11 research outputs found

    Co-optimization: a generalization of coevolution

    Get PDF
    Many problems encountered in computer science are best stated in terms of interactions amongst individuals. For example, many problems are most naturally phrased in terms of finding a candidate solution which performs best against a set of test cases. In such situations, methods are needed to find candidate solutions which are expected to perform best over all test cases. Coevolution holds the promise of addressing such problems by employing principles from biological evolution, where populations of candidate solutions and test cases are evolved over time to produce higher quality solutions...This thesis presents a generalization of coevolution to co-optimization, where optimization techniques that do not rely on evolutionary principles may be used. Instead of introducing a new addition to coevolution in order to make it better suited for a particular class of problems, this thesis suggests removing the evolutionary model in favor of a technique better suited for that class of problems --Abstract, page iii

    Co-optimizing High and Low Voltage Systems: Bi-Level vs. Single-Level Approach

    Get PDF
    This paper presents a bi-level optimization framework applied to optimize system performance with (i) increasing presence of distributed energy resources (DER) at the low-voltage level, and (ii) variable wind power generation at the high-voltage level. The paper investigates various system configurations with increasing presence of microgrids, with active devices. System simulations quantify system performance in terms of cost, first using the traditional single-level optimization framework, and second using the proposed bi-level framework. Comparisons between the system with traditional, passive distribution systems and with microgrids are also presented, with results again quantified via the interconnected system operating costs. Results show that at low levels of DER and microgrid penetration, traditional (single-level) system optimization algorithms perform adequately as compared to the proposed bi-level optimization framework. However, as DER and microgrid penetration increase, the traditional single-level framework does not accurately capture the full system benefits of distributed technologies. The results demonstrate that new optimization algorithms, such as the proposed bi-level framework, will be required if the benefits of DER are to be accurately quantified in the evolving power system

    TDNetGen: An open-source, parametrizable, large-scale, transmission and distribution test system

    Get PDF
    In this paper, an open-source MATLAB toolbox is presented that is able to generate synthetic, combined transmission and distribution network models. These can be used to analyse the interactions between transmission and multiple distribution systems, such as the provision of ancillary services by active distribution grids, the co-optimization of planning and operation, the development of emergency control and protection schemes spanning over different voltage levels, the analysis of combined market aspects, etc. The generated test-system models are highly customizable, providing the user with the flexibility to easily choose the desired characteristics, such as the level of renewable energy penetration, the size of the final system, etc

    Co-evolutionary automated software correction: a proof of concept

    Get PDF
    The task of ensuring that a software artifact is correct can be a very time consuming process. To be able to say that an algorithm is correct is to say that it will produce results in accordance with its specifications for all valid input. One possible way to identify an incorrect implementation is through the use of automated testing (currently an open problem in the field of software engineering); however, actually correcting the implementation is typically a manual task for the software developer. In this thesis a system is presented which automates not only the testing but also the correction of an implementation. This is done using genetic programming methods to evolve the implementation itself and an appropriate evolutionary algorithm to evolve test cases. These two evolutionary algorithms are tied together using co-evolution such that each population plays a large role in the evolution of the other population. A prototype of the Co-evolutionary Automated Software Correction (CASC) system has been developed, which has allowed for preliminary experimentation to test the validity of the idea behind the CASC system --Abstract, page iii

    Cyber security research frameworks for coevolutionary network defense

    Get PDF
    Cyber security is increasingly a challenge for organizations everywhere. Defense systems that require less expert knowledge and can adapt quickly to threats are strongly needed to combat the rise of cyber attacks. Computational intelligence techniques can be used to rapidly explore potential solutions while searching in a way that is unaffected by human bias. Several architectures have been created for developing and testing systems used in network security, but most are meant to provide a platform for running cyber security experiments as opposed to automating experiment processes. In the first paper, we propose a framework termed Distributed Cyber Security Automation Framework for Experiments (DCAFE) that enables experiment automation and control in a distributed environment. Predictive analysis of adversaries is another thorny issue in cyber security. Game theory can be used to mathematically analyze adversary models, but its scalability limitations restrict its use. Computational game theory allows us to scale classical game theory to larger, more complex systems. In the second paper, we propose a framework termed Coevolutionary Agent-based Network Defense Lightweight Event System (CANDLES) that can coevolve attacker and defender agent strategies and capabilities and evaluate potential solutions with a custom network defense simulation. The third paper is a continuation of the CANDLES project in which we rewrote key parts of the framework. Attackers and defenders have been redesigned to evolve pure strategy, and a new network security simulation is devised which specifies network architecture and adds a temporal aspect. We also add a hill climber algorithm to evaluate the search space and justify the use of a coevolutionary algorithm --Abstract, page iv

    Microgrid Energy Management

    Get PDF
    In IEEE Standards, a Microgrid is defined as a group of interconnected loads and distributed energy resources with clearly defined electrical boundaries, which acts as a single controllable entity with respect to the grid and can connect and disconnect from the grid to enable it to operate in both grid-connected or island modes. This Special Issue focuses on innovative strategies for the management of the Microgrids and, in response to the call for papers, six high-quality papers were accepted for publication. Consistent with the instructions in the call for papers and with the feedback received from the reviewers, four papers dealt with different types of supervisory energy management systems of Microgrids (i.e., adaptive neuro-fuzzy wavelet-based controls, cost-efficient power-sharing techniques, and two-level hierarchical energy management systems); the proposed energy management systems are of quite general purpose and aim to reduce energy usages and monetary costs. In the last two papers, the authors concentrate their research efforts on the management of specific cases, i.e., Microgrids with electric vehicle charging stations and for all-electric ships

    Dynamic Analysis of a Microgrid Powered With an Inverter and Machine-Based Distributed Resources

    Full text link
    The proliferation of renewable distributed energy resources, particularly photovoltaic (PV) power systems, and the increasing need for a reliable power supply has led to the concept of microgrids, a mini-grid that consists of locally connected power generation units and needs, able to operate connected or disconnected from the utility grid, using controlled and coordinated methods to provide for the users of the microgrid the best possible conditions for their needs. The main technical issues facing microgrids include some of the following, seamless transition from stand-alone to utility grid connected operation, how to preserve frequency and voltage stability, and provide the lowest cost power among numerous power resources. Technologies that will be used in the future smart grid will be built, tested, and fielded in modern microgrids with many national laboratories, utility companies, and universities using microgrids of all different types for research and development. This dissertation describes the design, fabrication, and testing of a microgrid facility which comprises adjustable resistive and inductive loads, a diesel-powered generator (DG), an advanced inverter PV system, a battery energy storage system (BESS), monitoring, protection, and control devices. The microgrid facility was built with the foresight that it would be used for conducting tests and experiments related to microgrid technical challenges, thus ease of access and expandability were built in which allows it to be used for both research and education purposes. Numerous experimental tests conducted include the following: (a) the dynamic response of a DG to load changes, (b) an advanced PV inverters autonomous functions, (c) advanced inverter islanding test, (d) load sharing among the DG and PV system, (e) PV and battery storage systems load sharing, (d) dynamic performance of an advanced PV inverter and a DG during unintentional islanding under different power export/import conditions, and (e) BESS iv response to utility outage under different PV operating conditions. Attempts to improve reliability and power quality are made by expanding the PV inverter ride-through times during frequency and voltage abnormalities. An economic analysis in terms of Net Present Value (NPV) is conducted on a residential application where a BESS is paired with a PV system to shift solar energy in favor Time-of-Use (ToU) pricing and to provide ancillary grid services

    Co-optimization Algorithms

    No full text
    While coevolution has many parallels to natural evolution, methods other than those based on evolutionary principles may be used in the interactive fitness setting. In this paper we present a generalization of coevolution to co-optimization which allows arbitrary black-box function optimization techniques to be used in a coevolutionary like manner. We find that the co-optimization versions of gradient ascent and simulated annealing are capable of outperforming the canonical coevolutionary algorithm. We also hypothesize that techniques which employ non-population based selection mechanisms are less sensitive to disengagement

    On the practicality of optimal output mechanisms for co-optimization algorithms

    No full text
    corecore