
a−→ y

a[v]
=⇒ y′

x ‖r y
a[r̄·v]
=⇒ x ‖r y′

The premises of the type x
a−→ and x

a−9 as they appear in the rules express
that the state x does or does not have a-successors.

In order to use this specification, we need to check that the rules define the
parallel composition uniquely. Since we want to distinguish system states up to
behavioural equivalence only, which is probabilistic bisimilarity in this setting,
we moreover need to prove that the resulting operator respects this equivalence:
the behaviour of the parallel composition of two processes should not change if
we replace any of the two components by a probabilistically bisimilar one.

For nondeterministic systems, several syntactic transition rule formats have been
proposed, which guarantee that all specifications using only rules of that type
define well-behaved operators. Examples are the De Simone format [Sim85], the
GSOS format [BIM95], or the tyft/tyxt rules [GV89, GV92] (see also [AFV01]
for an overview).

Several authors have defined composition operators for probabilistic systems and
proved that they are well-behaved (see e.g. [LS92, GSS95, And99]). Although
specification formats of the type above would simplify this task considerably,
none have been proposed for probabilistic systems yet. One reason is surely that,
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B-coalgebras

Abstract GSOS

GSOS

LTS

PGSOS

PTS

Segala GSOS

Segala systems

´
´
´
´
´
´

Q
Q

Q
Q

Q
Q

abstract level

concrete level

Figure 1.1: Abstract and concrete formats.

in this context, it is more complicated to work with probabilistic systems than
to work with nondeterministic ones – mainly because the probabilities disallow
that we treat the outgoing transitions of a state in isolation: when we construct
a probabilistic system, we have to make sure that the probabilities of certain
transitions together yield probability distributions, i.e. they sum up to 1; and
to establish probabilistic bisimilarity, we need to relate groups of transitions
leaving the bisimilar states, instead of individual transitions.

We introduce two expressive specification formats for well-behaved probabilistic
composition operators: the PGSOS format for PTS and the Segala GSOS format
for Segala systems. Specifications in both formats uniquely define probabilis-
tic operators, which are well behaved with respect to probabilistic bisimilarity.
Moreover, all defined operators may be used in a bisimulation up-to-context
principle [San98], and guarded recursive equations involving them have solu-
tions, determined up to probabilistic bisimilarity.

We develop PGSOS and Segala GSOS with the help of a categorical framework
for specification formats for well-behaved composition operators [TP97]. In-
stead of a concrete system type, this approach treats arbitrary coalgebras of a
behaviour functor. Operator specifications are given as natural transformations
in the shape of distributive laws, a notion we already encountered in the study
of generalised coinduction. On this level of abstraction, the models of the spec-
ifications can be described and well-behavedness properties can be established
elegantly. One for instance obtains rather easily that all the specified operators
respect the coalgebraic definition of bisimilarity [AM89].

To obtain the probabilistic formats, we use a subformat of the categorical frame-
work called abstract GSOS [TP97], which was designed to cover the GSOS for-
mat [BIM95] for LTSs. We picture the general idea in Figure 1.1. Since the
format is defined for an arbitrary behaviour functor B, it can be instantiated for
many different system types including LTSs, PTSs, and Segala systems. What
remains to be shown for each instance is which concrete specifications are cov-
ered by the categorical format, i.e. we have to identify a rule format so that
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all its specifications give rise to natural transformations of the corresponding
type. The well-behavedness of such a concrete rule format then follows from
the results about the abstract one.

To establish a correspondence of abstract and concrete formats, we apply a de-
compositional method to analyse the natural transformations carefully. Using a
collection of structural representation lemmata, we first explain transformations
of a complex type in terms of simpler ones, which can then be characterised di-
rectly. With this technique we are able to give a first detailed proof of the above
mentioned correspondence of abstract GSOS and the known GSOS format for
LTSs. In a similar way, but based on more difficult representation results, we
derive the format for PTS that corresponds to abstract GSOS. We call this new
format PGSOS. For the more complex Segala systems, we define the Segala
GSOS format and argue that its specifications define natural transformations
of the type of abstract GSOS. We thus do not establish a one-to-one correspon-
dence here, but our argument still allows us to conclude that the new format
inherits the well-behavedness properties of abstract GSOS.

Although we use a categorical approach to derive the specifications formats and
their well-behavedness properties, we express the obtained results without using
coalgebraic notation. We do so to make the PGSOS and Segala GSOS format
more widely applicable in process theory, in which coalgebraic terminology is
not yet common.

1.4 Related work

In this section we briefly describe the work of other authors that has been most
influential for this thesis. We also mention previous publications of our results.

The presentation of the bialgebraic modelling of SOS specifications is to a large
extent based on work by Turi and Plotkin [TP97, Tur96], who express SOS-style
specifications of composition operators as distributive laws of the free monad
generated by the signature of the operators (i.e. the term monad) over the cofree
comonad generated by the behaviour functor. The models of the specification
are the bialgebras of the distributive law. They show that such models are
well-behaved, in the sense that unique initial and final models exist, and that
bisimulation is a congruence on every model. For the latter statement they
assume that the behaviour functor, which needs to have cofree coalgebras for
the approach in general, moreover preserves weak pullbacks. As a subformat,
Turi and Plotkin introduce the abstract GSOS format and sketch a proof of its
correspondence with specifications in the GSOS format [BIM95] when instanti-
ated with (finitely branching) labelled transition systems. Since we found that
the details of this proof, which establishes the correspondence in one step, are
not easy to provide, we do not follow their suggestion in our proof and apply a
decompositional method instead.

Distributive laws between functors with less structure than that of a monad
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and comonad are studied by Lenisa, Power, and Watanabe [LPW00], who ob-
serve that the specifications in Turi and Plotkin’s abstract GSOS format are
distributive laws of a free monad over a cofree copointed functor.

A survey of well-behaved SOS specification formats for labelled transition sys-
tems is given by Aceto, Fokkink, and Verhoef [AFV01] in the handbook of
process algebra.

An important reference for our work on generalised coinduction schemata are
the articles of Lenisa [Len99a, Len99b], who was the first to state common
properties of functions defined by various extended coiteration schemata. From
her work we took the idea to use distributive laws in that context. For concrete
generalised coinduction principles we mention that the categorical duals of prim-
itive recursion and course-of-value iteration are advocated by Uustalu and Vene
[VU98, UV99] and that a framework for generalised proof principles for (strong)
bisimilarity in the concrete case of labelled transition systems is developed by
Sangiorgi [San98]. Several examples of guarded recursive equations for infinite
data streams and deterministic automata are studied by Rutten [Rut01, Rut98].

For probabilistic systems we refer to the work of Larsen and Skou [LS91], who
define probabilistic transition systems and probabilistic bisimilarity, and Segala
[SL94, Seg95b], who studied the second type of probabilistic automata we con-
sider here together with a corresponding notion of bisimilarity. De Vink and
Rutten [VR99] and Moss [Mos99] present probabilistic systems coalgebraically
and show that the involved distribution functor preserves weak pullbacks. Con-
crete composition operators for different probabilistic systems are specified and
studied for instance by Andova [And99], Larsen and Skou [LS92], and Van
Glabbeek, Smolka, and Steffen [GSS95]. Various topics in performance analysis
were treated at an EEF summer school, and are now published as its pro-
ceedings [BHK01]. Moreover, this presentation benefited from joint work with
Sokolova and De Vink [BSV03, SV04] on a survey of probabilistic systems using
coalgebraic techniques, which is not reported in this thesis.

Parts of the work on generalised coinduction was published first as a technical
report [Bar00] and then at CMCS 2001 [Bar01, Bar03]. The PGSOS format for
probabilistic transition systems has been presented in a preliminary version at
CMCS 2002 [Bar02b], and then with more details as a technical report [Bar02a].
The Segala GSOS format was not published before.

1.5 Organisation of the Thesis and summary of
its contributions

In Chapter 2 we settle the categorical notation used and provide the necessary
background on algebra and coalgebra. The presented material is standard.

In Chapter 3 we present the categorical explanation of well-behaved SOS spec-
ification formats by Turi and Plotkin [TP97], who model specifications as dis-
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tributive laws of a free monad over a cofree comonad. Our contribution is the
treatment of distributive laws between functors with less structure than monads
and comonads. This paves the way for the interpretation of our results on gener-
alised coinduction schemata as new well-behavedness properties of the abstract
specification formats, namely the validity of a bisimulation up-to-context prin-
ciple and the solvability of guarded recursive equations. Moreover, we rigidly
analyse the natural transformations arising from the categorical formats for la-
belled transition systems, infinite data streams, and deterministic automata,
resulting in one-to-one correspondences between abstract formats and sets of
transition rules in certain shapes. This analysis proceeds by first decomposing
the complex natural transformations under consideration into simpler ones until
a direct representation result can be applied. The advantage of this method is
that it can be used to characterise the categorical format for other system types
as well, as we shall exploit when we study probabilistic systems in Chapter 5.

In Chapter 4 we treat generalised coinduction schemata. We introduce the
generic λ-coinduction definition and proof principle, which yields concrete sche-
mata for any additional functor and distributive law λ of that functor over the
behaviour functor under consideration. We give different proofs for the validity
of the principles depending on whether the additional functor is a plain functor
or carries the structure of a pointed functor or monad. As a trivial instance of the
framework one obtains the standard coinduction principles; the other examples
yield different extensions thereof. As known principles, we recover those that
arise as the categorical duals of primitive recursion and course-of-value iteration
[UV99], and the definition of a language by a nondeterministic automaton. As
new principles, we derive from the λ-coiteration schema that a bisimulation
up-to-context proof principle is valid for contexts built from GSOS-definable
operators and that guarded recursive equations involving these operators have
solutions determined up to bisimilarity.

Capitalising on our modular approach to analyse natural transformations from
Chapter 3, in Chapter 5 we derive well-behaved and expressive specification
formats for probabilistic systems. More precisely, we introduce PGSOS for the
probabilistic transition systems of Larsen and Skou [LS91] (also known as reac-
tive systems [GSS95]) and Segala GSOS for the probabilistic automata of Segala
[SL94]. Each specification in any of the formats has two uniquely determined
canonical models, bisimilarity is a congruence on all its models, the bisimula-
tion up-to-context proof principle is valid for contexts built with the operators it
defines, and guarded recursive specifications involving those operators have so-
lutions determined up to the corresponding notion of probabilistic bisimilarity.
Yet the formats are rather expressive, as we demonstrate with a list of examples
for each.

In Chapter 6 we conclude by mentioning open problems and directions for future
work.

In Appendix A we state and prove a collection of technical lemmata to char-
acterise natural transformations. They form the core of our decompositional
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method to analyse the concrete instances of the categorical operator specifica-
tion formats. These are structural lemmata to describe complex natural trans-
formations in terms of simpler ones as well as direct representation results for
transformations of simple types. The main results are representation statements
for natural transformations between functors involving the (finite) powerset and
a probability distribution functor, which arise from our study of labelled tran-
sition systems and probabilistic transition systems. Although these statements
are presented in the appendix, they are an important part of the contribution
of the thesis.



Chapter 2

Algebras and coalgebras

In this chapter we summarise some basic concepts from universal algebra and
coalgebra. We use them in this thesis mainly to model the syntax of process
description languages and system behaviour respectively. The material is stan-
dard. As an introduction to our use of algebras and coalgebras we recommend
an article of Jacobs and Rutten [JR96]. Since the algebras that we shall need
for our purposes are of a rather simple type, we focus more on the coalgebra
part. We start by fixing some notation.

2.1 Categorical notation

The treatment of categorical algebra and coalgebra requires some basic notation
from category theory, which we introduce in this section. We do not assume
much more than some familiarity with the notions of a category, a functor, a
natural transformation, and a commutative diagram. Sometimes we also use the
concept of a limit and colimit, mainly in the shape of products and coproducts.
As a reference the reader may consult the textbook by Mac Lane [ML97], but
shorter introductions are sufficient as well, such as the lecture notes by Turi
[Tur01] or Van Oosten [Oos95].

We will mainly work in the category Set of sets and total functions as well
as the category of endofunctors on Set. We draw double arrows for the mor-
phisms in the latter category, i.e. for natural transformations. Moreover, the
identity morphisms idX : X → X in any category are drawn as double arrows
in diagrams.

For the binary product and coproduct of the objects X and Y we use the
notation as pictured below, i.e. 〈f, g〉 denotes the pairing and [f, g] denotes the

17
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case analysis of f and g.

Z
f

〈f,g〉
g

X
ι1

f

X + Y

[f,g]

Y
ι2

g

X X × Yπ1 π2
Y Z

Note that the categorical products and coproducts in Set are simply cartesian
products and disjoint unions respectively. We also use arbitrary set-indexed
products and coproducts denoted by

∏

i∈I Xi and
∐

i∈I Xi for families of objects
(Xi)i∈I . We write πj :

∏

i∈I Xi → Xj and ιj : Xj →
∐

i∈I Xi for the projections
and injections. A case analysis for the arrows (fi : Xi → Z)i∈I is denoted by
[fi] :

∐

i∈I Xi → Z.

We use the following functors:

Id, A, F×G, F +G, FA, P, Pω, P+
ω , and Dω,

where Id is the identity functor; A for any object A is the constant functor;
F × G and F + G are the product and coproduct of the functors F and G; FA

is the exponent of the functor F by the object A; P : Set → Set denotes the
powerset functor defined for a set X and function f : X → Y as

PX := {X ′ ⊆ X} and Pf :=
[
X ′ ∈ PX 7→ f [X ′] ∈ PY

]
,

where f [X ′] = {f(x) | x ∈ X ′} ⊆ Y for X ′ ⊆ X denotes the function image;
moreover, we use the symbols Pω and P+

ω for the finite powerset functor and the
nonempty finite powerset functor, i.e. the restriction of the powerset functor to
finite subsets and finite, nonempty subsets respectively. The distribution functor
Dω will be given in Def. 5.1.1.

A span and a cospan between two objects X and Y are triples 〈Z, f, g〉 of an
object Z and two arrows as pictured respectively below.

X Z
f g

Y X
f

Z Y
g

A weak pullback of a cospan 〈Z, f, g〉 between X and Y is a span 〈P, p1, p2〉
between X and Y satisfying f ◦ p1 = g ◦ p2 and such that for every span
〈Q, q1, q2〉 between X and Y with f ◦ q1 = g ◦ q2 there exists a mediating arrow
m : Q→ P satisfying q1 = p1 ◦ m and q2 = p2 ◦ m.

Q

q1 q2m

Pp1 p2

X

f

Y

g

Z
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Note that this definition is weaker than that of an ordinary pullback as the
mediating arrow m need not be unique. A functor F is said to preserve weak
pullbacks if it maps a weak pullback square on a weak pullback square, i.e.
for the above weak pullback we have that 〈FP,Fp1,Fp2〉 is a weak pullback of
〈FZ,Ff,Fg〉.
An object 0 of a category is called initial if for every object X there exists
precisely one arrow ! : 0 → X. Dually, an object 1 of a category is called final if
for every object X there exists precisely one arrow ! : X → 1. In Set the empty
set is the only initial object, and every singleton set is final. When we talk
about an arbitrary final set, we denote its only element by a star, i.e. 1 = {∗}.

2.2 Operator interpretations as algebras

In this section we recall the categorical means to model the syntax of a program-
ming or process description language. Such a language is usually described by
a grammar as in the simple example below, where a ∈ L for some set of labels
L.

E ::= 0 | a | E1 · E2 | E1 + E2 (2.1)

As we shall explain, this specification gives rise to a signature functor S such that
the interpretations of the grammar are algebras for S, and the sets of possibly
open terms of this language over given sets of variables are captured by the free
monad over S.

2.2.1 Algebras and congruences

A grammar as in (2.1) describes a signature, which is to say, a set of operator
symbols Σ, where with each symbol σ ∈ Σ a finite arity |σ| ∈ N is associated.
In our example the signature is Σ = {0} ∪ L ∪ {·,+}, where 0 and a for a ∈ L
are constants and the other two operators are binary, i.e. |0| = |a| = 0 and
| · | = |+ | = 2. Here we will limit ourselves to one-sorted signatures as this one,
but we remark that a generalisation of our studies to many-sorted signatures is
possible.

An interpretation of this signature on a set P is a collection of operators

(
[[σ(.)]] : P |σ| → P

)

σ∈Σ
.

These interpretations can be modelled elegantly as algebras of a functor.

Definition 2.2.1 Let S be a Set-functor. An algebra of the functor S, or S-
algebra for short, is a pair 〈P, β : SP → P 〉 of a carrier set P and an operation
β.
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A function h : P → Q is a homomorphism between the two S-algebras 〈P, βP 〉
and 〈Q, βQ〉 if it makes the following diagram commute.

SP
Sh

βP

SQ

βQ

P
h

Q

The S-algebras together with their homomorphisms (with identities and compo-
sition as in Set) form a category, which we denote by AlgS.

Any signature Σ gives rise to a Set-functor S, defined for any set X and function
f : X → Y as

SX :=
∐

σ∈Σ

X |σ| =
{
σ(x1, . . . , x|σ|) | σ ∈ Σ; x1, . . . , x|σ| ∈ X

}
,

Sf :=
[

σ(x1, . . . , xn) ∈ SX 7→ σ(f(x1), . . . , f(xn)) ∈ SY
]

.

(2.2)

For better readability, we have written σ(x1, . . . , xn) for ισ(x1, . . . , xn) ∈ SX.

The algebras of this functor correspond to the interpretations of the opera-
tors in the signature. The algebra operation, as it were, glues together the
functions [[σ(.)]] from above. Therefore we usually write such an algebra as
〈P, [[.]] : SP → P 〉. For a functor S arising from a signature as above, a function
h : P → Q is a homomorphism from one S-algebra 〈P, [[.]]P 〉 to another S-algebra
〈Q, [[.]]Q〉 if for all σ(p1, . . . , pn) ∈ SP we have

h([[σ(p1, . . . , pn)]]P ) = [[σ(h(p1), . . . , h(pn))]]Q.

Given an interpretation 〈P, [[.]]〉 of the signature Σ, one is sometimes interested
in equivalence relations R ⊆ P × P that respect the operator interpretations.
By this we mean that for any operator symbol σ ∈ Σ with arity n we find

〈[[σ(p1, . . . , pn)]], [[σ(q1, . . . , qn)]]〉 ∈ R

if 〈pi, qi〉 ∈ R for 1 ≤ i ≤ n. Such a relation R is called a congruence. We will use
the following categorical generalisation of this notion. It defines a congruence
as a relation between two possibly different algebras for an arbitrary functor.

Definition 2.2.2 Let S be a Set-functor. A relation R ⊆ P × Q is a con-
gruence between two S-algebras 〈P, βP 〉 and 〈Q, βQ〉 if there is an S-algebra
structure γ on R such that the two projections π1 : R → P and π2 : R → Q
become homomorphisms between the respective algebras, i.e. γ makes the two
squares in the following diagram commute (note that this condition determines
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γ uniquely).

SP

βP

SR
Sπ1 Sπ2

∃γ

SQ

βQ

P Rπ1 π2
Q

2.2.2 Initial algebras and free monads

The syntax of a programming language is given by the set of terms that we can
build with the operator symbols in the corresponding signature Σ. Formally
this is the smallest set T that is closed under the term construction, i.e. for
all operator symbols σ ∈ Σ with arity n and elements t1, . . . , tn ∈ T we have
σ(t1, . . . , tn) ∈ T . We use the following notion to describe this set categorically.

Definition 2.2.3 Let S be an endofunctor. An initial S-algebra is an initial
object in AlgS, i.e. an S-algebra 〈I, χ〉 such that for any S-algebra 〈P, β〉 there
exists precisely one homomorphism from 〈I, χ〉 to 〈P, β〉.

It can be shown that the set of closed terms of a signature Σ yields an initial
S-algebra, where S is the functor associated to Σ. In the following we will
sometimes refer to it as “the” initial algebra instead of “an” initial algebra,
since initial objects are always isomorphic.

When we are interested in open terms over a set of variables X, we arrive at the
notion of a free algebra.

Definition 2.2.4 Let S be an endofunctor. A free S-algebra over the object
X is an initial algebra

〈TX, [ηX , νX ] : X + STX → TX〉

of the functor SXY := X + SY .

In case the functor S arises from a signature Σ as in equation (2.2), which is the
case that we will consider here most of the time, the elements of TX are the
open terms of that signature over the set of variables X. An initial S-algebra is
the free S-algebra over the initial set ∅.
We can slightly rewrite the initiality condition of a free S-algebra 〈TX, [ηX , νX ]〉
over X into the following free induction definition principle: for any set Y , every
two arrows f : X → Y and g : SY → Y uniquely define an arrow h : TX → Y
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making the following diagram commute:

X
ηX

∀f

TX

∃!h

STX
νX

Sh

Y SY
∀g

(2.3)

Definition 2.2.5 Let S be a functor such that for all objects X there exists a
free S-algebra 〈TX, [ηX , νX ]〉 over X. The mapping X 7→ TX (where we assume
that for every X one particular free algebra has been chosen) extends to the free
algebra functor by defining Tf : TX → TY for a function f : X → Y to be
the unique arrow making the diagram below commute (cf. the free induction
principle of (2.3)).

X
ηX

f

TX

Tf

STX
νX

STf

Y ηY
TY STYνY

Using the uniqueness aspect of the free induction principle it is easy to verify that
the above definition of T is functorial indeed. Note also that, with the definition
of T, η : Id⇒ T and ν : ST⇒ T are natural transformations. Moreover, the free
induction definition principle in (2.3) extends to a definition principle for natural
transformations: for two functors F and G, any two natural transformations φ :
F⇒ G and ψ : SG⇒ G uniquely define a natural transformation ρ : TF⇒ G,
such that the diagram below commutes.

F
ηF

φ

TF

ρ

STF
νF

Sρ

G SG
ψ

(2.4)

Each component of ρ is uniquely determined by free induction. Naturality can
be established again with the uniqueness aspect of the principle.

In the following it will be convenient to treat the free algebra functor as a
particular example of a monad.

Definition 2.2.6 A monad in a category C is a triple 〈T, η, µ〉 of a functor
T : C → C and two natural transformations η : Id ⇒ T and µ : T2 ⇒ T,
called the unit and multiplication respectively, such that the three parts of the
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two diagrams below commute.

T
Tη

id

T2

µ
unit T unit T

T
ηT

id

T3
Tµ

µT mult. T

T2

µ

T T2
µ T

The first two we call the unit laws and the third the multiplication law of the
monad.

Definition 2.2.7 Let T, η, and ν be the functor and the two natural transfor-
mations from Def. 2.2.5 of a free algebra functor over S. Let µ : T2 ⇒ T be the
unique natural transformation making the following diagram commute (cf. the
definition principle in (2.4)).

T
ηT

id

T2

µ

ST2νT

Sµ

T STν

The triple 〈T, η, µ〉 is a monad, which we call the free monad generated by
S. In cases where we need the natural transformation ν : ST ⇒ T as well, we
write the free monad as 〈〈T, η, µ〉, ν〉 or, equivalently (see Lemma 2.2.8 below),
〈〈T, η, µ〉, κ〉 for the natural transformation κ := ν ◦ Sη : S⇒ T.

To show that the above definition yields a monad indeed, we have to check that
the two unit laws and the multiplication law from Def. 2.2.6 hold. One of the
unit laws is immediate from the definition of µ. The other two identities require
easy diagram chases exploiting the uniqueness aspect of the definition principle
in (2.4).

Lemma 2.2.8 For the natural transformation κ : S ⇒ T from Def. 2.2.7 we
have ν = µ ◦ κT.

Proof: The claim is proved with the following diagram:

ST
SηT

id

κT

(def. κ)T

ST2

Sµ
νT

S(unit T)
def. µ

T2

µ

ST ν T

2

One of the special properties of the free monad 〈T, η, µ〉 generated by S is that
it has the same algebras as S.
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Definition 2.2.9 An algebra of the monad 〈T, η, µ〉 is a T-algebra 〈P, β〉
such that the two diagrams below commute, which we call the unit and multipli-
cation law of the algebra respectively.

P
ηP

id

TP

β
unit β

TP

β

T2P
µP

Tβmult. β

P P TP
β

By Alg〈T,η,µ〉 we denote the category of all algebras for the monad 〈T, η, µ〉.

Lemma 2.2.10 Let 〈〈T, η, µ〉, κ : S⇒ T〉 be the free monad generated by a func-
tor S from Def. 2.2.7. The categories AlgS and Alg〈T,η,µ〉 are isomorphic.

Proof: [sketch] One direction is given by 〈P, β̃〉 7→ 〈P, β̃ ◦ κP 〉 for an algebra
〈P, β̃〉 of the monad, and the other direction by 〈P, β〉 7→ 〈P, β∗〉 for an S-algebra
〈P, β〉, where β∗ is the unique arrow fitting into the diagram below (cf. the free
induction principle in (2.3)).

P
ηP

id

TP

β∗

STP
νP

Sβ∗

P SP
β

For the two constructions one needs to check the following: β∗ should satisfy the
multiplication law (the unit law is satisfied by definition), the two constructions
need to be inverses of each other, and they should preserve homomorphisms.
The proofs of all items are straightforward, some use the uniqueness aspect of
the free induction principle.

2

In the case of an algebra [[.]] : SP → P of a functor S arising from a signature
Σ as in (2.2), the above inductive extension [[.]]∗ : TP → P is given for p ∈ P ,
σ ∈ Σ with arity n, and t1, . . . , tn ∈ TP as

[[p]]∗ := p and [[σ(t1, . . . , tn)]]
∗ := [[σ([[t1]]

∗, . . . , [[tn]]
∗)]].

2.3 Transition systems as coalgebras

In this section we recall some notions and results from the theory of coalgebras.
We use them to model dynamic systems and (possibly) infinite data structures.
As examples we consider labelled transition systems, infinite data streams, de-
terministic automata, and, in Chapter 5, different kinds of probabilistic systems.
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Rutten [Rut96, Rut00b] gave the first systematic treatment of universal coalge-
bra. For several statements we quote here we point to his paper as a convenient
reference. The interested reader can find more details including pointers to the
origin of the results there. As further introductions into the theory of coalgebras
we recommend articles of Jacobs [Jac02] and Gumm [Gum99, Gum03b].

We illustrate the definitions again with the example of labelled transition systems
(LTSs) from the introduction (cf. Section 1.1), which, for a fixed set of labels
L, were pairs

〈P, ( a−→ ⊆ P × P )a∈L〉. (2.5)

We view an LTS as a dynamic system. At any moment it is in some state
p ∈ P . From p it can make transitions, to which a label from L is associated.
The actual transition is chosen nondeterministically. Note that the above pre-
sentation leaves open whether the labels are a part of the choice of the system
(internal nondeterminism) or whether they are prescribed by the environment
(external nondeterminism). One often restricts the nondeterminism to be finite:
for finitely branching systems one assumes that in any state p ∈ P the system
can choose from only finitely many transitions; for image finite systems one
assumes that any state p has only finitely many outgoing transitions for each
label a ∈ L.
The states of an LTS are often viewed to be internal. All one is interested in is
the behaviour that the system in a given state shows to an external observer.
This behaviour is defined by specifying which system states look the same to this
observer, i.e. by declaring a notion of behavioural equivalence of states. Various
equivalences are studied in the literature, and they are all somehow based on the
sets of enabled and disabled labels of the state itself and of other states reachable
by sequences of labelled transitions. The most important notion is that of
(strong) bisimilarity [Mil80, Mil89, Par81]. Here two states are indistinguishable

if they are related by some bisimulation. A bisimulation on an LTS 〈P, ( a−→ )〉
in turn is a relation R ⊆ P × P such that for all related states 〈p, q〉 ∈ R and
labels a ∈ L we have that

p
a−→ p′ implies q

a−→ q′ for some q′ ∈ P with 〈p′, q′〉 ∈ R, and
q

a−→ q′ implies p
a−→ p′ for some p′ ∈ P with 〈p′, q′〉 ∈ R. (2.6)

As an example, the states p and q0 in the labelled transition system pictured
below with set of labels L = {a, b} are bisimilar, since the relation

R := {〈p, qi〉, 〈p′, q′i〉 | i ∈ N}
is a bisimulation, as one easily verifies.

p

b

a q0
a

b

q1
a

b

q2
a

b

. . .

p′ q′0 q′1 q′2
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2.3.1 Coalgebras and bisimilarity

We now show how to model labelled transition systems as coalgebras of a functor,
a notion dual to that of an algebra from Definition 2.2.1. The advantages of
this abstract approach to dynamic systems is that once we have found that the
systems we are interested in are coalgebras of some functor, several meaningful
notions and results immediately become available. For instance, there are results
for an abstract notion of a bisimulation which, for the functor describing labelled
transition systems, coincides with the notion of a strong bisimulation above, as
we shall demonstrate.

Definition 2.3.1 Let B be a Set-functor. A coalgebra for the functor B,
or B-coalgebra for short, is a pair 〈P, α : P → BP 〉 of a carrier set P and a
structure map α.

A function h : P → Q is a homomorphism between the two B-coalgebras
〈P, αP 〉 and 〈Q,αQ〉 if it makes the following diagram commute.

P
h

αP

Q

αQ

BP
Bh

BQ

The B-coalgebras together with their homomorphisms (with identities and com-
position as in Set) form a category, which we denote by CoalgB. The forgetful
functor U : CoalgB → Set maps each coalgebra to its carrier and each homo-
morphism to itself.

We often call the functor B used to define a class of coalgebras a behaviour
functor. We do so only to stress the role of B, not to restrict the type of
functors under consideration.

In order to show that labelled transition systems are coalgebras, we give an
alternative but equivalent definition below.

Definition 2.3.2 A labelled transition system (LTS) for the (nonempty)
input alphabet L is a pair

〈P, α : P → (PP )L〉
of a set of states P and a transition structure α, which is to say a coalgebra of
the functor B = PL. If no confusion about the LTS 〈P, α〉 under consideration
is likely to arise, we use the following arrow notation for p ∈ P and a ∈ L:

p
a−9 for α(p)(a) = ∅,

p
a−→ for α(p)(a) 6= ∅,

p
a−→ p′ for p′ ∈ α(p)(a).
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We call a ∈ L enabled in state p ∈ P if p a−→ , otherwise it is disabled.

From the coalgebraic definition we also obtain a notion of a map between two
LTSs 〈P, αP 〉 and 〈Q,αQ〉. Spelling out the definition, we get that a homomor-

phism from 〈P, αP 〉 to 〈Q,αQ〉 is a function h : P → Q such that p
a−→ p′ in

〈P, αP 〉 implies h(p)
a−→ h(p′) in 〈Q,αQ〉 and, moreover, all transitions of h(p)

arise in this way. As a consequence, p and h(p) have the same set of enabled
actions.

We are now going to argue that the notion of a bisimulation on an LTS gen-
eralises to arbitrary coalgebras. To this end, we first rephrase the condition
in (2.6) in terms of sets of successor states. For a relation R ⊆ P × P let
≡R⊆ PP × PP denote the relation defined to have U ≡R V if and only if

p ∈ U implies 〈p, q〉 ∈ R for some q ∈ V , and
q ∈ V implies 〈p, q〉 ∈ R for some p ∈ U .

With this definition, a relation R ⊆ P × P is a bisimulation on the LTS 〈P, α〉
if for all 〈p, q〉 ∈ R and a ∈ L we have that α(p)(a) ≡R α(q)(a). The crucial
observation now is that the relation ≡R arises as the image of the span

PP PRPπ1 Pπ2 PP
which is to say that U ≡R V if and only if there exists W ∈ PR such that
U = (Pπ1)(W ) and V = (Pπ2)(W ). From this it immediately follows that
the relation R is a bisimulation if and only if there exists a coalgebra structure
γ : R→ (PR)L making both parts of the diagram below commute.

P

α

R

γ

π1 π2
P

α

(PP )L (PR)L
(Pπ1)

L (Pπ2)
L
(PP )L

The latter formulation generalises to coalgebras of an arbitrary functor B and
to relations between two possibly different coalgebras. The definition is due to
Aczel and Mendler [AM89].

Definition 2.3.3 Let B be a Set-functor. A relation R ⊆ P ×Q is a bisimu-
lation between two B-coalgebras 〈P, αP 〉 and 〈Q,αQ〉 if there is a B-coalgebra
structure γ on R such that the two projections π1 : R → P and π2 : R → Q
become homomorphisms between the respective coalgebras, i.e. γ makes the two
squares in the following diagram commute.

P

αP

R
π1 π2

∃γ

Q

αQ

BP BR
Bπ1 Bπ2

BQ
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Two states p ∈ P and q ∈ Q of the above coalgebras are said to be bisimilar,
written as p ∼ q, if they are related by some bisimulation.

This notion is similar, but not dual to that of a congruence (cf. Def. 2.2.2). Note
for instance that the mediating coalgebra structure γ is not necessarily uniquely
determined here.

In the categorical setting it is often convenient not to insist on working with
relations and projections but with arbitrary sets R and functions from R to P
and Q. This is justified by the following lemma.

Lemma 2.3.4 (cf. [Rut00b, Lemma 5.3]) Let 〈P, αP 〉 and 〈Q,αQ〉 be two
coalgebras of a functor B, and let 〈R, rP , rQ〉 be a span between P and Q. The
image

〈rP , rQ〉[R] = {〈rP (z), rQ(z)〉 | z ∈ R} ⊆ P ×Q.

of this span is a bisimulation if and only if there is a coalgebra structure γ :
R→ BR making both parts of the diagram below commute.

P

αP

R
rP rQ

∃γ

Q

αQ

BP BR
BrP BrQ

BQ

A corresponding statement holds for congruences (cf. Def. 2.2.2), so we also
work with arbitrary spans in that context.

We usually leave the conversion of a span into the represented relation implicit.
In order to do so, the following simple fact is convenient occasionally.

Lemma 2.3.5 Let 〈R, rP , rQ〉 and 〈R′, r′P , r′Q〉 be two spans between the sets P
and Q. We have 〈rP , rQ〉[R] ⊆ 〈r′P , r′Q〉[R′] if and only if there exists a function
f : R→ R′ making the two triangles in the diagram below commute.

RrP rQ

∃fP Q

R′
r′P r′Q

It is easy to see that the union of bisimulations is a bisimulation again. So the
bisimilarity relation ∼ defined above is a bisimulation as well, which makes it
the greatest one:

Lemma 2.3.6 For any Set functor B there exists a greatest bisimulation ∼
between any two B-coalgebras.
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2.3.2 Final coalgebras

Among the coalgebras of a functor B we are particularly interested in finding
one coalgebra 〈F, ω〉 which is fully abstract with respect to bisimilarity. With
this we mean that for any given state p in any B-coalgebra 〈P, α〉 the sought
coalgebra 〈F, ω〉 should have precisely one state which is bisimilar to p. This
property is equivalent to finality:

Definition 2.3.7 A final B-coalgebra is a final object in CoalgB, i.e. a B-
coalgebra 〈F, ω〉 such that for every B-coalgebra 〈P, α〉 there exists precisely one
homomorphism from 〈P, α〉 to 〈F, ω〉.

Since any two final objects are isomorphic, we often refer to a final coalgebra as
the final coalgebra.

Theorem 2.3.8 (cf. [Rut00b, Theorems 9.2 and 9.3]) Let B be a Set-functor
with a final coalgebra 〈F, ω〉. For two B-coalgebras 〈P, αP 〉 and 〈Q,αQ〉 and two
states p ∈ P and q ∈ Q we have that p ∼ q implies hP (p) = hQ(q), where hP :
〈P, αP 〉 → 〈F, ω〉 and hQ : 〈Q,αQ〉 → 〈F, ω〉 are the unique homomorphisms
given by finality. If B preserves weak pullbacks (cf. Section 2.1) then the converse
holds as well.

In particular, we obtain the following coinduction proof principle to prove states
of the final coalgebra equal:

Corollary 2.3.9 Let 〈F, ω〉 be the final coalgebra of the Set-functor B, and let
p, q ∈ F. We have p ∼ q if and only if p = q.

So in order to show that two states p and q of a final coalgebra are equal it
suffices to exhibit a bisimulation R ⊆ F × F with 〈p, q〉 ∈ R. We shall give an
example for this principle in Section 2.3.3.

Not every functor has a final coalgebra. To find counterexamples we can use a
property every final coalgebra has according to Lambek’s Lemma:

Lemma 2.3.10 (cf. [Rut00b, Theorem 9.1]) Let B be a functor with a final
coalgebra 〈F, ω〉. The structure map ω is an isomorphism.

With this property we can for instance show that the (unrestricted) powerset
functor P does not have a final coalgebra: if 〈F, ω〉 was a final P-coalgebra,
we had F ' PF; this is impossible, since with Cantor’s Theorem no set is
isomorphic to its own powerset. From this consideration we immediately get
that no LTS as in Def. 2.3.2 can be final.

Still, it has been shown for a large class of functors that they have final coalge-
bras. We quote a rather strong result that uses the notion of a bounded functor
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(cf. [Rut00b, Def. 6.7]): a Set-functor B is called bounded, if there exists a
global bound to the size of the carrier set of any one-generated B-coalgebra. A
one-generated coalgebra in turn is a coalgebra with a state from which all other
states can be reached via the coalgebra structure.

Theorem 2.3.11 (cf. [Rut00b, Theorem 10.4]) Every bounded functor has a
final coalgebra.

With this argument one can show that all functors built from the identity functor
Id, the constant functor A for any set A, product and coproduct of such functors,
the exponent (−)A of such a functor with a constant set A, and the finite
powerset functor Pω have final coalgebras (cf. [Rut00b, Theorem 10.6]). For
the interested reader we mention that a construction of the final coalgebra for
the finite powerset functor Pω is explained in some detail by Worrell [Wor00,
Section 3.6].

It follows from the above theorem that there exists a final image finite LTS. So
from now on we implicitly assume image finiteness when we work with labelled
transition systems, i.e. we adopt the following modification of Definition 2.3.2:

Definition 2.3.12 An image finite labelled transition system for a (non-
empty) input alphabet L is a pair

〈P, α : P → (PωP )L〉,

i.e. a coalgebra of the functor B = (Pω)L. So an LTS 〈P, α〉 from Def. 2.3.2 is
image finite if for all p ∈ P and a ∈ L we have that α(p)(a) is a finite set.

Once we know that the behaviour functor B under consideration has a final
coalgebra, we often work on this coalgebra directly. Below we shall demonstrate
this for the examples of infinite streams and languages. We can use finality
directly as a definition principle to access the inhabitants of such a datatype:

Definition 2.3.13 Let 〈F, ω〉 be a final coalgebra of the functor B. Every arrow
α : X → BX uniquely determines an arrow h : X → F making the diagram
below commute.

X

∀α

∃!h

coiteration

F
ω

BX
Bh

BF

We say that h is defined by α through the coiteration schema.

We will give an example for this principle when we treat streams coalgebraically
in the next section.
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2.3.3 Examples of coalgebras

We have seen that unrestricted as well as image finite labelled transition systems
are coalgebras for a suitable behaviour functor. In this section we give a few
examples on how to model other kinds of systems and datatypes as coalgebras.
We spell out the corresponding conditions for homomorphisms and bisimulations
and present final systems for some of them.

LTSs with state predicates

One advantage of the coalgebraic approach is that we can often easily also
treat minor variations of the behaviour type under consideration. To illustrate
this point, we mention a variant of (image finite) labelled transition systems,
which we modelled as coalgebras of the functor (Pω)L in Def. 2.3.12. Sup-
pose we want to extend this model so that to each state an attribute from a
set of attributes A is associated. Such a system can be modelled as a pair
〈P, 〈a, α〉 : P → A× (PωP )L〉, i.e. a coalgebra of the functor A× (Pω)L. As one
example, transition systems with a termination predicate

√
can be modelled by

taking A := P{√} ' 2.

We can apply Theorem 2.3.11 to obtain that this functor possesses a final coal-
gebra as well. For the characterisation of a homomorphism

h : 〈P, 〈aP , αP 〉〉 → 〈Q, 〈aQ, αQ〉〉

we get an extra clause demanding that h should preserve the attributes, i.e.
that for all p ∈ P we have aP (p) = aQ(h(p)). Similarly, in the definition of a
bisimulation we further require that related states have the same attribute.

Streams

We now want to consider systems where to each state we assign a real number as
an attribute and a successor state. These systems are coalgebras of the functor
B := R× Id. They are studied e.g. by Rutten [Rut01].

Let 〈P, 〈hP , tP 〉 : P → R× P 〉 and 〈Q, 〈hQ, tQ〉 : Q→ R×Q〉 be two B-coalge-
bras. A function f : P → Q is a homomorphism between those coalgebras just
in case for all p ∈ P we have hP (p) = hQ(f(p)) and f(tP (p)) = tQ(f(p)), and
a relation R ⊆ P × Q is a bisimulation between the two coalgebras if for all
〈p, q〉 ∈ R we have hP (p) = hQ(q) and 〈tP (p), tQ(q)〉 ∈ R.
Let

Rω := {〈s0, s1, s2, . . .〉 | si ∈ R (i ∈ N)}

be the set of infinite sequences of real numbers, which we will call streams over
R. The set Rω can be turned into a final B-coalgebra 〈Rω, 〈h, t〉 : Rω → R× Rω〉
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by defining h and t to return the head and tail of the given stream, i.e.

h(〈s0, s1, s2, . . .〉) := s0 and t(〈s0, s1, s2, . . .〉) := 〈s1, s2, . . .〉. (2.7)

We will sometimes use bold letters like s ∈ Rω for a stream and write s = s0 : s′

to express that s has head s0 and tail s′.

To illustrate the coiteration schema from Def 2.3.13, we define the function
mapg : Rω → Rω that applies a given function g : R → R to all elements of a
stream. For any s = (s0 : s′) ∈ Rω the function satisfies

mapg(s) = g(s0) : mapg(s
′). (2.8)

To see that this equation uniquely defines mapg, notice that it can equivalently
be expressed by requiring that the function should make the following diagram
commute, which is an instantiation of the coiteration schema.

Rω

〈g◦h,t〉

mapg
Rω

〈h,t〉

R× Rω
id×mapg

R× Rω

As an example of a coinduction proof we show

map(g′ ◦g) = mapg′ ◦ mapg
for any two functions g, g′ : R → R. With the coinduction proof principle from
Corollary 2.3.9 it suffices to establish

map(g′ ◦g)(s) ∼ mapg′(mapg(s)) for all s ∈ Rω.

To this end one easily derives from the definitions that the relation

R = {〈map(g′ ◦g)(s), mapg′(mapg(s))〉 | s ∈ Rω}
is a bisimulation.

In some examples we will more generally work with streams Aω over some set
A, which can be turned into the final coalgebra of the functor B = A× Id.

Streams over real numbers modelling power series are also studied e.g. by McIl-
roy [McI99]. As a variation, the lazy lists over a set A from the introduction
form a final coalgebra of the functor 1 + A × Id (see e.g. the article of Hensel
and Jacobs [HJ98]).

Deterministic automata

As the last example for now we consider deterministic automata for an alphabet
L. Following Rutten [Rut98], we model such an automaton as a pair

〈P, 〈o, t〉 : P → 2× PL〉,
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where 2 = {⊥,>} is the set of truth values. In other words, a deterministic
automaton is a coalgebra of the functor B := 2 × IdL. The function o : P →
2 models the acceptance predicate and t : P → PL encodes the transition
function. For p ∈ P we write p↓ if o(p) = > and p↑ otherwise. For a ∈ L we

moreover define pa := t(p)(a) and write p
a−→ pa.

Let 〈P, 〈oP , tP 〉 : P → 2× PL〉 and 〈Q, 〈hQ, tQ〉 : Q→ 2×QL〉 be two deter-
ministic automata. A function f : P → Q is a homomorphism between
those coalgebras just in case for all p ∈ P we have p↓ ⇐⇒ (f(p))↓ and
(f(p))a = f(pa) for all a ∈ L. A relation R ⊆ P ×Q is a bisimulation between
the two automata if for all 〈p, q〉 ∈ R we have p↓ ⇐⇒ q↓ and for all a ∈ L we
find 〈pa, qa〉 ∈ R.
Let L∗ denote the set of finite words over L, including the empty word ε, and
let

L := {M ⊆ L∗} = PL∗

be the set of languages over L. It can be turned into a deterministic automaton
(i.e. a B-coalgebra 〈L, 〈o, t〉 : L → 2× LL〉) by defining for any languageM ∈ L

M↓ ⇐⇒ ε ∈M and Ma := {w ∈ L∗ | aw ∈M}. (2.9)

Rutten [Rut98] shows that this coalgebra is final. Given any deterministic au-
tomaton 〈P, 〈oP , tP 〉〉, the final homomorphism h : P → L from 〈P, 〈oP , tP 〉〉
to 〈L, 〈o, t〉〉 maps every state p ∈ P to the language h(p) it accepts. In Sec-
tion 4.4.3 we will use a generalised coinduction principle to define the functions
that map the states of nondeterministic automata to the languages they accept.

2.3.4 Comonads

We shall need the concept dual to that of a monad from Def. 2.2.6 as well, though
it will be less important for our work. Since all definitions and statements are
dual to those in Section 2.2.2, the description is very brief here and is mainly
meant to introduce the notation.

Definition 2.3.14 Let B be an endofunctor. A cofree B-coalgebra over the
object X is a final coalgebra

〈DX, 〈εX , υX〉 : DX → X × BDX〉

of the functor BXY := X × BY .

The definition of a cofree B-coalgebra 〈DX, 〈εX , υX〉〉 gives rise to the cofree
coinduction definition principle: for any set Y , every two arrows f : Y → X
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and g : Y → BY uniquely define an arrow h : Y → DX making the following
diagram commute:

Y∀f

∃!h

∀g
BY

Bh

X DXεX υX
BDX

(2.10)

Definition 2.3.15 Let B be a functor such that for all objects X there exists
a cofree B-coalgebra 〈DX, 〈εX , υX〉〉 over X. The mapping X 7→ DX (where
we assume that for every X one particular cofree coalgebra has been chosen)
extends to the cofree coalgebra functor by defining Df : DX → DY for a
function f : X → Y to be the unique arrow making the diagram below commute
(cf. the cofree coinduction principle of (2.10)).

X

f

DX
εX υX

Df

BDX

BDf

Y DYεY υY
BDY

Here again ε : D⇒ Id and υ : D⇒ BD become natural transformations and the
cofree coinduction definition principle in (2.10) extends to a definition principle
for natural transformations: for two functors F and G, any two natural transfor-
mations φ : G ⇒ F and ψ : G ⇒ BG uniquely define a natural transformation
ρ : G⇒ DF, such that the diagram below commutes.

G
ψ

φ

ρ

BG

Bρ

F DF
εF υF

BDF

(2.11)

Definition 2.3.16 A comonad in a category C is a triple 〈D, ε, δ〉 of a functor
D : C → C and two natural transformations ε : D ⇒ Id and δ : D ⇒ D2, called
the counit and comultiplication respectively, such that the three parts of the two
diagrams below commute.

Did

δ

id D
δ

δ

D2

δD

D D2
Dε εD

unit D unit D

D D2
Dδ

mult. D

D3

The first two we call the counit laws and the third the comultiplication law of
the comonad.
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Definition 2.3.17 Let D, ε : D⇒ Id, and υ : D⇒ BD be the functor and the
two natural transformations from Def. 2.3.15 of a cofree coalgebra functor over
B. Let δ : D ⇒ D2 be the unique natural transformation making the following
diagram commute (cf. the definition principle in (2.11)).

Did

δ

υ
BD

Bδ

D D2
εD υD

BD2

The triple 〈D, ε, δ〉 is a comonad, which we call the cofree comonad generated
by B. In cases where we need the natural transformation υ : D ⇒ BD as well,
we write the cofree comonad as 〈〈D, ε, δ〉, υ〉 or, equivalently (see Lemma 2.3.18
below), 〈〈D, ε, δ〉, ϑ〉 for the natural transformation ϑ := Bε ◦ υ : D⇒ B.

Lemma 2.3.18 For the natural transformation ϑ : D⇒ B from Def. 2.3.17 we
have υ = ϑD ◦ δ.

Definition 2.3.19 A coalgebra of the comonad 〈D, ε, δ〉 is a D-coalgebra
〈P, α〉 such that the two diagrams below commute, which we call the counit and
comultiplication law of the coalgebra respectively.

Pid

α

P
α

α

DP

Dα

P DPεP

cou. α

DP
δP

D2P

comult. α

By Coalg〈D,ε,δ〉 we denote the category of all coalgebras for the comonad 〈D, ε, δ〉.

Lemma 2.3.20 Let 〈〈D, ε, δ〉, ϑ : D⇒ B〉 be the cofree comonad generated by
a functor B from Def. 2.3.17. The categories CoalgB and Coalg〈D,ε,δ〉 are iso-
morphic, i.e. there exists a one-to-one correspondence between B-coalgebras and
coalgebras for the comonad 〈D, ε, δ〉 which respects homomorphisms.
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Chapter 3

A bialgebraic approach to
structural operational
semantics

Plotkin’s structural operational semantics (SOS) [Plo81] is a popular tool for
giving semantics to programming languages. An SOS specification consists of
a collection of derivation rules. With those rules, the transitions of a labelled
transition system can be specified following the syntactic structure of the terms
of the programming language. It has been observed that important properties
of the specification, such as invariance under bisimilarity, can be established
simply by inspection of the syntactic format of its rules. Examples of proposed
rule formats are the De Simone format [Sim85], the GSOS format [BIM95], or
the tyft/tyxt rules [GV89, GV92]. A survey of the most important formats and
the properties they guarantee is given by Aceto et al. [AFV01].

In this chapter, we study a bialgebraic approach to well-behaved SOS specifi-
cation formats as introduced by Turi and Plotkin [TP97], which has received
considerable attention since its introduction (see Section 3.7 on related work).
Here specifications are modelled as certain natural transformations called dis-
tributive laws of a monad modelling the syntax of the programming language
over a comonad modelling computations or, as we say here, system behaviour.
The main advantages of this abstract categorical formulation are that it allows
for more transparent proofs and that it can be instantiated with different kinds
of systems behaviours, as we shall demonstrate. At the same time it captures
rather expressive concrete specification formats like the GSOS rules mentioned
above.

We give a step by step introduction to the subject, which does not assume a
strong background in category theory and should make the theory more easily
accessible. To this end, we focus on the category of sets and total functions,

37
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Set, and motivate the necessary categorical notions by concrete examples.

We present a new proof showing that bisimilarity on every bialgebra for a dis-
tributive law is a congruence. With our argument we can dispense with assump-
tions on the coalgebra functor.

We extend Turi and Plotkin’s work in that we also consider distributive laws
between functors with less structure than that of a monad and comonad as
specifications. Although such specifications are less expressive than the original
ones, we have two reasons for studying them: first, as we shall prove in Chapter
4, they have additional properties; second, this way we generalise the approach
to system types that cannot be described by comonads, like for instance labelled
transition systems with unbounded nondeterminism.

The success of the methodology of Turi and Plotkin depends crucially on our
ability to relate the specifications in the abstract formats, i.e. natural transfor-
mations of a certain type, to practically usable concrete formats. By the latter
we mean for instance sets of transition rules of some shape. To establish an
equivalence between a type of natural transformation and certain sets of tran-
sition rules, one needs to analyse the naturality condition carefully. This has
not been done satisfactorily for any of the interesting cases yet. As our main
contribution to Turi and Plotkin’s work, we make such an analysis in the case
of labelled transition systems and sets of rules in the GSOS format. Thereby we
proceed in a decompositional manner, which allows us to adapt our argument
to variations of the LTS behaviour easily. Moreover, it helps us to spell out the
categorical format for streams, deterministic automata, and, later in Chapter 5,
for probabilistic systems.

This chapter is organised as follows: first, we briefly recall Plotkin’s SOS (Sec-
tion 3.1); next, we introduce a simple but not very expressive categorical spec-
ification format and prove it well-behaved in several respects (Section 3.2); the
abstract format is then related to concrete rule style format for LTS, stream sys-
tems, and deterministic automata (Section 3.3); next, we show how to improve
the expressiveness of the format while keeping its well-behavedness (Section 3.4);
as an example of such a more expressive format we study an abstract format
related to GSOS (Section 3.5); then we formally compare the different formats
treated (Section 3.6); we conclude by reviewing some related work (Section 3.7).

3.1 Plotkin’s SOS and congruence formats

The operational semantics of programming languages is often given as a la-
belled transition system on the set of program terms and the transition struc-
ture is specified using Plotkin’s structural operational semantics, or SOS for
short [Plo81]. With Σ being the signature of the operators of the programming
language, such a specification is given by a set of transition rules of the following
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shape

{ui bi−→ u′i | i ∈ I} {vj
cj−9 | j ∈ J}

t
a−→ t′

where t, t′, ui, u
′
i, vj for i ∈ I and j ∈ J are (possibly open) terms for the

signature Σ, and a, bi, cj ∈ L are labels. For i ∈ I and j ∈ J we call ui
bi−→ u′i

and vj
cj−9 the (positive and negative) premises of this rule, t

a−→ t′ is its
conclusion, the terms t and t′ are its source and target respectively, and a is the
label of the rule.

Traditionally, the semantics of an SOS specification is given by one particular
LTS: its states are the closed terms of the signature under consideration and
the transitions are precisely those that can be derived from the rules – at least
in the simple case that this set of transitions is uniquely determined. Here we
take a slightly different perspective: for an arbitrary labelled transition system
〈P, ( a−→ )a∈L〉 (cf. equation (2.5) on page 25) we want to find an interpretation
of the operators in Σ. So to each symbol σ ∈ Σ we want to associate a function
[[σ(.)]] : Pn → P , where n is the arity of σ. The set of rules is meant to
determine the behaviour of the states [[σ(p1, . . . , pn)]] for arbitrary given states
p1, . . . , pn ∈ P of the LTS. Accordingly, we are interested only in rules with a
source of the shape σ(x1, . . . , xn), where σ ∈ Σ is some operator symbol with
arity n and x1, . . . , xn are state variables.

An LTS with operator interpretations as above is a model of such a specification
if, for all σ ∈ Σ with arity n and p1, . . . , pn ∈ P , the transition structure of the
LTS assigns to the state [[σ(p1, . . . , pn)]] ∈ P precisely those outgoing transitions
that can be inferred from the rules.1

Usually one wants (the models of) the specification to satisfy certain basic prop-
erties. Most importantly, in order to be able to take bisimilarity as a process
equivalence, one wants bisimilarity to be a congruence for the operator interpre-
tations of a model. It has been found that properties of this type are guaranteed
for specifications that involve only transition rules of a certain shape. Such a
shape may or may not allow the negative premises, i.e. the premises of the type

vj
cj−9 . Moreover, it may restrict some of the terms ui, u

′
i, vj , t, and t

′ appear-
ing in the different places of the rule to be a plain variable or the application of
just one operator to variables. And it may prescribe that certain variables are
allowed to appear only in some of the terms. An important example of such a
rule shape is the GSOS format [BIM95] that we will recall in Section 3.5. For
an overview of such formats see the article by Aceto et al. [AFV01]. In the
following we shall present a categorical approach to derive these well-behaved
specification formats.

1To be precise, generalising from the transition system on the set of terms to arbitrary
ones actually requires us to apply the term evaluation [[.]]∗ : TP → P (cf. Lemma 2.2.10), i.e.
the inductive extension of the operator interpretation of the model, to all terms mentioned in
the rules, but for simplicity of presentation we usually omit it in our notation.
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3.2 A simple categorical specification format

In this section we will introduce a simple categorical operator specification for-
mat. Its expressiveness is rather limited but it will be the basis for more powerful
formats to be introduced later.

We shall develop the format out of the following simple example specification
of the synchronous parallel composition of two processes. For this example, we
take the signature Σ to contain just one binary operator symbol, which we write
in infix notation as x|y. Its outgoing transitions are specified by the following
rules.

x
a−→ x′ y

a−→ y′

x|y a−→ x′|y′
(∀a ∈ L) (3.1)

An LTS 〈P, ( a−→ )a∈L〉 with an associated operation [[.|.]] : P × P → P is a

model of the specification if for all p, q ∈ P and a ∈ L we have that [[p|q]] a−→ z

precisely if z = [[p′|q′]] for two states p′, q′ ∈ P with p
a−→ p′ and q

a−→ q′.

In order to express the example in categorical terms, we first note that the struc-
tures under consideration, i.e. labelled transition systems with interpretations
of operators, are actually bialgebras as defined below. Then we shall show that
the above definition of a model can be expressed elegantly with this formulation.

Definition 3.2.1 Given two Set-functors S and B, an 〈S,B〉-bialgebra is a
triple 〈P, β, α〉 consisting of a set P and two functions β : SP → P and α : P →
BP , i.e. an S-algebra and a B-coalgebra structure on a common carrier set.
A homomorphism from one 〈S,B〉-bialgebra 〈P, βP , αP 〉 to another 〈S,B〉-
bialgebra 〈Q, βQ, αQ〉 is a function h : P → Q satisfying

h ◦ βP = βQ ◦ Sh and αQ ◦ h = Bh ◦ αP ,

i.e. it is both an S-algebra and a B-coalgebra homomorphism for the involved
algebra and coalgebra structures. By BialgSB we denote the category of 〈S,B〉-
bialgebras and their homomorphisms. A bisimulation (congruence) between two
bialgebras is a bisimulation (congruence) between the contained coalgebras (al-
gebras).

Let us again regard the interpretation of the operators in the signature Σ as an
algebra of a functor S as in (2.2) on page 20 and model (image finite) labelled
transition systems coalgebraically as in Def. 2.3.12, i.e. as B-coalgebras for the
functor B = PωL. Then an LTS with associated interpretations of the operators
in Σ can be modelled as an 〈S,B〉-bialgebra 〈P, [[.]], α〉.
In the example of the synchronous parallel composition we have

SP = { p|q | p, q ∈ P} ' P 2.
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An 〈S,B〉-bialgebra 〈P, [[.]], α〉 is a model of the rules in (3.1) if for all a ∈ L and
p, q ∈ P it satisfies

α([[p|q]])(a) = {[[p′|q′]] | p′ ∈ α(p)(a), q′ ∈ α(q)(a)}.

Alternatively, we can write this condition as

α ◦ [[.]] = (Pω[[.]])L ◦ λP ◦ Sα, (3.2)

where λP : S(PωP )L → (PωSP )L is given, for φ, ψ ∈ (PωP )L and a ∈ L, by

λP (φ|ψ)(a) = {p′|q′ ∈ SP | p′ ∈ φ(a), q′ ∈ ψ(a)}.

Note that λP is independent of [[.]] and α and that it is natural in P . So we
have translated our transition rules from (3.1) into a natural transformation
λ : S(Pω)L ⇒ (PωS)L. This natural transformation λ : SB⇒ BS distributes the
signature functor over the behaviour functor B = (Pω)L, which motivates the
following name.

Definition 3.2.2 Let S and B be functors. A distributive law of S over B
is a natural transformation λ : SB ⇒ BS. A bialgebra for a distributive
law λ, or λ-bialgebra for short, is an 〈S,B〉-bialgebra 〈P, β, α〉 for which the
following diagram commutes.

SPSα

βSBP

λP P

αBSP

Bβ BP

The full subcategory of BialgSB containing all λ-bialgebras is denoted by λ-Bialg.

We have shown that the specification of the synchronous parallel composition
gives rise to a distributive law λ of the signature functor over the behaviour
functor for labelled transition systems in such a way that the models of the
specification are precisely the λ-bialgebras (compare the above definition with
equation (3.2)). In the next section we show that the category of λ-bialgebras
is well-behaved in several respects. For instance, bisimilarity is a congruence on
every λ-bialgebra. This leads us to consider distributive laws λ and λ-bialgebras
as specifications and their models in the first place. But then the question
arises which concrete specifications are subsumed by the abstract approach.
For the case of labelled transition systems it turns out that we can characterise
those specifications by restricting the format of the transition rules that may be
used. So the categorical setting yields a congruence format similar to the ones
known in the literature. But different from the conventional study of congruence
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formats, the categorical approach is parametric in the behaviour functor under
consideration. This enables us to instantiate the results also with other types of
systems, as we show for streams and deterministic automata in Sections 3.3.2
and 3.3.3.

In Turi and Plotkin’s work distributive laws are defined between two functors
taken from a monad and comonad respectively. In that case the distributive
law is assumed to respect the monad and comonad structure in a sense we shall
define later. For the moment we just consider the simple case where no further
structure is involved, but later we shall find that the more complex settings can
be used to obtain more expressive formats.

3.2.1 Properties

In this section we prove basic properties of the category of λ-bialgebras, λ-Bialg,
for a distributive law λ.

Theorem 3.2.3 Let λ be a distributive law of a functor S over a functor B.

(i) Let 〈I, χ〉 be an initial S-algebra. There is a unique B-coalgebra structure
α on I such that 〈I, χ, α〉 is a λ-bialgebra. Moreover, this is an initial
λ-bialgebra.

(ii) Dually, let 〈F, ω〉 be a final B-coalgebra. There is a unique S-algebra
structure β on F such that 〈F, β, ω〉 is a λ-bialgebra. Moreover, this is a
final λ-bialgebra.

This statement is an immediate consequence of the following two lemmata.

Lemma 3.2.4 Let F : C → C be a functor.

(i) There is a unique F-coalgebra structure on an initial object 0 of C and it
yields an initial F-coalgebra.

(ii) Dually, there is a unique F-algebra structure on a final object 1 of C and
it yields a final F-algebra.

Proof: We prove item (ii), the other one is dual. The only F-algebra structure
on a final object 1 is the unique final morphism !F1 : F1 → 1. It yields a
final F-algebra, since for any F-algebra 〈S, β〉 there is precisely one morphism
from S to 1, namely the unique final morphism !S : S → 1, and it is indeed a
homomorphism, again by finality.

FS
F!S

β finality

F1

!F1

S
!S

1
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2

Theorem 3.2.3 follows from the above simple observation if we instantiate it
with the functors defined below.

Lemma 3.2.5 Let λ be a distributive law of a functor S over a functor B.

(i) The functor B : Set → Set lifts to a functor Bλ : AlgS → AlgS defined for
an S-algebra 〈P, β〉 and an S-algebra homomorphism h as

Bλ〈P, β〉 := 〈BP,Bβ ◦ λP 〉
Bλh := Bh

An 〈S,B〉-bialgebra 〈P, β, α〉 is a λ-bialgebra if and only if 〈〈P, β〉, α〉 is a
Bλ-coalgebra, i.e. α is an S-algebra homomorphism from 〈P, β〉 to Bλ〈P, β〉.

(ii) Dually, the functor S : Set → Set lifts to a functor Sλ : CoalgB → CoalgB
defined for a B-coalgebra 〈P, α〉 and a B-coalgebra homomorphism h as

Sλ〈P, α〉 := 〈SP, λP ◦ Sα〉
Sλh := Sh

An 〈S,B〉-bialgebra 〈P, β, α〉 is a λ-bialgebra if and only if 〈〈P, α〉, β〉 is a
Sλ-algebra, i.e. β is a B-coalgebra homomorphism from Sλ〈P, α〉 to 〈P, α〉.

Proof: We treat item (ii). To see that Sλ is a functor indeed, we have to
check that for a B-coalgebra homomorphism h : 〈P, αP 〉 → 〈Q,αQ〉 we get that
Sλh := Sh is a B-coalgebra homomorphism from Sλ〈P, αP 〉 to Sλ〈Q,αQ〉. This
easily follows from the naturality of λ, as the right diagram below shows.

P
h

αP (∗)

Q

αQ

SP
Sh

SαP S(∗)

SQ
SαQ

⇒ SBP SBh

λP nat. λ

SBQ
λQ

BP
Bh

BQ BSP
BSh

BSQ

The second claim is immediate by definition.

2

Theorem 3.2.3 provides two canonical models of the specification λ, in case the
initial S-algebra and final B-coalgebra exist.

Let us again assume that S arises from a signature Σ as in equation (2.2) on page
20, that B describes labelled transition systems as in Definition 2.3.12, and that
λ was induced by a set of SOS rules, as in the above example of a synchronous
parallel composition. Then the carrier of the initial S-algebra is the set of closed
terms built from the operators in Σ. With the first item of the above theorem,
the rules can be viewed as a specification of a unique transition system structure
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on them. This is often the intended model of an SOS specification. The states
of the final B-coalgebra uniquely represent all possible LTS behaviours up to
bisimilarity. So the model given by the second item essentially provides a unique
collection of operators on these behaviours satisfying the transition rules.

Theorem 3.2.6 Let λ be a distributive law of the functor S over the functor B.
The greatest bisimulation R ⊆ P ×Q between any two λ-bialgebras 〈P, βP , αP 〉
and 〈Q, βQ, αQ〉 is a congruence.

Proof: Let γ : R→ BR be a mediating coalgebra structure. This means that
the two projections π1 : R → P and π2 : R → Q are homomorphisms between
the coalgebras below, i.e. they exist in CoalgB.

Sλ〈P, αP 〉

βP

Sλ〈R, γ〉
Sλπ1 Sλπ2

Sλ〈Q,αQ〉

βQ

〈P, αP 〉 〈R, γ〉
π1 π2

〈Q,αQ〉

Since Sλ is a functor on CoalgB, the two arrows Sλπ1 and Sλπ2 are homomor-
phisms as well. The algebra operations βP and βQ are homomorphisms by the
assumption on 〈P, βP , αP 〉 and 〈Q, βQ, αQ〉 being λ-bialgebras (cf. Lemma 3.2.5
(ii)). So we get a span

〈Sλ〈R, γ〉, βP ◦ Sλπ1, βQ ◦ Sλπ2〉

between 〈P, αP 〉 and 〈Q,αQ〉 in CoalgB. This means that the span

〈SR, βP ◦ Sπ1, βQ ◦ Sπ2〉

resulting after the application of the forgetful functor U : CoalgB → Set is
a bisimulation between 〈P, αP 〉 and 〈Q,αQ〉, witnessed by the the coalgebra
structure of Sλ〈R, γ〉 (i.e. λR ◦ Sγ : SR → BSR). The image of this span
is contained in R, since the latter was assumed to be a greatest bisimulation
between the same coalgebras. So by Lemma 2.3.5 there exists a morphism
m : SR→ R making the two squares in the diagram below commute.

SP

βP

SR
Sπ1 Sπ2

m

SQ

βQ

P Rπ1 π2
Q

This proves that R is a congruence as wanted.

2

Turi and Plotkin base their proof of the corresponding statement [TP97, Corol-
lary 7.5] on the construction of a greatest bisimulation as a pullback of the
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final coalgebra homomorphisms. Therefore they need to assume that a final
B-coalgebra exists and that B preserves weak pullbacks. These assumptions are
not necessary for our proof.

Let S be again given by a signature Σ, let B describe labelled transition systems,
and let λ be induced by a set of SOS rules. Recall that the initial λ-bialgebra
from Theorem 3.2.3 (i) has the set of terms of the signature as its carrier and
a transition structure which is uniquely defined by the transition rules. The
above theorem states that the notion of strong bisimilarity associated to this
transition structure is a congruence for the terms of the language. This is a
central property of a set of transition rules for instance in the area of process
algebra (see e.g. [GV92]). But note that the above result also allows models of
the specification other than the one on the set of terms.

3.3 Rule formats derived from distributive laws

We have shown that the specification of the synchronous parallel composition for
labelled transition systems in terms of transition rules gives rise to a distributive
law of the signature functor over the corresponding behaviour functor. The
models of the specification could alternatively be characterised as the bialgebras
for this distributive law. The category of all such bialgebras in turn is well-
behaved in several respects. Taken together we concluded that the original
specification was well-behaved.

In this section we want to make precise for which specifications this chain of
reasoning applies, i.e. we characterise the sets of transition rules that correspond
to distributive laws as above. The resulting format will be less powerful than
other known well-behaved specification formats, but in Section 3.4 we shall show
how to generalise the approach.

The task boils down to characterising natural transformations of the respective
type in concrete terms. To this end, we employ a collection of simple lemmata
that allow us to decompose complex natural transformations into simpler ones
or give direct descriptions of natural transformations of a simple structure. In
order not to disturb the flow of reading with too many technicalities here, we
state and prove them in Appendix A.1.

This collection of lemmata helps us to derive concrete representations of the
distributive laws of S over B in the case that S is the functor associated to a
signature Σ and B is a behaviour functor modelling any of the types of systems
considered in Section 2.3.3. First we give the argument for labelled transition
systems in detail. For it we moreover need a characterisation result for sim-
ple natural transformations involving the powerset functor, which we prove in
Appendix A.2. For now this is the most important and at the same time the
most complicated case. Later in this section we briefly mention streams and
automata. In Chapter 5 we shall use the techniques developed here to derive
novel specification formats for probabilistic systems.
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Natural transformation Representation

λ : S(PωL)⇒ (PωS)L







θi(b) 6= ∅ 1 ≤ i ≤ n, b ∈ Ri
θi(c) = ∅ 1 ≤ i ≤ n, c 6∈ Pi
yj ∈ θij (lj) 1 ≤ j ≤ k

τ(yo1 , . . . , yom ) ∈ λ(σ(θ1, . . . , θn))(a)







image finite

⇓ ⇑

λ̃ : S(PωL)× L⇒ PωS







θi(b) 6= ∅ 1 ≤ i ≤ n, b ∈ Ei
θi(c) = ∅ 1 ≤ i ≤ n, c 6∈ Ei
yj ∈ θij (lj) 1 ≤ j ≤ k

τ(yo1 , . . . , yom ) ∈ λ̃(σ(θ1, . . . , θn), a)







image finite

⇓ ⇑

ν : (P+
ω )

E ⇒ PωS

{
yj∈X

′
ej

1≤j≤k

τ(yo1 ,...,yom )∈ν((X′
e)e∈E)

}

finite

⇓ ⇑

ξ : (P+
ω )

E ⇒ P+
ω (Id

m) ⇒

{
yj∈X

′
ej

1≤j≤k

〈yo1 ,...,yom 〉∈ξ((X
′
e)e∈E)

}

finite, nonempty

Figure 3.1: The outline of our approach.

3.3.1 LTS

In this part we analyse which specifications give rise to distributive laws of a
functor S associated to a signature Σ (cf. equation (2.2) on page 20) over the
functor B = PωL modelling labelled transition systems (cf. Definition 2.3.12).
Recall that these are natural transformations of the type

λ : S(PωL)⇒ (PωS)L. (3.3)

Using the lemmata from Appendix A.1, we first decompose those transforma-
tions into simpler ones and then apply a direct representation theorem developed
in Appendix A.2. Putting together the pieces, we shall obtain a characterisa-
tion in terms of transition rules. The approach is outlined in Figure 3.1. In the
following we explain the development in detail.

Decomposing the natural transformations

First of all, by Lemma A.1.1 and the adjunction Id× L a (Id)L, natural trans-
formations (3.3) are in one-to-one correspondence with those of the shape

λ̃ : S(PωL)× L⇒ PωS. (3.4)

Let us write F := S(PωL)× L for the functor in the domain of λ̃. For the next
decomposition step, we express this functor equivalently as a coproduct, which
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can be done according to Lemma A.1.4 as F '∐z∈F1 F|z , where 1 is a final set
and

F|zX := {φ ∈ FX | (F!)(φ) = z}

for the unique arrow ! : X → 1 and z ∈ F1.

With this presentation of F we can apply Lemma A.1.2, which states that a
natural transformation with a coproduct in the domain can be split into natural
transformations from each summand. So λ̃ can be described by a family of
natural transformations

(νz : F|z ⇒ PωS)z∈F1 . (3.5)

We shall now characterise the individual natural transformations νz for z ∈ F1.
To this end we first derive a concrete description of the functors F|z . With
Pω1 = {∅, 1} ' 2 and 2L ' PL we get that the functor F from the domain of
our natural transformations in (3.4) maps the singleton set 1 to

F1 = S(Pω1L)× L
' S(2L)× L
' SPL× L
= {〈σ(E1, . . . , En), a〉 | σ ∈ Σ with arity n;E1, . . . , En ⊆ L; a ∈ L}.

The isomorphism is given by

〈σ(θ1, . . . , θn), a〉 ∈ F1 7→ 〈σ(E1, . . . , En), a〉 ∈ SPL× L

where Ei := {l ∈ L | θi(l) 6= ∅}. For simplicity we will use elements from the
latter set to describe those of F1 without making the isomorphism explicit. For
every set X and z = 〈σ(E1, . . . , En), a〉 ∈ F1 we calculate

F|zX := {φ ∈ FX | (F!)(φ) = z}
= {〈σ(θ1, . . . , θn), a〉 | θ1, . . . , θn ∈ (PωX)L such that

∀l ∈ L, 1 ≤ i ≤ n : θi(l) 6= ∅ ⇐⇒ l ∈ Ei}
' {〈σ(θ̃1, . . . , θ̃n), a〉 | θ̃i ∈ (P+

ωX)Ei , 1 ≤ i ≤ n}

'
n∏

i=1

(P+
ωX)Ei .

' (P+
ωX)E , (3.6)

where E := E1+ · · ·+En. So we will study the natural transformations νz from
(3.5) as examples of natural transformations of the following type for a set E:

ν : (P+
ω )

E ⇒ PωS (3.7)
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Now we focus on the codomain of these natural transformations. Writing |τ | for
the arity of τ ∈ Σ and using Lemma A.1.5 to distribute the nonempty powerset
functor over a coproduct in the step (∗) below we calculate

PωS ' 1 + P+
ω S

(2.2)
= 1 + P+

ω (
∐

τ∈Σ

Id|τ |)

(∗)' 1 +
∐

M∈P+ω Σ

( ∏

τ∈M

P+
ω (Id

|τ |)
)

'
∐

M∈PωΣ

( ∏

τ∈M

P+
ω (Id

|τ |)
)

Lemma A.1.3 states that a natural transformation from a functor preserving
finality into a coproduct hits just one of the summands, so that ν arises from
a natural transformation of the type (P+

ω )
E ⇒ ∏

τ∈M P+
ω (Id

|τ |) for some M ∈
PωΣ. This in turn can by Lemma A.1.2 (b) be split into natural transformations

into each factor P+
ω (Id

|τ |) for τ ∈M . So ν in (3.7) is given by

M ∈ PωΣ and
(
ξτ : (P+

ω )
E ⇒ P+

ω (Id
|τ |)
)

τ∈M
(3.8)

At this point we stop the decomposition, since for natural transformations

ξ : (P+
ω )

E ⇒ P+
ω (Id

m) (3.9)

as they appear in the above representation we can use a direct characterisation
result stated and proved in Corollary A.2.8 in the Appendix.

Constructing the rule format

Each natural transformation ξ as in (3.9) can be characterised according to
Corollary A.2.8 by a nonempty, finite set of derivation rules as in the expression
below.

ξ '
{

yj ∈ X ′ej 1 ≤ j ≤ k

〈yo1 , . . . , yom〉 ∈ ξ
(
(X ′e)e∈E

)
∣
∣ k, ej , oi

}

finite,nonempty

(3.10)

Any rule mentions distinct variables y1, . . . , yk for some k ∈ N, where yj ranges
over the elements of Xej for some ej ∈ E. For 1 ≤ i ≤ m the variable yoi is
placed in the i-th position of the resulting tuple with 1 ≤ oi ≤ k.

So with (3.8) a natural transformation ν : (P+
ω )

E ⇒ PωS can be represented by
a set M ∈ PωΣ and for each τ ∈ M a set of rules as in (3.10) with m = |τ |.
To simplify this characterisation, we union the sets of rules for all τ ∈ M .
We tag each individual rule with the corresponding τ , so that we do not lose
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information. Thus we write a rule as in the notation below. The resulting set
will be finite still, but not necessarily nonempty, because M can be empty.

ν '
{

yj ∈ X ′ej 1 ≤ j ≤ k

τ(yo1 , . . . , yo|τ|) ∈ ν
(
(X ′e)e∈E

)
∣
∣ τ, k, ej , oi

}

finite

(3.11)

For z = 〈σ(E1, . . . , En), a〉 ∈ F1 we treated νz appearing in (3.5) equivalently
as ν : (P+

ω )
E ⇒ PωS for E = E1 + · · · + En. To adapt our rule notation to

the original type of νz, we rewrite the rules as below, where 1 ≤ ij ≤ n and
lj ∈ Eij .

νz '
{

yj ∈ θij (lj) 1 ≤ j ≤ k

τ(yo1 , . . . , yo|τ|) ∈ νz(σ(θ1, . . . , θn), a)
∣
∣ τ, k, ij , lj , oi

}

finite

(3.12)

To obtain a characterisation for λ̃ in (3.4), we again union the sets of rules for
all z ∈ F1. And again we need to rewrite each rule such that the corresponding
z = 〈σ(E1, . . . , En), a〉 is encoded. We already included σ and a, but we need
to account for the Ei still, which are implicit in the notation above through
the typing of νz (remember that its parameters θi : L→ PωX need to be such
that θi(b) 6= ∅ if and only if b ∈ Ei). This will result in new premises, as
written below. The resulting set will not necessarily be finite, because there
may be infinitely many labels or operator symbols. But there will be finitely
many rules for the same σ, Ei, and a only, a property that we will call image
finiteness.

λ̃ '







θi(b) 6= ∅ 1 ≤ i ≤ n, b ∈ Ei
θi(c) = ∅ 1 ≤ i ≤ n, c 6∈ Ei
yj ∈ θij (lj) 1 ≤ j ≤ k

τ(yo1 , . . . , yom) ∈ λ̃(σ(θ1, . . . , θn), a)

∣
∣
σ, a,Ei, τ,

k, ij , lj , oi






image

finite

(3.13)

To turn this set of rules into a representation for λ from (3.3) we just need to
replace λ̃(σ(θ1, . . . , θn), a) in the conclusion by λ(σ(θ1, . . . , θn))(a). But more-
over for ease of notation we will replace the set Ei of enabled labels for the
i-th argument by two disjoint sets Ri, Pi ⊆ L of required and prohibited labels.
The resulting rule is applicable when for the i-th argument the set of enabled
labels contains all required ones and none of the prohibited ones, i.e. Ri ⊆ Ei
and Ei ∩ Pi = ∅. This way we can write several rules which differ in the sets of
enabled labels only as one.

The following theorem summarises the result of our development.

Theorem 3.3.1 Every natural transformation λ from (3.3) can be characterised
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by an image finite set of rules of the shape

θi(b) 6= ∅ 1 ≤ i ≤ n, b ∈ Ri
θi(c) = ∅ 1 ≤ i ≤ n, c ∈ Pi
yj ∈ θij (lj) 1 ≤ j ≤ k

τ(yo1 , . . . , yom) ∈ λ(σ(θ1, . . . , θn))(a)

where a ∈ L; σ, τ ∈ Σ (with arity n and m respectively); Ri, Pi ⊆ L such that
Ri ∩ Pi = ∅ (1 ≤ i ≤ n); k ∈ N; 1 ≤ ij ≤ n, lj ∈ Rij (1 ≤ j ≤ k); 1 ≤ oi ≤ k
(1 ≤ i ≤ m).

The image finiteness assumption means that for all σ ∈ Σ (with arity n),
E1, . . . , En ⊆ L, and a ∈ L the set contains only finitely many rules (in the
notation above) for this a and σ, such that Ri ⊆ Ei and Ei ∩ Pi = ∅ for
1 ≤ i ≤ n.

To match this rule notation with the usual transition rules, we have to remember
the pentagonal diagram an 〈S,B〉-bialgebra 〈P, [[.]], α〉 should satisfy in order to
be a λ-bialgebra (Def. 3.2.2): the (P -component of the) natural transformation
λ is applied to arguments of the form σ(α(p1), . . . , α(pn)) and the result is
evaluated using [[.]]. Instantiated with the arguments above, we can use the
arrow notation introduced in Definition 2.3.12 to rewrite the rules characterising
λ.

Corollary 3.3.2 The classes of λ-bialgebras for any λ as in (3.3) are precisely
those that can be characterised by an image finite set of rules as below.

xi
b−→ 1 ≤ i ≤ n, b ∈ Ri

xi
c−9 1 ≤ i ≤ n, c ∈ Pi

xij
lj−→ yj 1 ≤ j ≤ k

[[σ(x1, . . . , xn)]]
a−→ [[τ(yo1 , . . . , yom)]]

It determines the 〈S,B〉-bialgebras 〈P, [[.]], α〉 for which the states [[σ(p1, . . . , pn)]]
for all σ ∈ Σ and p1, . . . , pn ∈ P allow precisely the transitions derivable from
the rules.

Compared to other congruence formats, this one is rather weak. It does allow
negative premises, but transitions from [[σ(p1, . . . , pn)]] can lead only to states
expressible as [[τ(q1, . . . , qm)]] for some operator symbol τ (with arity m), where
each qj is an immediate successor of some pi. In Section 3.4 we will discuss
extensions of the approach.

3.3.2 Streams

We will now briefly spell out which specifications give rise to distributive laws
of a functor S associated to the signature Σ over the functor B = R × Id for
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stream systems, which were introduced in Section 2.3.3. So we consider natural
transformations of the shape

λ : S(R× Id)⇒ R× S (3.14)

Using S =
∐

σ∈ΣX
|σ| (cf. equation (2.2) on page 20) and Lemma A.1.2 about

natural transformations from a coproduct, we find that each such λ is equivalent
to a family of transformations

(
νσ : (R× Id)|σ| ⇒ R× S

)

σ∈Σ
(3.15)

Lemma A.1.7 allows us to remove certain occurrences of the identity functor
from the domain of a natural transformation. Applied here it yields that, for
each σ ∈ Σ (with arity n), each νσ is equivalent to a natural transformation

ν̃σ : Rn ⇒ R× S(N + Id), (3.16)

where N = {1, . . . , n}. The domain of this natural transformation is a constant
functor and is thus by Lemma A.1.6 characterised by a plain function

hσ : Rn → R× SN (3.17)

As a result, a specification gives rise to a distributed law as in (3.14) if and
only if for all operators σ ∈ Σ and u1, . . . , un ∈ R, where n is the arity of σ, it
specifies a derivation

xi
ui−→ yi 1 ≤ i ≤ n

σ(x1, . . . , xn)
v−→ τ(yp1 , . . . , ypm)

for some value v ∈ R, operator symbol τ ∈ Σ (with arity say m), and indices
1 ≤ pi ≤ n for 1 ≤ i ≤ m.

The specification of mapg from equation (2.8) on page 32 for instance can be
expressed this way. Further examples are the specifications of (unary) prefix
operations u.x for u ∈ R and of a (binary) pointwise summation x + y of
streams:

x
v−→ x′

u.x
u−→ v.x′

(∀u, v ∈ R)
x

u−→ x′ y
v−→ y′

x+ y
u+v−→ x′ + y′

(∀u, v ∈ R)

Note that in the first case we did not give the more intuitive rules u.x
u−→ x

without premises for all u ∈ R, because they do not fit into the simple format.
But they will fit into extensions of the format to be discussed in the coming
sections.

3.3.3 Deterministic automata

As the last example we consider deterministic automata modelled as coalge-
bras of the functor B = 2 × IdL. We analyse distributive laws of the functor



52 CHAPTER 3. A BIALGEBRAIC APPROACH TO SOS

S associated to a signature Σ over this behaviour functor, which are natural
transformations

λ : S(2× IdL)⇒ 2× SL. (3.18)

An argument similar to the one in the case of streams above shows that those
are equivalent to families of functions

(
hσ : 2|σ| → 2× (S({1, . . . , |σ|} × L))L

)

σ∈Σ
(3.19)

Translated into a transition rule format, such a specification corresponds to a
set of rules of the following two types:

xi↓ (i ∈ P ) xi↑ (i ∈ N)

σ(x1, . . . , xn)↓
and

xi
l−→ yli (1 ≤ i ≤ n, l ∈ L) xi↓ (i ∈ P ) xi↑ (i ∈ N)

σ(x1, . . . , xn)
a−→ τ(yl1i1 , . . . , y

lm
im

)

where σ, τ ∈ Σ (with arity n and m); P,N ⊆ {1, . . . , n} with P ∩N = ∅; a ∈ L;
1 ≤ ij ≤ n; and lj ∈ L for 1 ≤ j ≤ m (we omit a premise xi

b−→ yli if y
l
i does not

appear in the target). For each σ ∈ Σ, a ∈ L, and A ⊆ {1, . . . , n} there should
be exactly one rule of the second type with this σ and a such that P ⊆ A and
A ∩N = ∅.
For instance, the specification of the binary union operation ∪ below fits into
this format.

x↓
(x ∪ y)↓

y↓
(x ∪ y)↓

x
a−→ xa y

a−→ ya

x ∪ y a−→ xa ∪ ya
(∀a ∈ L) (3.20)

3.4 Extensions of the simple format

In Section 3.3.1 we illustrated the limitation of our categorical format in its cur-
rent form with the example of labelled transition systems: when σ(x1, . . . , xn)
is the source of a rule, then the target can only be of the shape τ(y1, . . . , ym)
for some operator symbol τ (with arity m), where the yj are successors of the
xi.

In this section we first develop four extensions of this approach in separation.
Later we show how to combine some of them. The known GSOS format [BIM95]
for transition system specifications for instance emerges from such a combina-
tion, as we shall explain in Section 3.5.

The four extensions improve the format to allow the target of a rule with source
σ(x1, . . . , xn) to be, respectively,
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(1a) τ(ỹ1, . . . , ỹm), where τ ∈ Σ with arity m and ỹj is either one of the xi or
ranges over their immediate successors, like in:

x
a−→ y

σ(x)
a−→ τ(x, y)

(1b) either τ(y1, . . . , ym) or y, where τ ∈ Σ is an operator symbol with arity m
and y and yj range over successors of the xi, like in:

x
b−→ y

σ(x)
a−→ y

(2a) t ∈ TY , i.e. an arbitrary term with variables ranging over the immediate
successors of the xi (this extension subsumes the one in (1b)), like in:

x
a−→ y

σ(x)
a−→ τ(σ(y), y)

(2b) τ(ỹ1, . . . , ỹm), where τ ∈ Σ with arity m and each ỹj is either one of the
xi or ranges over their successors after an arbitrary number of steps (this
extension subsumes the one in (1a)), like in:

x
a−→ y y

b−→ z

σ(x)
a−→ τ(x, z)

To obtain the extensions (1a) and (1b) we equip the behaviour functor B and
the signature functor S with the structure of a copointed and pointed functor
respectively. For (2a) and (2b) we employ monads and comonads.

3.4.1 Using (co)pointed functors

As an example of a specification that does not give rise to a distributive law
of the functor S associated to a signature Σ over the behaviour functor B un-
der consideration we study the asynchronous parallel composition of labelled
transition systems. It is given by the rules below for all a ∈ L.

x
a−→ x′

x ‖ y a−→ x′ ‖ y
y

a−→ y′

x ‖ y a−→ x ‖ y′
(3.21)

Neither of the two rules fits in the format from Corollary 3.3.2, because x or y,
which are the arguments of x ‖ y in the source, appear in the target. But as of
yet, our format allows only immediate successors in the target.
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To locate the weak spot in the current approach, imagine that there was a
distributive law λ capturing the above definition and that 〈P, [[.]], α〉 was a λ-
bialgebra. So the left diagram below commutes.

SP
Sα

[[.]]

p ‖ q
Sα

[[.]]SBP

λP

α(p) ‖ α(q)

λPP

α

[[p ‖ q]]

αBSP

B[[.]]

φ

B[[.]]
BP α([[p ‖ q]])

Let p, q ∈ P .The transitions rules (3.21) say that

α([[p ‖ q]]) = {[[p′ ‖ q]] | p′ ∈ α(p)(a)} ∪ {[[p ‖ q′]] | q′ ∈ α(q)(a)},

so we can read off the right diagram above that λP ought to map α(p) ‖ α(q) ∈
SBP to φ ∈ BSP , so that for all a ∈ L

φ(a) = { p′ ‖ q | p′ ∈ α(p)(a)} ∪ { p ‖ q′ | q′ ∈ α(q)(a)}.

But the problem is that p and q appear in this expression although they are
not in the input of λP , since, by applying Sα, the arguments p and q are first
replaced by their outgoing transitions α(p) and α(q).

One could now modify the pentagonal diagram from the definition of a λ-
bialgebra in some suitable but maybe ad-hoc way so that the information about
p and q is conveyed, and then try to prove similar properties as in Section 3.2.1
for this new definition. Such an approach has actually been taken, leading to
the notion of a “generalised distributive law” (see [CHL03]). Here we will adopt
a different approach allowing us to – at least for a moment – still work with
distributive laws and their bialgebras as before, but now for modified functors
and with additional coherence axioms.

Copointed functors

Our distributive law is given the information about α(p) and α(q), where p
and q are the arguments of the operator under consideration, but we need to
access p and q themselves. This was not a problem if our coalgebras were such
that the transition structure, as it were, remembered the current state, i.e. p
was encoded in α(p). To state this property formally, we recall the notion of a
copointed (endo)functor.

Definition 3.4.1 A copointed (endo)functor on a category C is a pair 〈D, ε〉
of a functor D : C → C and a natural transformation ε : D ⇒ Id, called the
counit.
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A coalgebra for a copointed functor 〈D, ε〉 is a D-coalgebra 〈P, α〉 making
the diagram below commute, which we call the counit law for α.

P

α

id

DP εP

cou. α

P

The category of all coalgebras for the copointed functor 〈D, ε〉 is denoted by
Coalg〈D,ε〉. Given an algebra functor S, the full subcategory of BialgSD consisting
of those 〈S,D〉-bialgebras 〈P, β, α〉 such that α satisfies the counit law is denoted
by BialgS〈D,ε〉.

We proceed in two steps: first, we adapt the setting of distributive laws and their
bialgebras to copointed functors; second, given a (plain) behaviour functor B,
we shall define in a canonical way a (cofree) copointed functor 〈D, ε〉, to which
the framework from the first step is applied. The results obtained this way can
be translated back into the original setting, because the copointed functor 〈D, ε〉
is such that its coalgebras are in one-to-one correspondence with B-coalgebras.

Distributive laws and copointed functors

For a given functor S and a copointed functor 〈D, ε〉 we can straightforwardly
adapt the framework from Section 3.2: we again use distributive laws λ of S
over D as specifications and λ-bialgebras as models, where this time we require
the coalgebra operations of the bialgebras to be coalgebras for the copointed
functor. It turns out that the properties we stated in Section 3.2.1 still hold if
we make one assumption on the distributive laws under consideration.

Definition 3.4.2 A distributive law of a functor S over a copointed functor
〈D, ε〉 is a natural transformation λ : SD ⇒ DS making the following diagram
commute, which we call the counit law for λ.

SD
λ

Sε

DS

εS
S

counit λ

In this context we further require for a λ-bialgebra 〈P, β, α〉 (cf. Definition 3.2.2)
that 〈P, α〉 is a coalgebra of the copointed functor (cf. Def. 3.4.1).

Corollary 3.4.3 The statement of Theorem 3.2.3 still holds if we replace the
functor B by the copointed functor 〈D, ε〉, and correspondingly assume λ to
satisfy the counit law and all coalgebra structures under consideration to be
coalgebras for the copointed functor.
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Similar to the simple setting, this statement follows from two Lemmata below
which are adaptations of Lemmata 3.2.4 and 3.2.5.

Lemma 3.4.4 Let 〈D̃, ε̃〉 be a copointed functor on a category C. There is a
unique D̃-coalgebra structure on an initial object 0 of C and it yields an initial
coalgebra for the copointed functor 〈D̃, ε̃〉.

Proof: In addition to the proof of Lemma 3.2.4 (i) we need to check that the
unique initial arrow ! : 0 → D̃0 is a coalgebra structure for the copointed functor,
i.e. the diagram below should commute. This easily follows from initiality.

0

!

id

D̃0
ε̃0

init.

0

2

Lemma 3.4.5 Let λ be a distributive law of the functor S over the copointed
functor 〈D, ε〉. (i) The functor S lifts to a functor Sλ on Coalg〈D,ε〉, and (ii) the

copointed functor 〈D, ε〉 lifts to a copointed functor 〈Dλ, ε̃〉 on AlgS.

Proof: In addition to the proof of Lemma 3.2.5 we have one extra proof
obligation for each statement. For (i) we check that for any coalgebra 〈P, α〉 for
the copointed functor 〈D, ε〉 we indeed get that Sλ〈P, α〉 = 〈SP, λP ◦ Sα〉 is a
coalgebra for the copointed functor as well. This easily follows with the counit
law of λ, as the right diagram below demonstrates.

P

α

idP

SP
Sα

id

⇒ SDP
λP

SεP

S(∗)

DP εP

(∗)

P DSP εSP

cou. λ

SP

For (ii) we need to prove that the component of the natural transformation ε̃
at each S-algebra 〈P, β〉, i.e. ε̃〈P,β〉 := εP : DP → P is indeed an arrow in AlgS,
i.e. an S-algebra homomorphism from Dλ〈P, β〉 to 〈P, β〉. This follows from the
naturality of ε and again the counit law for λ, as shown below.

SDP
SεP

λP cou. λ

SP

βDSP
Dβ

εSP

nat. ε

DP εP
P
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2

With the above auxiliary statements we can straightforwardly adapt the proof
of Theorem 3.2.6 to this setting as well, which stated that bisimilarity is a
congruence on every λ-bialgebra.

Corollary 3.4.6 The statement of Theorem 3.2.6 still holds if we replace B by
a copointed functor 〈D, ε〉 and correspondingly assume that λ and all coalgebra
structures under consideration satisfy the appropriate counit law.

This variant essentially states that Theorem 3.2.6 still holds under the addi-
tional assumption that the mediating coalgebra structure in the definition of a
bisimulation is a coalgebra for the copointed functor.

Cofree copointed functors

The specification of the asynchronous parallel composition led us to adapt our
categorical format to the setting of coalgebras for copointed functors. Because
for such a coalgebra 〈P, α〉 and any p ∈ P the information about p is kept in
α(p), which was needed in the example. But the coalgebras there (i.e. labelled
transition systems) are not coalgebras of a copointed functor. So the idea is to
try and rephrase the example in the setting of coalgebras for a suitable copointed
functor. Such a functor is given by the cofree copointed functor generated by
the original behaviour functor B.

Definition 3.4.7 The cofree copointed functor 〈D, ε〉 generated by a Set-
functor2 B is defined as

D := Id× B and ε := π1 : Id× B⇒ Id.

Moreover, we use the name ϑ := π2 : D ⇒ B for the natural transformation
given by the second projection. To mention ϑ explicitly, we sometimes write the
cofree copointed functor as 〈〈D, ε〉, ϑ〉.

More abstractly and more generally, we can define a cofree copointed functor as
an object in a category of copointed functors satisfying a universal property (cf.
e.g. [LPW00, LPW04]). Here we limit ourselves to this more concrete definition,
since we shall not need the categorical characterisation.

When dealing with cofree copointed functors, we mainly use the following two
immediate consequences of the above definition:

Corollary 3.4.8 Let 〈〈D, ε〉, ϑ〉 be the cofree copointed functor generated by B.
2More generally, the definition makes sense in any category with binary coproducts.
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(i) Any two arrows f : X → Y and g : X → BY uniquely determine an arrow
h : X → DY making the two triangles in the left diagram below commute.

Xf

∃!h

g Fφ

∃!ρ

ψ

Y DYεY ϑY
BY G DG

εG ϑG
BG

This property extends to natural transformations: two natural transfor-
mations φ : F ⇒ G and ψ : F ⇒ BG uniquely determine a natural
transformation ρ : F ⇒ DG making both triangles in the right diagram
above commute.

(ii) The categories CoalgB and Coalg〈D,ε〉 are isomorphic. The isomorphism is
given by 〈P, α̃〉 7→ 〈P, ϑP ◦ α̃〉 for a coalgebra 〈P, α̃〉 for the cofree copointed
functor 〈D, ε〉 and 〈P, α〉 7→ 〈P, α∗〉 for a B-coalgebra 〈P, α〉, where α∗ is
the (by the first item) unique arrow fitting in the diagram below.

PidP

α∗

α

P DPεP ϑP
BP

Proof: The definition principle for arrows in the first item immediately follows
from the universal property of the binary product. The extension to natural
transformations is componentwise. Naturality follows from the uniqueness as-
pect of the principle: for any function f : X → Y we have that both DGf ◦ ρX
and ρY ◦ Ff fit as the unique arrow into the diagram below, as is easily verified
using the naturality of all transformations involved.

FX
φX ψX

?GX
Gf

BGX
BGf

GY DGYεGY ϑGY
BGY

For the second item one easily verifies that the two constructions are inverses
of each other and that they preserve homomorphisms.

2

Remark 3.4.9 We will apply the first item above mainly as we used it in the
second: for a fixed arrow f (or natural transformation φ) there is a one-to-
one correspondence between plain arrows g and arrows h satisfying εY ◦ h = f
(or plain natural transformations ψ and natural transformations ρ satisfying
εG ◦ ρ = φ). We will then say that g and h correspond under f (ψ and ρ
correspond under φ).
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Starting with a signature functor S and a behaviour functor B we take a dis-
tributive law λ of S over the cofree copointed functor 〈D, ε〉 generated by B as a
specification. The models are the 〈S,B〉-bialgebras 〈P, β, α〉 such that 〈P, β, α∗〉
is a λ-bialgebra, where α∗ is the coalgebra structure for the copointed functor
corresponding to α according to Corollary 3.4.8 (ii). Using the following lemma
we can express the above approach directly.

Lemma 3.4.10 Let S,B : Set → Set be two functors and let 〈D, ε〉 be the
cofree copointed functor generated by B. There is a one-to-one correspondence
between distributive laws λ of S over the copointed functor 〈D, ε〉 and (plain)
natural transformations ρ : SD ⇒ BS. Moreover, 〈P, β, α∗〉 is a λ-bialgebra
just in case the 〈S,B〉-bialgebra 〈P, β, α〉 (where α corresponds to α∗ according
to Corollary 3.4.8 (ii)) makes the diagram below for the corresponding natural
transformation ρ commute. In this case we call 〈P, β, α〉 a ρ-bialgebra.

SPSα∗

βSDP

ρP P

α

ρ-bialg.

BSP

Bβ BP

Proof: The correspondence of natural transformations is an immediate con-
sequence of Corollary 3.4.8 (i):

SDSε

λ

ρ

S DS
εS ϑS

(∗)

BS

For the second statement, observe that for any 〈S,B〉-bialgebra 〈P, β, α〉 the two
paths in the definition of a λ-bialgebra and a ρ-bialgebra pairwisely correspond
to each other under β (i.e. α ◦ β corresponds to α∗ ◦ β and Bβ ◦ ρP ◦ Sα∗

corresponds to Dβ ◦ λP ◦ Sα∗), as the two diagrams below show. In the case of
the left one this immediately follows from the correspondence of α and α∗ (see
Corollary 3.4.8 (ii)). In the case of the right one we use counit laws, naturality,
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and the correspondence of λ and ρ from above in the part marked by (∗).

SP

β

PidP

α∗

α

P DPεP ϑP
BP

SPSid

Sα∗

SP

β

SDP

λP

ρPSεP

S(cou. α∗)

cou. λ

DSPεSP

Dβ

ϑSP

(∗)

nat. ϑnat. ε

BSP

Bβ

P DPεP ϑP
BP

So the diagram for 〈P, β, α∗〉 being a λ-bialgebra commutes if and only if the
one for 〈P, β, α〉 being a ρ-bialgebra does.

2

Remembering D := Id×B from the definition of a cofree copointed functor, the
above development is summarised as follows: given a signature functor S and a
behaviour functor B, we can take natural transformations ρ : S(Id×B)⇒ BS as
specifications, the models of which are the ρ-bialgebras, i.e. the 〈S,B〉-bialgebras
〈P, β, α〉 making the following diagram commute.

SPS〈idP ,α〉

βS(P × BP )

ρP P

αBSP

Bβ BP

From Corollary 3.4.3 we derive that an initial S-algebra or a final B-coalgebra
extends to an initial or final ρ-bialgebra respectively, from Corollary 3.4.6 we
derive that the greatest bisimulation between any two ρ-bialgebras is a congru-
ence.

The specification of the parallel composition in (3.21) gives rise to the natural
transformation

ρ : S(Id× (Pω)L)⇒ (PωS)L

defined for any set P ; p, q ∈ P ; and φ, ψ ∈ (PωP )L by

ρP (〈p, φ〉 ‖ 〈q, ψ〉) := [ a 7→ {p′ ‖ q | p′ ∈ φ(a)} ∪ {p ‖ q′ | q′ ∈ ψ(a)} ] .
The corresponding ρ-bialgebras are precisely the models of the transition rules.

We could now again derive the rule format to which natural transformations ρ
as above correspond. But we will skip this effort here and rather do it for a
more interesting format after we have introduced further extensions.
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The dual case: pointed functors

In this section we dualise the approach based on copointed functors from above.
This will result in a reasonable extension of the simple format as well, as the
following example specification is supposed to motivate. It is about a variant
of the synchronous parallel composition from Section 3.2 where one component
drops out at the moment that it cannot do a transition. It satisfies the following
transition rules, each for all a ∈ L.

x
a−→ x′ y

a−→ y′

x⊗ y a−→ x′ ⊗ y′
x

a−→ x′ y
a−9

x⊗ y a−→ x′
x

a−9 y
a−→ y′

x⊗ y a−→ y′
(3.22)

This specification does not fit into the simple format from Corollary 3.3.2 be-
cause the rules of the second and third type declare transitions to plain states;
no operator is applied.

An approach corresponding to the one in the previous section based on copointed
functors leads us to the introduction of the dual concept of a pointed functor.

Definition 3.4.11 A pointed (endo)functor on a category C is a pair 〈T, η〉
of a functor T : C → C and a natural transformation η : Id⇒ T, called the unit.

An algebra for a pointed functor 〈T, η〉 is a T-algebra 〈P, β〉 making the
diagram below commute, which we call the unit law for 〈P, β〉.

P
ηP

idP

TP

β
unit β

P

The category of all algebras for the pointed functor 〈T, η〉 is denoted by Alg〈T,η〉.
For another functor B, a 〈〈T, η〉,B〉-bialgebra is a 〈T,B〉-bialgebra 〈P, β, α〉
such that β satisfies the unit law. The full subcategory of BialgTB containing

all 〈〈T, η〉,B〉-bialgebras is denoted by Bialg
〈T,η〉
B .

A distributive law of a pointed functor 〈T, η〉 over a functor B is a natural
transformation λ : TB⇒ BT making the following diagram commute, which we
call the unit law for λ.

BηB Bη

unit λ

TB
λ

BT

In this setting, a λ-bialgebra is an object of Bialg
〈T,η〉
B satisfying the pentagonal

law from Def. 3.2.2.

Dualising the proof of Corollary 3.4.3 we obtain the following statement.
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Corollary 3.4.12 The statement of Theorem 3.2.3 still holds if we replace the
functor S by the pointed functor 〈T, η〉, and correspondingly assume λ to satisfy
the unit law and all algebra structures under consideration to be algebras for the
pointed functor.

The corresponding variant of Theorem 3.2.6 does not simply follow by dualisa-
tion. It can still be shown to hold however.

Corollary 3.4.13 The statement of Theorem 3.2.6 still holds if we replace the
functor S by the pointed functor 〈T, η〉, and correspondingly assume λ to satisfy
the unit law and all algebra structures under consideration to be algebras for the
pointed functor.

In addition to the proof of Theorem 3.2.6 we need to show that the algebra
operation m : TR→ R obtained there to witness the congruence property is an
algebra for the pointed functor 〈T, η〉. This follows from the lemma below.

Lemma 3.4.14 Let 〈P, βP 〉 and 〈Q, βQ〉 be algebras for the pointed functor
〈T, η〉. If R ⊆ P × Q is a congruence between 〈P, βP 〉 and 〈Q, βQ〉 viewed as
plain T-algebras, then it is also a congruence between them viewed as algebras
for the pointed functor.

Proof: We need to show that the mediating algebra structure γ : TR → R
witnessing the congruence property of R satisfies the unit law, i.e. idR = γ ◦ ηR.
We shall show that both arrows idR and γ ◦ ηR make the two triangles in
the diagram below commute, which implies that they are equal since the span
〈R, π1, π2〉 is jointly monic.

Rπ1 π2

?

P Rπ1 π2
Q

We can obviously plug the identity function into the above diagram. That γ ◦ηR
makes both triangles commute as well follows with the unit laws of βP and βQ
and the naturality of η:

P

ηP

id unit βP

R
π1 π2

ηR

Q

ηQ

idunit βQTP
βP

TR
Tπ1 Tπ2

γ

nat. η nat. η

assmpt. γ assmpt. γ

TQ

βQ

P Rπ1 π2
Q

2
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Free pointed functors

Dual to the case of copointed functors, we define a free pointed functor.

Definition 3.4.15 The free pointed functor 〈T, η〉 generated by a Set-functor
S is defined as

T := Id + S and η := ι1 : Id⇒ Id + S.

Moreover, we use the name κ := ι1 : S ⇒ T for the natural transformation
given by the second injection. In order to make this transformation explicit, we
sometimes write 〈〈T, η〉, κ〉.

Corollary 3.4.16 Let 〈〈T, η〉, κ〉 be the free pointed functor generated by S.

(i) Any two arrows f : X → Y and g : SX → Y uniquely determine an arrow
h : TX → Y making the two triangles in the left diagram below commute.

X
ηX

f

TX

∃!h

SX
κX

g

F
ηF

φ

TF

∃!ρ

SF
κF

ψY G

This property extends to natural transformations: two natural transfor-
mations φ : F ⇒ G and ψ : SF ⇒ G uniquely determine a natural trans-
formation ρ : TF ⇒ G making both triangles in the right diagram above
commute.

(ii) The categories AlgS and Alg〈T,η〉 are isomorphic. An S-algebra 〈P, β〉 cor-
responds to the algebra 〈P, β∗〉 of the free copointed functor 〈T, η〉, where
β∗ is the (by the first item) unique arrow fitting in the diagram below.

P
ηP

idP

TP

β∗

SP
κP

βP

Lemma 3.4.17 Let S,B : Set → Set be two functors and let 〈T, η〉 be the free
pointed functor generated by S. There is a one-to-one correspondence between
distributive laws λ of the pointed functor 〈T, η〉 over B and (plain) natural trans-
formations ρ : SB ⇒ BT. For an 〈S,B〉-bialgebra 〈P, β, α〉 we moreover have
that 〈P, β∗, α〉 (where β∗ extends β according to Corollary 3.4.16 (ii)) is a λ-
bialgebra if and only if 〈P, β, α〉 makes the diagram below for the corresponding
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natural transformation ρ commute. In this case we call 〈P, β, α〉 a ρ-bialgebra.
SPSα

βSBP

ρP P

αBTP

Bβ∗ BP

Spelling out the definition of a free pointed functor, we conclude from this
statement that we can alternatively accept natural transformations ρ : SB ⇒
B(S+ Id) as well-behaved specifications. Their models are the 〈S,B〉-bialgebras
〈P, β, α〉 making the diagram below commute.

SPSα

βSBP

ρP P

αB(P + SP )

B[id,β]
BP

Our example specification (3.22) fits into this framework: the rules give rise to
the natural transformation

ρ : S(PωL)⇒ (Pω(Id + S))L

defined for any set X and φ, ψ ∈ (PωX)L as

ρX(φ⊗ ψ) := a 7→







ι1[φ(a)] if ψ(a) = ∅,
ι1[ψ(a)] if φ(a) = ∅,
ι2[{x′ ⊗ y′ | x′ ∈ φ(a), y′ ∈ ψ(a)}] otherwise.

3.4.2 Using (co)monads

Employing free pointed functors enabled us to also allow rules with a single
variable ranging over successor states as a target. In this section we extend the
framework to rules with a target described by arbitrary terms in the signature
over successor variables, i.e. we allow more than one operator application.

To motivate the development, we present an example of a specification in the
setting of deterministic automata. Consider the sequential composition of such
systems. It is defined by the following rules for all a ∈ L, which use the union
operator specified in (3.20) on page 52.

x↓ y↓
(x.y)↓

x↑ x
a−→ xa

x.y
a−→ xa.y

x↓ x
a−→ xa y

a−→ ya

x.y
a−→ (xa.y) ∪ ya

(3.23)
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The last rule does not fit into any of the formats considered so far, because it
declares a transition to a state described by the application of two operators: the
sequential composition again and the union. As before, we shall try to extend
our framework so that we can still capture this specification by a distributive
law λ of an algebra functor over a coalgebra functor. In the previous section a
similar situation led us to represent the algebras alternatively as algebras for a
pointed functor. Here it turns out that we need to consider algebras of a monad
from Section 2.2.2.

Definition 3.4.18 A distributive law of a monad 〈T, η, µ〉 over a functor B
is a natural transformation λ : TB⇒ BT satisfying the unit law from Def. 3.4.11
as well as the multiplication law, stating that the diagram below commutes.

TB
λ

BT

T2B

µB

Tλ

BT2

Bµ

TBT
λT

mult. λ

In this setting, we in addition require that for a λ-bialgebra 〈P, β, α〉 (cf. Defi-
nition 3.2.2) the algebra 〈P, β〉 is an algebra for the monad 〈T, η, µ〉 (cf. Defi-
nition 2.2.9).

Corollary 3.4.19 Theorem 3.2.3 still holds if we take λ to be a distributive law
of the monad 〈T, η, µ〉 over the functor B and all algebras under consideration
are assumed to be algebras for the monad 〈T, η, µ〉.

The proof of the corollary is again based on extentions of Lemmata 3.2.4 and
3.2.5.

Lemma 3.4.20 Let 〈T̃, η̃, µ̃〉 be a monad on a category C. There is a unique
T̃-algebra structure on a final object 1 of C and it yields a final algebra for the
monad 〈T̃, η̃, µ̃〉.

Proof: In addition to the proof of Lemma 3.2.4 we need to show that the final
arrow ! : T̃1 → 1 satisfies the unit and multiplication law (the dual of the former
was actually shown already for Lemma 3.4.4). Both laws hold by finality.

1
η̃1

id1

T̃1

!fin.

T̃21
µ̃1

T̃! fin.

T̃1

!

1 T̃1
!

1

2
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Lemma 3.4.21 Let λ be a distributive law of the monad 〈T, η, µ〉 over the func-
tor B. (i) The monad 〈T, η, µ〉 lifts to a monad 〈Tλ, η̃, µ̃〉 on CoalgB, and (ii)

the functor B lifts to a functor Bλ on Alg〈T,η,µ〉.

Proof: We define Tλ as in Lemma 3.2.5. Dualising the proof of Lemma 3.4.5
we know already for (i) that η lifts to a natural transformation η̃ on CoalgB and
for (ii) that Bλ〈P, β〉 satisfies the unit law in case the T-algebra 〈P, β〉 does.
With the multiplication law for λ and the naturality of λ and µ we moreover
get

• for (i) that also µ : T2 ⇒ T lifts to a natural transformation µ̃ : Tλ
2 ⇒ Tλ

on CoalgB, i.e. that µ̃〈P,α〉 := µP for a B-coalgebra 〈P, α〉 is a homomor-
phism from

Tλ
2〈P, α〉 = 〈T2P, λTP ◦ TλP ◦ T2α〉

to

Tλ〈P, α〉 = 〈TP, λP ◦ Tα〉,

TP
Tα nat. µ

T2P
T2α

µP

TBP

λP mult. λ

T2BP
TλP

µBP

TBTP
λTP

BTP BT2P
BµP

• and for (ii) that Bλ〈P, β〉 = 〈BP,Bβ ◦ λP 〉 satisfies the multiplication law
if 〈P, β〉 does.

T2P
µP

Tβ (∗)

TP

β

T2BP
µBP

TλP

TBP

λP

=⇒ TBTP

TBβ

λTP
BT2P

BTβ

BµP

mult. λ

nat. λ B(∗)

BTP

Bβ

TP
β

P TBP
λP

BTP
Bβ

BP

2

Actually the converse of statement (ii) of the above lemma holds as well. More
precisely, a distributive law of the monad 〈T, η, µ〉 over the functor B is equiv-

alent to a lifting of the functor B to the category Alg〈T,η,µ〉 of algebras for the
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monad.3 We can exploit this correspondence e.g. in order to prove Lemma 3.4.24
(i) below, but since it is available only in the cases that involve a monad (or
dually a comonad), we will give a more elementary proof there which is similar
to the arguments for the simpler cases above.

The result about bisimilarity as a congruence still holds in the setting of monads:

Corollary 3.4.22 The statement of Theorem 3.2.6 still holds if we replace the
functor S by the monad 〈T, η, µ〉, and correspondingly assume λ to satisfy the
unit and multiplication law and all algebra structures under consideration to be
algebras for the monad.

In addition to the proof of Theorem 3.2.6 we need to show that the the T-algebra
operation on the greatest bisimulation is an algebra for the monad. This follows
from the lemma below.

Lemma 3.4.23 Let 〈P, βP 〉 and 〈Q, βQ〉 be algebras for the monad 〈T, η, µ〉.
If R ⊆ P × Q is a congruence between 〈P, βP 〉 and 〈Q, βQ〉 viewed as plain
T-algebras, then it is also a congruence between them viewed as algebras for the
monad.

Proof: In addition to the proof of Lemma 3.4.14 we need to show that the
algebra structure γ on R witnessing the congruence property satisfies the mul-
tiplication law. The argument is similar to the one for the unit law: using the
naturality of µ and the multiplication laws for βP and βQ one easily shows that
both γ ◦ µR and γ ◦ Tγ make the two squares of the diagram diagram below
commute; this implies that they are equal, since the span 〈R, π1, π2〉 is jointly
monic.

T2P
TβP

T2R
T2π1 T2π2

?

T2Q
TβQ

TP
βP

TQ
βQ

P Rπ1 π2
Q

2

3To obtain a distributive law λB̄ from a lifting B̄ : Alg〈T,η,µ〉 → Alg〈T,η,µ〉 of the functor
B, we set

λB̄X := b(µX) ◦ TBηX : TBX → BTX

where b(µX) : TBTX → BTX is the T-algebra structure with B̄〈TX,µX〉 = 〈BTX, b(µX)〉.
It is not too difficult to check that this defines a natural transformation indeed which satisfies
the unit and multiplication law, and that moreover the construction of the lifting Bλ from the
above proof and this one are inverses of each other.
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Free monads

Similar to the approaches involving (co)pointed functors, we will choose the
monad 〈T, η, µ〉 such that the plain S-algebras correspond to algebras for the
monad. As stated in Lemma 2.2.10, this correspondence holds if we take the
free monad generated by S from Definition 2.2.7. Specifications will now be the
distributive laws λ of the free monad generated by S over the behaviour functor
B. As in the case of a pointed functor such a distributive law is generated
by a plain natural transformation ρ of a simpler type and we can express the
condition on a λ-bialgebra directly in terms of ρ.

Lemma 3.4.24 Let S and B be functors such that S generates the free monad
〈T, η, µ〉 and let 〈P, β, α〉 be an 〈S,B〉-bialgebra.

(i) Distributive laws λ of the monad 〈T, η, µ〉 over the functor B are in one-
to-one correspondence with (plain) natural transformations ρ : SB⇒ BT,
and,

(ii) with β∗ being the extension of β to an algebra for the monad 〈T, η, µ〉 ac-
cording to Lemma 2.2.10, 〈P, β∗, α〉 is a λ-bialgebra if and only if 〈P, β, α〉
is a ρ-bialgebra for ρ as above, where this is meant to say that the diagram
below commutes.

SPSα

βSBP

ρP P

α

ρ-bialg.

BTP

Bβ∗ BP

Proof: Let ν : ST ⇒ T and κ : S ⇒ T be the two natural transformations
from Definition 2.2.7.

For item (i) the correspondence is given by λ 7→ ρλ and ρ 7→ λρ where ρλ :=
λ ◦ κB and λρ is the unique natural transformation fitting in the diagram below
(cf. the definition principle in (2.4) on page 22).

B
ηB

Bη

TB

λρ

STB
νB

Sλρ

BT BT2
Bµ

SBT
ρT

Both constructions are inverse to each other: ρλ
ρ

:= λρ ◦ κB = ρ follows from
the following diagram chase, which employs the naturality or ρ and one unit
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law of the monad.

TB

λρ

STB
νB

Sλρ S(def. λρ)

SB

κB

SηB

SBη
ρ

(def. κ)B

SBT

ρT

def. λρ

nat. ρ

BT BT2
Bµ

BT
BTη

id

B(unit T)

To see λρ
λ

= λ, the diagram below shows that λ itself satisfies the defining

property of λρ
λ

. It uses the unit and multiplication law for λ, the naturality of
κ, and Lemma 2.2.8 (referred to by (∗) in the diagram below).

B
ηB

Bη

TB

λ
unit λ

mult. λ

T2B

Tλ

µB

nat. κ

STB

νB

Sλ

κTB

(∗)B

BT BT2
Bµ

TBT
λT

SBT
κBT

ρλT

(def. ρλ)T

Moreover, we need to check that λρ defined as above satisfies the unit and
multiplication law. The unit law holds by definition. For the multiplication law
we shall show that both λρ ◦ µB and Bµ ◦ λρT ◦ Tλρ fit as the unique arrow
into this inductive definition:

TB
ηTB

λρ

T2B

?

ST2B
νTB

S?

BT BT2
Bµ

SBT
ρT
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For Bµ ◦ λρT ◦ Tλρ, the situation is as follows.

TB
ηTB

λρ

T2B

Tλρnat. η nat. ν

ST2B
νTB

STλρ

BT
ηBT

BηT

id

TBT

λρT(def. λρ)T (def. λρ)T

STBT
νBT

SλρT

BT2

BµB(unit T)

BT3
BµT

BTµB(mult. T) nat. ρ

SBT2

ρT2

SBµ

BT BT2
Bµ

SBT
ρT

And for λρ ◦ µB we calculate as below.

TB
ηTB

id

T2B

µB(def. µ)B (def. µ)B

ST2B
νTB

SµB

TB

λρ def. λρ

STB
νB

Sλρ

BT BT2
Bµ

SBT
ρT

Next we prove item (ii). For one direction assume that 〈P, β∗, α〉 is a λ-bialgebra
(referred to by (∗) in the diagram below). Using naturality of κ it easily follows
that 〈P, β, α〉 is a ρλ-bialgebra:

SPSα

κP

β

SBP

κBP

ρλP

nat. κ

TP

Tα
β∗TBP

λP P

α

(∗)

BTP

Bβ∗ BP

For the other direction assume that 〈P, β, α〉 is a ρ-bialgebra. We obtain that
〈P, β∗, α〉 is a λρ-bialgebra, because, as we shall see, both α ◦ β∗ and Bβ∗ ◦ λρP ◦
Tα are uniquely determined (cf. the free induction principle in (2.3) on page
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22) by the same inductive characterisation below.

P
ηP

α

TP

?

STP
νP

S?

BP BTP
Bβ∗

SBPρP

The diagram below shows the situation for α ◦ β∗, the part (∗) of which com-
mutes by our assumption on 〈P, β, α〉 being a ρ-bialgebra.

P
ηP

id

TP

β∗def. β∗ def. β∗

STP
νP

Sβ∗

P

α (∗)

SP
β

Sα

BP BTP
Bβ∗

SBPρP

The next diagram shows that Bβ∗ ◦ λρP ◦ Tα fits as well:

P
ηP

α

TP

Tαnat. η nat. ν

STP
νP

STα

BP
ηBP

BηP

id

TBP

λ
ρ
P

def. λρ def. λρ

STBP
νBP

Sλρ
P

BTP

Bβ∗
B(unit β∗)

BT2P
BµP

BTβ∗B(mult. β∗) nat. ρ

SBTP
ρTP

SBβ∗

BP BTP
Bβ∗

SBPρP

2

With the above development, we know that we can take natural transformations
ρ : SB ⇒ BT as well-behaved specifications with ρ-bialgebras as their models,
where T is the functor of the free monad generated by the algebra functor S.
Such natural transformations correspond to rule formats that allow terms of
the signature under consideration in the targets of the rules. But the resulting
format does not yet allow the transition rules in (3.23) specifying the sequential
composition, because the terms in the targets mention not only successors of
the variables in the source but again those variables themselves. A similar
situation led us to study copointed functors in Section 3.4.1 and we will only be
able to cover the specification of the sequential composition if we combine both
approaches. We shall do so in the next section, but before we mention that the
use of monads can be dualised of course:
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In case the behaviour functor B generates a cofree comonad 〈D, ε, δ〉 we can
use natural transformations ρ : SD ⇒ BS as well-behaved specifications with
ρ-bialgebras as models, where the latter are defined in the apparent way. This
format allows lookahead, i.e. we can use chains of transitions in the premises.

3.5 Abstract GSOS as a mixed format

In the previous section we have extended our use of distributive laws between
plain functors as specifications in Section 3.2 to settings where the algebra func-
tor comes as a pointed functor or monad, and dually for coalgebra functors taken
from copointed functors or comonads. This involved distributive laws satisfying
extra coherence axioms. For (co)free (co)pointed functors or (co)monads we
then demonstrated that such distributive laws are equivalent to plain natural
transformations of a different type. This led to more expressive specification
formats. It is easy to see that the addition of the extra structure on the alge-
bra side is independent from that on the coalgebra side, so we can for instance
consider distributive laws of a pointed functor over a comonad. Combining the
proofs of Theorem 3.2.3 and Corollaries 3.4.3 and 3.4.19 (as well as their duals)
we for instance get the following more general statement.

Corollary 3.5.1 Let λ be a distributive law of a functor S, pointed functor
〈T, η〉, or monad 〈T, η, µ〉 over a functor B, copointed functor 〈D, ε〉, or comonad
〈D, ε, δ〉. An initial algebra of S, 〈T, η〉, or 〈T, η, µ〉 respectively extends uniquely
to a λ-bialgebra and this λ-bialgebra is initial. Dually, a final coalgebra of B,
〈D, ε〉, or 〈D, ε, δ〉 respectively extends uniquely to a λ-bialgebra and this λ-
bialgebra is final.

When we again use (co)free (co)pointed functors or (co)monads in such a mixed
setting, however, we have to check whether we can still explain the corresponding
distributive laws in terms of plain natural transformations. This turns out
to be possible in all cases but for the most complex one, namely that of a
distributive law of a free monad over a cofree comonad. We summarise the
results in the table in Figure 3.5. In this presentation, S and B are functors,
S generates the free pointed functor 〈T̃, η̃〉 or the free monad 〈T, η, µ〉, and B
generates the cofree copointed functor 〈D̃, ε̃〉 or the cofree comonad 〈D, ε, δ〉. A
natural transformation ρ of the type listed in any of the fields of the table is a
representation of a distributive law λ between the respective structures.

For the upper left entry of the table in Figure 3.5, i.e. for distributive laws
between plain functors, there is nothing to show. For the remaining entries in
the upper row and the left column we have shown the correspondence of natural
transformations ρ of the given type and distributive laws between the respective
structures already in the Lemmata 3.4.10 and 3.4.24 and their duals.

The other three filled entries of the table in Figure 3.5 are not proved yet,
namely those marked by (a), (b), and (c). In Lemma 3.5.2 further below we will
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λ
functor

S

pointed

functor

〈T̃, η̃〉

monad

〈T, η, µ〉

functor

B

λ : SB⇒ BS

(immediate)

ρ : SB⇒ BT̃

(L. 3.4.10 dual)

ρ : SB⇒ BT

(Lemma 3.4.24)

copointed

functor

〈D̃, ε̃〉

ρ : SD̃⇒ BS

(Lemma 3.4.10)

ρ : SD̃
(a)⇒ BT̃

(without proof)

ρ : SD̃
(b)⇒ BT

(Lemma 3.5.2)

comonad

〈D, ε, δ〉
ρ : SD⇒ BS

(L. 3.4.24 dual)

ρ : SD
(c)⇒ BT̃

(L. 3.5.2 dual)
unknown

Figure 3.2: Representation of distributive laws between (co)free structures.

prove the correspondence (b) involving distributive laws of a free monad over a
cofree copointed functor. A dual argument proves the correspondence marked
by (c). Since the statement for (a) is easier, we leave out the proof.

We do not know how to resolve all the coherence axioms for a distributive law
of the free monad 〈T, η, µ〉 over the cofree comonad 〈D, ε, δ〉 in general, so we
cannot provide a natural transformation for the lower right field of the table.
Looking at the other cases, one may try natural transformations

ρ : SD⇒ BT (3.24)

as a candidate. But they turn out to be too liberal. To see this, note that a nat-
ural transformations of the type in (3.24) can capture rules with lookahead and
arbitrary terms in the target. Consider the following rule for a unary operator
σ on streams of real numbers (cf. Sections 2.3.3 and 3.3.2) as an example:

s
u−→ s′ s′

v−→ s′′

σ(s)
u+v−→ σ(σ(s′′))

This rule gives rise to a natural transformation ρ as in (3.24). Assume that ρ
would correspond to a distributive law λ of the free monad generated by the
signature of the operator symbol σ over the cofree comonad generated by the
behaviour functor B = R× Id for stream systems. The final λ-bialgebra would
provide a unique interpretation of σ on streams of real numbers satisfying the
rule. But such an interpretation does not exist, as one can easily see trying to
compute, for instance, the result of σ(〈1, 1, 1, . . .〉).
Note that with the above we are not arguing that the case of a free monad and
cofree comonad is not meaningful. On the contrary, it is the most expressive
and thus the most interesting one. We simply do not have an easy way to deal
with it in general.

We now turn back to the field marked by (b) in the table in Figure 3.5. Nat-
ural transformations of the type (b) are the most important ones in Turi and
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Plotkin’s paper [TP97] as well as in the subsequent literature (see e.g. [Tur97,
LPW00, Bar03, Wat02]). For labelled transition systems, they correspond to
specifications in the well known GSOS format [BIM95].

Lemma 3.5.2 Let S,B : Set → Set be functors, let 〈T, η, µ〉 be the free monad
generated by S, and let 〈D, ε〉 be the cofree copointed functor generated by B.

(i) Distributive laws λ of the free monad 〈T, η, µ〉 over the cofree copointed
functor 〈D, ε〉 correspond to (plain) natural transformations ρ : SD⇒ BT.

(ii) Let 〈P, β, α〉 be an 〈S,B〉-bialgebra. For λ and ρ corresponding to each
other as above, with β∗ being the T-algebra corresponding to β (cf. Lemma
2.2.10), and α∗ being the D-coalgebra corresponding to α (cf. Corollary
3.4.8 (ii)), we have that 〈P, β∗, α∗〉 is a λ-bialgebra if and only if 〈P, β, α〉
is a ρ-bialgebra. By the latter we mean that the diagram below commutes.

SPSα∗

βSDP

ρP P

α

ρ-bialg.

BTP

Bβ∗ BP

Proof: Let κ : S⇒ T, ν : ST⇒ T and ϑ : D⇒ B be the natural transforma-
tions from Definitions 2.2.7 and 3.4.7.

For the proof of item (i) we know from Lemma 3.4.24 that distributive laws
λ of the monad 〈T, η, µ〉 over the functor D, i.e. natural transformations λ :
TD⇒ DT satisfying the unit and multiplication law, correspond to plain natural
transformations φ : SD ⇒ DT (where we write the correspondence as λ 7→
φλ and φ 7→ λφ). We show that λ satisfies the counit law if and only if the
corresponding φ satisfies the following counit law.

SD
φ

Sε counit φ

DT

εT

S κ T

It follows from the naturality of κ that φλ satisfies this law if λ satisfies the
respective counit law, as the following diagram shows.

SD

φλ

κD

Sε nat. κ

TD
λ

Tε

DT

εT
cou. λ

S κ T
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We prove that λφ satisfies the counit law if φ does by showing that both Tε
and εT ◦ λφ are uniquely determined (cf. the principle from (2.4) on page 22)
by the same inductive characterisation below.

D
ηD

ε

TD

?

STD
νD

S?

Id η T STν

For Tε this follows from the naturality of η and ν, as shown below.

D
ηD

ε nat. η

TD

Tε nat. ν

STD
νD

STε

Id η T STν

It is shown by the following diagram that εT ◦ λφ satisfies the characterisation
as well. Its part (∗) commutes by Lemma 2.2.8, the others by definition, the
naturality of ε, and the above counit law for φ.

D
ηD

ε Dη

TD

λφ
def. λφ

def. λφ

STD
νD

Sλφ

DT

εTnat. ε

DT2
Dµ

εT2nat. ε (cou. φ)T

SDT

SεT

φT

Id η T T2
µ

ST
κT

ν

(∗)

So we obtain a one-to-one correspondence between distributive laws λ of the
monad 〈T, η, µ〉 over the copointed functor 〈D, ε〉 and natural transformations
φ : SD⇒ DT satisfying the counit law above. As a second step, we show that the
latter correspond to plain natural transformations ρ as in the statement. This
correspondence is given by the maps φ 7→ ρφ and ρ 7→ φρ where ρφ := ϑT ◦ φ
and φρ is the (by Corollary 3.4.8 (i)) unique natural transformation fitting into
the diagram below.

S

κ

SD
Sε

φρ

ρ

T DT
εT ϑT

BT

It is easy to see that these constructions yield the desired correspondence.

The proof of item (ii) is again split into showing two correspondences, where
the type of model in the middle is formulated using φ. Both parts correspond
to the respective parts of the proofs of Lemma 3.4.24 and Lemma 3.4.10.
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2

Spelling out D = Id × B and α∗ = 〈id, α〉, we obtain the following abstract
format:

Definition 3.5.3 Given a signature functor S generating the monad 〈T, η, µ〉,
and given a behaviour functor B, we define a specification in abstract GSOS
to be a natural transformation

ρ : S(Id× B)⇒ BT.

A model of ρ is an 〈S,B〉-bialgebra 〈P, β, α〉 making the diagram below com-
mute, where β∗ is the inductive extension of β (cf. Lemma 2.2.10).

SPS〈idP ,α〉

βS(P × BP )

ρP P

αBTP

Bβ∗ BP

Natural transformations ρ are called specifications in abstract GSOS by Turi and
Plotkin [TP97], because – as we shall see in the next section – the instantiation
of the format with labelled transition systems leads to transition rules of a type
corresponding to the GSOS format.

The models of specifications in abstract GSOS are well-behaved in the sense that
with Lemma 3.5.2 we can apply Corollary 3.5.1 and a corresponding variant of
Theorem 3.2.6 to get the following properties.

Corollary 3.5.4 Let ρ be a specification in abstract GSOS. An initial S-algebra
can be extended in a unique way to a model of ρ, and this model is initial. Dually,
a final B-coalgebra, if it exists, can be extended in a unique way to a model of ρ
and this model is final.

Corollary 3.5.5 Bisimilarity between two models of a specification in abstract
GSOS is a congruence.

With this format we are now able to cover the sequential composition of au-
tomata as specified in (3.23) (using the union from (3.20) from page 52). The
signature Σ contains two binary operations, the sequential composition and
union operator. Let S be the functor associated to this signature. The rules
give rise to the following specification ρ in abstract GSOS: the natural transfor-
mation

ρ : S(Id× (2× IdL))⇒ 2× TL
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is defined for all sets X; x, y ∈ X; b, c ∈ 2; and φ, ψ ∈ XL as

ρX(〈x, 〈b, φ〉〉 ∪ 〈y, 〈c, ψ〉〉) := 〈b ∨ c, a 7→ φ(a) ∪ ψ(a)〉

ρX(〈x, 〈b, φ〉〉.〈y, 〈c, ψ〉〉) := 〈b ∧ c, a 7→
{

(φ(a).y) ∪ ψ(a) if b = >,
φ(a).y otherwise.

〉

3.5.1 Concrete rule formats derived from abstract GSOS

In Section 3.3 we analysed distributive laws of a functor S derived from a sig-
nature Σ over a behaviour functor B for a few important system types, i.e. for
several instances of B. We are now going to do the same for specifications in
abstract GSOS, which is to say natural transformations ρ : S(Id× B) ⇒ BT,
where T is the functor from the term monad over S. The derivation here is
slightly more complicated but still similar to the one in Section 3.3, where we
considered the natural transformations λ : SB ⇒ BS. Therefore our expla-
nations will be rather brief this time. We just make a general remark on the
difference between the two settings:

• The extra occurrence of Id×. . . in the source of the natural transformation
is essentially handled by Lemma A.1.7, which states that natural trans-
formations of the type IdA × F ⇒ G for some set A correspond to those
of the type F⇒ G(A + Id).

• Since the functor S is associated to a finitary signature Σ, i.e. all operator
symbols have a finite arity, the functors T and S are similar in structure:
T can be viewed to arise from a signature as well, more precisely we have

T '
∐

t∈T1

Id|t|∗ , (3.25)

where |t|∗ denotes the number of occurrences of the one variable ∗ in t.
As a result, the replacement of the functor S by T in the target of the
natural transformation does not bring any extra complication.

LTS

Modifying the development in Section 3.3.1 as indicated above, we get that
specifications in abstract GSOS instantiated for labelled transition systems can
be characterised as follows:

Corollary 3.5.6 Any natural transformation

ρ : S(Id× PωL)⇒ (PωT)L
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corresponds to an image finite (where this has the same meaning as in Theorem
3.3.1) set of derivation rules of the shape

θi(b) 6= ∅ 1 ≤ i ≤ n, b ∈ Ri
θi(c) = ∅ 1 ≤ i ≤ n, c ∈ Pi
yj ∈ θij (lj) 1 ≤ j ≤ k

t ∈ ρ(σ(〈x1, θ1〉, . . . , 〈xn, θn〉))(a)

where a ∈ L; σ ∈ Σ with arity n; Ri, Pi ⊆ L such that Ri ∩ Pi = ∅ (1 ≤ i ≤ n);
k ∈ N; 1 ≤ ij ≤ n, lj ∈ Rij (1 ≤ j ≤ k); t ∈ T(X + Y ) with X = {x1, . . . , xn}
and Y = {y1, . . . , yk}.

To obtain a direct characterisation of the models of a specification ρ in abstract
GSOS, first recall that those are the 〈S,B〉-bialgebras 〈P, [[.]], α〉 for B = PωL
which make the following diagram commute, where [[.]]∗ is the inductive exten-
sion of [[.]] to terms:

SPS〈id,α〉

[[.]]S(P × (PωP )L)

ρP P

α(PωTP )L
(Pω[[.]]

∗)L

(PωP )L

In this setting, the specification ρ is applied to arguments of the type

σ(〈p1, α(p1)〉, . . . , 〈pn, α(pn)〉)
for σ(p1, . . . , pn) ∈ SP . Substituting α(pi) for θi in the rules in Corollary 3.5.6,
we can rewrite the premises using the arrow notation from Definition 2.3.12. As
for the conclusion, note that with the diagram above

t ∈ ρP (σ(〈p1, α(p1)〉, . . . , 〈pn, α(pn)〉))(a)
implies [[t]]∗ ∈ α([[σ(p1, . . . , pn)]])(a), or, with the arrow notation,

[[σ(p1, . . . , pn)]]
a−→ [[t]]∗.

Taken together, we can characterise the models of any specification in abstract
GSOS instantiated for labelled transition systems by an image finite set of rules
of the following shape:

xi
b−→ 1 ≤ i ≤ n, b ∈ Ri

xi
c−9 1 ≤ i ≤ n, c ∈ Pi

xqj
aj−→ yj 1 ≤ j ≤ k

σ(x1, . . . , xn)
a−→ t
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We leave the application of the operator interpretations [[.]] and [[.]]∗ implicit.

These rules are a generalisation of the GSOS rules of Bloom, Istrail, and Meyer
[BIM95] to possibly infinite sets of labels. This extension led to the introduction
of positive premises without a variable for the successor state (i.e. the uppermost
type of premises), which are not present in the original format. In principle,
every premise of this type can be replaced by a transition leading to a successor
state variable (i.e. one of the bottommost type) which is not used in the target
t. But with infinite sets of labels this forces us to allow infinitely many successor
variables. At this point it is actually not necessary to keep their number finite,
but the situation will change when we turn to probabilistic systems in Chapter 5.

The corresponding instances of our statements about the abstract GSOS frame-
work, i.e. Corollaries 3.5.4 and 3.5.5, yield that every GSOS specification has
an initial and final model and that bisimilarity is a congruence on every model.
These are known properties of the format. In Chapter 4 we shall moreover
obtain new well-behavedness results for the GSOS format from the abstract
framework.

Streams

A specification in abstract GSOS instantiated with the stream functor B = R×Id
is a natural transformation

ρ : S(Id× (R× Id))⇒ R× T

The models of such a specification can be characterised by a set of rules deter-
mining for each σ ∈ Σ (with arity n) and u1, . . . , un ∈ R a derivation of the
shape

xi
ui−→ yi (1 ≤ i ≤ n)

σ(x1, . . . , xn)
v−→ t

for some v ∈ R and t ∈ T(X + Y ), where X := {x1, . . . , xn} and Y :=
{y1, . . . , yn}.
As an example, notice that most of the operators Rutten considers for his stream
calculus [Rut01, Rut00a] fit into this format.4 We recall the specification of the
sum + and shuffle product ⊗, which are both binary operators on streams of

4The only exception is the operator Λc [Rut01, page 29]. Its definition is equivalent to the
rule

x
u

−→ x′ x′
v

−→ x′′

Λc(x)
u

−→ Λc(x′ +X ⊗ x′′)

which uses lookahead. Therefore the rule does not fit into the abstract GSOS format. It can
be shown, however, that it can be covered by a distributive law of the free monad over the
cofree comonad. This means that it is well-behaved in all respects studied by Turi and Plotkin
[TP97].
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real numbers (the first one was already shown in Section 3.3.2). They are given
by the following sets of rules:

x
u−→ x′ y

v−→ y′

x+ y
u+v−→ x′ + y′

(u, v ∈ R) (3.26)

x
u−→ x′ y

v−→ y′

x⊗ y u·v−→ (x′ ⊗ y) + (x⊗ y′)
(u, v ∈ R) (3.27)

The sum operator was already specifiable in the simple format, but the shuffle
product uses the greater expressiveness of abstract GSOS: the rules declare
transitions to a state described by more than one application of an operator
and this description moreover uses both the variables in the source (x and y) as
well as those for their successors (x′ and y′).

Automata

Instantiated with the behaviour functor B = 2×IdL for deterministic automata,
specifications in abstract GSOS become natural transformations

ρ : S(Id× (2× IdL)
︸ ︷︷ ︸

'2×IdL+1

)⇒ 2× TL,

which are equivalent to families of functions

(
hσ : 2|σ| → 2× (T({1, . . . , |σ|} × (L+ 1)))L

)

σ∈Σ

Translated into a characterisation of the models, we obtain the following rule
format: a specification again contains sets of rules of two types, namely

xi↓ (i ∈ P ) xi↑ (i ∈ N)

σ(x1, . . . , xn)↓

and

xi
b−→ yli (1 ≤ i ≤ n, l ∈ L) xi↓ (i ∈ P ) xi↑ (i ∈ N)

σ(x1, . . . , xn)
a−→ t

where σ ∈ Σ with arity n; P,N ⊆ {1, . . . , n} with P ∩ N = ∅; a ∈ L; and
t ∈ T(X + Y ), where X := {x1, . . . , xn} and Y := {yli | 1 ≤ i ≤ n, l ∈ L} (we

again omit a premise xi
b−→ yli if y

l
i does not occur in t). For each σ ∈ Σ, a ∈ L,

and A ⊆ {1, . . . , n} there should be exactly one rule of the second type with
this σ and a such that P ⊆ A and A ∩N = ∅.
We have already argued that the specification of the sequential composition by
the rules (3.23) on page 64 fits into the abstract GSOS format, and we indeed
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λ S 〈T̃, η̃〉 〈T, η, µ〉

B •
(c)

(a) •
(d)

(b) •
(e)

〈D̃, ε̃〉 •
(h)

(f) •
(i)

(g) •
(j)

〈D, ε, δ〉 • (k) • (l) •

Figure 3.3: Distributive laws between all combinations of cofree structures.

find that the given rules are in the shape above. As another example, we define
the Kleene star operation as follows:

(x∗)↓
x

a−→ xa

x∗
a−→ xa.(x∗)

3.6 Comparing the different formats

Given a signature Σ with associated functor S and a behaviour functor B we
have specified classes of 〈S,B〉-bialgebras by distributive laws λ of S over B.
Driven by examples that did not fit into this simple framework, we later also
considered distributive laws between functors with additional structure, namely
the free pointed functor 〈T̃, η̃〉 or monad 〈T, η, µ〉 over S and the cofree copointed
functor 〈D̃, ε̃〉 or comonad 〈D, ε, δ〉 over B, provided they existed. This way we
could indeed capture the specifications that did not fit into the simple setting.

Taking all possible combinations of these structures, we obtain distributive laws
of nine kinds, depicted by bullets in the table in Figure 3.3. In this section,
we show formally that the addition of the (co)free constructions extends the
expressiveness of the approach. To this end we argue that a distributive law λ
of any of the types can be turned into a distributive law λ∗ of a type positioned
below or to the right of it (or both) in the table, such that λ and λ∗ have the
same models. We do so by establishing liftings along the arrows (a) through
(l) in Figure 3.3. We will not prove all possible cases in all detail here, but we
sketch the argument.

Lemma 3.6.1 (i) A distributive law λ of a functor S over a functor B lifts to
a distributive law λ∗ of the functor S over the cofree copointed functor 〈D̃, ε̃〉
generated by B (cf. Def. 3.4.7) such that an 〈S,B〉-bialgebra 〈P, β, α〉 is a λ-
bialgebra if and only if 〈P, β, α̃∗〉 is a λ∗-bialgebra, where α̃∗ is the extension of
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α to a coalgebra structure for the copointed functor (cf. Corollary 3.4.8 (ii)).

(ii) The statement still holds if we replace S by any pointed functor 〈T̃, η̃〉 or
monad 〈T, η, µ〉.
(iii) The above statements dualise.

Item (i) of the above lemma corresponds to arrow (c) in Figure 3.3, and item (ii)
covers arrows (d) and (e). With item (iii) we moreover obtain the dual arrows
(a), (f) and (k).

Proof: We define λ∗ to be the (by Corollary 3.4.8 (i)) unique natural trans-
formation fitting into the diagram below, where ϑ̃ : D̃ ⇒ B is the natural
transformation from Def. 3.4.7.

SD̃
Sε̃

λ∗

Sϑ̃
SB

λ

S D̃Sε̃S ϑ̃S
BS

The left triangle in the diagram above establishes the required counit law for
λ∗. We show that, with this definition of λ∗, the liftings

Sλ : CoalgB → CoalgB and Sλ∗ : Coalg〈D̃,ε̃〉 → Coalg〈D̃,ε̃〉

from Lemmata 3.2.5 and 3.4.5 correspond to each other via the isomorphism
CoalgB ' Coalg〈D̃,ε̃〉 (cf. Lemma 3.4.8 (ii)), i.e.

(Sλ〈P, α〉)∗ = Sλ∗(〈P, α〉∗) (3.28)

for all B-coalgebras 〈P, α〉, where by 〈P, α〉∗ := 〈P, α̃∗〉 we denote the coalgebra
in Coalg〈D̃,ε̃〉 corresponding to 〈P, α〉 in CoalgB under the above isomorphism.

It is easier to actually show the equality in CoalgB. So we claim that

Sλ〈P, α〉 = 〈SP, λP ◦ Sα〉
is the B-coalgebra to which

Sλ∗(〈P, α〉∗) = 〈SP, λ∗P ◦ Sα̃∗〉
corresponds. Bearing in mind that any coalgebra 〈Q, α̃Q〉 for the copointed func-

tor Coalg〈D̃,ε̃〉 corresponds to the B-coalgebra 〈Q, ϑ̃Q ◦ α̃Q〉, the claim follows
from the diagram below.

SP

Sα Sα̃∗

SBP

λP

S(def. α̃∗)

def. λ∗

SD̃P

λ∗P

Sϑ̃P

BSP D̃SP
ϑ̃SP
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With the correspondence of Sλ and Sλ∗ we easily obtain the correspondence
of λ-bialgebras and λ∗-bialgebras: by definition, 〈P, β, α〉 is a λ-bialgebra if
and only if β is a B-coalgebra homomorphism from Sλ〈P, α〉 to 〈P, α〉. By the
isomorphism CoalgB ' Coalg〈D̃,ε̃〉 the latter is the case if and only if β is a 〈D̃, ε̃〉-
coalgebra homomorphism from (Sλ〈P, α〉)∗ to 〈P, α〉∗, i.e. from Sλ∗〈P, α̃∗〉 to
〈P, α̃∗〉 using (3.28). This in turn is equivalent to 〈P, β, α̃∗〉 being a λ∗-bialgebra.

For item (ii) it is sufficient to show that λ∗ as defined above satisfies a unit or
multiplication law if λ does. Both proofs are straightforward. Item (iii) follows
immediately by dualising the proofs.

2

Next we prove a lifting of distributive laws over a cofree copointed functor 〈D̃, ε̃〉
to those over the cofree comonad 〈D, ε, δ〉. To this end we first study the relation
of the two cofree structures.

Lemma 3.6.2 Let 〈〈D̃, ε̃〉, ϑ̃ : D̃⇒ B〉 and 〈〈D, ε, δ〉, υ : D⇒ BD〉 be the cofree
pointed functor and comonad over the same functor B (cf. Def. 3.4.7 and 2.3.17).
Define ξ : D ⇒ D̃ and υ∗ : D ⇒ D̃D to be the natural transformations fitting
into the diagrams below (cf. Corollary 3.4.8), where υ : D ⇒ BD, ϑ : D ⇒ B,
and ϑ̃ : D̃⇒ B are defined as in Definitions 2.3.17 and 3.4.7.

Dη

ξ

ϑ
Did

υ∗

υ

Id D̃ε̃ ϑ̃
B D D̃Dε̃D ϑ̃D

BD

(i) The composed isomorphism

Coalg〈D,ε,δ〉 ' CoalgB ' Coalg〈D̃,ε̃〉

(cf. Lemma 2.3.20 and Corollary 3.4.8 (ii)) relates the coalgebra 〈P, α〉 for the
comonad 〈D, ε, δ〉 to the coalgebra 〈P, ξP ◦ α〉 for the copointed functor 〈D̃, ε̃〉.
(ii) Every coalgebra 〈X, α̃〉 for the copointed functor 〈D̃, ε̃〉 and arrow f : X → Y
determine a unique arrow g : X → DY fitting into the diagram below.

X
α̃

f

∃!g

D̃X

D̃g

Y DYεY υ∗Y
D̃DY

This principle lifts to natural transformations.

Proof: For item (i), spelling out both isomorphisms we find that 〈P, α〉 cor-
responds to 〈P, α̃〉, where α̃ is the unique arrow (cf. Corollary 3.4.8 (i)) fitting
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into the diagram below.

Pid

α̃

α
DP

ϑP

P D̃Pε̃P ϑ̃P
BP

That ξP ◦ α satisfies this characterisation follows from the following diagram.

P

id
α

DPεP

ξP

ϑP

cou. α

P D̃Pε̃P ϑ̃P

def. ξ def. ξ

BP

For item (ii), with the correspondence of CoalgB and Coalg〈D̃,ε̃〉 it is easy to see
that an arrow g makes the diagram in the statement commute if and only if it
fits into the diagram below, where α is the B-coalgebra corresponding to α̃. So
the statement follows from the cofree coinduction principle from (2.10) on page
34.

X
α

f

g

BX

Bg

Y DYεY υY
BDY

2

Lemma 3.6.3 Let the copointed functor 〈D̃, ε̃〉 and the comonad 〈D, ε, δ〉 be
cofree over the same functor B. (i) A distributive law λ of a functor S over
the copointed functor 〈D̃, ε̃〉 lifts to a distributive law λ∗ of the functor S over
the comonad 〈D, ε, δ〉 such that 〈P, β, α̃〉 is a λ-bialgebra if and only if 〈P, β, α〉
is a λ∗-bialgebra, where 〈P, α̃〉 and 〈P, α〉 correspond to each other under the
isomorphism Coalg〈D̃,ε̃〉 ' Coalg〈D,ε,δ〉.

(ii) The statement still holds if we replace S by any pointed functor 〈T̃, η̃〉 or
monad 〈T, η, µ〉.
(iii) The above statements dualise.

Proof: [sketch] With Lemma 3.6.2 (i) we can reuse parts of the proof of Lemma
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3.6.1 if we can find a distributive law λ∗ making the following diagram commute.

SD
λ∗

Sξ

DS

ξS

SD̃ λ D̃S

It can be defined by the principle of Lemma 3.6.2 (ii) to fit into the following
diagram (note that with the counit law for λ the upper arrow λD ◦ Sυ∗ satisfies
the counit law as required for this principle).

SD
Sε

Sυ∗

λ∗

SD̃D
λD

D̃SD

D̃λ∗

S DS
εS υ∗S

D̃DS

Again, λ∗ satisfies the counit law by definition. It can moreover be shown that
it satisfies the comultiplication law as required. For item (ii) it is sufficient to
show that λ∗ satisfies a unit or multiplication law if λ does.

2

Item (i) of the above lemma corresponds to arrow (h) in Figure 3.3, and item (ii)
covers arrows (i) and (j). With item (iii) we moreover obtain the dual arrows
(b), (g) and (k). Thus, Lemmata 3.6.1 and 3.6.3 together provide all claimed
liftings.

3.7 Comparison with related work

As already mentioned, the material presented in this chapter is largely based
on an article by Turi and Plotkin [TP97]. Our main contribution to it is the
accurate analysis of the natural transformations under consideration (cf. Sec-
tions 3.3 and 3.5.1). Turi and Plotkin state that abstract GSOS (cf. Def. 3.5.3)
corresponds to the GSOS format of Bloom, Istrail, and Meyer [BIM95] in the
case of labelled transition systems with a finite set of labels and sketch a proof.
Since we found that it is not so easy to add the details to this sketch, we took a
different approach by first decomposing the natural transformations structurally
in a number of steps in our proof. This method moreover has the advantage
that it is easily adaptable to variations of the behaviour under consideration.
We will benefit from this property in Chapter 5, when we study specification
formats for probabilistic transition systems. More as a side effect, we extended
the result of Turi and Plotkin to systems with arbitrary sets of labels. This
generalisation was apparently not obvious, since Turi and Plotkin asked for it
in an open question in loc. cit. Moreover, we spelled out the formats for stream
systems and deterministic automata.
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We gave an alternative proof to show that the greatest bisimulation between
two bialgebras for a distributive law is a congruence (cf. Lemma 2.3.6). Turi
and Plotkin construct this greatest bisimulation as the pullback of the final
coalgebra maps. For that they need to assume that the behaviour functor
under consideration possesses a final coalgebra and preserves weak pullbacks;
assumptions which were quoted in most of the successive literature. For our
proof the greatest bisimulation need not be a pullback. All we need is that any
such relation exists, which is guaranteed without assumptions on the functor in
Set, our category of interest.

Another difference is that we studied distributive laws between two functors
with less structure than that of a monad and comonad respectively as formats
in their own right. This was inspired by an observation of Lenisa, Power, and
Watanabe [LPW00], who found that the abstract GSOS format corresponds to
distributive laws of a free monad over a cofree copointed functor. Although
the formats assuming less structure are less expressive than the one based on
monads and comonads, they have two advantages: first, they are applicable
also in contexts where the monad or comonad structure is not given, which
generalises parts of the bialgebraic approach, for instance, to behaviour functors
not possessing a final coalgebra; second, as we shall demonstrate in Chapter 4,
the less complex formats have additional well-behavedness properties.

Next we mention successive articles elaborating on Turi and Plotkin’s bialge-
braic approach to SOS specification formats. Among those who add to the
general theory of bialgebraic semantics are the following. Watanabe [Wat02]
studies different types of transformations between distributive laws. This ex-
tends the theory to topics such as conservative extensions of specifications or
the implementation of one operator by several others. Power [Pow03, LPW04]
proposes a categorical construction of a big-step semantics from the small-step
semantics given by abstract GSOS and remarks on how to merge specifica-
tions. Klin [Kli04b, Kli04a] studies the bialgebraic framework in the context
of domains and fixpoint constructions. This allows to add possibly unguarded
recursive specifications of operators. Fiore and Turi [FT01] apply the theory
in the setting of syntax with variable binding, which causes them to work with
categories of presheaves.

We postpone the discussion of the papers concerned with the derivation of con-
crete specification formats from this theory [Tur97, Kic02a, Kic02b] until Chap-
ter 5, where we derive formats for probabilistic systems.



Chapter 4

Generalised coinduction

The coinduction proof principle and the coiteration definition schema from
Corollary 2.3.9 and Definition 2.3.13 are the basic coinductive definition and
proof principles. But for many applications they are too rigid: with B being
the behaviour functor under consideration, we often encounter functions into
the carrier of a final B-coalgebra that cannot be characterised directly as coit-
erative arrows, and the bisimulations needed for coinduction proofs are often
more complex than desirable. In Chapter 1 we have illustrated this with the
specification of the function zip that merges two lazy lists (cf. Section 1.2.1)
and the proof of an identity involving it (cf. Section 1.2.2).

Therefore, several extensions of the basic coinduction principles are discussed in
the literature. Amongst them are the categorical duals of the primitive recursion
and course-of-value iteration definition schemata for inductive definitions. These
have been proposed and shown to be meaningful, e.g., by Uustalu and Vene
[VU98, UV99]. Another example is the Flattening Lemma of Moss [Mos01]. An
extended coinductive proof principle is the bisimulation up-to-context technique
of Sangiorgi [San98].

Lenisa [Len99a] observed that many functions that cannot be characterised as
coiterative arrows directly can be obtained by precomposing a coiterative arrow
with the unit of a suitable pointed functor (cf. Definition 3.4.11). In order to
prove properties of these functions, she assumes that there exists a distributive
law of this pointed functor over the behaviour functor B.

Elaborating on her idea, in this chapter we introduce a new coinductive proof
and definition principle based on a functor S that distributes over the behaviour
functor B via a distributive law λ.

On the one hand, we obtain an abstract definition principle that we call the
λ-coiteration schema. Under mild assumptions it is shown to uniquely charac-
terise functions into a final B-coalgebra. Amongst those functions are examples
that do not arise as (standard) coiterative arrows, i.e. functions that cannot be

87
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defined directly by the coiteration schema. On the other hand, we introduce
the notion of a λ-bisimulation and derive a coinduction proof principle based on
it. In many cases, this principle allows us to carry out bisimulation proofs with
relations that are smaller than the ordinary bisimulation relations we would
need for the same task.

We also study the cases where λ is a distributive law of a pointed functor or
monad over B. We show that in both cases λ-coiteration is a conservative
extension of standard coiteration, in the sense that every coiterative arrow is
also a λ-coiterative arrow. Moreover, in both cases the proof principle based on
λ-bisimulations generalises the standard one, since every ordinary bisimulation
is a λ-bisimulation.

We call λ-coinduction a generalised coinduction principle, because standard
coinduction arises as a special instance of it: the coiteration schema (cf. Defini-
tion 2.3.13) is a special instance of the λ-coiteration schema, and a bisimulation
is a special instance of a λ-bisimulation. We show that several known extended
definition schemata, like the duals of primitive recursion and course of value
iteration mentioned above, arise as λ-coiteration schemata for suitable distribu-
tive laws λ. Our approach provides new simple justifications for the validity of
those principles as instances of our abstract statements.

Moreover, we are able to derive new schemata with little effort. Applied to
the setting of Chapter 3 for instance, where we viewed distributive laws as
operator specifications, the λ-coiteration definition and proof principles yield
solutions of guarded recursive specifications and a bisimulation up-to-context
proof principle for the operators definable in the respective specification formats.
As one instance, we obtain that the bisimulation up-to-context proof principle
is valid for operators defined by the GSOS format [BIM95]. With this statement
we generalise a result by Sangiorgi [San98], who proved the validity of the up-
to-context technique for the weaker De Simone specification format [Sim85]. In
Chapter 5, where we consider probabilistic systems, we obtain corresponding
properties also for the novel probabilistic formats that we shall introduce there.

We proceed as follows: in the first two sections we introduce the λ-coinduction
proof and definition principles involving distributive laws between plain func-
tors; in Section 4.3 we extend the results to settings where the algebra and
coalgebra functors are equipped with the additional structure of a (co)pointed
functor or monad; in Section 4.4 we spell out several instances of the abstract
format, obtaining known and new concrete extensions of the basic coinduction
principles; in Section 4.5 we compare our approach with related work.

4.1 The λ-coinduction proof principle

In this section we introduce the λ-coinduction proof principle in the simple set-
ting of a distributive law λ of a given signature functor S over a given behaviour
functor B. It deviates from the standard coinduction proof principle in that
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it is based on λ-bisimulations (to be defined below) instead of the ordinary
bisimulations from Def. 2.3.3.

Our motivating examples are about infinite streams of reals numbers Rω, which
can be modelled as a final coalgebra, as we mentioned in Section 2.3.3. We use
the sum + and (shuffle) product ⊗ on Rω, which are defined by the following
equations for s, t ∈ Rω with s = s0 : s′ and t = t0 : t′ (cf. the specifications in
(3.26) and (3.27) from Section 3.5.1):

s+ t = (s0 + t0) : (s
′ + t′)

s⊗ t = (s0 · t0) : ((s′ ⊗ t) + (s⊗ t′))

We want to prove that the shuffle product is commutative, i.e. that we have

s⊗ t = t⊗ s for all s, t ∈ Rω.

Recall that 〈Rω, 〈h, t〉〉, where h : Rω → R and t : Rω → Rω from equation
(2.7) on page 32 return the head and tail of a stream, is a final coalgebra of
the functor B := R× Id. We would thus try to establish this identity with the
coinduction proof principle (cf. Corollary 2.3.9). This means that we need to
come up with a bisimulation relation R ⊆ Rω ×Rω relating the streams we aim
to prove equal. The evident candidate is thus

R := {〈s⊗ t, t⊗ s〉 | s, t ∈ Rω}. (4.1)

The definition of a bisimulation relation requires first that the heads of any
two streams related should be equal, i.e. h(s ⊗ t) = h(t ⊗ s) for all s, t ∈ Rω.
This easily follows from the definitions. But second, the tails of any two related
streams should be related again. For the pairs in R the specification of ⊗ yields

t(s⊗ t) = (s′ ⊗ t) + (s⊗ t′)

(∗)
= (s⊗ t′) + (s′ ⊗ t), (4.2)

t(t⊗ s) = (t′ ⊗ s) + (t⊗ s′),

where we again write s = s0 : s′ and t = t0 : t′ and for the step (∗) we use the
commutativity of the sum, which can be shown by a straightforward coinduction
proof. Since both tails are given as sums of two streams, we do not obtain a
pair such as those related by R. In order to establish the bisimulation property,
we thus have to add further pairs. Observing that the respective summands in
the above expressions are related by R, i.e.

〈s⊗ t′, t′ ⊗ s〉 ∈ R and 〈s′ ⊗ t, t⊗ s′〉 ∈ R,

we can take

R̃ :=
{

〈
n∑

i=1

(si ⊗ ti),
n∑

i=1

(ti ⊗ si)〉
∣
∣
∣ n ∈ N; si, ti ∈ Rω(1 ≤ i ≤ n)

}

. (4.3)
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But in order to show that R̃ is a bisimulation, we have to deal with more complex
terms than before, which we could try to handle, for instance, by an induction
on the number of summands n in the terms under consideration. However, since
the relation R̃ arose from R in a systematic way as a closure under the sum, we
can hope that there is a proof principle to automate such an induction.

It turns out indeed that we get a valid proof principle for bisimilarity if we
modify the definition of a bisimulation relation such that the successors are
required to arise as sums of pairwisely related streams. This principle as such
is not really universal, but it motivates the first step of the development of an
abstract framework. This will be powerful enough to provide the justification of
several known and new variations and generalisations of the bisimulation proof
technique.

The computation in (4.2) shows that the tails of s⊗t and t⊗s can be expressed
as sums of streams that are pairwise related by R, i.e. we have

〈t(s⊗ t), t(t⊗ s)〉 ∈ R′ := {〈x1 + x2,y1 + y2〉 | 〈x1,y1〉, 〈x2,y2〉 ∈ R}

With this observation we find that R satisfies a condition similar to that of a
bisimulation: setting, for s = s0 : s and t = t0 : t,

γ′(〈s⊗ t, t⊗ s〉) := 〈s0 · t0, 〈(s′ ⊗ t) + (t⊗ s′), (s⊗ t′) + (t′ ⊗ s)〉〉

we find a function γ′ : R→ R×R′ that makes both parts of the diagram below
commute (for a similar situation see Sangiorgi [San98]).

Rω

〈h,t〉

R
π1 π2

γ

Rω

〈h,t〉

R× Rω R×R′
id×π′1 id×π′2

R× Rω

Next, note that we can write the relation R′ above as

R′ = 〈+ ◦ (π1 × π1),+ ◦ (π2 × π2)〉[R×R] ⊆ Rω × Rω,

so the function γ′ factors as

γ′ = (idR × 〈+ ◦ (π1 × π1),+ ◦ (π2 × π2)〉) ◦ γ

for some γ : R → R × (R × R). This way we can eliminate the relation R′ in
the above diagram to obtain the one below.

Rω

〈h,t〉

R
π1 π2

γ

Rω

〈h,t〉

R× Rω R× (R×R)
id×(+◦(π1×π1)) id×(+◦(π2×π2))

R× Rω
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In the following we shall show that the existence of such a γ is sufficient here
to conclude that R is contained in some bisimulation. But first we derive a
more abstract description of the diagram above. To this end, note first that
with S := Id × Id we obtain R × R = SR and (πi × πi) = Sπi. Second,
with B := R × Id, the 〈S,B〉-bialgebra 〈Rω,+, 〈h, t〉〉 is a λ-bialgebra for the
distributive law λ : SB⇒ BS, where for any set X the component

λX : (R×X)× (R×X)→ R× (X ×X)

is defined for all u, v ∈ R and x, y ∈ X by

λX(〈u, x〉, 〈v, y〉) := 〈u+ v, 〈x, y〉〉. (4.4)

Using this, the above situation is an instance of the following notion.

Definition 4.1.1 Let S and B be functors, and let 〈P, βP , αP 〉 and 〈Q, βQ, αQ〉
be two 〈S,B〉-bialgebras. We call a relation R ⊆ P ×Q an 〈S,B〉-bisimulation
between 〈P, βP , αP 〉 and 〈Q, βQ, αQ〉 if there exists a BS-coalgebra structure γ
on R such that the diagram below commutes.

P

αP

R
π1 π2

γ

Q

αQ

BP BSR
B(βP ◦Sπ1) B(βQ ◦Sπ2)

BQ

If the two bialgebras 〈P, βP , αP 〉 and 〈Q, βQ, αQ〉 are λ-bialgebras for a dis-
tributive law λ of S over B, then we shall speak of λ-bisimulations instead of
〈S,B〉-bisimulations for short.

So the relation R from (4.1) is a λ-bisimulation for the distributive law λ from
(4.4) specifying the sum of two streams of real numbers. In order to use λ-
bisimulations for a proof principle, we shall prove that any two states related
by a λ-bisimulation are bisimilar.

Theorem 4.1.2 Let S and B be two functors on a category C with countable
coproducts, and let λ be a distributive law of S over B. Any λ-bisimulation
between two λ-bialgebras 〈P, βP , αP 〉 and 〈Q, βQ, αQ〉 is contained in some (or-
dinary) bisimulation between 〈P, αP 〉 and 〈Q,αQ〉.

With this theorem and Corollary 2.3.9 we immediately obtain the following
λ-coinduction proof principle.

Corollary 4.1.3 Let S and B be two functors on a category C with countable
coproducts, let 〈F, ω〉 be a final B-coalgebra, and let λ be a distributive law of
S over B. If R ⊆ F × F is a λ-bisimulation on the final λ-bialgebra 〈F, βF , ω〉
from Theorem 3.2.3 (ii) then 〈p, q〉 ∈ R implies p = q.
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Before we prove Theorem 4.1.2, we need to introduce some notation. The count-
able coproduct of the objects Xi for i ∈ N is an object

∐
Xi together with in-

jections ιj : Xj →
∐
Xi for j ∈ N such that the following holds: for any object

Y and arrows fj : Xj → Y for j ∈ N there is a unique arrow [fi] :
∐
Xi → Y ,

the countable case analysis, such that [fi] ◦ ιj = fj for all j ∈ N.

X0

ι0

f0

X1

ι1

f1

X2

ι2

f2

. . .

∐
Xi

[fi]

Y

(4.5)

In Set, the countable coproduct of the sets X1, X2, . . . and the countable case
analysis for the functions fi : Xi → Y can be described as follows.

∐

Xi = {〈i, x〉 | i ∈ N, x ∈ Xi}
[fi] = [〈i, x〉 7→ fi(x)]

Definition 4.1.4 We define a pointed functor 〈H, ι0 : Id⇒ H〉 by

H :=

∞∐

i=0

Si and ι0 : S0 ⇒ H,

where Si is the i-fold application of S, i.e. S0 := Id and Si+1 := S ◦ Si.
Any S-algebra β : SX → X lifts to an algebra β∗ : HX → X for the pointed
functor by defining

β∗ := [βi] : HX → X where β0 := idX and βi+1 := β ◦ Sβi.
Moreover, a distributive law λ of S over any functor B lifts to a distributive law
λ∗ of the pointed functor 〈H, ι0〉 over B. Also, we use the natural transformation
χ : HS ⇒ H. They are defined to be the (by the universal property of the
countable coproduct defining H) unique natural transformations fitting into the
respective diagrams below for all i ∈ N.

SiB
λi

ιiB

BSi

Bιi

Si+1

ιiS ιi+1

HB
λ∗

BH HS χ H

Here λi : SiB⇒ BSi is defined inductively by

λ0 := id and λi+1 := λSi ◦ Sλi.
Note that the diagram for i = 0 in the definition of λ∗ establishes the unit law
for λ∗.
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Lemma 4.1.5 Let λ be a distributive law of the functor S over the functor B, let
〈X,β, α〉 be an 〈S,B〉-bialgebra, and let λ∗ and β∗ be the liftings of λ and β from
Definition 4.1.4. If 〈X,β, α〉 is a λ-bialgebra then 〈X,β∗, α〉 is a λ∗-bialgebra.

Proof: It is immediate to see that the mapping 〈X,β〉 7→ 〈X,β∗〉 defines a
functor from AlgS to AlgH, i.e. that it preserves homomorphisms. If 〈X,β, α〉 is
a λ-bialgebra then α is an S-algebra homomorphism from 〈X,β〉 to Bλ〈X,β〉 =
〈BX,Bβ ◦ λX〉 (cf. Lemma 3.2.5 (i)). This implies that α is an H-algebra ho-
momorphism from 〈X,β∗〉 to 〈BX, (Bβ ◦ λX)∗〉. Again with Lemma 3.2.5 (i)
this means that 〈X,β∗, α〉 is a λ∗-bialgebra, because

〈BX, (Bβ ◦ λX)∗〉 = Bλ∗〈X,β∗〉,

as we shall show. The above equation amounts to stating (Bβ◦λX)∗ = Bβ∗◦λ∗X .
By the universal property of the countable coproduct it suffices to show for all
i ∈ N that both sides of the latter equation are equal when precomposed with
ιi : S

iBX → HBX:

(Bβ ◦ λX)∗ ◦ ιi = (Bβ ◦ λX)i

(∗)
= Bβi ◦ λiX
= B(β∗ ◦ ιi) ◦ λiX
= Bβ∗ ◦ Bιi ◦ λiX
= Bβ∗ ◦ λ∗X ◦ ιi.

The equation (Bβ ◦ λX)i = Bβi ◦ λiX used in the step marked with (∗) follows
by induction on i: for i = 0 both sides are defined to be idBX ; the induction
step for i + 1 is valid by the diagram below, which uses the induction hypoth-
esis, naturality of λ and definitions. The lower composite is (Bβ ◦ λX)i+1 by
definition.

BSi+1X

BSβi
Bβi+1

Si+1BX
SλiX

λi+1
X

S(Bβ◦λX)i

SBSiX

λSiX

SBβi

nat. λ

S(I.H.)

BSX
Bβ

BX

SBX

λX

Bβ◦λX

2

We are now prepared to prove our main theorem.

Proof: [Theorem 4.1.2] Let R ⊆ P ×Q be a λ-bisimulation between 〈P, βP , αP 〉
and 〈Q, βQ, αQ〉. We show that the image of the span

〈HR, β∗P ◦ Hπ1, β∗Q ◦ Hπ2〉 (4.6)

is a bisimulation between 〈P, αP 〉 and 〈Q,αQ〉 that contains R.
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With Lemma 2.3.5, R is contained in the image of the span (4.6) because with
the injection ι0 all parts of the diagram below commute. The two triangles are
the unit laws of β∗P and β∗Q, which hold by definition of the latter.

Pid

ι0

R
π1 π2

ι0nat. ι0 nat. ι0

Q
id

ι0

P HP
β∗P

HR
Hπ1 Hπ2

HQ
β∗Q

Q

Let γ be the intermediate BS-coalgebra structure on R demanded by the defi-
nition of a λ-bisimulation. By

αγ := BχR ◦ λ∗SR ◦ Hγ (4.7)

we define a B-coalgebra structure on HR. We show that αγ witnesses that the
span (4.6) is a bisimulation between 〈P, αP 〉 and 〈Q,αQ〉, i.e. that β∗P ◦ Hπ1 is
a coalgebra homomorphism from 〈HR,αγ〉 to 〈P, αP 〉 and respectively for the
side of Q. We prove the property for P with the diagram below, which uses
that 〈P, β∗P , αP 〉 is a λ∗-bialgebra by Lemma 4.1.5. The one for Q follows in the
same way.

HR

Hγ

αγ

Hπ1
HP

β∗P

Hα

P

αP

HBSR

λ∗SR

HB(βP ◦Sπ1)

H(assmpt. γ)

HBP

λ∗P λ∗-bialg.

BHSR
BχR

BHSπ1
BHSP

BHβP

BχP

nat. λ∗

B(nat. χ)

BHP
Bβ∗P

B(∗)

BHR
BHπ1

BHP
Bβ∗P

BP

By (∗) in the diagram we refer to the property of β∗P pictured below, which
easily follows from the definitions. It resembles the multiplication law for an
algebra for a monad.

HSP
HβP

χP (∗)

HP

β∗P

HP
β∗P

P

2

With this theorem, in order to show that two states in two λ-bialgebras are
bisimilar it suffices to exhibit a λ-bisimulation relating them. In the case of our
example we have seen that the relation R from (4.1) is a λ-bisimulation, so we
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get that all related states are bisimilar as wanted. The standard bisimulation,
say R̃, constructed from R in the proof of Theorem 4.1.2 is slightly different from
the one we gave in (4.3) though. It relates the states obtained by applications
of the sum operator arranged in full binary trees of any depth k, as shown in
this picture for k = 2:

+ R̃ +

+ + + +

s1 ⊗ t1 s2 ⊗ t2 s3 ⊗ t3 s4 ⊗ t4 t1 ⊗ s1 t2 ⊗ s2 t3 ⊗ s3 t4 ⊗ s4

The B-coalgebra structure αγ assigns to such a pair a successor pair of trees
with the depth increased by one.

In Section 4.3 we will give alternative constructions of the standard bisimulation
and the mediating coalgebra structure αγ exploiting the additional structure of
a (co)pointed functor or monad replacing the plain functors S and B.

4.2 The λ-coiteration definition principle

We are now going to employ the same idea as in the previous section to derive
variations and generalisations of the coiteration definition schema (cf. Definition
2.3.13). We start by giving an example of a specification that does not fit into
the standard principle. It again involves streams of real numbers. We consider
the following definition of the stream pow = 〈1, 2, 4, 8, . . .〉 of powers of two:

pow := 1 : (pow+ pow). (4.8)

As before, we use that 〈Rω, 〈h, t〉〉 (cf. equation (2.7) from page 32) is a final
coalgebra of the functor B := R× Id. So we try to define the stream pow ∈ Rω

with the coiteration schema. Therefore we need to come up with a B-coalgebra
〈P, 〈o, s〉 : P → R× P 〉 such that pow = f(p) for some p ∈ P , where f is the
unique homomorphism from 〈P, 〈o, s〉〉 to the final coalgebra 〈Rω, 〈h, t〉〉. We can
easily see that with the definition above the carrier P of such a coalgebra needs
to be infinite: repeatedly applying t(f(x)) = f(s(x)) from the homomorphism
property of f and using equation (4.8) we get

pow = f(p) = 1 : (2 : . . . (2n−1 : f(sn(p)) . . .)

for all n ∈ N; we can read of that all streams f(sn(p)) are different, so all
sn(p) ∈ P need to be different, which is possible only for an infinite set P .
The coalgebra structure 〈o, s〉 needs to be defined on all these infinitely many
elements.

The specification of pow, however, defines one head and one tail only, namely
the ones of pow itself. So it directly gives rise to a coalgebraic structure on a one
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element set 1 = {∗}. Because of the twofold occurrence of pow in the expression
for the tail, this does not define a B-coalgebra structure, but rather a function
of the type φ : 1 → R× (1 × 1), namely

φ(∗) := 〈1, 〈∗, ∗〉〉, (4.9)

which is a BS-coalgebra structure for S := Id× Id.

Note that functions of that type also appeared in the definition of a λ-bisimulation
in the previous section. The condition on the arrows in that definition comes
in here as well: for a function f : 1 → Rω, the stream f(∗) ∈ Rω satisfies the
specification in (4.8) if and only if f fits into the following diagram.

1
f

φ

Rω

〈h,t〉

R× (1 × 1)
id×(f×f)

R× (Rω × Rω)
id×+

R× Rω

(4.10)

The specification of pow is thus valid if and only if this diagram characterises
the arrow f uniquely.

The observation that, for the distributive law λ of S over B from (4.4), the
〈S,B〉-bialgebra 〈Rω,+, ω〉 is a final λ-bialgebra leads to the following definition
as a generalisation of the above diagram.

Definition 4.2.1 Let S,B : C → C be functors, let 〈F, ω〉 be a final B-coalgebra
and let λ be a distributive law of S over B. For a BS-coalgebra 〈X,φ〉 we call
an arrow f : X → F a λ-coiterative arrow induced by φ if it makes the
diagram below commute, where β is the unique arrow such that 〈F, β, ω〉 is a
λ-bialgebra (cf. Theorem 3.2.3 (ii)):

X
f

φ

F

ω

BSX
BSf

BSF
Bβ

BF

In a setting where a final B-coalgebra exists, the following theorem states that
with the same assumption on the underlying category as in Theorem 4.1.2 every
BS-coalgebra uniquely determines a λ-coiterative arrow.

Theorem 4.2.2 Let S,B : C → C be functors on a category C with countable
coproducts, let 〈F, ω〉 be a final B-coalgebra and let λ be a distributive law of S
over B. For any BS-coalgebra 〈X,φ〉 there exists a unique λ-coiterative arrow
f : X → F induced by φ.
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Proof: Let 〈F, β, ω〉 be the final λ-bialgebra according to Theorem 3.2.3 (ii).
The uniqueness of a λ-coiterative arrow easily follows from the λ-coiteration
proof principle: given two λ-coiterative arrows f and f ′, φ witnesses that
〈X, f, f ′〉 is a λ-bisimulation on 〈F, β, ω〉.

F
ω

X
f f ′

φ

F
ω

BF BSX
B(β◦Sf) B(β◦Sf ′)

BF

This λ-bisimulation relates the pairs 〈f(x), f ′(x)〉 for all x ∈ X, so by Corol-
lary 4.1.3 we have f(x) = f ′(x) for all x ∈ X and thus f = f ′.

The existence part requires more work. We use H, β∗, λ∗, and χ as in Def. 4.1.4.
We again turn the BS-coalgebra 〈X,φ〉 into a B-coalgebra 〈HX,αφ〉, where
αφ := BχX ◦ λ∗SX ◦ Hφ. Let h : HX → F be the coiterative arrow from
〈HX,αφ〉 to 〈F, ω〉. The following diagram shows that f := h ◦ ι0 fits as a
λ-coiterative arrow from 〈X,φ〉 to 〈F, β, ω〉.

X ι0

φ

f

nat. ι0

HX
h

Hφ

def. h

F

ω

HBSX

λ∗SX

BHSX

BχX

unit λ∗

BSX
Bι1

B(β◦Sf)

B(4.11)

ι0

Bι0

BHX
Bh

B(def. χ)

BF

Its bottommost part commutes because it arises by applying the functor B to
the equation

β ◦ Sf = h ◦ ι1, (4.11)

which in turn is proved by the diagram below.

SHX
Sh

U(4.12)

SF

βSX

Sf

Sι0

ι0

ι1

HSX

[Sιi]

χX

HX
h

F
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Both triangles commute by definition, and the rectangle arises as the image of
the diagram (4.12) below under the forgetful functor U : CoalgB → C. It is a
diagram in the category of B-coalgebras, and it commutes by finality.

Sλ〈HX,αφ〉
Sλh

finality

Sλ〈F, ω〉

β〈HSX,α(λSX ◦Sφ)〉
[Sιi]

χX

〈HX,αφ〉
h

〈F, ω〉

(4.12)

It remains to be checked that all drawn arrows exist in CoalgB, that is, they
are homomorphisms between the respective coalgebras. The arrow h is a homo-
morphism by its definition. This implies that Sλh is a homomorphism as well.
The algebra operation β is a homomorphism by the assumption on 〈F, β, ω〉
being a λ-bialgebra (cf. Lemma 3.2.5 (ii) for the last two statements). For the
remaining two arrows [Sιi] and χX the homomorphism property can be checked
by routine calculations. Notably, the easily established commutativity of the
two diagrams below can be used. The left one resembles a multiplication law
for λ∗.

HB
λ∗

BH HSB
[Sιi]

Hλ

SHB

Sλ∗

HSB

χB

Hλ

BHS

Bχ

HBS

λ∗S

SBH

λH

HBS

λ∗S

BHS
[Sιi]

BSH

2

Applying the above theorem to our example, we find that φ from equation
(4.9) uniquely defines an arrow f : 1 → Rω fitting into the diagram (4.10).
Which means that there is a unique stream pow := f(∗) ∈ Rω satisfying the
specification in (4.8).

In order to obtain a slightly broader perspective on specifications of B-behaviours
that can be captured by arrows φ : X → BSX, we give the following definition,
which does not rely on the existence of a final B-coalgebra anymore.

Definition 4.2.3 Given two functors B,S : C → C, where B is viewed as a
behaviour functor, we call an arrow φ : X → BSX a guarded recursive
definition. A solution of this definition in an 〈S,B〉-bialgebra 〈P, β, α〉 is an
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arrow f : X → P making the diagram below commute.

X
f

φ

P

α

BSX
BSf

BSP
Bβ

BP

In Section 4.4.4 we explain why we call φ a guarded recursive definition. With
this notion, a λ-coiterative arrow induced by φ appears as a solution of φ in the
final λ-bialgebra.

Since two solutions of a guarded recursive specification in two λ-bialgebras give
rise to a λ-bisimulation, Theorem 4.1.2 immediately implies the following corol-
lary.

Corollary 4.2.4 Given a distributive law λ of the functor S over the functor B
in Set, we get that the solutions of a guarded recursive definition φ : X → BSX
in λ-bialgebras are determined up to bisimilarity. By this we mean that when
f and f ′ are two solutions of φ in the λ-bialgebras 〈P, β, α〉 and 〈P ′, β′, α′〉 re-
spectively, then for any x ∈ X we have f(x) ∼ f ′(x) in the respective coalgebras
〈P, α〉 and 〈P ′, α′〉.

Moreover, solutions are preserved by composition with bialgebra homomor-
phisms.

Lemma 4.2.5 Let φ : X → BSX be a guarded recursive specification with a
solution f : X → P in the 〈S,B〉-bialgebra 〈P, β, α〉 and let h : P → P ′ be a
bialgebra homomorphism from that bialgebra to a bialgebra 〈P ′, β′, α′〉. Then
h ◦ f is a solution of φ in 〈P ′, β′, α′〉.
Proof: By the definition of a bialgebra homomorphism, h is both (a) a coal-
gebra homomorphism from 〈P, α〉 to 〈P ′, α′〉 and (b) an algebra homomorphism
from 〈P, β〉 to 〈P ′, β′〉. With this we get the following commuting diagram.

X
f

φ

h◦f

P
h

α
P ′

α′BP Bh

(a)

B(b)BSX
BSf

BS(h◦f)

BSP
Bβ

BSh

assmpt. f

BP ′

BSP ′ Bβ′

2

With this lemma, a solution in an arbitrary λ-bialgebra leads to a solution in the
final one, i.e. a λ-coiterative arrow. Any alternative construction of a solution
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thus leads to an alternative justification of the λ-coiteration schema, possibly
with different assumptions than those in Theorem 4.2.2. As an example of one
such construction, we can easily obtain a λ-bialgebra on the carrier of a final
BS-coalgebra, if the latter exists, such that the final BS-homomorphisms are
solutions in that bialgebra. Since we shall not need this construction in the
following sections, we omit the details.

4.3 λ-coinduction and additional structure

In the previous two sections we have introduced λ-coinduction as an abstract
schema to obtain variations of the coinduction proof and definition principle. It
was based on a distributive law λ between plain functors. As in Section 3.4 in
the previous chapter, we now also consider distributive laws between functors
carrying the structure of (co)pointed functors and monads. In the context of
λ-coinduction, the availability of such additional structure has two effects: on
the one hand, it allows us to use more expressive specifications and guarded
recursive definitions; on the other hand, we have more structure available to
carry out the constructions needed for proofs. In this section we develop the
theory. In Section 4.4 we give a list of examples for λ-coinduction, all of which
use some of the additional structure.

4.3.1 Adding structure to the algebra functor

Considering a pointed functor or monad instead of the plain algebra functor
S does not create new proof obligations in the context of λ-coinduction: the
presence of the extra structure requires us to show that all algebra operations
under consideration satisfy the unit or multiplication law. But the proofs of
Theorems 4.1.2 and 4.2.2 mentioned only the algebra operation on the final B-
coalgebra. We have shown already that this algebra operation satisfies the unit
or multiplication law in case the distributive law λ does, namely in the proofs of
Corollaries 3.4.12 and 3.4.19 in Section 3.4. So Theorems 4.1.2 and 4.2.2 hold
in the setting of pointed functors or monads as well. Still, we can benefit from
the additional structure: First, the unit natural transformation of a pointed
functor or monad allows us to conclude that λ-coinduction and λ-coiteration
are not merely variations but conservative extensions of the standard proof and
definition principle, as we shall prove for Lemma 4.3.1. Second, we can use the
additional structure for the constructions needed in the proofs. We show this
in Lemma 4.3.2 for a pointed functor and in Lemma 4.3.3 for a monad. In the
latter case the new construction allows us to dispense with our assumption on
the underlying category. Moreover, for any given guarded recursive definition
φ we can use the monad structure to construct a minimal model of λ in which
φ has a solution. So we can guarantee solutions independent of whether or not
the behaviour functor has a final coalgebra.



4.3. λ-COINDUCTION AND ADDITIONAL STRUCTURE 101

λ-coiteration extending coiteration

If the algebras under consideration satisfy a unit law, we can show that λ-
coinduction is a conservative extension of standard coinduction.

Lemma 4.3.1 Let λ be a distributive law of a pointed functor 〈T, η〉 over a func-
tor B. (i) The coiteration definition schema is generalised by the λ-coiteration
schema, since every coiterative arrow h from the B-coalgebra 〈P, αP 〉 to a final
B-coalgebra 〈F, ω〉 is a λ-coiterative arrow from the BT-coalgebra 〈P,BηP ◦ αP 〉
to 〈F, ω〉. (ii) Similarly, for λ-bialgebras the λ-coinduction proof principle gen-
eralises the standard coinduction principle in that every bisimulation is a λ-
bisimulation.

Proof: Both statements easily follow from this observation: for a B-coalgebra
〈P, αP 〉 and a 〈〈T, η〉,B〉-bialgebra 〈Q, βQ, αQ〉 (cf. Def. 3.4.11) a B-coalgebra
homomorphism h : 〈P, αP 〉 → 〈Q,αQ〉 is also a solution of the guarded recursive
definition BηP ◦ αP in 〈Q, βQ, αQ〉, as the diagram below shows.

P
h

αP

Q

αQBP
Bh

BηP

BQ

BηQ

id

assmpt. h

BTP
BTh

B(nat. η)

BTQ
BβQ

B(unit βQ)

BQ

Note that for this observation we need the unit law of the 〈T, η〉-algebra 〈Q, βQ〉
only. It holds without assuming that the bialgebra under consideration is a λ-
bialgebra and it does not use the unit law for λ. The latter comes into play
in the proof of item (i), where we take 〈Q, βQ, αQ〉 to be the final λ-bialgebra
〈F, β, ω〉 from Theorem 3.2.3 (ii): as we have stated in Corollary 3.4.12, the
algebra structure β satisfies the unit law if λ does.

2

Pointed Functors

Next we study the impact of the unit of a pointed functor 〈T, η〉 on the con-
struction of a B-coalgebra from a BT-coalgebra 〈X,φ〉. The proofs of Theorems
4.1.2 and 4.2.2 used a construction that turned a guarded recursive definition
φ : X → BTX into a B-coalgebra on the carrier HX = X + TX + T2X + . . .
(note that the algebra functor is now T instead of S). We can use the unit
η to represent the set X in TX, which enables us to work with a quotient of
the carrier of the above B-coalgebra only. The unit law for λ guarantees that
the previous coalgebra structure defines a coalgebra structure on the quotient.
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Apart from making the coalgebra smaller, this new construction is better be-
haved in the presence of a copointed behaviour functor, as we shall show in
Section 4.3.2.

We modify the definition of the functor H :=
∐

i∈N Ti from Def. 4.1.4 (with S
replaced by T) as follows: for any set X, let HX be the colimit of the diagram
pictured below.1

X
ηX

TX

ηTX

TηX
T2X

ηT2X

TηTX

T2ηX

. . . (4.13)

This of course requires that this colimit exists in the underlying category, which
is the case for Set. The definition of a colimit moreover provides arrows ιi :
TiX → HX for all i ∈ N satisfying ιi+j = ιi+j+1 ◦ TiηTjX for all i, j ∈ N.

Ti+jX
TiηTjX

fi+j

Ti+j+1X

fi+j+1

Y

(4.14)

And for functions (fi : T
iX → Y )i∈N such that the triangles above commute

for all i, j ∈ N there is a unique arrow [fi] : HX → Y satisfying fj = [fi] ◦ ιj for
all j. The situation is pictured in the diagram below.

X

ι0

f0

ηX
TX

ι1

f1

ηTX

TηX
T2X

ι2

f2

ηT2X

TηTX

T2ηX

. . .

HX

[fi]

Y

The action of H on an arrow h : X → Y is defined as Hh := [ιi ◦ Tih]. The
functions fi = ιi ◦ Tih used in this definition make the triangles in (4.14)
commute, as one easily verifies using the naturality of η.

Lemma 4.3.2 Let 〈T, η〉 be a pointed functor. The functions and natural trans-
formations β∗ : HX → X (for β : TX → X satisfying the unit law), λ∗ : HB⇒
BH (for a distributive law λ of 〈T, η〉 over B), and χ : HT⇒ H can be defined
as in Def. 4.1.4 still (with S replaced by T) if we modify the definition of the
functor H to be a colimit of the diagram (4.13).

1Lenisa [Len99a] (see also [LPW00] for an improved presentation) describes a similar con-
struction but with arrows ηTjX : TjX → Tj+1X for all j ∈ N only. For now this was
sufficient, but our choice has advantages when B is replaced by a copointed functor,as we
shall see in the next section.



4.3. λ-COINDUCTION AND ADDITIONAL STRUCTURE 103

Proof: For all three cases we have to check that the arrows from HX are
defined by functions (fi : T

iX → Y )i∈N making the triangles (4.14) commute.

• The extension of an algebra 〈X,β〉 of the pointed functor 〈T, η〉 to an
algebra 〈X,β∗〉 for the pointed functor 〈H, ι0〉 is justified by the unit law
for β, as the diagram below shows for all i, j ∈ N. Note that the definition
of βi from Def. 4.1.4 (with S exchanged by T of course) easily implies
βi+j = βi ◦ Tiβj for all i, j ∈ N.

Ti+jX
TiηTjX

Tiβj

βi+j

Ti(nat. η)

Ti+j+1X

Ti+1βj

βi+j+1

TiX
TiηX

id

Ti+1X

Tiβ

TiX

βi

Ti(unit β)

X

• With the unit law of λ the definition of the lifting λ∗ : HB⇒ BH does not
cause problems, as the diagram below shows. Note that the definition of
λi in Def. 4.1.4 easily implies λi+j = λiTj ◦ Tiλj for all i, j ∈ N.

Ti+jB
TiηTjB

Tiλj

λi+j

Ti(nat. η)

Ti+j+1B

Ti+1λj

λi+j+1

TiBTj TiηBTj

id Ti(unit λ)Tj

Ti+1BTj

TiλTj

TiBTj TiBηTj

λiTj nat. λi

TiBTj+1

λiTj+1

BTi+j BTiηTj

Bιi+j

B(def. H)

BTi+j+1

Bιi+j+1

BH

• The definition of χ : HT ⇒ H as χ := [ιi+1] remains valid as well. The
corresponding diagrams commute trivially, but note that we need the ar-
rows TiηTj+1 to be present in the diagram (4.13) defining H in order to
establish the commutativity of the diagram (4.14) for TiηTj :

Ti+jT
TiηTjT

ιi+j+1

Ti+j+1T

ιi+j+2
H

Def. H
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2

With this lemma we have actually reproved Theorem 4.1.2 using a B-coalgebra
〈HX,αφ〉 with αφ := BχX ◦ λ∗TX ◦ Hφ based on the modified definition of H as
a colimit of the diagram (4.13).

At this point, the extra complication caused by the arrows in the diagram (4.13)
does not really pay off: The carrier of our coalgebra is a bit “smaller”, but we
still need an assumption on the underlying category of a similar type, namely
that the colimit of the diagram exists. But, when we come to study copointed
functors on the coalgebra side, it will turn out that this construction has the
advantage of yielding a coalgebra for the copointed functor.

Monads

In the case of a distributive law λ of a monad 〈T, η, µ〉 over the functor B the
construction of a B-coalgebra from a BT-coalgebra can be simplified consider-
ably. Carrying further the above approach, we can add all arrows TiµTjX :
Ti+j+2X ⇒ Ti+j+1X to the diagram (4.13) defining HX and check whether we
can still define the required structures. But, as one can easily verify, the colimit
of the described diagram is TX itself. So we obtain H = T, which renders the
definition of the liftings β∗ and λ∗ unnecessary, and χ = µ. One advantage
is that we do not need an assumption on the underlying category about the
existence of the colimit any more. Furthermore, different from χ before, the
components of the natural transformation µ are T-algebra structures, which al-
lows us to extend the constructed B-coalgebras themselves into λ-bialgebras, as
we shall demonstrate.

Lemma 4.3.3 Let λ be a distributive law of a monad 〈T, η, µ〉 over a functor
B, and let φ : X → TBX be a guarded recursive definition.

(i) With αφ := BµX ◦ λTX ◦ Tφ and Tλ from Lemma 3.2.5 we get that µX is
a B-coalgebra homomorphism from Tλ〈X,αφ〉 to 〈X,αφ〉. In other words,
〈TX,µX , αφ〉 is a λ-bialgebra.

(ii) The arrow ηX : X → TX is a solution of the guarded recursive definition
φ in the above λ-bialgebra 〈TX,µX , αφ〉.
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Proof: Item (i) is shown by the following diagram.

T2X
T2φ

µX

Tαφ

nat. µ

TX
Tφ

αφ

T2BTX µBTX
TλTX

TBTX

λTXTBT2X
TBµX

λT2X

TBTX
λTX

nat. λ BT3X

BTµX

BµTX

(mult. λ)T

B(mult. T)

BT2X
BµX

BT2X
BµX

BTX

Item (ii) is proved by the commutative diagram below. The two lower triangles
without inscription arise by applying the functor B to the two unit laws for T.

X
ηX

φ

nat. η

TX

Tφ

αφ

TBTX

λTX

BT2X

BµX

(unit λ)T

BTX

ηBTX

BηTX

id

BTηX
BT2X

BµX
BTX

2

Note that item (i) above is actually an equivalence, since the following converse
statement is true as well: whenever 〈TX,µX , α〉 is a λ-bialgebra then α = αφ

for some φ : X → BTX. For a proof we take φ = φα := α ◦ ηX . It can easily be
shown that the mappings φ 7→ αφ and α 7→ φα (for α satisfying the condition
above) are inverses of each other.

In the case of a distributive law λ of a monad over a functor every guarded
recursive definition φ thus has what we can call a free λ-bialgebra 〈TX,µX , αφ〉.
And φ has a solution in its free λ-bialgebra, namely ηX – so we have shown that
it has a solution even without assuming that a final B-coalgebra exists.

Moreover, this solution is minimal in the sense that every other solution in any
λ-bialgebra factors through it. This is expressed by the following statement.

Lemma 4.3.4 Let λ be a distributive law of a monad 〈T, η, µ〉 over a functor
B, let φ : X → BTX be a guarded recursive definition, and let 〈P, β, α〉 be a
λ-bialgebra. There is a one-to-one correspondence between solutions f : X → P
of φ in 〈P, β, α〉 and bialgebra homomorphisms h from 〈TX,µX , αφ〉 (as defined
in Lemma 4.3.3) to 〈P, β, α〉. The correspondence is given by f 7→ β ◦ Tf and
h 7→ h ◦ ηX .
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Proof: We first show that the two constructions are inverse, i.e. f = β ◦Tf ◦ηX
and h = β ◦ T(h ◦ ηX). The identities follow from the naturality of η, the unit
law for β, one of the unit laws of the monad, and the assumption on h to be an
algebra homomorphism:

X
f

ηX

P id

ηP

TX
id

TηX

TX
h

unit T asmpt. h

P

TX
Tf

nat. η

TP
β

unit β

P T2X

µX

Th
TP

β

That hf = β ◦ Tf is a bialgebra homomorphism is proved by the following
two commuting diagrams, the first for the algebra part, the second for the
coalgebras. The second one, which corresponds to the diagram in the proof of
Theorem 4.1.2, uses our assumption that f is a solution of φ in 〈P, β, α〉 and
that the latter is a λ-bialgebra.

T2X
T2f

Thf

µX

T2P
Tβ

µPnat. µ mult. β

TP

β

TX
Tf

hf

TP
β

P

TX

Tφ

αφ

Tf

hf

TP β

Tα

P

α

TBTX

λTX

TB(β◦Tf)

T(assmpt. f)

TBP

λP λ-bialg.

BT2X

BµX

BT2f
BT2P

BTβ

BµP

nat. λ

B(nat. µ)

BTP
Bβ

B(mult. β)

BTX BTf

Bhf

BTP Bβ BP

Finally, Lemma 4.2.5 proves that fh = h ◦ ηX is a solution of φ in 〈P, β, α〉.
2

We can further use the above lemma to show the validity of a λ-coinduction
proof principle (cf. Theorem 4.1.2).

Corollary 4.3.5 Let λ be a distributive law of a monad 〈T, η, µ〉 over a functor
B. Every λ-bisimulation R ⊆ P × Q between two λ-bialgebras 〈P, βP , αP 〉 and
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〈Q, βQ, αQ〉 is contained in some (standard) bisimulation between 〈P, αP 〉 and
〈Q,αQ〉.

Proof: Let φ : R→ BTR witness the λ-bisimulation property. Let rP : TR→
P and rQ : TR → Q be the bialgebra homomorphisms from 〈TR,µR, αφ〉 to
〈P, βP , αP 〉 and 〈Q, βQ, αQ〉 respectively that correspond to π1 : R → P and
π2 : R→ Q by Lemma 4.3.4. The correspondence further yields

π1 = rP ◦ ηR and π2 = rQ ◦ ηR.

With these equations, ηR witnesses, according to Lemma 2.3.5, that the image
of 〈TR, rP , rQ〉 contains R. The latter relation is a bisimulation between 〈P, αP 〉
and 〈Q,αQ〉, as we conclude from the homomorphism property of rP and rQ
together with Lemma 2.3.4.

2

Compared to Theorem 4.1.2 this statement does not need an assumption on the
underlying category. Moreover, the constructed bisimulation is better behaved:
it is a λ-bialgebra itself and it is a congruence.

Our statement about the validity of the λ-coiteration principle (Theorem 4.2.2)
can be rephrased for monads as well, and again we can dispense with the as-
sumption on the underlying category.

Corollary 4.3.6 Let λ be a distributive law of a monad 〈T, η, µ〉 over a functor
B and let 〈F, ω〉 be a final B-coalgebra. Every arrow φ : X → BTX uniquely
determines a λ-coiterative morphism f : X → F (cf. Def. 4.2.1).
Proof: Let h : TX → F be the unique λ-bialgebra homomorphism from
〈TX,µX , αφ〉 (cf. Lemma 4.3.3 (i)) to the final λ-bialgebra 〈F, β, ω〉 from The-
orem 3.2.3 (ii) and Corollary 3.4.19. Since ηX : X → TX is a solution of φ
in the λ-bialgebra 〈TX,µX , αφ〉 according to Lemma 4.3.3 (ii), we obtain from
Lemma 4.2.5 that f := h ◦ ηX is a solution of φ in 〈F, β, ω〉. From Corol-
lary 4.3.5 and the coinduction proof principle (cf. Corollary 2.3.9) it follows
that this solution is unique.

2

4.3.2 Adding structure to the coalgebra functor

Next we will investigate how to adapt the λ-coinduction framework to the setting
where the coalgebra functor comes as a copointed functor. The addition of extra
structure on the coalgebra side is slightly more problematic than on the algebra
side, because we now need to make sure that the B-coalgebras we construct from
the guarded recursive definition φ satisfy the counit law. It turns out that for
this we need to impose a suitable counit law on φ, and since this law involves
a unit for the algebra functor, we need to assume that the latter comes as a
pointed functor or monad.
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Lemma 4.3.7 (i) Let λ be a distributive law of a pointed functor 〈T, η〉 over a
copointed functor 〈D, ε〉 (cf. Definitions 3.4.11 and 3.4.2) and let φ : X → DTX
be a guarded recursive definition. If φ satisfies the counit law pictured below
then the D-coalgebra 〈HX,αφ〉 constructed in the proof of Theorem 4.1.2 with
the modified definition of the functor H to be a colimit of the diagram (4.13) is
a coalgebra for the copointed functor.

X

φ

ηX

DTX εTX

counit φ

TX

(ii) The statement in (i) holds as well in the setting of a monad 〈T, η, µ〉 for the
B-coalgebra 〈TX,αφ〉 constructed in Lemma 4.3.3.

Proof: (i) To see that the coalgebra operation αφ satisfies the counit law, we
first claim the following two auxiliary identities for λ∗ and χ from Def. 4.1.4
(with S replaced by T and B replaced by D).

HD
λ∗

Hε

counit λ∗

DH

εH

H
Hη

id

HT

χunit H

H H

The left is the counit law for λ∗ and the right bears similarity to one of the unit
laws of a monad, so we call it the unit law of H. The counit law for λ∗ follows
immediately from corresponding counit laws for all λi from Def. 4.1.4, which
are in turn easily obtained from the counit law of λ by induction on i. The unit
law of H holds since both id and χ ◦ Hη fit as [ιi] : H⇒ H.

The counit law for αφ is established by the diagram below.

HX

αφ

Hφ
HηX

id

HDTX

λ∗TX

HεTX

H(cou. φ)

(cou. λ∗)T

HTX

χX

unit H

DHTX

DχX

εHTX

DHX εHX

nat. ε

HX

(ii) That the construction in Lemma 4.3.3 defines a coalgebra for the copointed
functor 〈D, ε〉 is shown by a similar diagram. It is obtained from the one above
essentially by replacing H with T and adapting the natural transformations
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accordingly.

TX

αφ

Tφ
TηX

id

TDTX

λTX

TεTX

T(cou. φ)

(counit λ)T

T2X

µX

unit T

DT2X

DµX

εT2X

DTX εTX

nat. ε

TX

2

Note that the proof of the unit law for H in part (i) above relies on the identities
ιi+1 ◦ TiηX = ιi given by the definition of H to be a colimit of the diagram
(4.13). The argument does not work for the original definition of H to be just
a coproduct in the proof of Theorem 4.1.2.2 Once we put the arrows TiηX
into the diagram of which HX is a colimit, we furthermore need to include all
arrows TiηTjX for i, j ∈ N to be able to define χ, which in turn we needed for
the definition of the coalgebra structure αφ.

With the above lemma we can easily lift our statements about the λ-coinduction
definition and proof principles to the setting of copointed functors. In the
definition of a λ-bisimulation we now further assume that the required mediating
DT-coalgebra structure satisfies the counit law from the above lemma.

Corollary 4.3.8 (i) Let λ be a distributive law of the pointed functor 〈T, η〉
over the copointed functor 〈D, ε〉 on a category with colimits of the diagram
(4.13). Every λ-bisimulation is contained in a (standard) bisimulation between
the respective coalgebras. Moreover, if the copointed functor 〈D, ε〉 has a final
coalgebra, every guarded recursive specification φ : X → DTX satisfying the
counit law from Lemma 4.3.7 uniquely defines a λ-coiterative arrow.

(ii) A corresponding statement is true in the case of a distributive law λ of a
monad 〈T, η, µ〉 over a copointed functor 〈D, ε〉 without any assumption on the
underlying category.

We have to admit that we do not have an elegant proof for the existence of a
λ-coiterative arrow claimed in item (i) of the above corollary. The problem is
that the arrow [Sιi] used in the proof of Theorem 4.2.2 cannot be defined with
the modified definition of H by the diagram (4.13). The problem can be worked
around by resorting to the original definition of H and applying a factorisation
argument to cope with the counit law, but we feel that it should be possible to
find a better argument.

In Section 3.4 our main candidate for a copointed functor 〈D, ε〉 was the cofree
copointed functor generated by a behaviour functor B (cf. Def. 3.4.7). Similar

2It neither does with Lenisa’s construction [Len99a], where the diagram defining H just
contains the arrows ηTiX for i ∈ N, so that we obtain the identities ιi+1 ◦ ηTiX = ιi only.
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to the situation there, we can characterise a guarded recursive definition φ̃
satisfying the counit law by a plain function φ into a smaller set, and we can
rephrase the definition of a solution and consequently the definition of a λ-
bisimulation in terms of φ.

Lemma 4.3.9 Let 〈T, η〉 be a pointed functor, let B be a functor on a category
C with binary products, and let λ be a distributive law of 〈T, η〉 over the cofree
copointed functor 〈D, ε〉 generated by B.

(i) There is a one-to-one correspondence of guarded recursive definitions φ̃ :
X → DTX satisfying the counit law ηX = εTX ◦ φ̃ and plain functions
φ : X → BTX.

(ii) A function f : X → P is a solution of the guarded recursive definition
φ̃ : X → DTX in the λ-bialgebra 〈P, β, α̃〉 if and only if it makes the
diagram below commute, where α : P → BP is the B-coalgebra operation
corresponding to α̃ : P → DP (cf. Corollary 3.4.8 (ii)).

X
f

φ

P

α

BTX
BTf

BTP
Bβ

BP

(iii) Correspondingly, R ⊆ P ×Q is a λ-bisimulation between the λ-bialgebras
〈P, βP , α̃P 〉 and 〈Q, βQ, α̃Q〉 if and only if there exists a BT-coalgebra op-
eration γ on R fitting into the diagram below, where αP and αQ are the
B-coalgebras corresponding to α̃P and α̃Q respectively.

P

αP

R
π1 π2

γ

Q

αQ

BP BTR
B(βP ◦Tπ1) B(βQ ◦Tπ2)

BQ

The diagrams in (ii) are precisely those from the setting of a plain behaviour
functor B. The difference is that this time the bialgebras can be models of
a specification given by a distributive law λ of the pointed functor 〈T, η〉 (or
monad 〈T, η, µ〉) over the cofree copointed functor 〈D, ε〉. As we explained in
Section 3.6, using distributive laws over the cofree copointed functor instead
of those over the plain functor B we extend the class of specifications. So the
above statement generalises the plain λ-coiteration framework.

Of course the statement holds as well for monads instead of pointed functors,
just that the extra structure will not be used.
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Proof: Item (i) immediately follows from the definition principle in Corol-
lary 3.4.8 (i):

XηX

φ̃

φ

TX DTXεTX ϑTX
BTX

For item (ii) we show that the composites appearing in the condition for a
solution and the diagram in the statement, i.e. α ◦ f and α∗ ◦ f as well as B(β ◦
Tf) ◦ φ and D(β ◦Tf) ◦ φ̃, correspond to each other under f (cf. Remark 3.4.9):

X

f

P
id

α∗
α

P DPεP ϑP
BP

X
ηX

φ̃
φ

f

TX

β ◦Tf

(∗)

DTXεTX ϑTX
D(β◦Tf)

BTX

B(β◦Tf)

P DPεP ϑP

nat. ε nat. ϑ

BP

That we indeed have f = β ◦Tf ◦ ηX , as exploited in (∗) in the second diagram,
easily follows from the unit law for β and the naturality of η (as in the proof of
Lemma 4.3.4).

The proof of item (iii) is similar.

2

4.4 Instances of λ-coinduction

In this section we present some concrete instances of the λ-coinduction schemata.
We discuss several known as well as a new definition and proof principle. For the
former our framework yields a uniform and more simple justification. The new
definition principle guarantees unique solutions to guarded recursive definitions
involving operators defined by the abstract GSOS format. The corresponding
proof principle justifies a bisimulation up-to-context technique for the same
operators. All examples involve algebra functors carrying a monad structure
which is respected by the distributive law.
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Before we consider more interesting instances, note the following trivial one: the
identity functor Id also carries the structure of a monad, namely 〈Id, id, id〉,
which distributes via the identity natural transformation λ = idB over every
behaviour functor B. With this instance, the λ-coiteration schema simplifies to
the coiteration schema and λ-bisimulations are just ordinary bisimulations. So
the standard coinduction principles are an instance of λ-coinduction themselves.

4.4.1 Primitive corecursion

For this instance we assume that we are given a behaviour functor B on a
category C with binary coproducts such that B has a final coalgebra 〈F, ω〉.
The following defines a monad 〈T, η, µ〉.

T := Id + F
η := ι1 : Id⇒ Id + F (4.15)

µ := [id, ι2] : (Id + F) + F ⇒ Id + F

This monad distributes over B via λ : TB⇒ BT defined by

λ := [Bι1,Bι2 ◦ ω] : B + F ⇒ B(Id + F). (4.16)

It is straightforward to check that λ respects the monad structure, i.e. it satisfies
the corresponding unit and multiplication law.

For a B-coalgebra 〈P, α〉 and Tλ from Lemma 3.2.5 we get

Tλ〈P, α〉 = 〈P + F, [Bι1,Bι2] ◦ (α+ ω)〉.

This is the categorical coproduct of 〈P, α〉 and 〈F, ω〉 in CoalgB. A homomor-
phism from Tλ〈P, α〉 to another B-coalgebra 〈Q,αQ〉 is thus of the shape [f, g]
for two homomorphisms f : 〈P, α〉 → 〈Q,αQ〉 and g : 〈F, ω〉 → 〈Q,αQ〉. This
implies that the unique T-algebra operation extending the final coalgebra 〈F, ω〉
to a final λ-bialgebra is [id, id] : F+F → F. From this we immediately obtain
the known definition principle of primitive corecursion [Geu92]:

Corollary 4.4.1 Let B be a functor on a category with binary coproducts which
has a final coalgebra 〈F, ω〉. Every arrow φ : X → B(X+F) uniquely determines
a morphism f : X → F fitting into the diagram below.

X

∀φ

∃!f

primitive corecursion

F
ω

B(X + F)
B[f,id]

BF

We say that φ defines f by primitive corecursion.
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The principle arises as the dual of (a categorical presentation of) the primitive
recursion schema for arrows out of an initial algebra. It is studied e.g. by Vene
and Uustalu [VU98].

Proof: The principle arises as the instance of Corollary 4.3.6 with the monad
and distributive law from (4.15) and (4.16). We use that, as mentioned above,
the T-algebra operation β on the final B-coalgebra is β = [id, id], which yields
β ◦ Tf = [f, id].

2

Application

Primitive corecursion extends the coiteration schema (cf. Def. 2.3.13) in that
it offers the additional possibility to directly specify elements from the final
coalgebra to be the successors. As it were, we can step out of the recursion at
any point. To illustrate this, consider the example of the function

insert : R× Rω → Rω

that is supposed to insert a real number into a stream at the first position such
that the next element in the stream will be greater. It can be specified as follows,
where r ∈ R and s = s0 : s′ ∈ Rω:

insert(r, s) =

{

s0 : insert(r, s′) if s0 ≤ r,

r : s otherwise.
(4.17)

In the second case we step out of the recursion, because we can give the whole
tail after the insertion of r at once.

The specification is justified by primitive recursion, because, with the final
stream coalgebra 〈Rω, 〈h, t〉〉 (cf. equation (2.7) on page 32), the equation can
equivalently be expressed by the following diagram.

R× Rω

φ

insert Rω

〈h,t〉

R× ((R× Rω) + Rω)
id×[insert,id]

R× Rω

The function φ is defined, for all r ∈ R and s = s0 : s′ ∈ Rω, as

φ(r, s) :=

{

〈s0, ι1(r, s′)〉 if s0 ≤ r,

〈r, ι2(s)〉 otherwise.

The corresponding proof principle

The λ-coinduction proof principle instantiated with the monad 〈T, η, µ〉 and
the distributive law λ from (4.15) and (4.16) is most useful for relations on the
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final B-coalgebra 〈F, ω〉 itself. We will call such a λ-bisimulation a bisimulation
up-to-equality.

Definition 4.4.2 Let B be a functor on a category with binary coproducts and
let 〈F, ω〉 be a final B-coalgebra. We call R ⊆ F × F a bisimulation up-to-
equality if there is a function γ : R → B(R + F) making both parts of the
diagram below commute.

F
ω

R
π1 π2

∃γ

F
ω

BF B(R+ F)
B[π1,id] B[π2,id]

BF

From Corollary 4.3.5 we immediately get a proof principle based on bisimula-
tions up-to-equality:

Corollary 4.4.3 Every bisimulation up-to-equality is contained in some (stan-
dard) bisimulation on 〈F, ω〉.

Analysing the proof of Corollary 4.3.5 we find that the standard bisimulation
constructed for a bisimulation up-to-equality R ⊆ F × F is actually R ∪ ∆F ,
where ∆F := {〈x, x〉 | x ∈ F} is the diagonal of F (or the equality relation). If
we use R ∪ ∆F in the first place, we have to check the bisimulation condition
for the pairs in ∆F as well, but for them it is always satisfied. This principle
is a rather simple extension of the standard one, but it is still quite useful for
many examples.

Application

As a simple example, we can use the principle to prove that insert from (4.17)
commutes with the elementwise application of any strictly monotonic function
g : R → R, i.e. for all r ∈ R and s ∈ Rω we have

insert
(
g(r), mapg(s)

)
= mapg

(
insert(r, s)

)
, (4.18)

where mapg is defined as in equation (2.8) on page 32.

We again use that 〈Rω, 〈h, t〉〉 is a final coalgebra for B := R × Id. For this
instance, a bisimulation up-to-equality from Def. 4.4.2 is a relation R ⊆ Rω×Rω
such that for all 〈s, t〉 ∈ R with s = s0 : s′ and t = t0 : t′ we have that

s0 = t0 and 〈s′, t′〉 ∈ R ∪∆Rω .

To prove (4.18) we show that the relation

R :=
{
〈insert(g(r), mapg(s)), mapg(insert(r, s))〉

∣
∣ r ∈ R, s ∈ Rω

}
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has this property. Take any pair

〈insert(g(r), mapg(s0 : s′)), mapg(insert(r, s0 : s′))〉 ∈ R.

We first consider the case s0 ≤ r. The monotonicity of g implies g(s0) ≤ g(r),
so we obtain

insert(g(r), mapg(s0 : s′)) = insert(g(r), g(s0) : mapg(s
′))

= g(s0) : insert(g(r), mapg(s
′)),

mapg(insert(r, (s0 : s′))) = mapg(s0 : insert(r, s′))

= g(s0) : mapg(insert(r, s
′)).

We find that the two heads are equal and the tails are related again, namely

〈insert(g(r), mapg(s′)), mapg(insert(r, s′))〉 ∈ R,

so the pair satisfies the bisimulation up-to-equality condition.

In case s0 > r, which implies g(s0) > g(r) by strict monotonicity of g, we find

insert(g(r), mapg(s0 : s′)) = insert(g(r), g(s0) : mapg(s
′))

= g(r) : (g(s0) : mapg(s
′)),

mapg(insert(r, (s0 : s′))) = mapg(r : (s0 : s′))

= g(r) : mapg(s0 : s′)

= g(r) : (g(s0) : mapg(s
′)).

The two heads are equal again, and the requirement on the tails, which are both
g(s0) : mapg(s

′), is satisfied as well: they are not related by R, as the definition
of a standard bisimulation would require, but they are equal.

4.4.2 The dual of course-of-value iteration

Another interesting instance of the λ-coinduction framework arises from the
trivial observation that every functor B distributes over itself via the identity
natural transformation λ := id : B2 ⇒ B2. For this distributive law, the
λ-bialgebras are triples 〈P, β, α〉 where β is a B-algebra, and α a B-coalgebra
operation on P such that the following diagram commutes:

BP
β

Bα

P

α

B2P
Bβ

BP
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The unique B-algebra operation on the carrier of a final coalgebra 〈F, ω〉 satis-
fying the above is the inverse ω−1 of the final coalgebra map, which exists by
Lambek’s Lemma (cf. Lemma 2.3.10). So a final λ-bialgebra is 〈F, ω−1, ω〉.
The λ-coiteration schema arising directly from this instance is of rather limited
use. As it were, for any argument of the function to be defined we would have
to give precisely two steps of the behaviour of the result. The schema becomes
more flexible when we consider the free monad generated by B instead, provided
it exists, together with a lifting of the above distributive law. So let us assume
that B freely generates a monad 〈T, η, µ〉 (note that before we were always
considering free monads of another functor S, usually regarded as a signature
functor). As explained in Section 3.6 (cf. Lemmata 3.6.1 and 3.6.3), the above
distributive law λ of B over B lifts to a distributive law λ∗ of 〈T, η, µ〉 over B
such that a 〈B,B〉-bialgebra 〈P, β, α〉 is a λ-bialgebra if and only if 〈P, β∗, α〉
is a λ∗-bialgebra, where β∗ is the inductive extension of β (cf. Lemma 2.2.10).
This means that the final λ∗-bialgebra will be 〈F, (ω−1)∗, ω〉.
The corresponding instance of Corollary 4.3.6 yields a coinductive definition
principle, which, for every arrow φ : X → BTX, guarantees the unique existence
of a morphism f : X → F making the diagram below commute.

X
∃!f

∀φ

F
ω

BTX
B((ω−1)∗ ◦Tf)

BF

(4.19)

To obtain a slightly more intuitive presentation of this schema, we define the
following notion: we call a specification φ̃ : X → TX guarded if it factors as φ̃ =
νX ◦φ for some φ : X → BTX, where ν : BT⇒ T is the natural transformations
from the Definition 2.2.7 of a free monad. So guarded specifications are those
that assign to each element in X an arbitrary finite but positive number of
B-steps.

Corollary 4.4.4 Every guarded specification φ̃ : X → TX determines a unique
arrow f : X → F such that the following diagram commutes:

X
∃!f

∀φ̃

F

TX
Tf

TF

(ω−1)∗

Proof: Let φ̃ factor as νX ◦ φ. The correspondence of this formulation with
the one in (4.19) is explained by the diagram below. The proof of the converse
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is similar.

X
f

φ

φ̃

F
ω

idBTX
BTf

νX

BTF B((ω−1)∗)

νF

(4.19)

nat. ν def. (ω−1)∗

BF
ω−1

TX
Tf

TF
(ω−1)∗

F

2

Application

We will illustrate this definition schema again in the context of streams, this
time over two sets A and B, i.e. Aω and Bω. Assume that A is a set of high-
level instructions and B a set of micro-code instructions. Moreover, we are
given a translation function t that tells us how to realise any high-level instruc-
tion by a nonempty sequence of low level instructions. We want to define the
function transt that turns an infinite stream of high-level instructions into the
corresponding stream of micro-code instructions. Let

B+ := {〈b1, . . . , bn〉 | n > 0, bi ∈ B}

denote the set of nonempty, finite words over B. The single instruction trans-
lation function has the type t : A → B+ and its sought extension to infinite
streams is a mapping transt : Aω → Bω. Writing t(ai) = 〈bi1, . . . , bini〉 for
ai ∈ A we want to obtain

transt(〈a0, a1, . . .〉) = 〈b01, . . . , b0n0 , b11, . . . , b1n1 , . . .〉.

To obtain a coalgebraic justification of this specification, we rewrite the equation
as

transt(a : s) = 〈b1, . . . , bn〉 : trans(s), (4.20)

where 〈b1, . . . , bn〉 : t is a shorthand for b1 : (. . . : (bn : t) . . .) and t(a) =
〈b1, . . . , bn〉. This definition is not coiterative, because for n > 1 it specifies
in one step a longer prefix of the resulting stream instead of only the first
element. It fits into the schema from Corollary 4.4.4 though, as the following
consideration shows. Similar to equation (2.7) on page 32, we obtain a final
coalgebra 〈Bω, 〈h, t〉〉 of the behaviour functor B := B × Id. The free monad
over this behaviour functor is T ' B∗ × Id, where B∗ = B+ ∪ {ε} denotes the
possibly empty, finite words over B. We find that (〈h, t〉−1)∗ : B∗ × Bω → Bω

is given, using again the shorthand above, by

(〈h, t〉−1)∗(〈b1, . . . , bn〉, s) = 〈b1, . . . , bn〉 : s.
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So we can equivalently express the specification (4.20) by the diagram below,

Aω
transt

φ̃

Bω

B∗ ×Aω
id×transt

B∗ ×Bω
(〈h,t〉−1)∗

where φ̃(a : s) := 〈t(a), s〉. The function φ̃ is guarded, since t(a) was assumed to
be nonempty for all a ∈ A. Corollary 4.4.4 yields that this diagram characterises
a function transt uniquely.

The corresponding proof principle

The λ∗-coinduction proof principle for λ∗ as above is useful as well. We spell it
out in the special case of λ∗-bisimulations on streams Rω, which gave rise to the
final coalgebra 〈Rω, 〈h, t〉〉 of the functor B := R× Id. We have that a relation
R ⊆ Rω × Rω is a λ∗-bisimulation if for all 〈s, t〉 ∈ R we can find a nonempty,
finite common prefix 〈r1, . . . , rn〉 ∈ R+ and a pair of streams 〈u,v〉 ∈ R such
that s = 〈r1, . . . , rn〉 : u and t = 〈r1, . . . , rn〉 : v.

Application

We next present an example statement that can be proved conveniently with
this principle. It involves the functions

even, odd, exchange : Rω → Rω and zip : Rω × Rω → Rω

defined as

zip(r0 : s, t) := r0 : zip(t, s),

even(r0 : (r1 : s)) := r0 : even(s),

odd(r0 : (r1 : s)) := r1 : odd(s),

exchange(r0 : (r1 : s)) := 〈r1, r0〉 : exchange(s).

The upper three lines are (standard) coiterative definitions, the last one fits in
the definition schema from Corollary 4.4.4.

We now want to prove that we can implement the function exchange using the
other three functions as

exchange = zip ◦ 〈odd, even〉.

The natural candidate for a bisimulation relation to prove this equation is

R :=
{
〈exchange(t), zip(odd(t), even(t))〉

∣
∣ t ∈ Rω

}
,



4.4. INSTANCES OF λ-COINDUCTION 119

but it is not straightforward to prove that it is a standard bisimulation. However,
it is simple to see that it satisfies the condition spelled out above for a λ∗-
bisimulation with λ∗ as in the beginning of this section:
for any t = (r0 : (r1 : s)) we calculate

exchange(t) = 〈r1, r0〉 : exchange(s),
zip(odd(t), even(t)) = zip(r1 : odd(s), r0 : even(s))

= r1 : zip(r0 : even(s), odd(s))

= r1 : (r0 : zip(odd(s), even(s)))

= 〈r1, r0〉 : zip(odd(s), even(s)).

So we find a nonempty common prefix 〈r1, r0〉 and a pair of streams related by
R describing the remainders, namely 〈exchange(s), zip(odd(s), even(s))〉 ∈ R.

4.4.3 The language accepted by a nondeterministic au-
tomaton

In this section we show that a classical construction in theoretical computer sci-
ence arises as a λ-coiterative arrow, namely the function that assigns to every
state of a nondeterministic automaton the language it accepts. This considera-
tion leads to an example of a distributive law of a monad over a functor where
the monad is not freely generated by a signature.

In Section 2.3.3 we have defined deterministic automata over an alphabet L as
coalgebras of the functor B = 2× IdL and mentioned that we can build a final
B-coalgebra on the set of languages L = {M | M ⊆ L∗}: we equip it with
the automaton structure 〈o, t〉 : L → 2 × LL defined as o(M) := (ε ∈ M) and
t(M) := [a 7→Ma], where Ma := {w | aw ∈M} denotes the a-derivative of M .

Consider the powerset monad 〈P, η, µ〉 where ηX(x) := {x} forms singleton sets
and µX(Q) :=

⋃

X′∈QX
′ yields unions of sets Q ⊆ PX of subsets of X. We

can define a distributive law of this monad over the functor B from above, i.e.
a natural transformation λ : P(2 × IdL) ⇒ 2 × PL satisfying the unit and
multiplication law:

λ := 〈
∨

◦Pπ1, δ ◦ Pπ2〉, (4.21)

where
∨

: P2 → 2 computes the disjunction of truth values and δ : P(IdL) ⇒
PL is given by

δX(Q) := [ a 7→ {φ(a) | φ ∈ Q} ] .

It is not difficult to show that the unit and multiplication law hold. The following
structural lemma, which may be interesting as such, can be used to simplify the
task. Its proof is straightforward.
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Lemma 4.4.5 Let λ1 and λ2 be distributive laws of the monad 〈T, η, µ〉 over
the functors B1 and B2 respectively. Then by setting

λ := (λ1 × λ2) ◦ 〈Tπ1,Tπ2〉 : T(B1 × B2)⇒ B1T× B2T

we define a distributive law of the monad 〈T, η, µ〉 over the functor B1 × B2.

We claim that the unique P-algebra operation extending the final B-coalgebra
〈L, 〈o, t〉〉 from above to a λ-bialgebra is the union

⋃
: PL → L of sets of

languages, which means that the following diagram commutes:

PL
P〈o,t〉

⋃

L

〈o,t〉P(2× LL)
λL

2× (PL)L
id2×(

⋃
)L

2× LL

This is indeed the case, since for any set of languages Q ⊆ L we obtain

(〈o, t〉 ◦
⋃

)(Q) = 〈o, t〉(
⋃

M∈Q

M)

= 〈ε ∈
⋃

M∈Q

M,
[
a 7→ (

⋃

M∈Q

M)a
]
〉

= 〈
∨

M∈Q

(ε ∈M),
[
a 7→

⋃

M∈Q

Ma

]
〉

and

(
(id2 × (

⋃

)L) ◦ λL ◦ P〈o, t〉
)(
Q
)

=
(
(id2 × (

⋃

)L) ◦ λL
)(
{〈ε ∈M, [a 7→Ma]〉 |M ∈ Q}

)

=
(
id2 × (

⋃

)L
)(
〈
∨

M∈Q

(ε ∈M), [a 7→ {Ma |M ∈ Q}]〉
)

= 〈
∨

M∈Q

(ε ∈M),
[
a 7→

⋃

M∈Q

Ma

]
〉.

For B = 2× IdL and T = P a guarded recursive definition from Definition 4.2.3
is an arrow 〈õ, t̃〉 : X → 2 × (PX)L. Such an arrow defines a nondeterministic
automaton: to each state x ∈ X it assigns an acceptance attribute õ(x) ∈ 2 and
for each letter a of the alphabet L a set of successor states t̃(x)(a) ∈ PX.

Corollary 4.3.6 and the finality of the λ-bialgebra 〈L,⋃, 〈o, t〉〉 yield the following
corollary.
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Corollary 4.4.6 Every nondeterministic automaton

〈X, 〈õ, t̃〉 : X → 2× (PX)L〉

induces a unique arrow f : X → L fitting into the diagram below.

X
f

〈õ,t̃〉

L
〈o,t〉

2× (PX)L
id2×(

⋃
◦Pf)

2× LL

In other words, for all x ∈ X and a ∈ L the arrow f satisfies

ε ∈ f(x) ⇐⇒ õ(x) and f(x)a =
⋃

y∈t̃(x)(a)

f(y).

With the definition of the a-derivative the latter equation is equivalent to

aw ∈ f(x) ⇐⇒ w ∈ f(y) for some y ∈ t̃(x)(a).

This characterisation of f(x) is equivalent to the definition of the language
accepted by x as a state of the nondeterministic automaton 〈X, 〈õ, t̃〉〉. The
model constructed in the proof of Lemma 4.3.3 is the automaton that results
from the known powerset construction turning a nondeterministic automaton
into a deterministic one.

As an aside, we mention a variation of the above construction. In his work on
stream calculus, Rutten [Rut01] uses weighted stream automata to conveniently
characterise certain streams. These automata are BT-coalgebras, where B =
R× Id is the functor for stream systems, and

TX := {µ : X → R | supp(µ) is finite}

with supp(µ) = {x ∈ X | µ(x) 6= 0} is a functor that bears similarity to the
(finite) powerset functor. The streams represented by the states of a weighted
stream automaton are defined through a function into the final stream coalgebra.
This function turns out to be λ-coiterative in a similar way as the function
assigning the accepted language to the states of a nondeterministic automaton.

4.4.4 λ-coinduction and abstract GSOS

In this section we spell out our results about λ-coinduction for the abstract
GSOS specification format from Def. 3.5.3. So we assume that in addition to
the behaviour functor B we are given a finitary signature Σ with associated
signature functor S (cf. equation (2.2) on page 20). Let 〈T, η, µ〉 denote the
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term monad generated by Σ. A specification for the operators in Σ is given in
abstract GSOS, i.e. by a natural transformation

ρ : S(Id× B)⇒ BT.

In Section 3.5 we have given rule formats that correspond to the abstract GSOS
format for several kinds of systems. In the setting of labelled transition systems
we recovered the known GSOS format [BIM95]. We also spelled out the format
for streams and deterministic automata. The examples in this section also refer
to the latter settings.

In the following we shall show that the λ-coinduction specification and definition
principle here yields unique solutions for sets of guarded recursive equations and
a bisimulation up-to-context proof principle.

Guarded recursive equations

In process algebra [BW90, Fok00], processes (i.e. labelled transition systems
with a designated current state) are often defined by sets of recursive equations
of the form

x = tx (x ∈ X),

where X is a set of process names and tx ∈ TX for each x ∈ X is a term
involving the operators of the process algebra and again the process names in
X. We express such a specification by a function ψ : X → TX with ψ(x) := tx.

To guarantee uniqueness of solutions, one usually imposes a (syntactic) guard-
edness condition on the terms. One for instance assumes that the terms are of
the shape

tx =
∑

i∈I

ai.ti

or can be transformed into it, where ai.ti denotes the process ti prefixed with a
transition labelled by ai ∈ L and the sum denotes nondeterministic choice. This
restriction essentially guarantees that each term tx defines one layer of the be-
haviour of x independent of the interpretation of the process names appearing in
tx. To achieve this in a more semantic fashion – independent of the existence of
certain basic operators in Σ that allow to construct these immediate transitions
– we can require that the specification is given by a function φ : X → BTX.
The additional application of the behaviour functor B enforces that φ provides
one layer of the behaviour of each x ∈ X. This is the reason why we called
functions of that type guarded recursive definitions before.3

3 Note that the notion of guardedness used by Aczel et al. [AAMV03], which looks different
from ours, is actually a special case of the above definition: in loc. cit. a system of equations
is called guarded if for none of the equations x = tx we have that tx is a single variable.
Expressed in our framework, Aczel el al. use the functor S associated to a signature both as
the algebra and the coalgebra functor (i.e. B = S). So a guarded recursive equation as we
define it becomes a function φ : X → STX. The elements of its codomain are precisely terms
which are not single variables.
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Let 〈P, [[.]], α〉 be an 〈S,B〉-bialgebra which is a model of the operator specifica-
tion ρ in abstract GSOS (cf. Def. 3.5.3). Although in this setting we actually
deal with cofree copointed behaviour functors, Lemma 4.3.9 allows us to still
consider a plain arrow φ : X → BTX as a guarded recursive definition. The
solutions of φ in the model 〈P, [[.]], α〉 are morphisms f : X → P making the
diagram below commute, where [[.]]∗ is the inductive extension of [[.]] : SP → P
to terms (cf. Lemma 2.2.10).

X
f

φ

P

α

BTX
BTf

BTP
B[[.]]∗

BP

The following statement is an immediate consequence of Corollary 4.3.8.

Corollary 4.4.7 Every guarded recursive definition φ : X → BTX has a so-
lution in some model of the specification ρ in abstract GSOS. Moreover, the
solutions are determined up to bisimilarity.

We will spell out the definition of a guarded recursive definition and a solution
in the case of labelled transition systems, i.e. for the functor B := (Pω)L. A
guarded recursive definition φ : X → (PωTX)L can be described as a set Tr of
“transitions” of the shape

Tr ⊆ {x a−→ t | x ∈ X, a ∈ L, t ∈ TX},

such that Tr contains only finitely many transitions from any x ∈ X with the
same label a ∈ L. A solution of Tr in the 〈S,B〉-bialgebra 〈P, [[.]], α〉 is an
assignment of a state px ∈ P to every x ∈ X such that for all x ∈ X and a ∈ L
we have px

a−→ q in the LTS 〈P, α〉 if and only if there exists a transition x
a−→ t

in Tr such that q = [[ t[y := py|y ∈ X] ]]∗. By t[y := py|y ∈ X] ∈ TP here we
mean the term resulting after the replacement of every y ∈ X in t by py.

The above corollary states that if the operators in Σ are specified by GSOS rules,
than any set of transitions Tr as above has solutions, and that those solutions
are determined up to bisimilarity.

Note that for this result we did not exploit the existence of a final coalgebra. A
corresponding statement holds, for instance, also for labelled transition systems
without the image finiteness assumption, for which no final coalgebra exists.
For these systems unique (up to bisimilarity) solutions of guarded recursive
equations are guaranteed as well, if the involved operators are specified in a
correspondingly adapted GSOS format.
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Application

Most of the standard operators for LTSs do not need the full expressive power
of the GSOS format, because the rules specifying them have targets that consist
of at most one operator application. Consequently, the existence of solutions of
the standard examples of guarded recursive definitions follows from statements
simpler then the one we have just given. In other settings we have seen operators
defined by rules with more complex targets, like for instance the sequential
composition of automata (see equation (3.23) on page 64) or the shuffle product
of streams (see equation (3.27) on page 80). We present an example involving
the latter operation: we want to specify the stream

τ = 〈0, 1, 0, 2, 0, 16, 0, 272, 0, 7936, . . .〉 ∈ Rω

of Taylor coefficients of the tangent function, the so-called tangent numbers.
We quote a definition by Rutten [Rut01], which uses streams [r] = 〈r, 0, 0, . . .〉
representing real numbers r ∈ R and as auxiliary operators the sum + and the
shuffle product ⊗ (cf. equations (3.26) and (3.27) on page 80). We recall that
for all r ∈ R and streams s = s0 : s′ and t = t0 : t′ they satisfy the equations

[r] = r : [0],

s+ t = (s0 + t0) : (s
′ + t′),

s⊗ t = (s0 · t0) : ((s′ ⊗ t) + (s⊗ t′)).

The identities tan(0) = 0 and tan′ = 1 + tan · tan motivate the following
definition of the the stream τ of tangent numbers (for more details see [Rut01]):

τ = 0 : ([1] + (τ ⊗ τ)) (4.22)

In order to show that this equation has a unique solution, Rutten builds a
weighted stream automaton from this equation an uses a statement that every
state of such an automaton uniquely characterises a stream (cf. the remark at
the end of Section 4.4.3).

Alternatively, we can prove the validity of (4.22) using λ-coinduction: the spec-
ification of τ gives rise to a guarded recursive equation using auxiliary operators
that can be defined within the abstract GSOS format. So by Corollary 4.4.7 the
specification of τ has a unique solution in the final model of the specification of
the auxiliary operators.

The bisimulation up-to-context proof principle

For distributive laws λ arising from operator specifications in abstract GSOS,
a λ-bisimulation is a bisimulation up-to-context (see e.g. [San98]), as we shall
explain.
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Let the two 〈S,B〉-bialgebras 〈P, [[.]]P , αP 〉 and 〈Q, [[.]]Q, αQ〉 be models of a spec-
ification ρ in abstract GSOS and let λ be the distributive law of the free monad
over the cofree copointed functor corresponding to ρ (cf. Lemma 3.5.2 (i)).
Lemma 4.3.9 stated that a relation R ⊆ P × Q is a λ-bisimulation between
those bialgebras if there is an operation γ : R→ BTR making the two parts of
the diagram below commute, where [[.]]∗P and [[.]]∗Q denote the inductive exten-
sions of [[.]]P and [[.]]Q respectively to terms (cf. Lemma 2.2.10).

P

αP

R
π1 π2

γ

Q

αQ

BP BTR
B([[.]]∗P ◦Tπ1) B([[.]]∗Q ◦Tπ2)

BQ

The important observation here is that the span

〈TR, [[.]]∗P ◦ Tπ1, [[.]]∗Q ◦ Tπ2〉,

the B-image of which appears in this definition, expresses the congruence closure
R̄ of R with respect to [[.]]P and [[.]]Q. By this we mean the smallest congruence
R̄ ⊆ P × Q (cf. Def 2.2.2) containing R. Using this, we can rephrase the
condition on a λ-bisimulation as follows.

Definition 4.4.8 A relation R ⊆ P × Q is a bisimulation up-to-context
between two 〈S,B〉-bialgebras 〈P, [[.]]P , αP 〉 and 〈Q, [[.]]Q, αQ〉 if there exists an
arrow γ : R → BR̄ fitting into the diagram below, where R̄ ⊆ P × Q (with
projections written as π̄1 and π̄2 for clarity) is the congruence closure of R with
respect to [[.]]P and [[.]]Q.

P

αP

R
π1 π2

γ

Q

αQ

BP BR̄
Bπ̄1 Bπ̄2

BQ

Corollary 4.4.9 Every bisimulation up-to-context between two models of a spec-
ification in abstract GSOS (cf. Def. 3.5.3) is contained in some standard bisim-
ulation between the respective coalgebras.

For labelled transition systems Sangiorgi [San98] proves that a corresponding
statement holds for operator specifications in the De Simone format [Sim85].
Corollary 4.4.9 generalises this result not only to the more expressive GSOS
specification format [BIM95] for LTSs, but also to coalgebras for an arbitrary
functor B and specifications in abstract GSOS.
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Application

To illustrate the last point, we present an example of the use of the bisimula-
tion up-to-context principle in the setting of deterministic automata. Following
Rutten [Rut98, Equation (11) in Section 6], we establish the identity

A.(B ∪ C) = A.B ∪A.C (4.23)

for all languages A,B,C ∈ L, where we use the union and concatenation of
languages as defined respectively by the rules in (3.20) on page 52 and (3.23)
on page 64.

Using the final (2 × IdL)-coalgebra 〈L, 〈o, t〉〉 defined through the clauses (2.9)
on page 33, we can prove (4.23) using the coinduction proof principle of Corol-
lary 2.3.9. With Corollary 4.4.9 it suffices to show that the relation

R = {〈A.(B ∪ C), A.B ∪A.C〉 | A,B,C ∈ L} ∪ {〈A,A〉 | A ∈ L}

is a bisimulation up-to-context. With the definition of 〈o, t〉 this is the case if
for all 〈A,B〉 ∈ R we have ε ∈ A ⇐⇒ ε ∈ B and for all a ∈ L we have
〈Aa, Ba〉 ∈ R̄, where we write again Aa = {w ∈ L∗ | aw ∈ A} for the a-
derivative of A and R̄ is the congruence closure of R under concatenation and
union of languages. The pairs 〈A,A〉 ∈ R trivially satisfy these conditions, so
let us check a pair 〈A.(B ∪ C), A.B ∪A.C〉 ∈ R. As needed, we find

ε ∈ A.(B ∪ C) ⇐⇒ (ε ∈ A) ∧ ((ε ∈ B) ∨ (ε ∈ C)) ⇐⇒ ε ∈ A.B ∪A.C,

so the first condition is satisfied. For the second condition, we let a ∈ L and
distinguish two cases: if ε 6∈ A then

(A.(B ∪ C))a = Aa.(B ∪ C) and (A.B ∪A.C)a = Aa.B ∪Aa.C,

so with 〈Aa.(B ∪ C), Aa.B ∪Aa.C〉 ∈ R ⊆ R̄ the condition is easily satisfied; if
ε ∈ A then

(A.(B ∪ C))a = Aa.(B ∪ C) ∪ (Ba ∪ Ca)

and

(A.B ∪A.C)a = (Aa.B ∪Ba) ∪ (Aa.C ∪ Ca)
= (Aa.B ∪Aa.C) ∪ (Ba ∪ Ca).

Since 〈Aa.(B ∪ C), Aa.B ∪Aa.C〉 ∈ R and 〈Ba ∪ Ca, Ba ∪ Ca〉 ∈ R implies

〈Aa.(B ∪ C) ∪ (Ba ∪ Ca), (Aa.B ∪Aa.C) ∪ (Ba ∪ Ca)〉 ∈ R̄,

the condition is satisfied as well.

Note that the ideal proof principle for this example is a combination of the up-
to-equality (cf. Def. 4.4.2) and up-to-context principles. We leave the study of
such combined principles to future work.
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To show the limits of the bisimulation up-to-context principle, we quote an
example of Sangiorgi’s [San98, Section 2.1.3] in the setting of LTSs, for which
it is not valid. It involves unary operators σ and a.(−) (action prefix) for a ∈ L
and the constant 0 for the inactive process. The transition rules are the ones
below for all a ∈ L:

x
a−→ x′ x′

a−→ x′′

σ(x)
a−→ x′′ a.x

a−→ x

In the final model of this specification we have a.0 6∼ a.a.0 although the relation
R = {〈a.0, a.a.0〉} is a bisimulation up-to-context. To show the latter, we easily
establish σ(a.0) ∼ 0 and σ(a.a.0) ∼ a.0, which implies σ(a.0) = 0 and σ(a.a.0) =
a.0 in the final model. The relation R is a bisimulation up-to-context because
the only transitions that the two related states can make are a.0

a−→ 0 and
a.a.0

a−→ a.0, and we have 〈0, a.0〉 = 〈σ(a.0), σ(a.a.0)〉 ∈ R̄.
Note that the example involves rules with lookahead, i.e. rules with chained
premises. Such rules do not fit into the GSOS format, which corresponds to
distributive laws of the free monad over the cofree copointed functor. But, as
Turi and Plotkin show [TP97], they can be expressed by formats involving a
cofree comonad generated by the behaviour functor. So this counterexample
supports our conjecture that no (simple) λ-coinduction proof principle can be
given in a setting involving a cofree comonad. This in turn justifies our explicit
treatment of the less expressive formats in Chapter 3.

4.5 Comparison with related work

As already stated in the introduction of this chapter, the idea to use a distribu-
tive law λ of an additional pointed functor 〈T, η〉 over the behaviour functor
under consideration in order to obtain extensions of the coiteration schema was
taken from Lenisa [Len99a, Len99b, LPW00]. She studies a class of 〈T, η〉-
coiterative arrows, which she defines to be the morphisms of the type h ◦ ηX ,
where h is a final homomorphism from some coalgebra on the carrier TX. She
shows for instance that the primitive corecursive arrows are 〈T, η〉-coiterative
for the pointed functor contained in the monad defined in equation (4.15) on
page 112.

Lemma 4.3.4 shows that, in the setting of a monad 〈T, η, µ〉, every λ-coiterative
arrow is also 〈T, η〉-coiterative. So one may argue that in that case the class of
〈T, η〉-coiterative arrows is larger than that of λ-coiterative arrows. But Lenisa’s
approach is only seemingly wider in scope: her main result [Len99a, Theorem
3.5] is applicable only for a subclass of the class of 〈T, η〉-coiterative arrows, and
this subclass turns out to be closely related to the λ-coiterative arrows.

Our definition of a λ-coiterative arrow to be a function making a diagram com-
mute is more easy to work with than Lenisa’s factorisation property. To obtain
the known extended coiteration schemata, all we need to do is to simplify the
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concrete instances of the λ-coiteration diagram. So our framework yields an al-
ternative justification of the schemata. This is not the case for 〈T, η〉-coiterative
arrows. There the relation to the known schemata is obtained from the individ-
ual justifications of the latter. As another improvement, λ-coiteration can be
instantiated also in settings where no unit natural transformation is given, as
we have shown.

Moss [Mos01] also develops generalised coinduction schemata. He presents,
amongst others, the flattening lemma (Lemma 2.1 in loc. cit.) and the para-
metric corecursion schema (Theorem 2.11 in loc. cit.). The first schema is a
variation of the primitive corecursion schema from Section 4.4.1. It arises di-
rectly from the λ-coiteration schema for 〈T, η, µ〉 and λ as in equations (4.15)
and (4.16) on page 112, but with the final coalgebra 〈F, ω〉 generalised to be
any B-coalgebra. With this generalisation we moreover obtain a bisimulation
up-to-equality proof principle on every B-coalgebra. The idea underlying Moss’
parametric corecursion can be covered by λ-coiteration as well: the approach
is similar to the one for the dual of course-of-value iteration in Section 4.4.2,
but with the free monad generated by the behaviour functor B replaced by a
monad built on what we call “free coalgebras”. There TX is the carrier of a final
(B+X)-coalgebra. The same monad is also used by Moss. This functor T is big-
ger than the free algebra functor in that it also contains behaviours with infinite
branches. Consequently, the resulting λ-coiteration principle is more powerful
and generalises both primitive corecursion and the dual of course-of-value it-
eration.4 Moss studies another interesting aspect, which we do not consider
here, namely the relation of the extended coiteration schemata for two different
behaviour functors with a natural transformation between them.

In a recently published article, Cancila, Honsell, and Lenisa [CHL03] give a
collection of function definitions that do not fit into the standard coiteration
schema, and they present a framework for extended schemata to accommodate
these examples. The approach is based on bialgebras for what they call gen-
eralised distributive laws. In most of the cases, the use of these generalised
distributive laws can be avoided by working with a cofree copointed functor, as
we suggest here. Still, their approach has the potential to capture definitions
that cannot be handled by λ-coiteration. It remains to be seen whether one can
distill interesting schemata from such examples.

At the same time that we first published the main ideas discussed in this chapter
[Bar00, Bar03], but independently, Pardo, Uustalu, and Vene [UVP01] proposed
a generalised inductive definition principle parametric in a distributive law of
the algebra functor under consideration over a comonad. This schema turns out
to be the categorical dual of our λ-coiteration definition principle in the setting
of a distributive law of a monad over the behaviour functor.

Generalised proof techniques for bisimilarity, mainly in the shape of bisimula-

4We know from private communication that Vene and Uustalu were aware of this general-
isation as well when they published their paper on the course-of-value principle and its dual
[UV99].
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tion up-to-. . . principles, have also been studied for the concrete case of labelled
transition systems in isolation, i.e. without using coalgebraic techniques. One
early example is the bisimulation up-to-bisimilarity method of Milner [Mil89].
Sangiorgi [San98] developed a methodology to derive various such bisimulation
up-to-. . . principles, among them the up-to-context technique that we studied
in Section 4.4.4. Notably, Sangiorgi studies the combination of the different
extended proof principles. We view a generalisation of the latter to the λ-
coinduction framework as an interesting direction for future work.

We conclude our discussion of related work by mentioning that there is another
approach to generalise coinductive definition principles based on distributive
laws. It is discussed for instance by Power and Turi [PT99] (a dual approach for
inductive definitions is presented by Pardo [Par00]). It assumes a distributive
law λ̃ of a behaviour functor B over a monad 〈T, η, µ〉, i.e. a natural trans-
formation of the opposite direction compared to the ones studied here. This
distributive law lifts the behaviour functor B to a functor Bλ̃ on the Kleisli cat-
egory of the monad instead of the Eilenberg-Moore category of algebras for the
monad. Again, a final B-coalgebra 〈F, ω〉 extends to a final Bλ̃-coalgebra, but
the final morphisms in the Kleisli Category are morphisms into TF in the base
category. This way, by choosing the stream functor and the powerset monad,
Power and Turi obtain a definition principle for functions into sets of infinite
streams. With another monad one can, for instance, obtain functions that re-
turn an infinite stream or an exception. We stress that this approach serves a
different purpose than the one presented here.
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Chapter 5

Specification formats for
probabilistic systems

Probabilistic systems arise from nondeterministic ones by adding probabilities
to the different outgoing transitions of a state. This information is needed, for
instance, to model probabilistic algorithms, which can “flip a coin” to make
decisions (like e.g. in [Har02, Sto02a]). Or it is added to compute quantita-
tive information, such as the failure probability of a system with faulty system
components. Therefore probabilistic systems have widely been studied also in
performance analysis [BHK01].

In the literature, various types of probabilistic systems have been introduced
and equipped with corresponding notions of probabilistic bisimilarity [LS91,
SL94, Seg95b, HJ94]. Composition operators have been specified and studied
for several of these systems as well. Since one needs to check that the specified
transition probabilities form probability distributions indeed, the validity of a
probabilistic operator specification is less obvious than that of a nondetermin-
istic one, where no such check is needed. Showing that the operators preserve
behavioural equivalence is more complex than in the nondeterministic case too,
since it is harder to work with probabilistic bisimulations than with the ordinary
bisimulations.

Knowing that for nondeterministic systems the development of specification for-
mats has simplified the task of showing validity and well-behavedness of operator
specifications considerably, we immediately ask for corresponding probabilistic
formats. Surprisingly, none have been proposed in the literature yet. So in this
chapter we introduce the first well-behaved SOS-like specification formats for
probabilistic systems.

We distill our concrete rule-shapes from abstract GSOS (cf. Def. 3.5.3). The
main work will be to establish a correspondence between specifications in ab-
stract GSOS – recall that these were natural transformations of a certain type
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– and sets of transition rules in the proposed shape. Once this is done, con-
crete well-behavedness statements immediately result as instances of the well-
behavedness of the abstract format. As explained in Chapter 3, the most im-
portant results are: any specification has two canonical models, one on the set
of terms of the signature and one on the set of possible system behaviours (cf.
Corollary 3.5.4); probabilistic bisimilarity is a congruence on all models of the
specification (cf. Corollary 3.5.5); and, as established in Chapter 4, guarded
recursive definitions have solutions which are determined up to probabilistic
bisimilarity (cf. Corollary 4.4.7), and the bisimulation up-to-context proof prin-
ciple is valid (cf. Corollary 4.4.9).

Our decompositional method to analyse natural transformations has the ad-
vantage that one can handle various systems of a similar type with the same
structural lemmata. For probabilistic systems, this flexibility is important be-
cause the variety of different system types considered in the literature is much
larger:

In nondeterministic modelling, most of the work involves labelled transition
systems as introduced in Def. 2.3.12 or some minor variant thereof. The variety
mainly involves different bounds on the nondeterminism (finitely branching,
image finite as considered here, or no bound at all), label sets of different size,
and possibly additional attributes associated to the states of the system, like for
instance a termination predicate.1 From our point of view, all these systems are
rather similar at heart: it is straightforward to adapt our study of congruence
formats for the simple type of labelled transition systems considered here to any
of these variants.

In probabilistic modelling, however, a large number of rather different system
types are considered in the literature (see e.g. [SV04] for a survey): there are
generative and reactive types of systems [GSS95], depending on whether the
probability distributions range over all outgoing transitions of a state or only
those with the same label; in addition to purely probabilistic systems, one can
also consider types that allow nondeterministic and probabilistic choice; among
the systems which allow for both types of choice we find some that may execute
probabilistic and nondeterministic steps in an arbitrary order whereas others
are constrained to alternate them; and then the probabilistic transitions may
be labelled or the nondeterministic ones or both.

Here we develop specification formats for two important and representative
classes in this variety. Other types can be dealt with similarly.

First, we treat probabilistic transition systems (PTS) of Larsen and Skou [LS91],
which are also known as reactive systems [GSS95]. They belong to the simple
types and arise by imposing probability distributions on all sets of transitions
leaving one state of an LTS with the same label. Similar to our treatment of
abstract GSOS for labelled transition systems in Chapter 3.5.1, we obtain a

1As we have argued in Section 2.3.3, the latter variation can be easily dealt with coalge-
braically.
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probabilistic rule-style format that we call probabilistic GSOS, or PGSOS for
short. It precisely corresponds to specifications in abstract GSOS. The introduc-
tion of probabilities makes it considerably more complicated though to establish
this correspondence. Like the GSOS format itself, its new probabilistic variant,
PGSOS, has all the well-behavedness properties of abstract GSOS listed above.
At the same time, as we illustrate with a number of example specifications, it
is rather powerful.

Second, as an example of a more complex model which combines nondetermin-
istic and probabilistic choice, we consider the probabilistic automata of Segala
[Seg95b, Seg95a, SL95]. These Segala systems, as we call them here, have re-
ceived considerable attention recently (excellent introductions can be found in
the work of Stoelinga [Sto02b, Sto02a]). Also for Segala systems we propose
a powerful well-behaved rule format for operator specifications, Segala-GSOS.
We do not know yet whether our format covers all the expressiveness offered by
abstract GSOS. But we state one direction of the correspondence, namely that
specifications in Segala-GSOS give rise to natural transformations of the type of
abstract GSOS. This direction is the easier but still the more important one for
applications, because it allows us to conclude that also this new format inherits
the well-behavedness of abstract GSOS summarised above. To illustrate the ex-
pressiveness of Segala-GSOS, we show again that various composition operators
for Segala systems can be specified within the format.

The chapter is organised as follows: first we introduce PTS and Segala sys-
tems together with the corresponding notions of probabilistic bisimilarity; in
Sections 5.2 and 5.3 we introduce PGSOS and Segala GSOS; in Section 5.4 we
conclude by mentioning some related work.

5.1 Probabilistic systems

In this section we define the two types of probabilistic systems we are going
to study in this chapter, namely probabilistic transition systems (PTS) [LS91]
and (simple) Segala systems [SL94]. Both are defined as B-coalgebras for some
functor B constructed from the following probability functor.

Definition 5.1.1 We define the probability distribution functor

Dω : Set→ Set

for any set X and any function f : X → Y as

DωX :=
{
µ : X → R+

0 | supp(µ) is finite, µ[X] = 1
}
,

(Dωf)(µ) := y 7→ µ[f−1(y)],

where for a function µ : X → R+
0 and a subset X

′ ⊆ X we write

supp(µ) := {x ∈ X | µ(x) 6= 0} and µ[X ′] :=
∑

x∈X′

µ(x).
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The set supp(µ) is called the support of µ.

It has been proved by De Vink and Rutten [VR99] and Moss [Mos99] that the
above functor preserves weak pullbacks. This is important to obtain that for
systems constructed with this functor the coalgebraic notion of a bisimulation
is well-behaved in many respects. Most importantly, a final coalgebra is a fully
abstract domain for bisimilarity (cf. Theorem 2.3.8), and the composition of
bisimulations is a bisimulation again.

5.1.1 PTS

A classical definition of a probabilistic transition system (PTS) arises from that
of a labelled transition system by imposing a probability distribution on the set
of a-successors of each state for each label a ∈ L for which this set is nonempty.
In the original definition of Larsen and Skou [LS91], for a given set of labels L,
a PTS is a triple

〈P, (Ca ⊆ P )a∈L, (µp,a ∈ DωP )a∈L,p∈Ca〉, (5.1)

where P is a set of states, for all a ∈ L the subset Ca contains the states which
can do an a-transition, and µp,a is a probability distribution on a-successors of
the state p.

The transition structure of a PTS defines for each state and each label enabled
in this state a probability distribution over successor states. So the probability
distributions do not range over transitions with different labels. Therefore the
labels can best be viewed as an input to which the system reacts by choosing
a successor state probabilistically. This is why a PTS is also called a reactive
system elsewhere [GSS95].

To define PTS coalgebraically, we argue that the data in (5.1) can equivalently
be expressed by the pair 〈P, α : P → (DωP + 1)L〉, where 1 = {∗} is a singleton
set needed to model disabled labels: given a PTS as in (5.1), we define the
corresponding transition function α for any p ∈ P as

α(p) :=

[

a 7→
{

ι1(µp,a) if p ∈ Ca,
ι2(∗) otherwise.

]

It is easy to see that this construction defines an isomorphism between the tran-
sition structure in (5.1) and the transition functions α, so we can equivalently
adopt the following coalgebraic definition.

Definition 5.1.2 Given a set of labels L, a probabilistic transition system
(PTS) is a pair

〈P, α : P → (DωP + 1)L〉,
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for a singleton set 1 = {∗}. In other words, a PTS is a coalgebra of the functor
B = (Dω+1)L. If no confusion about the coalgebra structure α is likely to arise,
we write for p, q ∈ P and a ∈ L

p
a−9 if α(p)(a) = ι2(∗),

p
a−→ µ if α(p)(a) = ι1(µ),

p
a−→ if p

a−→ µ for some µ ∈ DωP ,
p
a[r]
=⇒ q if p

a−→ µ for some µ ∈ DωP with µ(q) = r ∈ (0, 1].

Technically, PTSs arise by replacing the (finite) powerset functor Pω in the
behaviour functor B = PωL defining LTSs (cf. Def. 2.3.12) by Dω + 1. The
correspondence becomes even more apparent if we write Pω equivalently as
P+
ω + 1, where P+

ω is the nonempty, finite powerset functor.

Example 5.1.3 As an example of a PTS, we consider what can be called a
lossy bag: a system that can store (s) items and remove (r) them again from
stock. So the number of removals is limited to the number of previous storages.
But the system is lossy in the sense that a store operation fails to actually
add something to the bag with a given probability ε ∈ [0, 1]. For simplicity we
consider the case where all items are of the same kind, so we are just counting
the number of items currently in stock.

We model the bag as a probabilistic process p0 in a PTS 〈P, α〉 for the set of
labels L := {s, r}. The set of states is P := {pi | i ∈ N}, where pi is the state of
the system with i items in storage. A store event can always be processed, and
it will increase the number of stored items by one if everything works fine. But
with probability ε an error occurs and the number stays the same. A remove
event is possible if there is at least one item stored, and it will decrease the
number of stored items by one. The system is pictured as follows, where we
abbreviate 1− ε to ε̄:

p0

s[ε]

s[ε̄]

p1

s[ε]

s[ε̄]

r[1]

p2

s[ε]

s[ε̄]

r[1]

. . .

r[1]

The coalgebraic definition of a bisimulation can be spelled out as follows.

Definition 5.1.4 For a relation R ⊆ P × Q write ≡R ⊆ DωP × DωQ for the
relation with φ ≡R ψ if and only if there exists a distribution µ ∈ DωR such
that for all p ∈ P and q ∈ Q we have

φ(p) = µ[R ∩ ({p} ×Q)] and ψ(q) = µ[R ∩ (P × {q})]

(or, equivalently, φ = (Dωπ1)(µ) and ψ = (Dωπ2)(µ)).
A probabilistic bisimulation between two probabilistic transition systems
〈P, αP 〉 and 〈Q,αQ〉 is a relation R ⊆ P × Q such that for all pairs 〈p, q〉 ∈ R
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and labels a ∈ L we have p
a−→ if and only if q

a−→ , and if the transitions
exist, with p

a−→ φ for φ ∈ DωP and q
a−→ ψ for ψ ∈ DωQ, we moreover have

φ ≡R ψ.

Restricted to equivalence relations R ⊆ P ×P on the carrier of one PTS 〈P, α〉,
we can characterise ≡R by µ ≡R ν if and only if µ[E] = ν[E] for all equivalence
classes E ∈ P/R. The latter condition was given by Larsen and Skou [LS91]
in their widely accepted definition of a probabilistic bisimulation. This notion
was compared by De Vink and Rutten [VR99] with the coalgebraic one, where
it turned out that both define the same bisimilarity relation.

Lemma 5.1.5 There exists a final probabilistic transition system, i.e. a final
B-coalgebra for B = (Dω + 1)L.

Proof: The statement can be proved with Theorem 2.3.11. We need to argue
that the functor (Dω + 1)L is bounded. Since we consider probability distri-
butions with finite support, from any state we can reach only finitely many
possible successor states with a transition for a given label l ∈ L. The size
of the set of possible successor states after one transition is thus bounded by
L × N. Continuing we get that with n transitions we can reach no more than
(L × N)n states. So the size of a one generated B-coalgebra is bounded by the
set

∐

n∈N(L× N)n.

2

5.1.2 Segala systems

The second class of probabilistic systems we consider are the simple probabilistic
automata studied by Segala and Lynch [SL95], which we will refer to as (simple)
Segala systems. For a set of labels L, such a system is given by a pair

〈P, ( a−→ ⊆ P ×DωP )a∈L〉,

where, as also done by Stoelinga [Sto02b], we simplified the original presentation
to discrete probability distributions with finite sets of support. The behaviour
of such a system is more complex than that of a PTS: in a state p the system
can potentially choose between several transitions for the same label a, each
of which leads to a distribution µ of successor states, from which the actual
successor p′ is chosen probabilistically.

We will be working with the coalgebraic definition below. It contains an assump-
tion about finite branching. We add it here only to stay closer to our definition
of an LTS and to obtain a final coalgebra. Note that this is not essential for the
development of the format in Section 5.3.

Definition 5.1.6 For a set of labels L, a (simple) Segala system is a pair

〈P, α : P → (PωDωP )L〉,
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i.e. a coalgebra of the functor B := (PωDω)L. If no confusion about the coalgebra
structure α is likely to arise, for p, q ∈ P , µ ∈ DωP , and a ∈ L we write

p
a−9 if α(p)(a) = ∅,

p
a−→ if α(p)(a) 6= ∅,

p
a−→ µ if µ ∈ α(p)(a),

p
a−→ • r⇒ q if p

a−→ µ with µ(q) = r > 0.

When a Segala system 〈P, α〉 in a state p ∈ P receives a label a ∈ L, it first
chooses nondeterministically one probability distribution µ ∈ α(p)(a), provided
that this set is nonempty. Then it moves to a successor state q ∈ P chosen
with probability µ(q). We picture the behaviour of a state p in a simple Segala
system as in the following example.

p
a

a
b

•
1
2

1
4

1
4

•
1

•
1
3

2
3

q0 q1 q2 q3 q4 q5

We call these systems simple in order to distinguish them from systems of a
slightly more expressive type, which are studied by Segala and Lynch as well
[Seg95b, SL95]. Those systems have labels associated to the probabilistic choices
instead of the nondeterministic choices.

Note that simple Segala systems generalise both LTS and PTS: An LTS can be
viewed as a Segala system where all probability distributions are Dirac distri-
butions (i.e. one single state is chosen with probability 1).

p

a
a

b

p
a

a
b

=⇒ •
1

•
1

•
1

q0 q1 q2 q0 q1 q2

A PTS is a Segala system 〈P, α〉 where at most one distribution is contained
in each set α(p)(a) for p ∈ P and a ∈ L. From this point of view, probabilis-
tic transition systems as defined above arise as deterministic (simple) Segala
systems (cf. [JLY01]).

p

a[ 13 ]

a[ 23 ]

b[1]

p
a b

=⇒ •1
3

2
3

•
1

q0 q1 q2 q0 q1 q2

When we instantiate the coalgebraic definition of a bisimulation with the functor
defining Segala systems, we obtain a notion that can equivalently be expressed
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as in the definition below. The characterisation combines elements from the
corresponding notions for LTSs and PTSs (cf. equation (2.6) on page 25 and
Def. 5.1.4), and it is equivalent to the one used in the literature [BSV04].

Definition 5.1.7 A bisimulation between two Segala systems 〈P, αP 〉 and
〈Q,αQ〉 is a relation R ⊆ P × Q such that for all 〈p, q〉 ∈ R and all a ∈ L
we have that

• p a−→ φ implies q
a−→ ψ for some ψ ∈ DωQ with φ ≡R ψ, and

• q a−→ ψ implies p
a−→ φ for some φ ∈ DωP with φ ≡R ψ,

for the relation ≡R introduced in Definition 5.1.4.

With an argument similar to the one for Lemma 5.1.5 we can show the following
statement.

Lemma 5.1.8 There exists a final Segala system, i.e. a final B-coalgebra for
B = (PωDω)L.

5.2 A specification format for PTS

We are now going to derive a concrete well-behaved specification format for
PTS from Definition 5.1.2 as a representation of specifications in abstract GSOS
instantiated with the behaviour functor modelling PTSs, i.e. with B := (Dω +
1)L. Letting S and T be the signature and term functor associated to a finitary
signature Σ, we are dealing with specifications given as natural transformations

ρ : S
(
Id× (Dω + 1)L

)
⇒ (DωT+ 1)L. (5.2)

Because of the similar structure of the functors defining LTSs and PTSs, these
natural transformations can be decomposed in the same way as in the case of
LTSs (cf. Sections 3.3.1 and 3.5.1). An outline is given in Figure 5.1. The
natural transformations encountered in this decomposition differ from the ones
in the nondeterministic setting in that the occurrences of the functor Pω are
replaced by Dω + 1 (and P+

ω by Dω). The probabilistic nature does not come
into play until we arrive at the bottom of the table, where we apply our main
representation result. The technicalities are again deferred to the appendix.
The main result, Theorem A.3.5, again bears similarity to the corresponding
Theorem A.2.4 from the nondeterministic setting, but the proof is considerably
more involved. Assembling the representations along the previous decomposi-
tion steps, we obtain a representation for the natural transformations ρ in (5.2).
This representation is a probabilistic variant of the GSOS format, which we
call probabilistic GSOS, or PGSOS for short. In the following two sections we
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Natural transformation Representation

ρ : S(Id× (Dω + 1)L)
⇒ (DωT+ 1)L

PGSOS specification
(Def. 5.2.3)

⇓ ⇑

ν : (Id)n × (Dω)E ⇒ DωT

{
φej (yj)=uj (1≤j≤k)

ν(〈x1,...,xn〉,(φe))(t)
+
=w·

∏

j uj

}

finite,
∑
w=1

⇓ ⇑

ξ : (Dω)E ⇒ Dω(Idm)

{
φej (yj)=uj (1≤j≤k)

ξ((φe))(〈yo1 ,...,yom 〉)
+
=w·

∏

j uj

}

finite,
∑
w=1

l l
ζ : Dω ⇒ Dω(Idm) ⇒ µ ∈ Dω(Par[m])

Figure 5.1: The outline of the approach in the probabilistic setting.

explain the details of the derivation of PGSOS. Readers who want to skip this
rather technical part may want to jump immediately to Section 5.2.3, where the
resulting format is described.

5.2.1 Top-down: decomposing natural transformations

First of all, by Lemma A.1.1 and the adjunction Id× L a (Id)L, natural trans-
formations in (5.2) are in one-to-one correspondence with those of the shape

ρ̃ : S
(
Id× (Dω + 1)L

)
× L⇒ DωT+ 1. (5.3)

For a moment we abbreviate the functor describing the domain of these natural
transformations as

F := S
(
Id× (Dω + 1)L

)
× L.

With Lemma A.1.4, a statement telling how to write a functor as a coproduct,
we obtain F ' ∐z∈F1 F|z , where

F|zX := {φ ∈ FX | (F!)(φ) = z}

for the unique arrow ! : X → 1 into the final set 1 = {∗} and z ∈ F1. We shall
derive a concrete description of F|z below.

According to Lemma A.1.2, giving a natural transformation whose domain is a
coproduct is equivalent to giving one natural transformation for each summand.
So ρ̃ above can by be described by a family of natural transformations

(νz : F|z ⇒ DωT+ 1)z∈F1 . (5.4)
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From the definition of F|z we easily get F|z1 = {z}, so the functor preserves
finality. Lemma A.1.3 states that if a natural transformation with such a finality
preserving domain functor has a coproduct as its codomain, then it touches one
of the summands of that coproduct only. So each νz arises from a natural
transformation either into DωT or into 1. In the latter case there is trivially
precisely one choice for a natural transformation, so we need to record only those
νz that map everything to DωT, which means that the above representation is
equivalent to giving

M ⊆ F1 and (ν̃z : F|z ⇒ DωT)z∈M . (5.5)

To obtain a concrete description of F|z for any z ∈ F1 we make the calculation
below. We use Dω1 = {δ∗} ' 1, where δ∗ with δ∗(∗) = 1 is the unique proba-
bility distribution on the singleton set 1 = {∗}, and write 2 := 1 + 1 ' {>,⊥}:

F1 = S(1 × (Dω1 + 1)L)× L
' S(2L)× L
' {〈σ(E1, . . . , En), a〉 | σ ∈ Σ with arity n,Ei ⊆ L, a ∈ L}.

For z = 〈σ(E1, . . . , En), a〉 ∈ F1 a calculation similar to the one in (3.6) yields

F|z ' (Id)n × (Dω)E ,

where E := E1 + · · · + En. So each natural transformation ν̃z for z ∈ M
appearing in (5.5) is, for a suitable number n ∈ N and set E, equivalent to a
natural transformation

ν : (Id)n × (Dω)E ⇒ DωT. (5.6)

With N := {1, . . . , n}, Lemma A.1.7 states that a factor (Id)n ' (Id)N in
the domain of a natural transformation can be eliminated by precomposing
the codomain functor with N + Id. So each natural transformation ν above is
equivalent to a natural transformation

ν̃ : (Dω)E ⇒ DωT(N + Id). (5.7)

The correspondence between ν̃ and ν is as follows: to transform a result of ν̃
into one of ν we replace any leaf i ∈ N appearing in the terms of the result of
ν̃ by the i-th additional argument of ν.

At this point, we need the following statement, which allows us to distribute
the probability functor over a coproduct (cf. Lemma A.1.5).

Lemma 5.2.1 For functors Gi : C→ Set (i ∈ I) we have

Dω
(∐

i∈I

Gi
)
'

∐

µ∈DωI

( ∏

j∈supp(µ)

DωGj
)
.
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Proof: For all sets X we have an equivalence of sets

Dω
(∐

i∈I

GiX
)
'

∐

µ∈DωI

( ∏

j∈supp(µ)

DωGjX
)

given from left to right by

φ ∈ Dω
(∐

i∈I

GiX
)
7→ ιµφ

(
(φj)j∈supp(µ)

)
∈

∐

µ∈DωI

( ∏

j∈supp(µ)

DωGjX
)

where

µφ(i) := φ[ιi
[
GiX]

]
and φj(α) :=

φ
(
ιj(α)

)

µφ(j)

for all j ∈ supp(φ) and α ∈ GjX. The equivalence commutes with the action
of the respective functors on arrows.

2

Writing again |t|∗ for the number of occurrences of the variable ∗ ∈ 1 in a term
t ∈ T(N + 1), we get

DωT(N + Id)
cf. (3.25)' Dω

( ∐

t∈T(N+1)

Id|t|∗
)

Lemma 5.2.1'
∐

µ∈DωT(N+1)

( ∏

t∈supp(µ)

Dω(Id|t|∗)
)
.

The codomain of the natural transformation ν̃ can thus be written as a coprod-
uct, and we can again apply Lemma A.1.3 to find that all results will be in the
same µ-summand for some µ ∈ DωT(N+1). This summand in turn is a product.
So a natural transformation into it can be split according to Lemma A.1.2 (ii).
Together we find that any natural transformation ν̃ in (5.7) can be characterised
by

µ ∈ DωT(N + 1) and
(
ξt : (Dω)E ⇒ Dω(Id|t|∗)

)

t∈supp(µ)
. (5.8)

We can stop the decomposition here, because for natural transformations of the
type

ξ : (Dω)E ⇒ Dω(Idm) (5.9)

(for some m ∈ N) as they appear in the representation (5.8), Corollary A.3.10
in the appendix provides a direct characterisation.
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5.2.2 Bottom-up: constructing representations

We now develop representations – expressed in terms of derivation rules – for
natural transformations of all types encountered in the above decomposition of
abstract GSOS for probabilistic transition systems. We compose the represen-
tations along the previous decomposition steps, starting with natural transfor-
mations of the simplest type, namely ξ in (5.9). As already mentioned, we can
apply Corollary A.3.10 to them. It states that we can characterise the natural
transformation ξ by a set of transition rules as below.

ξ
.
=

{

φej (yj) = uj (1 ≤ j ≤ k)

ξ
(
(φe)

)
(〈yo1 , . . . , yom〉)

+
= w · u1 · . . . · uk

}

finite,
∑
w=1

(5.10)

Each rule mentions distinct element variables y1, . . . , yk and probability vari-
ables u1, . . . , uk for some k ∈ N, where each yj has an associated origin ej ∈ E,
so that yj is instantiated with an element chosen according to the probabil-
ity distribution φej . Moreover, the indices o1, . . . , om ∈ {1, . . . , k} determine
which element variable appears in which position of the resulting tuple. The
real number w ∈ (0, 1] appearing in each rule is called the weight of the rule
and the weights of all rules in the set are required to sum up to 1. We write a
plus above the equality sign in the conclusion to express that after instantiating
one of the rules, the real value calculated in the conclusion does not necessarily
denote the whole probability assigned to the corresponding tuple, but the rule’s
contribution to it. The resulting probability of the tuple is defined to be the
sum of all contributions derivable from different instances of the rules.

The following example is intended to illustrate how a natural transformation ξ
is represented by such a set of rules.

Example 5.2.2 Suppose in the case E = {1, 2} and m = 3 that ξ is represented
by the following two rules.

φ1(x) = u φ2(z) = v

ξ(〈φ1, φ2〉)(〈x, z, z〉) +
= 1

5 u v

φ1(x) = u φ1(y) = v φ2(z) = w

ξ(〈φ1, φ2〉)(〈x, y, z〉) +
= 4

5 u v w

For a set P = {p, q}, and distributions ψ1, ψ2 ∈ DωP with ψ1(p) = 1
3 , ψ1(q) =

2
3 , and ψ2(p) = ψ2(q) =

1
2 , we calculate the probability of 〈p, q, q〉 in ξP (ψ1, ψ2).

The rules can be instantiated to contribute to the probability of 〈p, q, q〉 as

ψ1(p) =
1
3 ψ2(q) =

1
2

ξP (ψ1, ψ2)(〈p, q, q〉) +
= 1

5 · 13 · 12 = 1
30

and

ψ1(p) =
1
3 ψ1(q) =

2
3 ψ2(q) =

1
2

ξP (ψ1, ψ2)(〈p, q, q〉) +
= 4

5 · 13 · 23 · 12 = 4
45

We conclude ξP (ψ1, ψ2)(〈p, q, q〉) = 1
30 + 4

45 = 11
90 .
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According to (5.8), the representation of ν̃ in (5.7) is now given by a distribution
µ ∈ DωT(N +1) and for each t ∈ supp(µ), as a representation of ξt, a collection
of rules as in (5.10) with m = |t|∗ (which was the number of occurrences of
∗ in t). To write this representation as one collection of rules, we need to do
two things: First we change the rule notation such that each rule from the
description of ξt for any t ∈ supp(µ) mentions the respective term t. To this
end we replace the vector 〈yo1 , . . . , yom〉 in each rule by tY ∈ T(N + Y ), where
Y = {y1, . . . , yk}. The term tY arises after replacing, for all i, the i-th occurrence
of ∗ in the corresponding t ∈ T(N + 1) by yoi . Second, we need to take into
account the overall contribution of each ξt as given by the distribution µ. This
is easily achieved by multiplying the weight w of each individual rule in the
representation of ξt with µ(t) for the corresponding t ∈ T(N + 1). As a result,
we obtain a collection of rules whose weights again sum up to 1.

So a representation of ν̃ in (5.7) is given by a finite set of rules as below with
the global condition that all their weights w should sum up to 1.

ν̃
.
=

{

φej (yj) = uj (1 ≤ j ≤ k)

ν̃((φe))(tY )
+
= w · u1 · . . . · uk

}

finite,
∑
w=1

(5.11)

For the step from ν̃ : (Dω)E ⇒ DωT(N + Id) in (5.7) to ν : (Id)n × (Dω)E ⇒
DωT in (5.6) each variable i ∈ N = {1, . . . , n} appearing in the target term
tY ∈ T(N + Y ) of any rule is replaced by xi, where X := {x1, . . . , xn} is a set
of n variable names different from those in Y . This yields sets of rules as below
where t ∈ T(X + Y ).

ν
.
=

{

φej (yj) = uj (1 ≤ j ≤ k)

ν(〈x1, . . . , xn〉, (φe))(t) +
= w · u1 · . . . · uk

}

finite,
∑
w=1

(5.12)

A natural transformation ρ̃ : S
(
Id × (Dω + 1)L

)
× L ⇒ DωT + 1 in (5.3) was

characterised by a set

M ⊆ {〈σ(E1, . . . , En), a〉 | σ ∈ Σ with arity n,Ei ⊆ L, a ∈ L},

together with natural transformations ν̃z : F|z ⇒ DωT for all z ∈ M . Each ν̃z

for z = 〈σ(E1, . . . , En), a〉 was of the type (Id)n×(Dω)E ⇒ DωT as characterised
above, where E = E1 + · · ·+ En. We recapitulate how we calculate

ρ̃X
(
σ(〈x1, θ1〉, . . . , 〈xn, θn〉), a

)
(5.13)

for σ ∈ Σ with arity n, xi ∈ X, θi : L→ DωX + 1, and a ∈ L with our current
representation. We first check whether or not z = 〈σ(E1, . . . , En), a〉 is in M ,
where Ei := {l ∈ L | θi(l) 6= ι2(∗)}. In case z 6∈ M the result of (5.13) is ι2(∗),
otherwise it is

ι1
(
ν̃zX(〈x1, . . . , xn〉, (φi,l)1≤i≤n,l∈Ei)
︸ ︷︷ ︸

=:ψ

)
,
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where θi(l) = ι1(φi,l) for 1 ≤ i ≤ n and l ∈ Ei. The value of ψ in turn is derived
from the rule representation of ν̃z in the format (5.12).

To obtain a direct representation of ρ̃, we collect all rules from the representa-
tions of all ν̃z for z ∈M modified in two respects:

First, we need to make sure that each rule is applied in the right situation only,
which was determined above by σ, a, and E1, . . . , En. The information about
σ and a is put in the conclusion of the rule in the straightforward way. The
sets Ei ⊆ L give rise to new premises: for b 6∈ Ei we add θi(b) = ι2(∗), and for
b ∈ Ei we put θi(b) = ι1(φi,b).

Second, we need to account for the conversion of parameters θi into φi,l. So we
replace a distribution φej with ej = ιij (lj) ∈ E = E1 + · · ·+ En as it appeared
in a premise before by φij ,lj .

This yields rules of the following shape:

θi(b) = ι2(∗) b 6∈ Ei, 1 ≤ i ≤ n
θi(b) = ι1(φi,b) b ∈ Ei, 1 ≤ i ≤ n
φij ,lj (yj) = uj 1 ≤ j ≤ k

ρ̃
(
σ(〈x1, θ1〉, . . . , 〈xn, θn〉), a

)
(t)

+
= w · u1 · . . . · uk

(5.14)

Note that the result of ρ̃P (σ(〈x1, θ1〉, . . . , 〈xn, θn〉), a) needs to be in the coprod-
uct DωTP + 1, although no coproduct injections are written in the rules. We
keep those injections implicit by the following convention for the reading of the
conclusion of the rules: if any rules apply to the above expression then, for the
distribution ψ ∈ DωTP these rules define on terms, the value of the expression
is ι1(ψ). If no rules apply (which means z 6∈ M), the expression evaluates to
ι2(∗).
The condition on the original sets of rules translates into the following one: for
any given σ ∈ Σ with arity n, a ∈ L, and E1, . . . , En ⊆ L, the specification
contains only finitely many rules mentioning σ, a, and E1, . . . , En, and the
weights w of all these rules sum up to 1, if there are any.

From the above characterisation of ρ̃ we immediately get one for ρ in (5.2): we
only need to replace ρ̃

(
σ(〈x1, θ1〉, . . . , 〈xn, θn〉), a

)
in the conclusion of each rule

by ρ
(
σ(〈x1, θ1〉, . . . , 〈xn, θn〉)

)
(a).

According to Definition 3.5.3, the models of a specification ρ in abstract GSOS
are the ρ-bialgebras, which are the 〈S,B〉-bialgebras 〈P, [[.]], α〉 – where B =
(Dω + 1)L is the functor describing probabilistic transition systems – such that
the diagram below commutes. We write again [[.]]∗ for the inductive extension
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of [[.]] to terms (cf. Lemma 2.2.10).

SP
S〈id,α〉

[[.]]S(P × (DωP + 1)L)

ρP P

α(DωTP + 1)L

(Dω[[.]]
∗+id1 )

L

(DωP + 1)L

We want to turn our characterisation of ρ in terms of rules as in (5.14) into a
direct characterisation of the corresponding ρ-bialgebras. The arguments of ρ
in this setting will be σ(〈p1, α(p1)〉, . . . , 〈pn, α(pn)〉) for σ(p1, . . . , pn) ∈ SP , so
the rules will instantiate to

α(pi)(b) = ι2(∗) b 6∈ Ei, 1 ≤ i ≤ n
α(pi)(b) = ι1(φi,b) b ∈ Ei, 1 ≤ i ≤ n
φij ,lj (yj) = uj 1 ≤ j ≤ k

ρP
(
σ(〈p1, α(p1)〉, . . . , 〈pn, α(pn)〉)

)
(a)(t)

+
= w · u1 · . . . · uk

Using the arrow notation for α as introduced in Definition 5.1.2, we can replace
the premises

• α(pi)(b) = ι2(∗) by pi b−9 (the negative applicability premise),

• α(pi)(b) = ι1(φi,b) by pi
b−→ (the positive applicability premises), and

• φij ,lj (yj) = uj – which required a premise α(pij )(lj) = ι1(φij ,lj ) – by

pij
lj [uj ]
=⇒ yj .

Moreover, since the result of the application of ρ to the above arguments should
– after the terms are evaluated by [[.]]∗ – equal α([[σ(p1, . . . , pn)]]), we can rewrite
the conclusion of the above instance of a rule to

[[σ(p1, . . . , pn)]]
a[w·u1·...·uk]

=⇒ [[t]]∗.

So the ρ-bialgebras are directly characterised by rules of the shape

xi
b−→ b ∈ Ei, 1 ≤ i ≤ n

xi
b−9 b 6∈ Ei, 1 ≤ i ≤ n

xij
lj [uj ]
=⇒ yj 1 ≤ j ≤ k

[[σ(x1, . . . , xn)]]
a[w·u1·...·uk]

=⇒ [[t]]∗
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For simplicity, we omit the application of [[.]] and [[.]]∗. Moreover, we relax the
condition that for each 1 ≤ i ≤ n and b ∈ L a rule needs to contain either a
positive or negative applicability premise (depending on whether or not b is in
Ei). Allowing that neither of them is present amounts to replacing each set Ei
of enabled labels by two disjoint subsets Ri, Pi ⊆ L of requested and prohibited
labels of the i-th argument. We call a rule where for some i and b neither a
positive nor negative applicability premise is present incomplete and view it as
an abbreviation for the set of rules that arises when for each missing one either
the corresponding positive or negative applicability premise is added.

5.2.3 The PGSOS format

The above consideration yields a novel rule-style specification format for PTS.
Because of its relation to the GSOS format, we call it probabilistic GSOS.

Definition 5.2.3 Given a signature Σ, a rule in probabilistic GSOS (PG-
SOS) has the shape

xi
b−→ b ∈ Ri, 1 ≤ i ≤ n

xi
b−9 b ∈ Pi, 1 ≤ i ≤ n

xij
lj [uj ]
=⇒ yj 1 ≤ j ≤ J

σ(x1, . . . , xn)
a[w·u1·...·uJ ]

=⇒ t

(5.15)

where

• σ ∈ Σ (with arity n ∈ N) is the type of the rule,

• x1, . . . , xn are distinct state variables (we set X := {x1, . . . , xn}),

• Ri, Pi ⊆ L with Ri∩Pi = ∅ are the sets of requested and prohibited labels
for the i-th argument xi (1 ≤ i ≤ n),

• y1, . . . , yJ for some J ∈ N are distinct state such that Y ∩ X = ∅ for
Y := {y1, . . . , yJ}, where each yj is tagged as a successor of argument xij
with ij ∈ {1, . . . , n} for a requested label lj ∈ Rij (1 ≤ j ≤ J),

• u1, . . . , uJ are distinct probability variables,

• a ∈ L is the label of the rule,

• w ∈ (0, 1] is the weight of the rule.

• t ∈ T(X ∪ Y ) such that Y ⊆ vars(t) is the target of the rule.

A PGSOS rule as above is triggered by sets of enabled labels E1, . . . , En ⊆ L
if Ri ⊆ Ei and Ei ∩ Pi = ∅ for all 1 ≤ i ≤ n.
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A PGSOS specification is a collection R of PGSOS rules such that for all
σ ∈ Σ (with arity n), a ∈ L, and E1, . . . , En ⊆ L only finitely many rules with
type σ and label a in R are triggered by E1, . . . , En, and in case there are any,
the weights of all these rules sum up to 1.

To define the models of PGSOS specification, we use the following auxiliary
notion: Let 〈P, α〉 be a PTS, let R be the PGSOS rule in (5.15), let p1, . . . , pn ∈
P be states, let tP ∈ TP be a term with states as variables, and let c ∈ (0, 1]
be a (positive) probability. We write

R ` σ(p1, . . . , pn)
a[c]
=⇒ tP

if there are states q1, . . . , qJ ∈ P and positive probabilities r1, . . . , rJ ∈ (0, 1]
such that

• pi b−→ for all b ∈ Ri and 1 ≤ i ≤ n,

• pi b−9 for all b ∈ Pi and 1 ≤ i ≤ n,

• pij
lj [rj ]
=⇒ qj for all 1 ≤ j ≤ J ,

• c = w · r1 . . . rJ , and

• tP arises from t after replacing each variable xi by pi and each variable yj
by qj .

Definition 5.2.4 A model of a PGSOS specification R is a triple 〈P, [[.]], α〉
consisting of a PTS 〈P, α〉 and an interpretation [[.]] of the operators in Σ on
P such that the following holds: for all σ ∈ Σ (with arity n), a ∈ L, and
p1, . . . , pn, q ∈ P we have

[[σ(p1, . . . , pn)]]
a[r]
=⇒ q

according to α if and only if

r =
∑(

c
∣
∣ R ` σ(p1, . . . , pn)

a[c]
=⇒ tP , [[tP ]]

∗ = q, tP ∈ TP, R ∈ R
)
,

where [[.]]∗ is the inductive extension of [[.]] to terms.

At first sight, PGSOS rules offer a rather limited control over the transition
probabilities: we cannot constrain the probabilities in the premises to equal an
absolute value or lie inside a certain range, and the probability of the generated
transition has to depend linearly on the probabilities from the premises. Still
it turns out that the rules are sufficiently powerful, as we shall demonstrate
with a list of examples in the next section. There we also argue that rules
with premises that do constrain the actual probabilities can specify non-well-
behaved operators, which convinces us that this limitation is the “right” one.
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When asked to design a probabilistic specification format, one would probably
not come up with similar or the same restrictions immediately. This underlines
the usefulness of the categorical approach of Turi and Plotkin combined with
our precise method to analyse the corresponding natural transformations.

5.2.4 Examples of PGSOS specifications

To illustrate the PGSOS format, we present specifications for some basic prob-
abilistic constructs.

(i) Consider the atomic action constant a ∈ Σ for a ∈ L. The associated
process should have a as its only enabled label and the a-transition should
lead with probability 1 to an idle state, i.e. one that cannot do any tran-
sitions. The latter is obtained as the interpretation of the constant 0 ∈ Σ
for which no transition rules are given. We specify the constant a ∈ Σ by
the following single rule without premises.

a
a[1]
=⇒ 0

(ii) Next we consider a binary probabilistic choice operator ⊕r ∈ Σ for r ∈
[0, 1]. For processes x and y we want x ⊕r y to be a process behaving
either as x or as y, depending on the first input label and the probability
r. In case the input can only be processed by x, the system should behave
like x, and similar for y. If both can react, the decision should be made in
favour of x with probability r and in favour of y with probability r̄ := 1−r.
This is captured by the following set of PGSOS rules, each for all a ∈ L:

x
a[u]
=⇒ x′ y

a−9

x⊕r y
a[u]
=⇒ x′

x
a−9 y

a[v]
=⇒ y′

x⊕r y
a[v]
=⇒ y′

x
a[u]
=⇒ x′ y

a−→
x⊕r y

a[r·u]
=⇒ x′

x
a−→ y

a[v]
=⇒ y′

x⊕r y
a[r̄·v]
=⇒ y′

To see that these rules satisfy the global constraints from Def. 5.2.3, for all
a ∈ L and sets of enabled labels Ex, Ey ⊆ L for x and y we have to inspect
the rules for ⊕r and a which are triggered according to the premises: in
case a is neither enabled in x nor in y (i.e. a 6∈ Ex∪Ey) no rule is triggered;
in case a is enabled by just one of x or y (i.e. a ∈ (Ex \ Ey) ∪ (Ey \ Ex))
it is one of the upper rules, each of which has weight 1; if a is enabled by
both x and y (i.e. a ∈ Ex∩Ey), both lower rules are triggered, the weights
of which sum up to r + r̄ = 1.

To illustrate Def. 5.2.4, we spell out what the requirement on a model
〈P, [[.]], α〉 amounts to in a concrete case. Let 〈P, α〉 contain the two pro-
cesses drawn below, where we assume that p′, q′1, and q′2 do not have
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outgoing transitions.

p

a[1]

q

a[ 13 ] a[ 23 ]

p′ q′1 q′2

(5.16)

Both can make an a-transition, so the third and fourth rule are applicable
to p ⊕r q (for readability, here and in the following, we leave the inter-
pretation of operators in our model implicit, i.e. we omit the application
of [[.]] or [[.]]∗). They derive an a-transition which leads to the a-successor
of p with probability r and to an a-successor of q otherwise. The relative
probability of moving from p⊕r q to q′i given that a successor of q is chosen
is the same as the absolute probability of moving from q to q′i.

p⊕r q
a[r]

a[ 13 r̄]

a[ 23 r̄]

p′ q′1 q′2

(iii) Another useful operator is the sequential composition x; y. It behaves
like x until a situation is reached where no more transitions are possible.
Then the process y takes over. We define the operator by the following
transition rules for all a ∈ L.

x
a[u]
=⇒ x′

x; y
a[u]
=⇒ x′; y

x
l−9 (∀l ∈ L) y

a[v]
=⇒ y′

x; y
a[v]
=⇒ y′

Note that for an infinite set of labels L the rules of the second type have
infinitely many premises, which is allowed by the PGSOS format. (Various
other notions of a sequential composition arise from different definitions
of the moment when the second component takes over. Baeten [Bae03] for
instance introduces an explicit termination predicate. The same idea can
be applied here, but we would have to modify our definition of a PTS to
include this predicate.) With our example processes p and q from (5.16)
we get the following picture for p; q:

p; q

a[1]

p′; q
a[ 13 ] a[ 23 ]

q′1 q′2
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(iv) Furthermore, we define the synchronous parallel composition x|y mod-
elling a process with two components x and y waiting for input side by
side. The enabled labels are those that are enabled for both of x and y. On
such a label each component will independently make a move according to
its own transition probability, and the whole process will become the syn-
chronous parallel composition of the two resulting states. The operation
is defined by the following set of rules for all a ∈ L:

x
a[u]
=⇒ x′ y

a[v]
=⇒ y′

x|y a[u·v]=⇒ x′|y′

Considering again p and q from (5.16) we get that p|q is the process below.

p|q
a[ 13 ] a[ 23 ]

p′|q′1 p′|q′2

Note that the (implicitly applied) term evaluation [[.]]∗ of our model may
identify p′|q′1 and p′|q′2. In that case the two arrows above actually repre-
sent one arrow with probability 1

3 + 2
3 = 1.

(v) For any r ∈ [0, 1], the asynchronous parallel composition x||ry of the two
processes x and y is intended to behave as follows: an input label a can
be processed if it is enabled in x or in y. The input is always handled by
one of them only, the other stays unchanged. If both components are able
to deal with the input, then x is chosen with the probability r.

The operator is specified by the rules below, each for all a ∈ L and with
r̄ := 1− r.

x
a[u]
=⇒ x′ y

a−9

x||ry
a[u]
=⇒ x′||ry

x
a−9 y

a[v]
=⇒ y′

x||ry
a[v]
=⇒ x||ry′

x
a[u]
=⇒ x′ y

a−→
x||ry

a[r·u]
=⇒ x′||ry

x
a−→ y

a[v]
=⇒ y′

x||ry
a[r̄·v]
=⇒ x||ry′

Again for p and q from (5.16) we get the following transitions:

p||rq
a[r]

a[ 13 r̄]
a[ 23 r̄]

p′||rq p||rq′1 p||rq′2

(vi) All the examples so far were simple in the sense that they did not involve
target terms with more than one operator application. As a more complex
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example we specify a probabilistic variant of the Kleene-Star operator
x∗ry for r ∈ [0, 1]. It uses the sequential composition from above. The
operator is specified by the following rules, each for all a ∈ L, where again
r̄ abbreviates 1− r.

x
a[u]
=⇒ x′ y

a−→
x∗ry

a[r·u]
=⇒ x′; (x∗ry)

x
a[u]
=⇒ x′ y

a−9

x∗ry
a[u]
=⇒ x′; (x∗ry)

x
a−→ y

a[v]
=⇒ y′

x∗ry
a[r̄·v]
=⇒ y′

x
a−9 y

a[v]
=⇒ y′

x∗ry
a[v]
=⇒ y′

For p and q from (5.16) we get the picture below. Note again that p∗rq
and p′; (p∗rq) may be the same state according to the (implicitly applied)
interpretation of terms [[.]]∗.

p∗rq
a[ 13 r̄]

a[r]

a[ 23 r̄]

q′1 q′2

p′; (p∗rq)
a[ 13 r̄]

a[r]

a[ 23 r̄]

One aspect of the format is not illustrated by the examples above, namely
the possibility that the target term of a rule may have several occurrences of
variables for successors of the same argument via transitions with the same
label. We give an artificial example to show that in such a situation it makes a
difference whether the same or different successor variables are used. Consider
the following alternative rules for a signature Σ containing the two operator
symbols σ (unary) and τ (binary).

x
a[u]
=⇒ x′

σ(x)
a[u]
=⇒ τ(x′, x′)

or
x
a[u]
=⇒ x′1 x

a[v]
=⇒ x′2

σ(x)
a[u·v]
=⇒ τ(x′1, x

′
2)

For q from (5.16) the two rules will generate the following a-transitions for σ(q)
respectively:

σ(q)

a[ 13 ] a[ 23 ] or

σ(q)

a[ 19 ]
a[ 29 ] a[ 29 ]

a[ 49 ]

τ(q′1, q
′
1) τ(q′2, q

′
2) τ(q′1, q

′
1) τ(q′1, q

′
2) τ(q′2, q

′
1) τ(q′2, q

′
2)

To conclude this example section, we also want to remark on the limits of the
format by discussing an operation that is not covered, but which may appear
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reasonable at first sight. The operation, however, turns out not to be well-
behaved, which perfectly justifies that it cannot be specified within the format.

Consider the unary operation δ ∈ Σ, which is intended to extract the determin-
istic part of the behaviour of a process by eliminating all transitions leading to
distributions of more than one successor state. It is specified by the following
rules for all a ∈ L:

x
a[1]
=⇒ x′

δ(x)
a[1]
=⇒ δ(x′)

(5.17)

These rules are not in the PGSOS format, because it does not allow to prescribe
absolute probabilities in the premises, as it is done here. We can only put
probability variables in the premises.

To see that this specification is troublesome, assume that 〈P, [[.]], α〉 is a model
containing the two processes p and q from (5.16). Note that p and q are prob-
abilistically bisimilar: for both the only enabled label is a and the a-transition
leads to an inert state with probability one (more precisely, it is easy to check
that the relation R = {〈p, q〉, 〈p′, q′1〉, 〈p′, q′2〉} is a probabilistic bisimulation).
Still, δ(p) and δ(q) are not bisimilar, because δ(p) can do an a-transition while
δ(q) cannot. So in the interpretation [[.]] of the model the operator δ does not
preserve bisimilarity, one of our basic requirements for a well-behaved model.

5.2.5 Properties of PGSOS

In Sections 5.2.1 through 5.2.3 we have derived the PGSOS format (cf. Def. 5.2.3)
as a concrete characterisation of classes of models definable by specifications in
abstract GSOS (cf. Def. 3.5.3) instantiated with probabilistic transition systems.
As a consequence, the properties established for abstract GSOS specifications
in Chapters 3 and 4 instantiate to properties of PGSOS. We spell them out in
this section. First we state the correspondence established in the mentioned
sections formally.

Theorem 5.2.5 For a signature Σ with associated functor S and B = (Dω +
1)L, each subclass of 〈S,B〉-bialgebras definable as ρ-bialgebras for some speci-
fication ρ in abstract GSOS arises as a class of models of some PGSOS speci-
fication and vice versa. Moreover, this correspondence is one-to-one up to the
renaming of variables in the rules, the splitting of rules, and equivalent abbrevi-
ations of sets of complete rules by incomplete ones.

With this statement, Corollary 3.5.4 instantiates as follows.

Corollary 5.2.6 Every specification R in PGSOS has an initial and a final
model. In particular, the set of closed terms for the signature Σ carries a unique
structure of a PTS extending it to a model of R, and this model is initial. Dually,
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the final PTS (cf. Lemma 5.1.5) can uniquely be equipped with an interpretation
of the operators in Σ such that we obtain a model of R, and this model is final.

From Corollary 3.5.5 we obtain the following.

Corollary 5.2.7 Probabilistic bisimilarity (cf. Def. 5.1.4) between two models
of a PGSOS specification is a congruence for the operator interpretations.

From the theory developed in Chapter 4 we learn that the bisimulation up-to-
context proof principle is valid for operators defined by a PGSOS specification
(see Corollary 4.4.9). However, our experiments indicate that in the probabilis-
tic setting the bisimulation up-to-context technique is less useful than in the
nondeterministic one for the following reason. Since with the additional infor-
mation about transition probabilities we can distinguish processes more easily,
many familiar process equivalences for nondeterministic systems do not have
an equivalent in the world of PTSs. But the success of the bisimulation up-to-
context proof principle depends on such laws to hold, because we usually first
need to rewrite the given process terms in order to make a common context
visible.

To give an example, consider the associative law for nondeterministic choice.
We cannot establish a similar law for the probabilistic choice operator from
above: for no u, v ∈ (0, 1) we can find values u′, v′ ∈ [0, 1] such that

(p⊕u q)⊕v r ∼ p⊕u′ (q ⊕v′ r)

for all states p, q, r in any model of the specification. To sketch the argument,
let us study the a-transitions from

s = (p⊕u q)⊕v r and t = p⊕u′ (q ⊕v′ r).

Assume that p, q, and r can all do a-transitions. To guarantee that an a-
transition from both s and t leads to an a-successor of p with the same proba-
bility, we find that we need u′ = u · v. But under the assumption that only p
and q can do an a-transition, the same analysis yields u′ = u, a contradiction.

The specification of processes by guarded recursive definitions, however, is useful
in the probabilistic setting. We first spell out the relevant definitions.

Definition 5.2.8 A (probabilistic) guarded recursive specification over
the signature Σ is a pair 〈X,Tr〉 consisting of a set of variables X and a set of
transitions

Tr ⊆
{
x
a[u]
=⇒ t

∣
∣ x ∈ X, a ∈ L, u ∈ (0, 1], t ∈ TX

}
,

where T is the term functor over Σ, such that for all x ∈ X and a ∈ L the set
Tr contains finitely many transitions from x with label a only, the probabilities
u of which sum up to 1 if there are any. A solution of 〈X,Tr〉 in a model
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〈P, [[.]], α〉 of a PGSOS specification R is given by an assignment of variables
h : X → P such that for all x ∈ X, a ∈ L, and q ∈ P we have

h(x)
a[r]
=⇒ q

if and only if

r =
∑(

u
∣
∣ (x

a[u]
=⇒ t) ∈ Tr , [[ t[ y := h(y) | y ∈ X ] ]]∗ = q

)
.

Corollary 4.4.7 instantiates to the following statement.

Corollary 5.2.9 Every (probabilistic) guarded recursive definition 〈X,Tr〉 over
Σ has solutions in some model of the PGSOS specification R for the operators
in Σ. These solutions are determined up to bisimilarity. In particular, 〈X,Tr〉
has a unique solution in a final model of R (which exists by Corollary 5.2.6).

The following simple example demonstrates the use of this principle.

Example 5.2.10 We can alternatively specify a lossy bag (cf. Example 5.1.3)
as a state x in some probabilistic transition system with the following behaviour:
it can perform a store action (s) which keeps it unchanged with probability ε or
otherwise leads to a state behaving like x except that it can do one additional
remove action (r) at an arbitrary moment in the future. Using the operators
specified in Section 5.2.4 this can be expressed by the guarded recursive specifi-
cation 〈{x},Tr〉 where the set Tr contains the two transitions drawn below.

x

s[ε] s[1−ε]

x r||1x

Corollary 5.2.9 says that this specification has solutions, determined up to bisim-
ilarity. Such a solution is given by a model 〈P, [[.]], α〉 of the operators from
Section 5.2.4 and a state p ∈ P (the state that x is mapped on) which exhibits
the behaviour shown below. We again omitted the application of the operator
interpretation, i.e. [[.]]∗. Also, the transitions from the states in the lower row
are not drawn.

p

s[ε] s[ε̄]

r ‖1 p

s[ε] s[ε̄]

r[1]

r ‖1 (r ‖1 p)

s[ε] s[ε̄]

r[1]

. . .

0 ‖1 p

∼

0 ‖1 (r ‖1 p)

∼

The states p and 0 ‖1 p (as well as r ‖1 p and 0 ‖1 (r ‖1 p) and so forth) are
not necessarily identical, but they are bisimilar. From this we conclude that the
state p in any such solution is bisimilar to the state p0 from Example 5.1.3.
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Note that in order to obtain the well-behavedness results about PGSOS stated
in this section, most of the effort we spent establishing the correspondence of
abstract GSOS and PGSOS is not necessary: it is sufficient to know that a
specification in PGSOS can be captured by a natural transformation ρ as in
(5.2). We do not need to prove that all natural transformations ρ arise in such
a way, which is actually the hard part. We tackled both directions in order to
determine the exact position of PGSOS in Turi and Plotkin’s framework. When
we describe a specification format for Segala systems in the next section, we
content ourselves with arguing that it is well behaved. We shall not establish a
one-to-one correspondence with abstract GSOS in that setting. We expect that
this correspondence is harder to obtain because we would have to deal with
natural transformations involving a nested application of the the powerset and
distribution functor. We do not have the tools yet to decompose such natural
transformations.

5.3 A specification format for Segala systems

In this section we introduce Segala-GSOS, a well-behaved operator specification
format for (simple) Segala systems from Def. 5.1.6. Admittedly, we do not yet
understand the situation for these systems as well as we understand it for the
less complex PTS. Here we give a preliminary report only in order to emphasise
the strength of the categorical approach to yield formats for different system
types.

Whereas PGSOS was developed as a concrete representation of specifications in
abstract GSOS, we define our format for Segala systems in an ad-hoc way. We
do not know whether all specifications in abstract GSOS can be expressed by
rules in Segala-GSOS. But we argue that the converse is true, which is enough
to conclude that Segala-GSOS is well-behaved in all respects studied here.

We start by defining the new format and its models. Next, we give a number of
examples in order to illustrate both the meaning of the rules and their expressive
power. Then we spell out the well-behavedness properties.

5.3.1 The Segala-GSOS format

The format we propose for Segala systems from Def. 5.1.6 is the following.

Definition 5.3.1 Given a signature Σ, a Segala-GSOS rule has the following
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shape:

xi
b−→ (b ∈ Ri; 1 ≤ i ≤ n)

xi
b−9 (b ∈ Pi; 1 ≤ i ≤ n)

xij
lj−→ µj (1 ≤ j ≤ J)

µjk =⇒ zk (1 ≤ k ≤ K)

σ(x1, . . . , xn)
a−→ w1 · t1 + · · ·+ wM · tM

(5.18)

where

• σ ∈ Σ is an operator symbol with arity n that we call the type of the rule,
and X = {x1, . . . , xn} is a set of n state variables;

• a ∈ L is the label of the rule;

• Ri, Pi ⊆ L with Ri ∩Pi = ∅ are sets of requested and prohibited labels for
xi for 1 ≤ i ≤ n;

• Y = {µ1, . . . , µJ} is a set of J ∈ N probability distribution variables,
1 ≤ ij ≤ n and lj ∈ Rij for all 1 ≤ j ≤ J ;

• Z = {z1, . . . , zK} is a set of K ∈ N state variable names with Z ∩X = ∅,
1 ≤ jk ≤ J for 1 ≤ k ≤ K;

• for M ∈ N, t1, . . . , tM ∈ T(X + Ỹ + Z) are target terms, each with an
associated weight wm ∈ (0, 1] such that w1 + · · · + wM = 1. Here T is

the term functor generated by Σ (cf. Lemma 2.2.10) and Ỹ = {µ(o)j | 1 ≤
o ≤ Oj , 1 ≤ j ≤ J} for multiplicities O1, . . . , OJ > 0 is a set of probability
variables derived by possibly duplicating some of the ones in Y (for M = 1
we omit the weight w1 = 1 and for Oj = 1 we omit the upper index of

µ
(1)
j ).

A specification in Segala-GSOS for the operators in Σ is a set R of Segala-
GSOS rules such that for all σ ∈ Σ, with arity n, all labels a ∈ L, and all
sets of enabled labels E1, . . . , En ⊆ L there are only finitely many rules in R of
type σ with label a triggered by E1, . . . , En. The rule in (5.18) is triggered by
E1, . . . , En if Ri ⊆ Ei and Ei ∩ Pi = ∅ for 1 ≤ i ≤ n.

To define the models of a Segala-GSOS specification, we need the following
definitions. Let V = {v1, . . . , vJ} be a finite set of variables, and let tV ∈ TV
be a term in which each variable in V occurs. A mapping d : V → DωP
determines a distribution d̃(tV ) ∈ DωTP defined for all t ∈ TP as

d̃(tV )(t) :=

{∏J
j=1 d(vj)(pj) if t = tV [vj := pj ] for p1, . . . , pJ ∈ P ,

0 otherwise.
(5.19)
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The distribution d̃(tV ) is generated by the following probabilistic procedure:
for every variable vj we independently draw an element pj according to the
distribution d(vj) and return the term tV with the variables instantiated with
the corresponding elements. Note that it is essential to consider a set of variables
V instead of starting right away with a term that has distributions as variables,
i.e. with (Td)(tV ) ∈ TDωP : if the same distribution µ appears in several variable
positions of the latter term, we do not know whether to choose an element for
each position separately or whether to draw just one element and put it in all
positions in which µ occurs. We introduced the multiplicities Oj in the definition
of a Segala-GSOS rule for a similar reason – see the explanation in the example
section below.

Moreover, for distributions φ1, . . . , φM ∈ DωP and weights w1, . . . , wM ∈ (0, 1]
with w1 + · · · + wM = 1 we write w1 · φ1 + · · · + wM · φM ∈ DωP for the
convex combination of the φm defined pointwise. For p ∈ P we define the Dirac
distribution δp ∈ DωP by δp(p) = 1 and δp(q) = 0 for q 6= p.

Definition 5.3.2 A triple 〈P, [[.]], α〉, where 〈P, α〉 is a Segala-system and [[.]]
is an interpretation of the operator symbols in the signature Σ, is a model of
a specification R in Segala-GSOS if for all operators σ ∈ Σ with arity n and
states p1, . . . , pn ∈ P the system 〈P, α〉 allows a transition

[[σ(p1, . . . , pn)]]
a−→ φ

for φ ∈ DωP if and only if there is a rule with type σ and label a in R and
– using the names from (5.18) for this rule – there are ν1, . . . , νJ ∈ DωP and
q1, . . . , qK ∈ P satisfying the following:

• pi b−→ for all b ∈ Ri and 1 ≤ i ≤ n,

• pi b−9 for all b ∈ Pi and 1 ≤ i ≤ n,

• pij
lj−→ νj for all 1 ≤ j ≤ J ,

• qk ∈ supp(νjk) for all 1 ≤ k ≤ K, and

• φ = (Dω[[.]]∗)(w1 · d(t1) + · · · + wM · d(tM )), where [[.]]∗ is the inductive
extension of [[.]] to terms (cf. Lemma 2.2.10) and d̃(ti) is defined as in
equation (5.19) from d : X+ Ỹ +Z → DωP which assigns to every xi ∈ X
and zk ∈ Z the Dirac distributions δpi and δqk , respectively, and to µ

(o)
j ∈

Ỹ the distribution νj.

The rules in Segala-GSOS are rather complex to describe, although for most
applications simpler subformats are sufficient. For instance, we did not find a
natural example yet that uses the multiplicities Oj . Since we present the format
here mainly to illustrate the power of abstract GSOS, we define the format as
expressive as we can make it. Still, we do not know whether we captured all
freedom the abstract format allows. In the next section we explain the Segala-
GSOS rules with their different premises by means of several examples.
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5.3.2 Examples of Segala-GSOS specifications

We define a list of useful operators for Segala systems below. To illustrate their
effect, we will occasionally refer to the processes p and q as drawn below. Here
and in the following pictures we omit further transition from the successor states
pi and qj .

p
a a

q
a b

•
1
3

2
3

•
1

•
1

•
1

p0 p1 p2 q0 q1

(5.20)

(i) The constants a ∈ L and 0 are specified as for PTS, namely by no rule for
0 and the following single rule for each constant a ∈ L:

a
a−→ 0

Note that the definition of d̃(tV ) in equation (5.19) yields the Dirac dis-
tribution δtV if tV does not contain variables. So, according to Defini-
tion 5.3.2, the target 0 of the above rule describes the Dirac distribution
δ0, which means that we obtain the following process:

a
a • 1

0

(ii) A nondeterministic choice is specified by two rules for each a ∈ L:

x
a−→ µ

x+ y
a−→ µ

y
a−→ ν

x+ y
a−→ ν

For p and q above we obtain the following process:

p+ q
a

a
a

b

•
1
3 2

3

•
1

•
1

•
1

p0 p1 p2 q0 q1

(iii) Our specification of a parallel composition of two processes is parame-
terised by a set C ⊆ L of labels on which the two processes are bound to
synchronise. It is given by the following rules for all b ∈ L \C and c ∈ C:

x
b−→ µ

x ‖C y
b−→ µ ‖C y

y
b−→ ν

x ‖C y
b−→ x ‖C ν
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x
c−→ µ y

c−→ ν

x ‖C y
c−→ µ ‖C ν

By Definition 5.3.2, every non-probabilistic variable occurring in a target
of a rule – like y in µ ‖C y from the first rule above – is replaced by the
corresponding Dirac probability. So µ ‖C y describes a distribution which
assigns to the process x′ ‖C y the same probability as µ assigns to x′.

Below we draw the process that results if we put p and q in parallel such
that they have to synchronise on a (we abbreviate ‖{a} by ‖a).

p ‖a q
a

a
b

•
1
3 2

3

•
1

•
1

p0 ‖a q0 p1 ‖a q0 p2 ‖a q0 p ‖a q1

(iv) The specification of a probabilistic choice operator, parametric in a prob-
ability r ∈ [0, 1], can be lifted from PTS to Segala systems by giving the
following rules for all a ∈ L:

x
a−→ µ y

a−9
x⊕r y a−→ µ

x
a−9 y

a−→ ν

x⊕r y a−→ ν

x
a−→ µ y

a−→ ν

x⊕r y a−→ r · µ+ (1− r) · ν
Different from the other rules shown here, the target of the last rule is
a nontrivial convex combination of distributions. Note that in all other
rules we exploited our convention to omit the weight 1 of the trivial convex
combination.

Below we draw p⊕ 1
2
q for p and q from (5.20).

p⊕ 1
2
q

a
a

b

•
1
6 1

3

1
2

•
1
2

1
2

•
1

p0 p1 q0 p2 q0 q1

(v) Given a function f : L → L, we can also define a relabelling operator rf
by the following rules for all a ∈ L:

x
a−→ µ

rf (x)
f(a)−→ rf (µ)
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(vi) To illustrate the use of the premises µ =⇒ z, we define an operation f that
forgets the probabilistic information. It is given by the following rules for
all a ∈ L:

x
a−→ µ µ =⇒ z

f(x)
a−→ f(z)

Note that in order to compute the resulting distributions for those tran-
sitions we again first replace the process substituted for z by the corre-
sponding Dirac distribution.

Applied to the p from (5.20), we obtain the process below.

f(p)
a

a
a

•
1

•
1

•
1

f(p0) f(p1) f(p2)

Since we did not yet encounter a natural example for a rule using more than one
copy of a probability variable νj in a target term, we illustrate the idea with
an artificial one. Consider the following three alternative rules (i), (ii), and
(iii) for a unary operator symbol σ. They mention a binary operator τ whose
semantics is to be defined by further rules not relevant for this example.

(i)
x

a−→ µ

σ(x)
a−→ τ(µ, µ)

(ii)
x

a−→ µ

σ(x)
a−→ τ(µ(1), µ(2))

(iii)
x

a−→ µ x
a−→ ν

σ(x)
a−→ τ(µ, ν)

With rule (i) we obtain the following process with p as in (5.20).

σ(p)
a a

•1
3

2
3

•
1

τ(p0, p0) τ(p1, p1) τ(p2, p2)

Rule (ii) generates the transitions pictured below instead.

σ(p)a a

•
1
9

2
9

2
9

4
9

•
1

τ(p0, p0) τ(p0, p1) τ(p1, p0) τ(p1, p1) τ(p2, p2)

With rule (iii), the process σ(p) can do the transitions as with rule (ii) plus the
following two. They can be derived from the rule when µ and ν are instantiated
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with different transitions of p, which was not possible with rule (ii).

σ(p)
a a

...

•
1
3

2
3

•
1
3

2
3

τ(p0, p2) τ(p1, p2) τ(p2, p0) τ(p2, p1)

5.3.3 Properties of Segala-GSOS

The well-behavedness results we have for Segala-GSOS are based on the follow-
ing statement.

Theorem 5.3.3 Every specification R is Segala-GSOS gives rise to a specifi-
cation in abstract GSOS, i.e. a natural transformation

ρR : S(Id× (PωDω)L)⇒ (PωDωT)L,

where S is the functor corresponding to the signature Σ under consideration and
T is the term functor (cf. equation (2.2) on page 20 and Lemma 2.2.10).

The triple 〈P, [[.]], α〉 is a model of R according to Def. 5.3.2 if and only if it is
a model of ρR according to Def. 3.5.3.

The proof of the theorem is straightforward. A central observation is that for a
fixed tV ∈ TV for some finite set V the definition of d(tV ) from equation (5.19)
gives rise to a natural transformation φ : (Dω)V ⇒ DωT.
With Theorem 5.3.3, the properties of abstract GSOS (cf. Corollaries 3.5.4,
3.5.5, 4.4.7, and 4.4.9) specialise to properties of Segala-GSOS:

Corollary 5.3.4 Let R be a specification in Segala-GSOS of the operators in a
signature Σ.

(i) Let [[.]] : ST∅ → T∅ be the term construction on the set of closed terms T∅
of the signature Σ. There exists a unique structure α of a Segala system
on T∅ such that 〈T∅, [[.]], α〉 is a model or R. This model is initial.

(ii) Dually, the final Segala system 〈F, ω〉, which exists by Lemma 5.1.8, can
be equipped uniquely with an operator interpretation [[.]] : SF → F such
that 〈F, [[.]], ω〉 is a model of R. This is a final model.

(iii) Bisimilarity between two models of R is a congruence for the corresponding
operator interpretations.

(iv) Every bisimulation up-to-context (cf. Def. 4.4.8) between two models of R
is contained in some standard bisimulation between the two Segala systems.
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(v) Every guarded recursive definition (cf. Definition 4.2.3 and Section 4.4.4)
has a solution in a model of R. Such a solution is determined up to
bisimilarity.

5.4 Concluding remarks and related work

We have presented well-behaved, expressive specification formats for two out
of a large number of different probabilistic system types. We emphasise that
our categorical approach allows to adapt the results to other variants easily,
due to the following three properties: first, with the coalgebraic means we
can describe different types of probabilistic systems uniformly as coalgebras
of behaviour functors built from similar ingredients (probabilistic systems were
modelled coalgebraically by De Vink and Rutten [VR99] and Moss [Mos99], a
coalgebraic comparison of different probabilistic systems was made by Bartels,
Sokolova, and De Vink [BSV03, BSV04]); second, once a suitable behaviour
functor is found, Turi and Plotkin’s bialgebraic approach to SOS specifications
[TP97] immediately yields a well-behaved specification format phrased in terms
of natural transformations; third, our decompositional technique to analyse nat-
ural transformations allows us to derive concrete rule-style representations of the
categorical specification format in many cases.

To give an example, recall that we considered PTS as the system type that
arises when we add probabilities to image finite LTSs as in Def. 2.3.12. If we
had, instead, started with finitely branching LTSs, i.e. coalgebras of the functor
Pω(L× Id), then we had obtained probabilistic systems as pairs

〈P, α : P → Dω(L× P ) + 1〉.

Such a coalgebra is of a rather different nature, since the labels are involved in
the probabilistic choice. So they are a part of the probabilistic output, which
is why these systems are called generative systems in the literature [GSS95].
With the lemmata from the appendix one can easily turn abstract GSOS for
generative systems into a concrete rule-style format as well.

The only attempt towards a more general theory of well-behaved operator spec-
ifications for probabilistic systems that we are aware of is made by Jonssen,
Larsen, and Yi [JLY01]. They explain how to interpret nondeterministic op-
erator specifications in the De Simone format [Sim85] as specifications for (a
variant of) simple Segala systems from Def. 5.1.6. But their proposal is not an
intrinsically probabilistic format, because it does not allow to specify genuine
probabilistic operators except for a built-in probabilistic choice.

Apart from this, several authors specify concrete operators for different types
of probabilistic systems and give elementary well-behavedness proofs. Among
them are Larsen and Skou [LS92] and Van Glabbeek, Smolka, and Steffen
[GSS95], who work with PTS as in Def. 5.1.2. With the exception of the re-
cursion operator treated by Van Glabbeek et al., their congruence results are
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subsumed by our general result, since the specifications fit in our PGSOS format.

We find two different approaches to define probabilistic operators using transi-
tion rules in the literature:

In one approach, one writes rules as for nondeterministic systems, i.e. without
mentioning probabilities, in a first step. In a second step, the probabilities of the
declared transitions are defined separately. Specifications of this type are used
by Andova [And99, And02], who works with the alternating systems of Hansson
[Han94].2 With our formats, such a two-step definition is not necessary.

In the other approach, the probabilities are defined by the transition rules as
well, as we do it. But then, in order to separate transitions generated by different
rules, since they may go from one state with the same label to the same successor
state, the transitions are tagged with an additional index. Specifications of this
type are given, e.g., by Van Glabbeek, Smolka, and Steffen [GSS95], who work
with different types of systems including PTS, and by D’Argenio, Hermanns,
and Katoen [DHK99], who use bundle systems as defined in the same article3.
We did not introduce these additional indices. Instead we argued that when
several transitions to the same successor are generated they are to be viewed as
one transition with the sum of the probabilities. Although this complicates the
description of the format, we still prefer this solution because it does not force
us to include artefacts in the description of the model, which are not part of
the intended system behaviour (correspondingly, the definition of bisimilarity
in the mentioned papers ignores the indices).

Finally we want to mention further attempts to apply Turi and Plotkin’s bial-
gebraic modelling of SOS specifications [TP97] to concrete system types. The
articles do not consider probabilistic systems though.

Immediately after the publication of their approach, Turi provided a few case
studies [Tur97] for the abstract GSOS format. He did not study formats for
one particular type of system, but illustrated the generality of the approach
by showing how the same specification can be interpreted for different types of
systems living even in different categories.

Kick [Kic02a, Kic02b, Kic03] also uses abstract GSOS to obtain concrete specifi-
cation formats: he instantiates the framework for timed systems. One interesting
aspect of his study is the use of a comonad which is not cofreely generated by a
behaviour functor. This comonad arises when he models systems for continuous
time.

2The behaviour of these systems is similar to that of Segala systems except that between the
nondeterministic and probabilistic choice the systems move to an intermediate probabilistic
state. As it were, these states correspond to the bullets we drew in our pictures of Segala
systems.

3These systems are again similar to Segala systems, but the order of probabilistic and
nondeterministic choices is reversed.
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Chapter 6

Future work

We conclude by listing some open questions and directions for future work re-
lated to the subjects studied in this thesis.

Bialgebraic approach to SOS

We start with the categorical modelling of well-behaved operator specification
formats. From that framework we have mainly focused on the abstract GSOS
format [TP97], and so have most authors who contributed to the area (see e.g.
[Tur97, LPW00, Wat02, Pow03, Kli04b]). The categorical approach, however,
provides other formats as well. In particular, there is a categorical dual of
abstract GSOS, which captures formats that allow look-ahead, i.e. the premises
of the transition rules may refer to several successive transitions of the arguments
instead of just the immediate outgoing transitions. Similar to our analysis
of abstract GSOS, one could try and derive rule formats for various kinds of
systems from this dual abstract format. We assume that it has not received
much attention yet because the cofree comonad of a behaviour functor, on which
the format is based, is much more difficult to work with in the case of LTSs than
the free monad generated by a signature. As an indication for this, note that the
(safe) tree rules [Fok94, WFG96], which Turi and Plotkin [TP97] presented in
this context and which are already more difficult to describe than GSOS rules,
do not have the full power of the abstract format. But the same is not true for
other system types: for streams and deterministic automata, for instance, the
cofree comonad can be described rather easily, and we expect that corresponding
formats can be given.

The most general categorical format, namely that of distributive laws of the
free monad generated by the signature over the cofree comonad generated by
the behaviour functor, can justify specifications that go beyond both abstract
GSOS and its dual. The interested reader may check that Rutten’s specification
of the ∆-operator [Rut00a, page22] on infinite streams of real numbers is an

165
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example: it neither fits in the format corresponding to abstract GSOS nor its
dual, but it gives rise to a distributive law of a term monad over a cofree
comonad generated by the behaviour functor for streams. So the categorical
approach has the potential to justify specification formats that go beyond the
ones that were studied in this context so far. We view their identification as an
interesting direction for future work.

The abstract GSOS format is based on the free monad generated by a signa-
ture. More generally, we obtain monads from signatures with equations. With
these equations one could lay down desired properties of the operators under
consideration in the beginning: one could for instance postulate that a choice
operator should be commutative and associative. Such an approach is taken by
Milner [Mil99], who defines the transitions of the terms in the π-calculus with
respect to “structural congruence”. Studying distributive laws of the monads
arising this way over behaviour functors one may get rule formats respecting
such equations. Such a format would have to guarantee in some way that the
transitions derivable for different terms correspond to each other if the terms
are to be identified according to the equations. In loc. cit., Milner for instance
guarantees this by adding a rule stating that when one term can do a transi-
tion, every congruent term can do a corresponding transition, but such a rule
is troublesome in general.

Another suggestion for an extension of the categorical theory of well-behaved
operator specification formats concerns the notion of behavioural equivalence.
In this thesis we have worked with bisimilarity. Although the operators and
the behaviour, modelled as algebras and coalgebras, form dual concepts in this
theory, the notions of a congruence and a bisimulation are not dual. This fact
breaks the typical symmetry that we find in this context elsewhere. In a recent
project [BSV03] we have convinced ourselves that another notion of behavioural
equivalence is actually better suited as a general coalgebraic notion. It is based
on cocongruences [Kur00], which are strictly dual to congruences. We found
that the well-behavedness of the categorical formats with respect to this notion
of behavioural equivalence can be proved as well, giving rise again to symmetric
statements for the algebra and coalgebra part. We leave a presentation of this
result to future work.

Generalised coinduction

One subject we did not study in our work on generalised coinduction schemata
is the combination of different extensions. In Section 4.4.4 for instance we
treated an example that actually needed a combination of the bisimulation up-
to-context and the bisimulation up-to-equality technique. We expect that such
combinations can be justified by an abstract framework to be found. For the
special case of LTSs and strong bisimulation, Sangiorgi [San98] develops means
to combine various generalised principles. We would like to reveal the categorical
machinery underlying his approach to express combined principles and to prove
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them valid on our level of abstraction.

Sangiorgi [San98] also includes a bisimulation up-to-bisimilarity [Mil89] princi-
ple, which allows to use previously proved bisimilarity results. It is not obvious
how this principle can be captured by the λ-coinduction framework and we are
not sure whether it can be done at all. The problem is that a formulation
of this principle seems to require information about the particular coalgebras
under consideration, which is not available at the level of abstraction of our
approach.

As mentioned earlier, Pardo, Uustalu, and Vene [UVP01] have proposed the
categorical dual of λ-coiteration independent of our work. Two aspects they do
not consider are proof principles and the dual of our results on λ-coinduction
for specifications in abstract GSOS (cf. Section 4.4.4). The latter would again
involve the dual of the abstract GSOS format discussed above. This instance
may lead to new inductive definition principles.

Formats for probabilistic systems

In our study of operator specification formats for probabilistic systems we feel
that we understand the situation for the simple PTS [LS91] rather well. But our
statements are not yet powerful enough to completely analyse the more complex
system types, such as the probabilistic automata of Segala [Seg95b, Sto02b]. To
this end we mainly need to extend our tools to characterise natural transforma-
tions involving the powerset and the distribution functor (cf. Theorems A.2.4
and A.3.5). We have added Section A.4 to give a few more details about how
the statements could be generalised.

Coming back to an earlier point, we expect that for PTSs it possible to derive
a format corresponding to the dual of the abstract GSOS format. This was dif-
ficult for LTSs mainly because the usual negative premises in the rules are not
powerful enough to postulate the absence of transitions to states with a certain
behaviour. With probabilities the problem can be remedied as follows: to ex-
press that a transition to a state with a certain behaviour is not possible, we can
alternatively make sure that the probability to move to other states is 1. Note
that here we recover a phenomenon which makes probabilistic systems better
behaved in other aspects as well: probabilistic bisimilarity can be characterised
by a surprisingly weak, namely negation free, logic [DEP02].
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Appendix A

Representation results for
natural transformations

In this appendix we state and prove several statements that we use to anal-
yse natural transformations. In the first section we give a collection of simple
statements that can be used to decompose natural transformations of a com-
plex type into possibly several ones of a simpler type. Later we develop direct
representations for natural transformations of particular types. In the second
and third section these natural transformations are between functors built from
the powerset and distribution functor respectively.

The lemmata are of a rather technical nature, and we deferred them to the ap-
pendix in order not to disturb the flow of reading too much in the main chapters.
Note that this does not mean that the material is folklore or straightforward.
On the contrary, we consider in particular the statements in Sections A.2 and
A.3 as one of the main contributions of this thesis.

A.1 Some structural lemmata

The first statement helps in dealing with natural transformations with constant
exponents as codomain along the adjunction Id× L a IdL.

Lemma A.1.1 Consider categories and functors as pictured below, where L is
left adjoint to R:

D

L

⊥ E

R

C
F G

169
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There is a one-to-one correspondence between natural transformations

ν : F⇒ RG and ξ : LF⇒ G

given by ν 7→ εG ◦ Lν and ξ 7→ Rξ ◦ ηF, where η : Id ⇒ RL and ε : LR ⇒ Id
are the unit and counit of the adjunction.

Proof: To show that the two constructions are inverses of each other, we
calculate, using (i) naturality of η and (ii) the adjunction law Rε ◦ ηR = id,

R(εG ◦ Lν) ◦ ηF = RεG ◦ RLν ◦ ηF
(i)
= RεG ◦ ηRG ◦ ν
= (Rε ◦ ηR)G ◦ ν
(ii)
= ν

and similarly, using (i) naturality of ε and (ii) the adjunction law εL ◦ Lη = id

εG ◦ L(Rξ ◦ ηF) = εG ◦ LRξ ◦ LηF
(i)
= ξ ◦ εLF ◦ LηF
= ξ ◦ (εL ◦ Lη)F
(ii)
= ξ.

2

If the domain or codomain of a natural transformation is given by a coproduct
or product of functors respectively, then we can decompose it into a collection
of natural transformations with simpler type, as the following simple lemma
shows. It is actually a special case of the fact that point-wise (co)limits of any
type in D yield (co)limits of that type in DC:

Lemma A.1.2 Let Fi ,G : C→ D for i ∈ I be functors.

(i) Let the category D have I-indexed coproducts. There is a one-to-one corre-
spondence between natural transformations ν :

∐

i∈I F
i ⇒ G and families

of natural transformations (νi : Fi ⇒ G)i∈I .

(ii) Dually, let the category D have I-indexed products. There is a one-to-
one correspondence between natural transformations ν : G⇒ ∏

i∈I F
i and

families of natural transformations (νi : G⇒ Fi)i∈I .

The next lemma states that under certain conditions we can also easily deal
with codomains given as a coproduct.

Lemma A.1.3 Let C be a category with a final object 1C and let F,G
i : C → Set

(i ∈ I) be functors such that F preserves finality, i.e. F1C ' 1 for the terminal
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object 1 = {∗} in Set. Every natural transformation

ν : F⇒
∐

i∈I

Gi

factors as ν = ιj ◦ νj for some j ∈ I and natural transformation νj : F ⇒ Gj ,
where ιj : G

j ⇒∐

i∈I G
i is the coproduct injection.

Proof: Let j ∈ I be such that ν1C
(φ) = ιj(ψ) for some ψ ∈ Gj 1C, where φ is the

unique element of F1C. It suffices to show that for all sets X and φX ∈ FX we
have that νX(φX) = ιj(ψX) for some ψX ∈ GjX. This is equivalent to saying
that (

∐

i∈I G
i !)νX(φX) = ιj(ψ

′) for some ψ′ ∈ Gj1C, where ! : X → 1C is the
unique map given by finality of 1C. But this is the case, since by naturality of
ν we have

(
∐

i∈I

Gi !)(νX(φX)) = ν1C
((F!)(φX)) = ν1C

(φ) = ιj(ψ).

FX

F!

νX

nat. ν

∏

i∈I G
iX

(
∏

i∈I G
if)(!)

φX

F!

νX
ιj(ψX)

(
∏

i∈I G
if)(!)

F1C = {φ}
ν1C

∏

i∈I G
i1C φ

ν1C

ιj(ψ)

2

In the view of Lemma A.1.2 (i) and Lemma A.1.3 we are interested in writing
the functors from the domain and codomain of the natural transformation under
consideration as coproducts. The following lemma states that for functors into
Set there is a finest such splitting.

Lemma A.1.4 Let C be a category with a final object 1C. Every functor F :
C → Set can be written as

F '
∐

z∈F1C

F|z

where for z ∈ F1C we define

F|zX := (F!)−1(z) = {φ ∈ FX | (F!X)(φ) = z}
for a C-object X, where ! : X → 1C is the unique arrow into the final object,
and F|zf : F|zX → F|zY for an arrow f : X → Y is the restriction of Ff :
FX → FY to F|zX.
Proof: Obviously we have FX ' ∐z∈F1C

F|zX for any set X. We need to show
that this splitting is respected by the action of F on arrows, which is to say that
for any f : X → Y and x ∈ F|zX we get (Ff)(x) ∈ F|zY . This follows from
finality, as the computation below shows. We write !X and !Y for the unique
arrows from X and Y respectively into 1C.

F!Y ((Ff)(x)) = (F(!Y ◦ f))(x) = (F!X)(x) = z.
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2

The following fact helps us to write functors as coproducts as well. It applies
in the special case of the (finite) powerset functor – or rather the nonempty
version P+

ω , since Pω ' 1 + P+
ω .

Lemma A.1.5 For functors Gi : C→ Set (i ∈ I) we have

P+
ω (
∐

i∈I

Gi) '
∐

M∈P+ω I

(
∏

i∈M

P+
ω G

i).

Proof: For all sets X we have an equivalence of sets

P+
ω (
∐

i∈I

GiX) '
∐

M∈P+ω I

(
∏

i∈M

P+
ω G

iX)

given from left to right by X ′ 7→ ιM ((X ′i)i∈M ) where

M := {i ∈ I | X ′ ∩ ιi[GiX] 6= ∅} and X ′i = {α ∈ GiX | ιi(α) ∈ X ′}.

The equivalence easily extends to one between functors.

2

We continue with a few simple statements about natural transformations in-
volving constant and identity functors.

Lemma A.1.6 Let F : C → D be a functor and let A be an object of D.

(i) If C has an initial object 0, then natural transformations η : A ⇒ F are
in one-to-one correspondence with arrows h : A→ F0.

(ii) Dually, if C has an final object 1, then natural transformations η : F⇒ A
are in one-to-one correspondence with arrows h : F1 → A.

Note that as a special case of the first item we get that for a Set-functor F
natural transformations η : 1 ⇒ F are given by the elements of F∅.

Proof: The bijection for item (i) is given by η 7→ η0 (where η0 : A → F0 as
always denotes the component of η at the initial object 0) and h 7→ ηh where
ηhX = F! ◦ h and ! : 0 → X is the unique initial arrow. It is straightforward
to check that the second mapping defines a natural transformation indeed and
that both constructions are inverses of each other. The proof of item (ii) is dual.

2

Lemma A.1.7 Let F,G : Set → Set be functors and let A be a set. There is a
one-to-one correspondence between natural transformations

ν : (Id)A × F⇒ G and ξ : F⇒ G(A + Id)
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given by ν 7→ ξν and ξ 7→ νξ defined for any set X, α ∈ FX, and f : A→ X as

ξνX(α) := νA+X(ι1, (Fι2)(α)) and νξX(f, α) := (G[f, idX ] ◦ ξX)(α).

Proof: It is easy to check that the two constructions define natural transfor-
mations. Moreover, they are each others inverses, as the calculations below for
all sets X, α ∈ FX, and f : A→ X show. Using the naturality of ξ in the step
marked by (∗),we have

ξν
ξ

X (α) = νξA+X(ι1, (Fι2)(α))

= (G[ι1, idA+X ] ◦ ξA+X ◦ Fι2)(α)
(∗)
= (G[ι1, idA+X ] ◦ G(idA + ι2) ◦ ξX)(α)

= (G [ι1, ι2]
︸ ︷︷ ︸

=idA+X

◦ξX)(α)

= ξX(α).

Using the naturality of ν in the step marked by (∗) below, we obtain the second
identity.

νξ
ν

X (f, α) = (G[f, idX ] ◦ ξνX)(α)

= (G[f, idX ] ◦ νA+X)(ι1, (Fι2)(α))

(∗)
= (νX ◦ ([f, idX ]A × F[f, idX ]))(ι1, (Fι2)(α))

= νX(([f, idX ]A)(ι1)
︸ ︷︷ ︸

=[f,idX ]◦ι1=f

, (F([f, idX ] ◦ ι2
︸ ︷︷ ︸

=idX

))(α))

= νX(f, α).

2

Lemma A.1.8 Let C and D be categories with I-indexed coproducts and prod-
ucts respectively and let Fi ,G : C → D for i ∈ I be functors. There is a
one-to-one correspondence between natural transformations of the type

ν :
∏

i∈I

Fi ⇒ G and ξ(Xi)i∈I :
∏

i∈I

FiXi ⇒ G(
∐

i∈I

Xi).

(Note that ξ is a natural transformation between functors from CI to D.) The
correspondence is given by ν 7→ νΛ ◦ ∏i∈I F

i ιi and ξ 7→ G[Id]i∈I ◦ ξ∆, where
∆ : C → CI is the diagonal functor mapping X to (X)i∈I and Λ : CI → C is its
left adjoint, i.e. the functor mapping the tuple (Xi)i∈I to the coproduct

∐

i∈I Xi.

More precisely, we should have written the natural transformation ξ as

ξ :
∏

i∈I

Fiπi ⇒ G(
∐

i∈I

πi),
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where πi : CI → C for i ∈ I is the projection functor mapping (Xj)j∈I to Xi.
We prefer the above notation since we consider it more readable.

Proof: The statement follows from the dual of Lemma A.1.1 when instantiated
with ∆ and its left adjoint, which exists by the assumption that C has I-indexed
coproducts.

2

A.2 The powerset functor

In Chapter 3 we used distributive laws of a signature functor over the behaviour
functor as an abstract specification format. In order to obtain practical formats
from instances of this framework, we need to characterise the corresponding
natural transformations in more concrete terms. In the case of labelled transi-
tion systems the natural transformations are between two functors constructed
from the finite powerset functor. After some structural simplification using the
lemmata from the previous section, we are left with natural transformations of
a type similar to

ζ : P+
ω ⇒ P+

ω (Id
m) (A.1)

for some natural number m. In this section, we will show that any such trans-
formation can be described by a set of derivation rules of a certain shape.

To motivate the development we first look at natural transformations of this
type for small m.

m = 0: We have P+
ω (Id

m) ' 1, so the only candidates for the components of ζ
are the unique functions into the final object, and this definition is indeed
natural.

m = 1: It is not so difficult to see that the only natural transformation ζ : P+
ω ⇒

P+
ω is the identity on each component.

m = 2: This case is more interesting. The following two transformations ζ1, ζ2 :
P+
ω ⇒ P+

ω (Id× Id) can easily be seen to be natural:

ζ1X(X ′) := {〈x, y〉 | x, y ∈ X ′},
ζ2X(X ′) := {〈x, x〉 | x ∈ X ′}.

The result we are about to develop will show that the two transformations in
the last case are the only possibilities. It will turn out that, for any m, the
natural transformations ζ can be written as pointwise unions of certain basic
ones which are defined in a way similar to the definition of ζ1 and ζ2: Each
basic transformation βΓ is defined by an equivalence relation Γ on the set of
the m positions of the tuple (we call it a partition here) where βΓX maps a set
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X ′ ⊆ X to the set of all m-tuples in (X ′)m which have identical elements in all
positions belonging to the same equivalence class.

Definition A.2.1 Let m ∈ N.

• By Par[m] we denote the set of all partitions of {1, . . . ,m}, i.e. all sets
Γ of nonempty, disjoint subsets of {1, . . . ,m} such that ⋃Γ = {1, . . . ,m}.

• For Γ ∈ Par[m] and 1 ≤ i ≤ m we denote by [i]Γ the equivalence class
of i in Γ, which is the unique c ∈ Γ such that i ∈ c.

• We write ∼Γ for the equivalence relation on {1, . . . ,m} induced by the
partition Γ ∈ Par[m], i.e. i ∼Γ j just in case [i]Γ = [j]Γ. (Since partitions
and equivalence relations are in one-to-one correspondence, we can define
one in terms of the other, as we will do below.)

• There is an order of partitions defined for Γ,Γ′ ∈ Par[m] as Γ ¹ Γ′ if and
only if ∼Γ⊆∼Γ′ , which means that for all 1 ≤ i, j ≤ m we have that i ∼Γ j
implies i ∼Γ′ j. We write Γ ≺ Γ′ if Γ ¹ Γ′ and Γ 6= Γ′.

• Given a vector ~x = 〈x1, . . . , xm〉 ∈ Xm we define the partition par(~x) ∈
Par[m] induced by ~x to satisfy i ∼par(~x) j just in case xi = xj.

• For Γ ∈ Par[m] and c ∈ Γ we write c↓ ∈ {1, . . . ,m} for an arbitrary
element in c. This notation will be used in cases only where no ambiguity
arises. As an example, for ~x ∈ Xm, Γ ∈ Par[m] with Γ ¹ par(~x), and
c ∈ Γ we may write xc↓. This is unambiguous because for i, j ∈ {1, . . . ,m}
we have

i, j ∈ c ⇒ i ∼Γ j ⇒ i ∼par(~x) j ⇒ xi = xj .

Definition A.2.2 For m ∈ N and Γ ∈ Par[m] define the basic transforma-
tion

βΓ : P+
ω ⇒ P+

ω (Id
m)

for a set X, subset X ′ ∈ P+
ωX, and ~x = 〈x1, . . . , xm〉 ∈ Xm as

~x ∈ βΓX(X ′) ⇐⇒ Γ ¹ par(~x) ∧ ∀i ∈ {1, . . . ,m} : xi ∈ X ′.

The tuples ~x in βΓX(X ′) can be viewed to arise from the following procedure.
With Γ = {c1, . . . , ck} we draw an element yj from X ′ for each 1 ≤ j ≤ k and
put it in all positions i ∈ cj of ~x. For all 1 ≤ i ≤ m let oi ∈ {1, . . . , k} denote
the unique index such that i ∈ coi . Then the definition of βΓ can equivalently
be expressed as follows: let βΓX(X ′) for a set X and subset X ′ ∈ P+

ωX contain
precisely the tuples arising from instantiations of the rule below.

yj ∈ X ′ (1 ≤ j ≤ k)

〈yo1 , . . . , yom〉 ∈ βΓX(X ′)
(A.2)
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We will later use such rules as a more intuitive notation. Moreover, the rule
representation allows us to show easily that the basic transformations are natural
indeed.

Lemma A.2.3 For each Γ ∈ Par[m] the transformation βΓ from Def. A.2.2 is
natural.

Proof: Take any function f : X → Y . We have to show that the diagram
below commutes.

P+
ωX

βΓX

P+ω f

P+
ω (X

m)

P+ω (fm)

P+
ω Y

βΓY

P+
ω (Y

m)

Let βΓ be described by a rule as in (A.2). To show that the naturality square
above commutes, take any X ′ ∈ P+

ωX. We get ~y ∈ βΓY ((P+
ω f)(X

′)) if and
only if there exist y1, . . . , yk ∈ (P+

ω f)(X
′) such that ~y = 〈yo1 , . . . , yom〉. This

in turn is equivalent to saying that there exist x1, . . . , xk ∈ X ′ such that ~y =
〈f(xo1), . . . , f(xom)〉 = (fm)(〈xo1 , . . . , xom〉). This now means that there exists
~x ∈ βΓX(X ′) such that ~y = (fm)(~x), which is to say ~y ∈ (P+

ω (f
m))(βΓX(X ′)).

2

Our representation result states that any natural transformation ζ as in (A.1)
arises as a (point-wise) union of some basic transformations βΓ.

Theorem A.2.4 A transformation ζ as in (A.1) is natural if and only if we
can write is as

ζ =
⋃

Γ∈M

βΓ for some M ∈ P+
ω (Par[m]).

The union on the right hand side of the above equation is to be read pointwise,
i.e. for any set X and X ′ ∈ P+

ωX we have

( ⋃

Γ∈M

βΓ
)

X
(X ′) =

⋃

Γ∈M

βΓX(X ′).

Such a union always yields a natural transformation, as the lemma below states.
Its proof is straightforward.

Lemma A.2.5 Let F,G : C → Set be functors, and let ν i : F⇒ P+
ω G for i ∈ I

be functors, where I is a nonempty, finite set. Then their pointwise union
⋃

i∈I

νi : F⇒ P+
ω G

is a natural transformation of the same type as well.
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Before we give the proof of Theorem A.2.4 we remark that the mentioned rep-
resentation is not unique in general, due to the following fact about the natural
transformations βΓ, which immediately follows from their definition.

Lemma A.2.6 For Γ,Γ′ ∈ Par[m] with Γ ¹ Γ′ we have βΓ
′ ⊆ βΓ, where the

subset relation is to be read point-wise, i.e. βΓ
′

X (X ′) ⊆ βΓX(X ′) for all sets X
and X ′ ∈ P+

ωX.

Let M be the representation from Theorem A.2.4. With the above lemma, for
Γ ∈ M and Γ′ ∈ Par[m] with Γ ≺ Γ′ the union on the right hand side of the
equation in Theorem A.2.4 does not depend on whether Γ is inM as well or not.
We will therefore call Γ′ redundant in this setting. This means that the union
is solely determined by the minimal elements of M . On the other hand, it is
easy to verify that the resulting natural transformations differ for two sets with
different minimal elements. So the representation is unique up to the inclusion
or omission of redundant partitions.

For the proof of Theorem A.2.4 we need the following lemma.

Lemma A.2.7 Let ζ be a natural transformation as in (A.1). For a set X and
X ′ ∈ P+

ωX we have that ~x ∈ ζX(X ′) implies xi ∈ X ′ for all 1 ≤ i ≤ m.

Proof: Let in : X ′ ↪→ X be the subset inclusion and consider the following
naturality square:

P+
ωX

′
ζX′

P+ω in

P+
ω (X

′m)

P+ω (inm)

X ′
ζX′

P+ω in

ζX′(X ′)

P+ω (inm)

~x′3

inm

P+
ωX ζX

P+
ω (X

m) X ′
ζX

ζX(X ′) ~x3

We can read off that for every ~x ∈ ζX(X ′) ⊆ (X ′)m there has to be ~x′ ∈ ζX′(X ′)
with ~x = inm(~x′). We get xi = in(x′i) = x′i ∈ X ′ for all i as wanted.

2

Proof: [Theorem A.2.4] We claim that the statement holds for

M := {Γ ∈ Par[m] | βΓ ⊆ ζ},

which is to say that

ζ =
⋃

{βΓ | Γ ∈ Par[m], βΓ ⊆ ζ}

Since the other inclusion is immediate, we need to show ζ ⊆ ⋃{βΓ | Γ ∈
Par[m], βΓ ⊆ ζ} only, which is to say that for any set X, subset X ′ ∈ P+

ωX,
and ~x ∈ ζX(X ′) we have to find Γ ∈ Par[m] such that βΓ ⊆ ζ and ~x ∈ βΓX(X ′).
We show that we can take Γ = par(~x). From ~x ∈ ζX(X ′) it follows with
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Lemma A.2.7 that xi ∈ X ′ for all i. With par(~x) ¹ par(~x) this yields ~x ∈
β
par(~x)
X (X ′) as needed (cf. Def. A.2.2). It remains to be shown that βpar(~x) ⊆ ζ.

Without loss of generality we can assume that X, X ′, and ~x are such that
par(~x) is minimal with respect to the order ≺. By this we mean that there
are no Y , Y ′ ∈ P+

ω Y , and ~y ∈ ζY (Y
′) with par(~y) ≺ par(~x). Otherwise, we

choose Y , Y ′, and ~y as above such that par(~y) is minimal and carry out the
argument below for them instead to obtain βpar(~y) ⊆ ζ. With Lemma A.2.6 we
have βpar(~x) ⊆ βpar(~y) and thus βpar(~x) ⊆ ζ as needed.

To prove βpar(~x) ⊆ ζ under the minimality assumption, we take arbitrary sets

Y and Y ′ ∈ P+
ω Y and show β

par(~x)
Y (Y ′) ⊆ ζY (Y

′). For any ~y ∈ βpar(~x)Y (Y ′), i.e.
~y ∈ Y m with yi ∈ Y ′ for all i and par(~x) ¹ par(~y), we derive ~y ∈ ζY (Y

′) as
follows:

For Z := X ′ × Y ′ and −−−→〈x,w〉 :=
〈
〈x1, w1〉, . . . , 〈xm, wm〉

〉
we find

~x ∈ ζX(X ′) ⇐⇒ ~x ∈ ζX
(
(P+

ω π1)(Z)
)

︸ ︷︷ ︸

nat. ζ
= (P+ω (πm1 ))(ζZ(Z))

⇐⇒ ∃~z ∈ ζZ(Z) : ~x = πm1 (~z)

⇐⇒ ∃~w ∈ (Y ′)m :
−−−→〈x,w〉 ∈ ζZ(Z)

(∗)⇐⇒ −−−→〈x, y〉 ∈ ζZ(Z)
=⇒ πm2 (

−−−→〈x, y〉)
︸ ︷︷ ︸

=~y

∈
(
P+
ω (π

m
2 )
)(
ζZ(Z)

)

︸ ︷︷ ︸

nat. ζ
= ζY ((P

+
ω π2)(Z))=ζY (Y ′)

⇐⇒ ~y ∈ ζY (Y ′).

The implication “=⇒” in step (∗) remains to be explained: We easily find

par(
−−−→〈x,w〉) ¹ par(~x), but with

−−−→〈x,w〉 ∈ ζZ(Z) the above minimality assump-

tion on ~x rules out that par(
−−−→〈x,w〉) is strictly smaller than par(~x). So we find

par(
−−−→〈x,w〉) = par(~x), which implies par(~x) ¹ par(~w). Together with the as-

sumption par(~x) ¹ par(~y) this means that xi = xj implies wi = wj as well as
yi = yj . With this observation the function f : Z → Z which exchanges 〈xi, wi〉
and 〈xi, yi〉 for all i ∈ {1, . . . ,m} is well defined (in the sense that whenever
multiple cases in the definition apply, then they all determine the same result)
by

f(x, y) :=







〈xi, yi〉 if 〈x, y〉 = 〈xi, wi〉 for some 1 ≤ i ≤ m,

〈xi, wi〉 if 〈x, y〉 = 〈xi, yi〉 for some 1 ≤ i ≤ m,

〈x, y〉 otherwise.

The function f is self inverse and thus bijective, so that we find (P+
ω f)(Z) = Z.
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Knowing this we reason as follows:

−−−→〈x,w〉 ∈ ζZ(Z) =⇒ fm(
−−−→〈x,w〉)

︸ ︷︷ ︸

=
−−−→
〈x,y〉

∈
(
P+
ω (f

m)
)(
ζZ(Z)

)

︸ ︷︷ ︸

nat. ζ
= ζZ((P

+
ω f)(Z))=ζZ(Z)

⇐⇒ −−−→〈x, y〉 ∈ ζZ(Z).

This concludes the proof of Theorem A.2.4.

2

As the next step, we generalise the above result to natural transformations of
the slightly more complex type

ζ̃ : (P+
ω )

E ⇒ P+
ω (Id

m) (A.3)

for an arbitrary set E and a natural number m. Again it can be shown that
such a natural transformation can be written as the union of finitely many basic
ones. Before, the basic transformations βΓ were determined by a partition Γ =
{c1, . . . , ck} ∈ Par[m]. To generate the tuples in βΓX(X ′), for every equivalence
class cj we draw an element yj from X ′ and place it in all positions i ∈ cj of the
tuple. Now the procedure is similar, but, since we are given a family of subsets
(X ′e)e∈E , we further need to know for each 1 ≤ j ≤ k from which subset X ′ej
(for ej ∈ E) we have to draw yj .

Since this makes the definition of the basic transformations in the style of Defi-
nition A.2.2 a bit unwieldy, we will instead use derivation rules similar to those
in (A.2) for the formulation of our representation result.

Corollary A.2.8 Every natural transformation ζ̃ as in (A.3) can be charac-
terised by a finite set of derivation rules of the shape

yj ∈ X ′ej (1 ≤ j ≤ k)

〈yo1 , . . . , yom〉 ∈ ζ̃
(
(X ′e)

) (A.4)

for some k ∈ N; e1, . . . , ek ∈ E; 1 ≤ oi ≤ k (1 ≤ i ≤ m) as follows: For every
set X and subsets X ′e (e ∈ E) we have that ζ̃X

(
(X ′e)e∈E

)
contains ~x ∈ Xm just

in case this can be inferred from an instance of any of the rules.

Proof: [sketch] Applying Lemma A.1.8 we find that ζ̃ from (A.3) is equivalent
to a natural transformation

ξ(Xe)e∈E :
∏

e∈E

P+
ωXe ⇒ P+

ω

(
(
∐

e∈E

Xe)
m
)
: SetE → Set (A.5)

The functor describing the codomain of ξ can be manipulated as follows

P+
ω

(
(
∐

e∈E

Xe)
m
)
' P+

ω

( ∐

~e∈Em

(Xe1 × · · · ×Xem)
)

'
∐

M∈P+ω (Em)

(∏

~e∈M

P+
ω (Xe1 × · · · ×Xem)

)
,
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where the first equivalence uses distributivity and the second Lemma A.1.5.
With the last representation we can apply Lemma A.1.3 and Lemma A.1.2 (ii)
to find that ξ can be characterised by some set M ∈ P+

ω (E
m) together with

natural transformations

(
ξ~e(Xe)e∈E :

∏

e∈E

P+
ωXe ⇒ P+

ω (Xe1 × · · · ×Xem)
)

~e∈M
. (A.6)

For the individual natural transformations ξ~e we get a representation using a
variant of Lemma A.2.4. We decided not to treat the statement in this more
general version explicitly, because it needs a more complicated notation although
the idea behind the proof is the same.

We get the desired representation of ζ̃ after collecting the resulting derivation
rules from ξ~e for all ~e ∈M .

2

A.3 The distribution functor

In this section we will adapt the above representation results for natural trans-
formations arising in the nondeterministic setting to the probabilistic one, i.e.
we will reprove them after replacing the (nonempty) powerset functor P+

ω by
the distribution functor Dω from Def. 5.1.1. The statements are rather similar
in structure, but the proofs here are technically more complicated.

First we develop a representation result for natural transformations of the type

ζ : Dω ⇒ Dω(Idm) (A.7)

for some natural number m. It turns out that any such transformation can be
described uniquely as a convex combination of certain basic ones.

Examining these natural transformations for smallm we again find that the case
m = 0 is trivial and that for m = 1 we get the identity only. Two candidates
for m = 2 are given, for any set X and φ ∈ DωX, as

ζ1X(φ) :=
[

〈x, y〉 7→ φ(x) · φ(y)
]

∈ Dω(X ×X),

ζ2X(φ) :=
[

〈x, y〉 7→
{

φ(x) if x = y

0 otherwise

]

∈ Dω(X ×X).

But unlike the nondeterministic setting, where the corresponding two transfor-
mations were the only ones, moreover every (pointwise) convex combination of
these two basic transformations above is natural as well, i.e. transformations of
the shape r · ζ1X + (1− r) · ζ2X for r ∈ (0, 1).



A.3. THE DISTRIBUTION FUNCTOR 181

The definition of the basic natural transformations generalises to arbitrary m
as follows, where we use the notation for partitions as introduced in Defini-
tion A.2.1.

Definition A.3.1 Let m ∈ N. For Γ ∈ Par[m] we define the basic transfor-
mations

βΓ : Dω ⇒ Dω(Idm)

for any set X and φ ∈ DωX as

βΓX(φ) :=
[

〈x1, . . . , xm〉 7→
{∏

c∈Γ φ(xc↓) if Γ ¹ par(〈x1, . . . , xm〉)
0 otherwise

]

.

Note that this definition is actually closely related to the corresponding Defini-
tion A.2.2 for the powerset functor. To make this apparent, we can write the
latter equivalently as follows, where we view a subset X ′ ⊆ X as a function
X ′ : X → 2 with 2 := {⊥,>}:

βΓX(X ′) :=
[

〈x1, . . . , xm〉 7→
{∧

c∈ΓX
′(xc↓) if Γ ¹ par(〈x1, . . . , xm〉)

⊥ otherwise

]

.

The probability distribution βΓX(φ) is generated by the following probabilistic
procedure: For each equivalence class cj in Γ = {c1, . . . , ck} we draw an element
yj from X according to the probability distribution φ. The chosen yj is put in
all positions i ∈ cj of the resulting vector. So the probability that one particular
vector appears is the probability that all k independent choices are made appro-
priately, i.e. the product of the probabilities for all individual choices. Writing
oi ∈ {1, . . . , k} to denote the index of the equivalence class of Γ containing i for
1 ≤ i ≤ m (i.e. i ∈ coi), we can define βΓ equivalently by the following rule,
where X denotes any set:

φ(yj) = uj (1 ≤ j ≤ k)

βΓX(φ)(〈yo1 , . . . , yom〉) = u1 · . . . · uk
(A.8)

Similar to the proof of Lemma A.2.3, we can use this rule notation for an easy
proof of the following statement.

Lemma A.3.2 For each Γ ∈ Par[m] the transformation βΓ from Def. A.3.1 is
natural.

Our representation result to be developed states that all natural transformations
ζ in (A.1) arise uniquely as convex combinations of these basic transformations.
Before we state and prove it, we present two technical lemmata that will be
useful in the proof.
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A.3.1 Simple statements about real valued functions

Below we present two facts about real valued functions.

Lemma A.3.3 For u ∈ R+
0 let f : [0, u] → R be a function with a bounded

range satisfying

f(r + s) = f(r) + f(s)

for all r, s ∈ R+
0 such that r+ s ∈ [0, u]. Then for all r ∈ [0, u] and c ∈ [0, 1] we

find

f(c · r) = c · f(r).

Proof: By induction on p ∈ N we easily get

f(p · r) = p · f(r) (A.9)

for all r ∈ [0, u] with p · r ∈ [0, u]. This further implies f(r/q) = f(r)/q for all
q ∈ N with q > 0 and r ∈ [0, u]. So the statement is true for c = p/q, i.e. for
rational c. For an arbitrary c choose a sequence of rational numbers (cn)n∈N
with cn ≤ c and cn → c for n→∞. We calculate

c · f(r) = ( lim
n→∞

cn) · f(r) = lim
n→∞

(cn · f(r)) = lim
n→∞

f(cn · r)
(∗)
= f(c · r).

For the step marked with (∗) we instantiate the following calculation with dn =
cn · r and d = c · r: for any sequence (dn)n∈N and d ∈ [0, u] with dn → d for
n→∞ and dn ≤ d we have

f(d) = lim
n→∞

f
(
dn + (d− dn)

)

= lim
n→∞

(
f(dn) + f(d− dn)

)

= lim
n→∞

f(dn) + lim
n→∞

f(d− dn)
︸ ︷︷ ︸

=0

.

To see that the last addend is zero indeed, note first that d − dn converges to
zero. Now the identity follows with f(en) → 0 for en → 0. This is because
otherwise there exists ε > 0 such that arbitrary close to zero we can still find
values e ∈ R+

0 with ε < |f(e)|, which is in conflict with our assumption on f
being bounded: to arrive at a contradiction, take a bound b > 0; let k = d b

ε
e

and choose e ∈ [0, u/k] such that ε < |f(e)|; this implies

k · e ∈ [0, u] and b ≤ k · ε < k · |f(e)| (A.9)
= |f(k · e)|.

2

For the next statement we first introduce some notation about vectors in (R+
0 )
M

for a finite setM . We define the order ¹ on R+
0 pointwise, i.e. ~u ¹ ~v if and only
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if ~u(i) ≤ ~v(i) for all i ∈M . Moreover, for ~v ∈ (R+
0 )
M , r ∈ R+

0 , and some index
i, which may or may not be an element M , we write ~v[i := r] ∈ (R+

0 )
M∪{i} for

an update or extension of ~v at index i, i.e. the vector with (~v[i := r])(i) = r and
(~v[i := r])(j) = ~v(j) for all j ∈M \{i}. For i 6= j we abbreviate ~v[i := r][j := s]
to ~v[i := r, j := s].

Lemma A.3.4 For a finite set M let C ⊆ (R+
0 )
M be downward closed, i.e.

~u ¹ ~v and ~v ∈ C imply ~u ∈ C, and let h : C → R be a function which
is componentwise linear, i.e. for all ~v ∈ C, i ∈ M , and c ∈ [0, 1] we have
h(~v[i := c · ~v(i)]) = c · h(~v). Then there exists τ ∈ R with

h(~v) = τ ·
∏

i∈M

~v(i) for all ~v ∈ C.

The statement is rather obvious. Still we give an explicit proof, because we have
to be a bit careful about the domain restriction.

Proof: Assume that there exists ~u ∈ C such that ~u(i) > 0 for all i ∈M . Note
that the statement is trivially true in case such a ~u does not exist, because with
~u(i) = 0 for some i the linearity assumption easily implies h(~u) = 0. We show
that the statement holds for

τ :=
h(~u)

∏

i∈M ~u(i)
.

Take any ~v ∈ C. Setting I := {i ∈ M | ~v(i) > ~u(i)} we can apply the linearity
assumption |I| and |M \ I| times respectively to get

(
∏

i∈I

~u(i)

~v(i)
) · h(~v) = h(glb(~u,~v)) = (

∏

i∈M\I

~v(i)

~u(i)
) · h(~u)

where by glb(~u,~v) we denote the greatest upper bound of the two vectors, i.e.
glb(~u,~v)(i) = min(~u(i), ~v(i)). This implies

h(~v) = (
∏

i∈M

~v(i)

~u(i)
) · h(~u) = τ ·

∏

i∈M

~v(i).

We use the step via glb(~u,~v) to make sure that we do not run out of the domain
of h on our way.

2

A.3.2 The representation theorem

Next we state and prove our representation theorem for natural transformations
ζ as in (A.7).



184 APPENDIX A. NATURAL TRANSFORMATIONS

Theorem A.3.5 For m ∈ N a transformation ζ : Dω ⇒ Dω(Idm) is natural if
and only if it can be represented as a convex combination of the basic ones from
Definition A.3.1, i.e.

ζ =
∑

Γ∈Par[m]

µ(Γ) · βΓ for some µ ∈ Dω(Par[m]).

It can easily be shown that for µ, µ′ ∈ Dω(Par[m]) we have
∑

Γ∈Par[m]

µ(Γ) · βΓ =
∑

Γ∈Par[m]

µ′(Γ) · βΓ if and only if µ = µ′,

so the above representation of ζ by a distribution µ is unique. Different from
the nondeterministic setting, in the probabilistic case there are no redundant
partitions!

For the proof we need a few more lemmata. The first one narrows down the
information needed from φ ∈ DωX and ~x ∈ Xm to determine the value of
ζX(φ)(~x).

Lemma A.3.6 Let ζ be a natural transformation as in (A.7), X and Y be sets,
φ ∈ DωX and ψ ∈ DωY be distributions, and let ~x = 〈x1, . . . , xm〉 ∈ Xm and
~y = 〈y1, . . . , ym〉 ∈ Y m. If

par(~x) = par(~y) and φ(xi) = ψ(yi) for all 1 ≤ i ≤ m

then

ζX(φ)(~x) = ζY (ψ)(~y).

Proof: Let Γ := par(~x) (= par(~y)), Z := Γ ∪ {∗}, χ ∈ DωZ with χ(c) :=
φ(xc↓) (= ψ(yc↓)) for c ∈ Γ and χ(∗) := 1 − χ[Γ], and let ~z := 〈[1]Γ, . . . , [m]Γ〉.
With f : X → Z where

f(x) :=

{

[i]Γ if x = xi for some i ∈ {1, . . . ,m},
∗ otherwise,

we find

ζX(φ)(~x) = ζX(φ)[(fm)−1(~z)]
{
(fm)−1(~z) = {~x}

}

=
(
(Dω(fm))(ζX(φ))

)
(~z)

{
Def. Dω

}

= ζZ
(
(Dωf)(φ)

)
(~z)

{
nat. ζ

}

= ζZ(χ)(~z).
{
(Dωf)(φ) = χ

}

In the same way we obtain ζY (ψ)(~y) = ζZ(χ)(~z), which implies the statement.

2

The above lemma states that all we need to know to determine ζX(φ)(~x) ∈ [0, 1]
for ~x = 〈x1, . . . , xm〉 ∈ Xm is par(~x) and the probabilities φ(x1), . . . , φ(xm). In
~x there occur precisely k = |par(~x)| different elements of X. So we actually
need the k probabilities φ(xc↓) for all c ∈ par(~x), which sum up to at most 1.
We will talk about ζ in a representation that takes exactly this data.
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Definition A.3.7 For Γ ∈ Par[m] let

CΓ := {~u ∈ (R+
0 )

Γ | |~u| ≤ 1},

where |~u| =∑c∈Γ ~u(c). For every natural transformation ζ as in (A.7) we define
a family of functions

(
γΓ : CΓ → [0, 1]

)

Γ∈Par[m]

by γΓ(~u) := ζX(φ)(~x) where X, φ, and ~x are such that Γ = par(~x) and ~u(c) =
φ(xc↓) for c ∈ Γ.

For the validity of the definition note that according to Lemma A.3.6 the def-
inition is independent of the particular choice of X, ~x, and φ, and that for all
Γ ∈ Par[m] and ~u ∈ CΓ we can find suitable X, φ, and ~x (take e.g. X := Γ∪{∗},
~x := 〈[1]Γ, . . . , [m]Γ〉, φ(c) := ~u(c) for c ∈ Γ and φ(∗) := 1− |~u|).
For later use we check what the above family of functions looks like in the case
of our basic transformations: for Γ′ ∈ Par[m] we find that βΓ

′

induces a family
of functions

(
γΓ : CΓ → [0, 1]

)

Γ∈Par[m]
with

γΓ(~u) =







∏

c′∈Γ′

~u([c′↓]Γ) =
∏

c∈Γ

~u(c)|l(Γ
′,c)| if Γ′ ¹ Γ,

0 otherwise.
(A.10)

where l(Γ′, c) := {c′ ∈ Γ′ | c′ ⊆ c}.
The family of functions (γΓ) induced by a natural transformation ζ has the
following property:

Lemma A.3.8 For Γ ∈ Par[m], d ∈ Γ, ~u : Γ \ {d} → R+
0 , and r, s ∈ R+

0 such
that |~u|+ r + s ≤ 1 we have

γΓ(~u[d := r + s]) = γΓ(~u[d := r]) + γΓ(~u[d := s]) +
∑

∅⊂d′⊂d

γΓ(d
′)(~u[d′ := r, (d \ d′) := s]),

where Γ(d′) ∈ Par[m] for ∅ ⊂ d′ ⊂ d results from Γ by splitting d into d′ and
d \ d′, i.e.

Γ(d′) := (Γ \ {d}) ∪ {d′, d \ d′} ≺ Γ.

Proof: The statement follows from the following consideration:

Let Y be a set with p 6∈ Y . Set X := Y ∪ {p} and let φ ∈ DωX and ~x =
〈x1, . . . , xm〉 ∈ Xm be such that p occurs in ~x, i.e. d := {i | xi = p} 6= ∅. We can
“split” the state p into two, say q1 and q2 (for qi 6∈ Y ), and distribute the original
probability of p as φ(p) = r+s on the two copies. This yields X ′ := Y ∪{q1, q2}
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and φ′ ∈ DωX ′ with φ′(q1) := r, φ′(q2) := s, and φ′(y) = φ(y) for y ∈ Y . Define
f : X ′ → X by f(qi) := p and f(y) := y for y ∈ Y . From the naturality square
of ζ and f below we read off that ζX(φ)(~x) is the sum of all ζX′(φ′)(~x′) such
that ~x′ arises by replacing in ~x any occurrence of p by either q1 or q2.

φ′
ζX′

Dωf nat. ζ

ζX′(φ′)

Dω(f
m)

φ
ζX

ζX(φ)

Formally, for d′ ⊆ d set

~xd
′

= 〈xd′1 , . . . , xd
′

m〉 with xd
′

i =







q1 if i ∈ d′,
q2 if i ∈ d \ d′,
xi otherwise.

Then we calculate as follows:

ζX(φ)(~x)
= ζX

(
(Dωf)(φ′)

)
(~x) {(Dωf)(φ′) = φ}

=
(
(Dω(fm))(ζX′(φ′))

)
(~x) {nat. ζ}

= ζX′(φ′)[(fm)−1(~x)] {def. Dω}

= ζX′(φ′)[{~xd′ | d′ ⊆ d}] {f−1(xi) =
{

{p, q} if i ∈ d,
{xi} else.

}

=
∑

d′⊆d

ζX′(φ′)(~xd
′

)

= ζX′(φ′)(~x∅) + ζX′(φ′)(~xd)+
∑

∅⊂d′⊂d

ζX′(φ′)(~xd
′

).

This idea leads to the statement through an application of Lemma A.3.6 to both
ends of the computation, together with the observation that for Γ = par(~x)
(which yields d ∈ Γ) we have par(~x∅) = Γ = par(~xd) and par(~xd

′

) = Γ(d′) for
∅ ⊂ d′ ⊂ d. (Of course we again need to show that for all suitable Γ and ~u we
can find appropriate X, φ, and ~x. This can be done as suggested in the remark
after Def. A.3.7.)

2

Lemma A.3.9 Let ζ be a natural transformation as in (A.7) inducing the fam-
ily (γΓ) from Definition A.3.7. For every downwards closed set M ⊆ Par[m]
there exist weights (τΓ ∈ R+

0 )Γ∈M such that for all Γ ∈M and ~u ∈ CΓ we have

γΓ(~u) =
∑

Γ′¹Γ

τΓ′ ·
∏

c∈Γ

~u(c)|l(Γ
′,c)|, (A.11)

where again l(Γ′, c) := {c′ ∈ Γ′ | c′ ⊆ c}.
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Proof: The statement is proved by induction on the size of M . For M = ∅
there is nothing to do. For nonempty M choose a maximal element Γ̂ ∈ M .
Take (τΓ)Γ∈M̂ as given by the induction hypothesis for M̂ := M \ {Γ̂}. These

coefficients satisfy equation (A.11) for all Γ ∈ M̂ already. We have to find τΓ̂ so

that it holds for Γ̂ as well.

For all ~v ∈ CΓ̂ defining

f(~v) :=
∑

Γ′≺Γ̂

τΓ′ ·
∏

c∈Γ̂

~v(c)|l(Γ
′,c)| and h(~v) := γΓ̂(~v)− f(~v),

we need to show that there exists τΓ̂ ∈ R+
0 such that

h(~v) = τΓ̂ ·
∏

c∈Γ̂

~v(c).

The set CΓ̂ and function h satisfy the assumption on C and h in Lemma A.3.4.
Applying the lemma we get that it suffices to show that h is linear in all com-

ponents. For any d ∈ Γ̂ and ~u ∈ (R+
0 )

Γ̂\{d} we define h~u : [0, 1 − |~u|] → R by
h~u(r) := h(~u[d := r]) and show that

h~u(c · r) = c · h~u(r)

for all c ∈ [0, 1] and r ∈ [0, 1−|~u|]. Since h~u is bounded (because γΓ̂ and f are),
we can apply Lemma A.3.3 for this task. With this statement, it remains to be
shown that

h~u(r + s) = h~u(r) + h~u(s) for all r, s ∈ R+
0 such that r + s ≤ 1− |~u|.

Writing also γΓ̂~u (r) := γΓ̂(~u[d := r]) and f~u(r) := f(~u[d := r]) this is equivalent
to

γΓ̂~u (r + s)− γΓ̂~u (r)− γΓ̂~u (s) = f~u(r + s)− f~u(r)− f~u(s). (A.12)

For the left hand side we compute with (a) Lemma A.3.8 and (b) the induction
hypothesis

γΓ̂~u (r + s)− γΓ̂~u (r)− γΓ̂~u (s)
(a)
=

∑

∅⊂d′⊂d

γΓ̂(d
′)(~u[d′ := r, (d \ d′) := s])

(b)
=

∑

∅⊂d′⊂d

(
∑

Γ′¹Γ̂(d′)

τΓ′ ·
( ∏

c∈Γ̂\{d}

~u(c)|l(Γ
′,c)|
)

︸ ︷︷ ︸

=:τ̃Γ′

·r|l(Γ′,d′)| · s|l(Γ′,d\d′)|
)

=
∑

Γ′≺Γ̂

τ̃Γ′ ·
∑

∅⊂d′⊂d,Γ′¹Γ̂(d′)

r|l(Γ
′,d′)| · s|l(Γ′,d)|−|l(Γ′,d′)|. (A.13)
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By the definitions of f , f~u, and τ̃Γ′ from above we have

f~u(t) =
∑

Γ′≺Γ̂

τΓ′ ·
( ∏

c∈Γ̂\{d}

~u(c)|l(Γ
′,c)|
)

· t|l(Γ′,d)| =
∑

Γ′≺Γ̂

τ̃Γ′ · t|l(Γ
′,d)|.

So for the right hand side of (A.12) we get

f~u(r + s)− f~u(r)− f~u(s)
=

∑

Γ′≺Γ̂

τ̃Γ′ ·
(
(r + s)|l(Γ

′,d)| − r|l(Γ′,d)| − s|l(Γ′,d)|
)

=
∑

Γ′≺Γ̂

τ̃Γ′ ·
|l(Γ′,d)|−1
∑

j=1

(|l(Γ′, d)|
j

)

· rj · s|l(Γ′,d)|−j , (A.14)

where in the second step we used

(r + s)k =

k∑

j=0

(
k

j

)

· rj · sk−j = rk + sk +

k−1∑

j=1

(
k

j

)

· rj · sk−j .

So we are done if for all Γ′ ≺ Γ̂ we can show that the two inner sums of (A.13)
and (A.14) are equal, i.e. the following equation holds with k := |l(Γ′, d)|.

∑

∅⊂d′⊂d,Γ′¹Γ̂(d′)

r|l(Γ
′,d′)| · sk−|l(Γ′,d′)| =

k−1∑

j=1

(
k

j

)

· rj · sk−j (A.15)

Let us investigate what the sum on the left hand side ranges over: For d′ ⊆ d
we can rewrite the condition Γ′ ¹ Γ̂(d′) into Γ′ ¹ Γ̂ and c′ ⊆ d′ or c′ ⊆ d \ d′
for all c′ ∈ Γ′ with c′ ⊆ d, i.e. for all c′ ∈ l(Γ′, d). The first part is implied
by our assumption Γ′ ≺ Γ̂. The second can be stated as d′ =

⋃
C for some

C ⊆ l(Γ′, d). The condition ∅ ⊂ d′ ⊂ d is satisfied just in case ∅ ⊂ C ⊂ l(Γ′, d).
So with |l(Γ′, d′)| = |C| the sum on the left hand side of (A.15) rewrites to

∑

∅⊂C⊂l(Γ′,d)

r|C| · sk−|C| =
|l(Γ′,d)|−1
∑

j=1

∣
∣
{
C ⊆ l(Γ′, d)

∣
∣ |C| = j

}∣
∣

︸ ︷︷ ︸

=(|l(Γ
′,d)|
j )

·rj · sk−j .

Remembering k = |l(Γ′, d)| this completes the proof of (A.15) and thus of (A.12).

We have demonstrated that there is a τΓ̂ ∈ R such that equation (A.11) holds

for Γ = Γ̂. It remains to be shown that τΓ̂ ≥ 0. For r ∈ R+
0 let ~r ∈ (R+

0 )
Γ̂

denote the vector with ~r(c) = r for all c ∈ Γ̂. With 0 < r ≤ 1
|Γ̂|

we find |~r| ≤ 1.
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We have

0 ≤ γΓ̂(~r) =
∑

Γ′¹Γ̂

τΓ′ ·
∏

c∈Γ̂

r|l(Γ
′,c)|

=
∑

Γ′¹Γ̂

τΓ′ · r|Γ
′|

= r|Γ̂| · (τΓ̂ +
∑

Γ′≺Γ̂

τΓ′ · r|Γ
′|−|Γ̂|).

This implies τΓ̂ ≥ −
∑

Γ′≺Γ̂ τΓ′ · r|Γ
′|−|Γ̂|. Since |Γ′| > |Γ̂| for all Γ′ ≺ Γ̂ we have

that the right hand side converges to 0 for r → 0, and so τΓ̂ ≥ 0 as wanted.

2

Our main representation theorem easily follows from this lemma.

Proof: [Theorem A.3.5] Just take µ(Γ) = τΓ for the values from Lemma A.3.9
forM = Par[m]. Equations (A.11) and (A.10) together yield the equation in the
statement. It remains to be shown that we get a probability distribution indeed,
i.e. that all weights sum up to one. For an arbitrary set X and distribution
φ ∈ DωX we have

1 = ζX(φ)[Xm] =
∑

Γ∈Par[m]

τΓ · βΓX(φ)[Xm]
︸ ︷︷ ︸

=1

=
∑

Γ∈Par[m]

τΓ.

2

The natural transformations we encountered in Section 5.2 are actually of a
slightly more complicated type than those in (A.7), namely

ξ : (Dω)E ⇒ Dω(Idm) (A.16)

for an arbitrary set E and a natural number m. Such natural transformations
can be written as (finite) convex combinations of basic ones as well. Since a
definition of these basic transformations as a generalisation of Definition A.3.1
is hard to read, we prefer a rule-style presentation similar to the one in (A.8)
in our representation result below.

Corollary A.3.10 Every natural transformation ξ in (A.16) can be charac-
terised by a finite set R of derivation rules of the shape

φej (yj) = uj (1 ≤ j ≤ k)

ξ
(
(φe)

)
(〈yo1 , . . . , yom〉)

+
= w · u1 · . . . · uk

for some k ∈ N; e1, . . . , ek ∈ E; 1 ≤ oi ≤ k (1 ≤ i ≤ m); and w ∈ (0, 1]. We
call w the weight of the rule and demand that the weights of all rules in R sum
up to 1. Such a collection of rules determines ξ as follows: For every set X,
distributions φe ∈ DωX (e ∈ E), and ~x ∈ Xm we have that ξX

(
(φe)e∈E

)
(~x)
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is the sum of all contributions that can be inferred from instances of all of the
rules. Such an instance associates to the variables yj elements from X and
to uj probabilities such that the premises are satisfied and 〈yo1 , . . . , yom〉 = ~x.
The instance contributes a portion of w · u1 · . . . · uk to the probability of ~x in
ξX
(
(φe)e∈E

)
.

The corollary arises as a straightforward generalisation of Theorem A.3.5 in
a similar way as Corollary A.2.8 arises as a generalisation of Theorem A.2.4.
Example 5.2.2 illustrates how to read these rules.

Each rule in the representation given by Corollary A.3.10 encodes a contribution
of one basic transformation (corresponding to Definition A.3.1 in the case of
ζ from (A.7)) to ξ. So, like Theorem A.3.5, the statement says that ξ can
be written as a convex combination of basic transformations. And again –
in contrast to the nondeterministic case – this convex combination is uniquely
determined. However, the use of the rule notation in Corollary A.3.10 introduces
redundancy, even if we look at the rules up to the renaming of variables. The
reason is that we can write down more then one rule encoding the same basic
transformation. The weights of these rules together give its contribution to ξ.
We call this the splitting of a rule and we will not disallow it, since it does not
harm (the above interpretation of the rules for instance still works fine.) So
the representation is unique up to the renaming of variables and the splitting
of rules.

A.4 Future work

The collection of technical lemmata presented in this section evolved from our
efforts to analyse concrete natural transformations related to distributive laws
of signature functors over behaviour functors describing the system types we
considered. Although one can already handle a considerable number of natural
transformation using these statements, we still consider the collection incom-
plete. To extend it, it may be worthwhile to proceed in a more systematic
manner: one could for instance define an interesting class of natural transfor-
mations inductively and describe a procedure to obtain concrete representations
for any transformation in this class.

Examples of natural transformations that we cannot tackle satisfactorily with
our current tools are those involving nested applications of the powerset and dis-
tribution functor. We encountered these natural transformation while studying
specification formats for Segala systems (cf. Definition 5.1.6). In order to give
corresponding statements, it may be necessary to first understand the natural
transformations better that we studied in Sections A.2 and A.3. We expect that
it is possible to simplify and at the same time generalise the arguments we have
given. The following observation may be a potential starting point of such an
investigation:
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The natural transformations under consideration in (A.1) and (A.7) have, re-
spectively, the functors PωF and DωF for F = Idm as codomain. We found that
any such natural transformation can be written as a (pointwise) union or con-
vex combination of basic ones. Those are indexed by partitions Γ ∈ Par[m] of
{1, . . . ,m}, i.e. the set of positions of the tuples in FX = Xm (we use again the
notation from Def. A.2.1 to talk about these partitions). The same partitions
also index the set of what we shall call the subfunctors of F, i.e. the functors
F′ such that for all sets X we have F′X ⊆ FX and such that the collection
of inclusions is natural: it can be shown that the subfunctors of F = Idm are
{FΓ | Γ ∈ Par[m]}, where

FΓX := {~x ∈ Xm | Γ ¹ par(~x)}.

This observation suggests that there may be a characterisation of natural trans-
formations with functors PωF or DωF as codomain in terms of the subfunctors
of F, maybe with a suitable restriction on the class of functors F.
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Proc. 3rd CTCS, volume 389 of Lecture Notes in Computer Science,
pages 357–365. Springer Verlag, 1989.

[And99] Suzana Andova. Process algebra with probabilistic choice. In J.-P.
Katoen, editor, Proc. ARTS’99, volume 1601 of Lecture Notes in
Computer Science, pages 111–129. Springer Verlag, 1999.

[And02] Suzana Andova. Probabilistic process algebra. PhD thesis, Technical
University of Eindhoven, The Netherlands, 2002.

[Bae03] J.C.M. Baeten. Embedding untimed into timed process algebra:
The case for explicit termination. Journal of Mathematical Struc-
tures in Computer Science, 13(4):589–618, 2003.

[Bar00] Falk Bartels. Generalised coinduction. Technical Report SEN-
R0043, CWI, Amsterdam, December 2000.

[Bar01] Falk Bartels. Generalised coinduction. In Andrea Corradini, Marina
Lenisa, and Ugo Montanari, editors, Proc. Coalgebraic Methods in
Computer Science (CMCS 2001), volume 44 of Electronic Notes in
Theoretical Computer Science. Elsevier Science Publishers, 2001.

[Bar02a] Falk Bartels. GSOS for probabilistic transition systems. Technical
Report SEN-R0221, CWI, Amsterdam, 2002.

[Bar02b] Falk Bartels. GSOS for probabilistic transition systems (extended
abstract). In Moss [Mos02].

193



194 BIBLIOGRAPHY

[Bar03] Falk Bartels. Generalised coinduction. Journal of Mathematical
Structures in Computer Science, 13(2):321–348, April 2003.

[Ber99] Marco Bernardo. Theory and application of extended markovian
process algebra. PhD thesis, University of Bologna, 1999.

[BHK01] Ed Brinksma, Holger Hermanns, and Joost-Pieter Katoen, editors.
Lectures on formal methods and performance analysis: first EEF/
Euro Summer School on Trends in Computer Science, Berg en Dal,
The Netherlands, July 3–7, 2000: revised lectures, volume 2090 of
Lecture Notes in Computer Science and Lecture Notes in Artificial
Intelligence. Springer Verlag, 2001.

[BIM95] Bard Bloom, Sorin Istrail, and Albert R. Meyer. Bisimulation can’t
be traced. Journal of the ACM, 42(1):232–268, January 1995.

[BPS01] Jan A. Bergstra, Alban Ponse, and Scott A. Smolka, editors. Hand-
book of Process Algebra. Elsevier Science Publishers, 2001.

[BSV03] Falk Bartels, Ana Sokolova, and Erik de Vink. A hierarchy of prob-
abilistic system types. In Gumm [Gum03a].

[BSV04] Falk Bartels, Ana Sokolova, and Erik de Vink. A hierarchy of prob-
abilistic system types. Theoretical Computer Science, 2004. to ap-
pear.

[BW90] J.C.M. Baeten and W.P. Weijand. Process Algebra, volume 18 of
Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, Cambridge, England, 1990.

[CHL03] Daniela Cancila, Furio Honsell, and Marina Lenisa. Generalized
coiteration schemata. In Gumm [Gum03a].

[DEP02] Josée Desharnais, Abbas Edalat, and Prakash Panangaden. Bisim-
ulation for labelled markov processes. Information and Computa-
tion (formerly Information and Control), 179(2):163–193, December
2002.

[DHK99] Pedro R. D’Argenio, Holger Hermanns, and Joost-Pieter Katoen.
On generative parallel composition. In Christel Baier, Michael Huth,
Marta Kwiatkowska, and Mark Ryan, editors, Proc. PROBMIV ’98,
volume 22 of Electronic Notes in Theoretical Computer Science. El-
sevier Science Publishers, 1999.

[Fok94] Wan Fokkink. The tyft/tyxt format reduces to tree rules. In
M. Hagiya and J. C. Mitchell, editors, Proceedings of the Inter-
national Symposium on Theoretical Aspects of Computer Software
(TACS’94), Sendai, Japan, volume 789 of Lecture Notes in Com-
puter Science, pages 440–453. Springer Verlag, 1994.



BIBLIOGRAPHY 195

[Fok00] Wan Fokkink. Introduction to Process Algebra. Springer Verlag,
2000.

[FT01] Marcelo Fiore and Daniele Turi. Semantics of name and value pass-
ing. In Proc. 16th LICS Conf., pages 93–104. IEEE, Computer
Society Press, 2001.

[Geu92] Herman Geuvers. Inductive and coinductive types with iter-
ation and recursion. In B. Nordström, K. Pettersson, and
G. Plotkin, editors, Informal Proceedings Workshop on Types for
Proofs and Programs, B̊astad, Sweden, 8–12 June 1992, pages 193–
217. Dept. of Computing Science, Chalmers Univ. of Technology
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Samenvatting

Over Gegeneraliseerde Co-Inductie en
Probabilistische Specificatie Formaten

Distributieve wetten voor co-algebräısche beschrijvingen

Co-algebra’s van een gedragsfunctor worden gebruikt als wiskundige modellen
van toestandgebaseerde dynamische systemen, zoals transitiesystemen, deter-
ministische automaten, of oneindige gegevensstromen. Een finale co-algebra
geeft een abstracte domein voor al het mogelijke gedrag dat een systeem van
de gegeven soort kan weergeven. Om een bepaald gedrag te definiëren en daar
eigenschappen, zoals gelijkheid, over te bewijzen, gebruiken we technieken die
co-inductief heten. Het eenvoudigste principe is co-iteratie, en het volgt direct
uit de definitie van finaliteit. Maar er zijn hiernaast ook meer uitgewerkte en
expressieve schemata, zoals het duale (in een categoriale zin) van primitieve
recursie of “course-of-value”-iteratie.

In dit proefschrift wordt het λ-co-iteratie schema gëıntroduceerd. Dit schema
krijgt een distributieve wet λ van een ander functor S over de bestudeerde
gedragsfunctor B als parameter. Dit is een natuurlijke transformatie λ : SB ⇒
BS. Voor iedere λ levert het λ-co-iteratie schema een definitie- en een be-
wijsprincipe op, waaronder bijvoorbeeld de twee bovengenoemde schemata zijn
en ook principes zoals het definieren van een taal met behulp van een niet-
deterministische automaat.

In het geval dat de functoren S en B de structuur van een monade en co-monade
hebben, wordt van een distributieve wet λ van S over B vereist dat deze de struc-
tuur in een bepaalde zin respecteert. Deze distributieve wetten worden door Turi
en Plotkin gebruikt voor hun categorische aanpak van Plotkin’s “structural op-
erational semantics” (SOS). SOS specificaties zijn verzamelingen van regels om
progammeertalen van een transitie systeem semantiek te voorzien. Het is be-
kend dat een goed gedrag van de specificatie kan worden gegarandeerd als men
zich beperkt tot regels die aan bepaalde syntactische eisen voldoen. De cate-
gorische aanpak is gebaseerd op de observatie dat regels in sommige van deze
SOS formaten ook tot uitdrukking kunnen worden gebracht door distributieve
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wetten, en dat dit op zich voldoende is om de goede gedragseigenschappen to
tonen.

Om een verband te kunnen leggen tussen gegeneraliseerde co-inductie en SOS
formaten met een goed gedrag, probeerden we om λ-co-iteratie te gebruiken
met distributieve wetten die SOS specificaties uitdrukken. Maar distributieve
wetten over co-monaden zijn daar niet geschikt voor. Daarom hebben we de
categorische aanpak van SOS specificaties uitgebreid naar distributieve wetten
met minder structuur. De nieuwe versies van de theorie kunnen minder ex-
pressieve formaten aan maar zijn meer algemeen toepasbaar en garandeeren
verdere belangrijke eigenschappen. Twee van deze eigenschappen komen uit
ons λ-co-iteratie schema: bewaakte recursieve vergelijkingen (guarded recursive
equations) hebben oplossingen en een bisimulatie “up-to-context” methode is
geldig.

Een groot voordeel is dat de categorische aanpak van zich goed gedragende SOS
specificaties kan worden toegepast op verschillende gedragfunctoren B. Daarom
kan deze worden gebruikt om specificatie formaten voor verschillende soorten
systemen te ontwerpen. Daarvoor is het belangrijk, dat distributive wetten in
verband kunnen worden gebracht met regels in een bepaald formaat. Voor deze
taak hebben we een de-compositionele aanpak ontwikkeld die natuurlijke trans-
formaties precies analyseert. Hiermee kunnen we het eerder genoemde verband
tussen GSOS regels en distributieve wetten in alle detail bewijzen. Verder leiden
we formaten voor deterministische automaten en oneindige gegevensstromen af.

Onze belangrijkste toepassing analyseert distributieve wetten om de eerste zich
goed gedragende en expressieve specificatie formaten voor operatoren voor pro-
babilistische systemen te ontwikkelen. Deze zijn het PGSOS en het Segala-GSOS
formaat. Specificaties in beide formaten hebben unieke canonieke modellen,
probabilistische bisimulatie is een congruentie op alle modellen, bewaakte re-
cursieve vergelijkingen hebben oplossingen, en het bisimulatie “up-to-context”
principe is geldig.
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