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Luis M. Fernández-Ramı́rez

Novel Improved Adaptive Neuro-Fuzzy Control of Inverter and Supervisory Energy 
Management System of a Microgrid
Reprinted from: Energies 2020, 13, 4721, doi:10.3390/en13184721 . . . . . . . . . . . . . . . . . . . 1

Md Mamun Ur Rashid, Fabrizio Granelli, Md. Alamgir Hossain, Md. Shafiul Alam, 
Fahad Saleh Al-Ismail, Ashish Kumar Karmaker and Md. Mijanur Rahaman

Development of Home Energy Management Scheme for a Smart Grid Community
Reprinted from: Energies 2020, 13, 4288, doi:10.3390/en13174288 . . . . . . . . . . . . . . . . . . . 21

Luis Gabriel Marı́n, Mark Sumner, Diego Mu ñoz-Carpintero, Daniel Köbrich, 
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Preface to ”Energies Microgrid Energy Management”

In IEEE Standards, a Microgrid is defined as a group of interconnected loads and distributed

energy resources with clearly defined electrical boundaries, which acts as a single controllable entity

with respect to the grid and can connect and disconnect from the grid to enable it to operate in

both grid-connected or island modes. Together with distributed resources, such as renewable energy

power plants and storage systems, and loads that actively contribute to the operation of such systems,

an increasingly complex and performing ICT-relevant infrastructure characterizes these new electrical

systems. A Microgrid must meet several needs and expectations from customers and from the various

stakeholders involved in the electrical energy chain, with the consequence that optimal energy

management is required to address a variety of different targets related to efficiency, power quality,

resiliency, and affordability; moreover, new technologies and services have to be introduced to obtain

these targets. Energy management systems should also carefully operate distributed energy resources

and loads to avoid line overloading and critical voltage profiles inside the Microgrids. In this context,

this Special Issue focuses on innovative strategies for the management of the Microgrids and, in

response to the call for papers, six high-quality papers were accepted for publication. Consistent

with the instructions in the call for papers and with the feedback received from the reviewers,

four papers dealt with different types of supervisory energy management systems of Microgrids

(i.e., adaptive neuro-fuzzy wavelet-based controls, cost-efficient power-sharing techniques, and

two-level hierarchical energy management systems); the proposed energy management systems are

of quite general purpose and aim to reduce energy usages and monetary costs. In the last two papers,

the authors concentrate their research efforts on the management of specific cases, i.e., Microgrids

with electric vehicle charging stations and for all-electric ships. I would like to thank the Energies

journal for hosting this important topic and the press production team for their support along the

way. We also thank the authors for their valuable contributions and the reviewers for their critical

analysis and feedback. We do hope that the papers in the Special Issue will be a stimulus to all people

working in the Microgrids area to understand the need for integrating theoretical studies with field

applications and to understand the difficulties associated with the practical implementation of energy

management systems.

Pietro Varilone

Editor
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Abstract: In this paper, energy management and control of a microgrid is developed through
supervisor and adaptive neuro-fuzzy wavelet-based control controllers considering real weather
patterns and load variations. The supervisory control is applied to the entire microgrid using
lower–top level arrangements. The top-level generates the control signals considering the weather
data patterns and load conditions, while the lower level controls the energy sources and power
converters. The adaptive neuro-fuzzy wavelet-based controller is applied to the inverter. The new
proposed wavelet-based controller improves the operation of the proposed microgrid as a result of
the excellent localized characteristics of the wavelets. Simulations and comparison with other existing
intelligent controllers, such as neuro-fuzzy controllers and fuzzy logic controllers, and classical PID
controllers are used to present the improvements of the microgrid in terms of the power transfer,
inverter output efficiency, load voltage frequency, and dynamic response.

Keywords: inverter; supervisory control; adaptive control; photovoltaic; ultra-capacitor; battery;
wavelets; energy management

1. Introduction

Distributed generation (DG) systems based on renewable energy sources (RES), such as solar,
wind, biomass, and hydropower, which are increasing steadily across the globe, are important in the
generation of clean energy. In DG, energy conversion systems are placed near to the end consumers
and large units are replaced with smaller ones. DG enables lower active power losses and operational
costs, increased operational performance, and increased energy efficiency of the power system. Power
system regulators are turning towards RES-based DG systems, along with the conventional centralized
generation systems [1].

In DG and microgrid systems, one of the most critical parts is the inverter, because of its extensive
range of functions [2]. Their operation is standardized by many international industrial standards and
requirements such as IEEE 929-2000, EN61000-3-2, U.S. National Electrical Code 690, and IEEE 1547.

Energies 2020, 13, 4721; doi:10.3390/en13184721 www.mdpi.com/journal/energies1
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These standards describe some important parameters and properties of grid-coupled inverter, such as
total harmonic distortion (THD), electromagnetic interference, voltage fluctuation, power quality, and
power factor [3–5].

Owing to the expansion of DG and/or microgrid systems, many inverter designs and their control
strategies have been published in the literature. For instance, fixed gain controllers (PI/PID) have been
adopted by many researchers. For example, a PI controller with grid voltage feed-forward was used by
the authors of [6,7], but some well-known drawbacks, such as a poor performance due to the integral
action and the inability to track a sinusoidal signal, appeared in this method. These drawbacks have
been addressed in the literature [8] by using a second order integrator. This approach is the most
promising in terms of frequency synchronization, but the estimated frequency holds low frequency
oscillations in case of DC offset being present in the grid voltage [9]. Similarly, in the literature [10],
an adaptive control method was suggested using a direct current control scheme. The main drawback
of the direct current control scheme is that there is no fixed systematic methodology to tune the PI
controller, and therefore, an optimal direct current control is challenging to achieve.

Some researchers have preferred the applications of multilevel inverters (e.g., flying-capacitor and
cascade H-Bridge neutral-point-clamped) in RES technologies [11–14]. However, the main problem of
multilevel topologies is the unbalanced voltage between the capacitors across the DC link [15]. Similarly,
numerous control strategies and algorithms on grid interactive inverters have been investigated and
developed by different authors in past literature.

Some other techniques/controllers applied to inverters are predictive control [16,17], fuzzy
control [18,19], sliding mode control [20], neural network (NN)-based control [21], and neuro-fuzzy
(NF) [22]. All of the aforementioned techniques have their own advantages and drawbacks. For example,
predictive control needs high computation efforts [23], while chattering limits the applications of the
sliding mode control [24]. Fuzzy control has suffered of criticism for lacking a systematic strategy
and a stability analysis technique. Similarly, in NN, each unit of the plant must be turned to produce
control rules, and therefore its limitation is versatility [25]. Moreover, the NF method stays in the initial
local minima during the search space [26]. This drawback in the existing NF controller motivates us to
present a new controller based on the Jacobi wavelet. In the literature, many studies have shown that
the use of a wavelet improves the performance of the NF network in RES [27–36].

Furthermore, an autonomous operation via distributed power sources improves its performance
in terms of power sharing and voltage regulation. This operation can be obtained using energy
management to supervise and control the power flow in the microgrid. For example, many authors
have used different energy management systems for microgrids [37–39]. The authors of [37] controlled
the microgrid via centralized management control, and therefore, the overall system could get away
from communication when failure happened at a single location. The drawback of [38] was the
absence of a countermeasure in the lower–top layers in its energy management strategy. Similarly,
the researchers in [39] developed energy management of a microgrid using multiple-time optimization
problems, but it could only give a day-ahead forecast, and power fluctuations and other related
regulation schemes in the microgrid were not considered.

The main contributions of this research work are as follows:
(1) A supervisory energy management based on a two-level setting. The top-level controller

determines set points for individual microgrid subsystems/components, i.e., a photovoltaic (PV),
ultra-capacitor (UC), battery, and inverter, using weather statistics and load conditions. The lower level
ensures that the top-level set points are accurately followed by the microgrid components. The operation
of the microgrid is checked using real-world records of weather patterns and load fluctuations.

(2) A new adaptive controller based on the Jacobi wavelet neuro-fuzzy structure is developed for
the grid coupled inverter, which yields a better THD, active and reactive power tracking, frequency,
and efficiency than those achieved by other controllers that have appeared in the literature.

The rest of this research work is arranged as follows. The structure and control of the microgrid is
given in Section 2. In Section 3, the supervisory algorithm is discussed. Section 4 provides the results
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and a comparison with the other existing intelligent and classical controllers. Finally, Section 5 draws
the conclusions of this research.

2. Structure and Control of Microgrid

2.1. Structure of the System

Figure 1 illustrates the general structure of the proposed microgrid under analysis. It consists of a
PV array, UC, and battery storage system. The PV array is capable of generating 261 kW under variable
weather patterns and the UC/battery storage system are integrated for backup during excess power
demand and as an energy storage system for surplus power. A DC–DC boost converter connects the
PV array to the inverter. Similarly, two non-isolated buck boost converters connect the UC/battery to
the DC bus, followed by the inverter. The inverter is controlled using a new wavelet-based adaptive
controller. The adaptive-based controlled inverter is then coupled to the AC link at the grid and load.
Energy management, power sharing, and transferring among PV, UC, and the battery with the rest of
the microgrid are performed via energy management and supervisory control system (EMSCS).

2.2. Control of PV

The power of PV varies according to the weather patterns; therefore, its output is controlled by
using an incremental conductance (IC) maximum power point tracking (MPPT) method, and is then
regulated via a DC–DC boost converter, as illustrated in Figure 2. In PV, the optimal terminal voltage
is determined by minimizing the MPPT error, which is shown as “e” in Figure 2, which is determined
on a P/V curve through the IC method. The boost converter is controlled using PID controllers through
the control of the duty cycle.

2.3. Control of Ultra-Capacitor/Battery

Both the UC and battery are controlled through PIDs embedded in DC–DC buck-boost converters.
The boost mode permits power flow from the UC and/or battery to the DC during power demand
bus, and the buck mode is utilized to charge the UC and/or battery from the DC bus during surplus
power. Another advantage of the UC/battery is to regulate the DC bus voltage during abrupt weather
variations and load changes. The control diagrams of the UC and battery are illustrated in Figures 3
and 4, respectively.

3
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Figure 2. Control of photovoltaic (PV).

Figure 3. Control of UC.

Figure 4. Control of the battery.

2.4. Control of Inverter

Inverters are critical for injecting power from the DG or microgrid into the grid or grid-coupled load.
The control law for the proposed problem is written as follows:

Uinv

∣∣∣∣∣t→∞ =
[
y(P,Q)inv

(t)→ y(P,Q)inv_re f
(t)

]
max η(P,Q)inv

=

t∫
0
(P,Q)inv(t)dt

t∫
0
(P,Q)re f (t)dt

subjected to :
ΔTHDload < ±5%
Δ fload < ±8%

(1)

5
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where P and Q stand for the active and reactive powers, respectively. According to the control law,
the amount of P and Q injected into the load and grid from the inverter must be done according to
the desired powers defined to the controller, provided that the maximum efficiency (η) is obtained
while keeping the power quality constraints, i.e., THD and frequency (f), according to the IEEE
standards [3–5]. The value of the power quality constraints must be kept smaller in order to reduce the
power losses in the system.

In this work, the inverter was controlled through two adaptive neuro-fuzzy Jacobi wavelet
(ANFJW)-based controllers—one controller used for controlling the active power, and another for
controlling the reactive power delivered by the inverter to the grid. During operation, both the P
and Q generated by the plant (microgrid) were compared with the references for P and Q. These
differences were provided to the respective ANFJW controllers. Both ANFJW controllers operated on
the difference and generated the corresponding reference currents (id* for active power and iq* for
reactive power). Finally, the inverter switching commands/signals were generated using hysteresis
current control method as shown in Figure 5.

Figure 5. Working of the proposed strategy.

Each controller was modelled in seven layers, as shown in Figure 6. The first three layers formed
the antecedent part, and the next four layers formed the consequent part of the ANFJW controller.
The number of inputs in the first layer was equivalent to the n′ number of nodes, which were used for
further distribution as inputs.

Figure 6. Structure of the adaptive neuro-fuzzy Jacobi wavelet (ANFJW) controller.

6
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Nk
i and Mk

i describe the input and output of a node in kth layer, respectively.

First Layer:

It combines the numbers of the input variables, and are then transferred to the next layer by the
nodes from the first layer, which is written as follows:

N1
i (k) = x1

i (k) (2)

M1
i (k) = N1

i (k) = x1
i (k) (3)

where i = 1, 2, . . . , m and k stands for the number of nodes and iteration, respectively.

Second Layer:

In this layer, the fuzzy system receives the linguistic terms and their degree of membership of
each input. The Gaussian membership function (GMF) is used for computing the linguistic terms of
each input.

N2
i (k) = M1

i (k) = x1
i (k) (4)

N2
i (k) = μ

2
i = e−0.5 (

N2
i (k)−mi
σi

)

2

= e
−0.5 (

x1
i (k)−m2

i j
σ2i j

)

2

(5)

where mij and σi j denote the center and variance of GMF, respectively.

Third Layer:

In this layer, the product of membership function is performed, where the Min operator is used to
find the output value.

N3
i (k) = M2

i = μ2
i = e

−0.5(
x1

i (k)−m2
i j

σ2i j
)

2

(6)

M3
i (k) = μ

3
i =

m∏
i=1

μ2
i =

m∏
i=1

e
−0.5(

x1
i (k)−m2

i j
σ2i j

)

2

(7)

Fourth Layer:

The Jacobi wavelet function is used in this layer, which is written as follows:

ψ
α,β
nq (x) =

⎧⎪⎪⎨⎪⎪⎩ 20.5hλ
α,β
q (2hx− 2n + 1), ∀ n−1

2h−1 ≤ x < n
2h−1

0, o.w
(8)

where

λ
α,β
q =

√
(2q + α+ β+ 1)Γ(2q + α+ β+ 1)m!

2α+β+1Γ(q + α+ 1)Γ(q + β+ 1)
(9)

Jα+βq =

q∑
i=0

(
q + α

i

)(
q + β
q− i

)(
k− 1

2

)q−i(k + 1
2

)i

, k ∈ [−1, 1] (10)

here,x = N4
i , where the input of this layer is N4

i (k) = ψ
α+β
nq (N4

i ), and the output of this layer is written
as follows:

M4
i = f (x) =

∞∑
n=0

∑
q∈z
κnqψ

α+β
nq (x) (11)

7
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The main objective is to reduce the error between the reference power and desire power.
The proposed controller works on the error, e, which is the difference between the reference power and
desire power, as illustrated in Figure 7. The proposed control strategy processes the error, and it is
written as follows:

e =
[
ep = P∗I − PI & eq = Q∗I −QI

]
(12)

Fifth Layer:

In this layer, the output of the antecedent and consequents parts is multiplied, and then added for
each input.

M5
i (k) =

m∑
i=1

β4
i μ

3
i (13)

Sixth Layer:

The summation of rules (third layer output) is performed in this layer.

M6
i (k) =

m∑
i=1

μ3
i (14)

Seven Layer:

In this layer, the output of ANFJW is calculated as follows:

uinv = M7
i (k) =

M5
i (k)

M6
i (k)

=

m∑
i=1
β4

i μ
3
i

m∑
i=1
μ3

i

(15)

This output is used in the duty cycle to generate the control commands to the switches of
the inverter.

Figure 7. Working of the proposed strategy.

Below, it is explained how the parameters of ANFJW controller are updated. The output of the
proposed controller is given as follows:

E =
1
2
(yd − y)2 +

l
2

u2
inv (16)

and the objective function to be minimized is given as follows:

E =
1
2
(yd − y)2 +

l
2

u2
inv (17)

8
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The parameters to be updated are the following:

ξ = [m, σ, c]T

These parameters are updated online through the gradient back propagation method.
The gradient-based update equations are given as follows:

ξ(k + 1) = ξ(k) + λ
∂E
∂ξ

(18)

ξ(k + 1) = ξ(k) + λ
∂
∂ξ

(
1
2
(yd − y)2 +

lu2
inv
2

) (19)

ξ(k + 1) = ξ(k) + λ[−e
∂y
∂uinv

∂uinv
∂ξ

+ luinv]
∂uinv
∂ξ

(20)

where e = yd − y

ξ(k + 1) = ξ(k) + λ[−e
∂y
∂uinv

+ luinv]
∂uinv
∂ξ

(21)

ξ(k + 1) = ξ(k) + λ[−(e ∂y
∂uinv

− luinv)]
∂uinv
∂ξ

(22)

ξ(k + 1) = ξ(k) + λℵ∂uinv
∂ξ

(23)

ℵ= −(e ∂y
∂uinv

− luinv) = −(yd − y)
∂y
∂uinv

− luinv) (24)

Now, for simplification, ∂y
∂uinv

= 1, and ∂uinv
∂ξ is evaluated using the chain rule. The updated

equations are written as follows:

cij(k + 1) = cij(k) + λℵ∂uinv
∂cij

(25)

σi j(k + 1) = σi j(k) + λℵ∂uinv
∂σi j

(26)

mij(k + 1) = mij(k) + λℵ∂uinv
∂mij

(27)

By calculating the partial derivative for the individual parameters, it is obtained as follows:

∂uinv
∂cij

=
∂uinv

∂X4
i

∂X4
i

∂cij
(28)

∂uinv
∂cij

=
Y2

i

Y6
i

X4
i (29)

∂uinv
∂σi j

= ∂uinv
∂Y3

i

∂Y3
i

∂σi j
=

[
−Y3

i uINV

Y6
i

+
X4

i
Y6

i

]
Y3

i ·2
(ki−σi j)

m2
i j

=
Y6

i
∂
∂Y3

i
(Y5

i )−(Y5
i )

∂
∂Y3

i
(Y6

i )

(Y6
i )

2

∂Y3
i

∂σi j

=
X4

i Y6
i −Y5

i ·1
(Y6

i )
2

∂Y3
i

∂σi j
=

X4
i

Y6
i
− Y5

i
Y6

i
. 1
Y6

i
.
∂Y3

i
∂σi j

=
[

Y2
i −uinv

Y6
i

]
∂Y3

i
∂σi j

(30)

9
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where

Y3
i (k) = μ

3
i =

m∏
i=1

μ2
i =

m∏
i=1

e
− 1

2 (
ki−m2

i j
σ2i j

)

2

(31)

So, Equation (31) becomes:

=

⎡⎢⎢⎢⎢⎣X4
i − uinv

μ3
i

⎤⎥⎥⎥⎥⎦. m∏
i=1,i� j

μ2
i .
∂μ2

i
∂σi j

(32)

∂uinv
∂σi j

=

⎡⎢⎢⎢⎢⎣X4
i − uinv

μ3
i

⎤⎥⎥⎥⎥⎦. m∏
i=1,i� j

μ2
i

⎡⎢⎢⎢⎢⎢⎢⎣μ2
i

2
(
ki − σi j

)
m2

i j

⎤⎥⎥⎥⎥⎥⎥⎦ (33)

Similarly,
∂uINV
∂mij

= ∂uINV
∂μ3

i

∂μ3
i

∂mij
=

[
X4

i −uinv

μ3
i

]
∂μ3

i
∂mij

=
[

X4
i −uinv

μ3
i

] m∏
i=1,i� j

μ2
i

[
μ2

i
2(ki−σi j)

m3
i j

2]
=

[
X4

i −uinv

μ3
i

]
μ3

i .
2(ki−σi j)

2

m3
i j

(34)

Using the values of Equations (20), (33), and (34) in Equations (25)–(27), the following final
updated equations are obtained.

cij(k + 1) = cij(k) + λℵ
Y2

i

Y6
i

X4
i (35)

σi j(k + 1) = σi j(k) + λℵ
⎡⎢⎢⎢⎢⎣X4

i − uinv

μ3
i

⎤⎥⎥⎥⎥⎦. m∏
i=1,i� j

μ2
i

⎡⎢⎢⎢⎢⎢⎢⎣μ2
i

2
(
ki − σi j

)
m2

i j

⎤⎥⎥⎥⎥⎥⎥⎦ (36)

mij(k + 1) = mij(k) + λℵ
⎡⎢⎢⎢⎢⎣X4

i − uinv

μ3
i

⎤⎥⎥⎥⎥⎦μ3
i .

2
(
ki − σi j

)2

m3
i j

(37)

3. Energy Management and Supervisory Control System

A supervisory control approach was designed to provide the required power demand during the
day and after sunset by using the proposed algorithm, as illustrated in Figure 8.

The proposed supervisory control system controls the subsystems (PV, UC, battery, and power
converters), as well as the whole microgrid. According to the implemented algorithm, the net load
demand must be satisfied from the generation of the PV array. If PV cannot satisfy the net demand,
then battery bank will supply the remaining power, if its charge level is sufficient, i.e., above 20% (state
1). If the PV and battery bank cannot provide the total demand, then the remaining power will be taken
from the SC if its charge level is above 20% (state 2), followed by the utility grid (state 3). Similarly,
if PV generates more power than the demand, the remaining power will be used to charge the battery
and then the SC, if their states of charges are below 90% (state 4 and state 5). If the battery and SC are
charged, then the remaining power will be transferred to the public grid (state 6).
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Legend

 
Figure 8. Flowchart of the energy management and supervisory control system (EMSCS).

The EMSCS layer power provides the required control signals to the power converters connected
to the inputs/outputs of the components used in the microgrid. The descriptions of the parameters are
defined in Table 1.

Table 1. Inputs/outputs of the proposed EMSCS.

Symbol Description

PL Local Load Power
PG Grid Power
PB Battery Power
PU Ultra-capacitor Power
PPV PV Power
SB SoC of Battery
SU SoC of UC

PBDR Discharging Reference Power of battery
PBCR Charging Reference Power of Battery
PUDR UC Discharging Reference Power
UUCR UC Charging Reference Power
PGR Grid Reference Power

The working of the algorithm is discussed as below.

1. All of the control signals are generated, i.e., PPV, PG, PL, PB, PU, SB, and SU.
2. Check PL = PPV ± PG ± PU ± PB, go to 1 if this condition is true, and if not then follow next step.
3. Check PL > PPV, if it is true, go to step 9, and if not then check the next condition.
4. Check SB > 20%, if it is true, then discharge the battery, and go to next step, otherwise go to step 2.
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5. Check the condition PL − PPV − PB > 0, if this is true, then go to the next step, otherwise go to
step 6.

6. Check SU > 20%, if it is true, then discharge the UC, and go to the next step, otherwise go to step 8.
7. Check the condition PL − PPV − PB − PU > 0, if it is true, then go to the next step, otherwise go to

step 1.
8. Using all of the remaining deficient power reference to the grid and go to step 1.
9. Check SB > 90%, if it is not true, then charge the battery and go to the next step, otherwise go to

step 11.
10. Check the condition PL − PPV − PB < 0, if true, then go to the next step, otherwise go to step 1.
11. Check SU > 90%, if it is not true, then charge the UC and go to the next step, otherwise go to

step 13.
12. Check the condition PL − PPV − PB − PU < 0, if true, then go to the next step, otherwise step 1.
13. Provide all of the net surplus power to the utility grid and go to step 1.

4. Simulations

The proposed microgrid was simulated for a complete full day under real weather patterns, i.e.,
ambient temperature (◦C) and solar irradiance (W/m2), taken at Islamabad, Pakistan. Both parameters
were recorded on an hourly basis, as presented in Figure 9. The intensity of irradiance fluctuated
during the day, depending on the sunrise and sunset. From Figure 9, the sun appeared at 07:00 a.m.
and set at 17:20 p.m. The average solar irradiance during the daytime was 990 (W/m2). Likewise,
the average temperature during the daytime reached 40 ◦C, while at night, it went down to 19 ◦C.

Figure 9. Weather data: (a) irradiance and (b) temperature.

Figure 10 illustrates the power generated by the PV (denoted as violet), battery (denoted as red)
main inverter (denoted as dark goldenrod), UC (denoted as light green), utility grid (denoted as
black), and total demand (denoted as light blue). In order to explain Figure 10, it is divided into six
states, as indicated in the flow chart (Figure 8). From t = 00:00 to 07:10 a.m., the PV output power
was zero because of the nonappearance of sun irradiance. The overall demand was applied on the
battery system. During this interval, the proposed EMSCS checked the state of charge (SoC) of the
battery, and as its SoC was greater than 20%, the battery provided the required net power (around
150 kW). The battery SoC was reduced to 68%, as shown in Figure 11. The EMSCS was operating in
state 1. At t = 07:10 to 09:00 a.m., the PV system started producing power, but it was still not enough
to overcome the demand. Meanwhile, the output power of the PV started to increase. At the end of
the interval, the PV and battery provided 90 kW each with the battery SoC at 62%. The EMSCS was
still operating in state 1. At t = 09:00 to 09:48 a.m., because of the slow response time of the battery,
the cumulative power supply (battery (52 kW) + PV system (179 kW)) exceeded the power demand
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(198 kW). Therefore, the UC started charging using 33 kW of power when the SoC went from to 84%
from 73%, and the EMSCS was shifted to state 5.

 
Figure 10. Power exchange and sharing among energy sources.

Figure 11. States of charge (SoCs) of the ultra-capacitor (UC) and battery.

At t = 09:48 to 11:30 a.m., the PV not only provided sufficient power to the load, but also charged
the battery and UC. In this interval, the EMSCS was in states 4 and 5. At t = 11:30 to 11:39 a.m., 12:10 to
13:27 p.m., and 14:03 to 14:40 p.m., the PV output power suddenly dropped due to partially clouded
conditions. In this crucial time, the UC assisted the microgrid and fulfilled the power gap with slight
support from the grid station. In this interval, the EMSCS rapidly shifted to states 2 and 3. At t = 14:40
to 17:36 p.m., the PV output power started decreasing because of the evening time. The battery could
fulfil the power deficiency and kept the EMSCS in state 1. At t =17:36 to 18:15 p.m., the battery, UC,
and grid station provided backup to the microgrid because of the deficient power. The EMSCS shifted
between states 1, 2, and 3. Whereas at t= 18:15 to 24:00 p.m., with no PV power and also because of the
non-peak hours, the grid and battery fulfilled the load demand, and the battery SoC dropped to 21%.
In this interval, the EMSCS moved between states 1 and 3. The operating states for 24 h are shown in
Figure 12. In this manner, the power exchange and sharing among PV, battery, UC, utility grid, and
domestic load happened for 24 h under EMSCS.

For better power quality and power flow from the DC link to the rest of the system, the inverter
was controlled via ANFJW controllers. The results of the proposed ANFJW controllers were compared
with the existing intelligent controllers, such as NFC and fuzzy logic controller (FLC), as well as
the classical controller (i.e., PID), using the same weather and load conditions. Figure 13 shows the
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performance of the inverter (active power) for the different controllers in terms of power transfer.
The load condition had two peaks of 275 kW and 307 kW at t = 11:00 a.m. and 21:00 p.m., respectively.
The zoomed figures show the performance of the difference controllers in detail. It can be clearly
noticed from the zoomed figures (Figure 13) that the proposed controller, ANFJW (denoted as red), and
reference signal (donated as dashed-blue) superimposed each other, while the other controllers also
tried to track the reference signal, but were unable to because of overshoots. Similarly, Figure 14 gives
the performance of the inverter in terms of the reactive power transfer. For instance, from the zoomed
portion (i.e., at 04:45 to 04:48 a.m.) in Figure 14, the proposed controller tracked the reference power
very quickly, while the other controllers took some time with the overshoots. The same performance
can also be seen at 19:57 to 20:03 p.m. in the zoomed portion. Hence, the proposed ANFJW controllers
show a better performance at different intervals for both real and reactive power transfer.

 
Figure 12. Operating states.

Furthermore, the power quality analyses in terms of the THD and frequency of all of controllers
was performed and are illustrated in Figures 15 and 16, respectively. According to IEEE standards, the
standard limits for frequency and THD are ±0.8% and 5%, respectively. In this work, the operating
load voltage RMS and frequency were 440 V and 50 Hz, respectively. The THD shown in Figure 15 is
small with the proposed controller, which is around 2.37%. Similarly, the change in frequency was
below 0.02%, as it can be seen at different intervals in the zoomed windows in Figure 16.

 
Figure 13. Output real power comparison at different intervals.
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Figure 14. Output reactive power comparison at different intervals.

Figure 15. Total harmonic distortion (THD) comparison.

Figure 16. Comparison of change in frequency.

To show further better the performance, the efficiency of the inverter for all controllers using
Equation (1) was calculated for 24 h and is shown in Figure 17. The real and reactive power transfer
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efficiencies of the inverter with the ANFJW controllers was greater, i.e., 99.05% and 99.08%, followed
by NFC, FLC, and then PID.

 
Figure 17. Power efficiency comparison of different controllers: (a) real power and (b) reactive power.

For further analysis, the dynamic performance of all of the controllers through the index parameters,
i.e., integral absolute error (IAE), integral square error (ISE), integral time absolute error (ITAE), integral
time square error (ITSE), and mean relative error (MRE), under the same operating conditions, were
calculated using Equations (38)–(41) for active power, and using Equations (42)–(45) for reactive power,
and are illustrated in Figures 18 and 19, respectively. All of the index parameters were much smaller
in the case of the proposed controller, which showed a superior dynamic performance. All of the
comparisons are summarized in Table 2.

IAEp =

∫ t

0

∣∣∣ep(t)
∣∣∣dt (38)

ISEp =

∫ t

0
e2

p(t)dt (39)

ITAEp =

∫ t

0
t
∣∣∣ep(t)

∣∣∣dt (40)

ITSEp =

∫ t

0
te2

p(t)dt (41)

IAEq =

∫ t

0

∣∣∣eq(t)
∣∣∣dt (42)

ISEq =

∫ t

0
e2

q(t)dt (43)

ITAEq =

∫ t

0
t
∣∣∣eq(t)

∣∣∣dt (44)

ITSEq =

∫ t

0
te2

q(t)dt (45)
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Figure 18. Dynamic performance comparison using active power: (a) integral absolute error (IAE),
(b) integral time absolute error (ITAE), (c) integral square error (ISE), and (d) integral time square
error (ITSE).

Figure 19. Dynamic performance comparison using reactive power: (a) IAE, (b) ITAE, (c) ISE, and
(d) ITSE.

Table 2. Comparison of efficiencies and dynamic response.

Controllers Output Power ηIN (% Age) THD (% Age) IAE (p.u) ITAE (p.u) ISE (p.u) ITSE (p.u)

ANFJW Active 99.05
2.37

0.00017 0.00166 0.00166 0.00052

Reactive 99.08 0.00012 0.00128 0.00093 0.00003

NFC
Active 92.17

3.63
0.0102 0.1169 0.0413 0.1052

Reactive 92.25 0.0076 0.0879 0.0233 0.0597

FLC
Active 89.11

6.54
0.0329 0.3758 0.1526 0.8016

Reactive 89.18 0.0247 0.2829 0.0864 0.4573

PID
Active 86.94

8.96
0.0386 0.4526 0.1619 1.078

Reactive 87.04 0.0290 0.3394 0.0917 0.6097
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5. Conclusions

This paper presented a novel improved adaptive NFC of inverter and supervisory energy
management of a microgrid. The improvement in the existing NFC was performed by the integration of
the Jacobi wavelet. Because of the excellent time-localized behavior of the Jacobi wavelet, the proposed
controller did not stop in the first local minima, but it searched for the optimal minima. This yielded
excellent results in terms of power transfer, inverter output efficiency, and load voltage frequency.
The EMSCS controlled the individual components as well as the entire system to ensure the following:
(1) maximize output power, (2) appropriate sharing of UC/battery power and energy sources, and
(3) continuity of power for a 24 h power supply with reliability and lessening the differences in output
power under unfavorable weather conditions and inadequate storage.
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Abbreviations

ANFJW Adaptive neuro-fuzzy Jacobi wavelet
EMSCS Energy management and supervisory control system
FLC Fuzzy logic controller
GMF Gaussian membership function
IAE Integral absolute error
IC Incremental conductance
ISE Integral square error
ITAE Integral time absolute error
ITSE Integral time square error
MPPT Maximum power point tracking
MRE Mean relative error
NF Neuro-fuzzy
NN Neural network
PV Photovoltaic
RES Renewable energy sources
THD Total harmonic distortion
UC Ultra-capacitor
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Abstract: The steady increase in energy demand for residential consumers requires an efficient energy
management scheme. Utility organizations encourage household applicants to engage in residential
energy management (REM) system. The utility’s primary goal is to reduce system peak load demand
while consumer intends to reduce electricity bills. The benefits of REM can be enhanced with
renewable energy sources (RESs), backup battery storage system (BBSS), and optimal power-sharing
strategies. This paper aims to reduce energy usages and monetary cost for smart grid communities
with an efficient home energy management scheme (HEMS). Normally, the residential consumer
deals with numerous smart home appliances that have various operating time priorities depending
on consumer preferences. In this paper, a cost-efficient power-sharing technique is developed which
works based on priorities of appliances’ operating time. The home appliances are sorted on priority
basis and the BBSS are charged and discharged based on the energy availability within the smart
grid communities and real time energy pricing. The benefits of optimal power-sharing techniques
with the RESs and BBSS are analyzed by taking three different scenarios which are simulated by C++
software package. Extensive case studies are carried out to validate the effectiveness of the proposed
energy management scheme. It is demonstrated that the proposed method can save energy and
reduce electricity cost up to 35% and 45% compared to the existing methods.

Keywords: home energy management scheme (HEMS); smart grid; renewable energy sources (RESs);
power sharing algorithm (PSA); residence energy management (REM)

1. Introduction

Energy, a scare resource that needs to be efficiently utilized, is considered the most indispensable
component in modern society. For a typical home, energy losses are generally higher due to line losses
increased by a factor of double [1]. These energy losses can be minimized by developing an efficient
home energy management scheme (HEMS) that plays a crucial role in our daily life due to increasing
energy demand [2]. The minimization of energy cost and the maximization of user comfort are the
typical optimization problems in recent smart homes [3,4]. The authors in research [5] illustrate an
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aggregator based household energy scheduling plan in the smart grid framework where all home
appliances are managed by different power scheduling schemes. However, the backup battery storage
system (BBSS) is not considered in that research. Electricity consumers are not permitted to access
the grid side mechanisms due to the high voltage grid and sophisticated device operation. They can
manipulate on energy consumption to minimize the peak demand while reducing electricity bills [6,7].
To decrease electricity costs of residential users (RUs), it is important to maintain an energy scheduling
plan for electrical appliances concerning the price of the respective time slot. The energy management
of home appliances deals with utility tariffs and usages patterns [8]. Conversely, the smart home
energy management scheme within the smart grid environment can integrate the alternative sources of
energy and optimize the monetary cost [9]. Authors in research [10] illustrate the impact of the change
in users’ behavior in the smart grids framework. The smart consumption and production behaviors
are analyzed in this study to assist smart grid diffusion. The energy management is highly dependent
on demand response in a smart grid framework which is illustrated by evolutionary analysis in [11].

Residential utility management systems have been developed and validated through simulations
and several case studies [12,13]. However, they did not consider the satisfied power demand and
power-sharing algorithm to effectively handle the residential consumer’s power demand. Researchers
have taken some initiatives to manage a range of household appliances based on energy demand
pattern. Most of the literature is related to minimizing the energy cost with carbon emissions and the
impact of renewable energy integration in the smart grid [14]. A real-time energy management problem
was solved using a modified particle swarm optimization to investigate the nominal battery state of a
microgrid environment while minimizing operating charge. This work was extended to consider the
degradation cost of the battery for a two-step ahead energy management scheme [4]. In [4], the authors
demonstrated battery degradation costs which solely depends on a day-ahead energy scheduling and
on a charging-discharging patterns. The optimization problem is solved using a framework consisting
of Rainflow algorithm, particle swarm optimization (PSO), and scenario techniques. However, in these
papers, the power-sharing algorithm and backup battery storage system are not taken into account. The
authors of [15,16] provided a compact assessment of home energy management systems (HEMS). They
explained the initial challenges of HEMS and then outlined some insights on the existing literature
regarding the modeling of demand-side management (DSM) followed by wireless communication
infrastructure. An optimization technique is developed through several programming strategies to
handle home appliances with a solar system installed at the premises [17]. However, the impacts of
different load patterns such as peak, off-peak and, mid-peak loads on renewable energy and BBSS are
not considered. A fuzzy logic-based home energy management system (HEMS) is developed by the
authors in [18] which is more effective compared to [19,20] but the lowering of energy cost by applying
power-sharing algorithm is not taken into account. The home batteries, monitoring technologies, and
smart heat pumps are analyzed in a smart grid architecture to show how the householders participate
in HEM [21].

While several works deal with the advanced methods, these methods are not typically adopted by
industry due to the reliability and security issues of a power system. Therefore, in order to minimize
energy consumption and cost for residential consumers, this research develops an efficient energy
management scheme using commercial software, C++, considering RESs and a BBSS integrated for
smart grid model. The proposed HEMS offers higher customer satisfaction with low energy costs
compared to the existing method.

The contributions of this paper can be listed as follows:

• A computationally efficient simulation model for HEM is developed using the C++
software package.

• The proposed model enables a power-sharing strategy in a community being assessed sequentially.
• The power-sharing technique with the proposed model saves energy cost up to 35% and 45%

compared to conventional techniques.
• Mathematical modelling is developed to facilitate extensive analysis.
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The rest of the paper is organized as follows: Section 2 discusses the problem description,
existing power management system, and smart grid architecture including advanced smart metering
infrastructure. Section 3 explains the system model, including a solar generator, wind generator, energy
storage systems, loads and utility grid. Mathematical modeling of a smart home and the proposed
algorithms are also presented in the section. Analysis of the results and graphical representation
of simulation results are elaborated in Section 4. Finally, the conclusion this research is depicted in
Section 5.

2. Problem Description

In this section, the proposed smart grid architecture and its advanced features with the application
of intelligent smart metering infrastructure in the smart grid framework are presented in this section.

Smart Grid Architecture

The rapid growth in household appliances has significantly increased the power demand of
residential consumers. Nowadays, most electricity demand is met by fossil fuel-based generation
system which heavily pollutes the environment by emitting greenhouse gas [22,23]. According to the
international standards, each country must put a cap on the carbon emission to save the environment.
Thus, researchers are working hard to figure out the new means of electricity generation. In this
research, the renewable energy sources (RESs) integration is found to be one of the most costs effective
and environment-friendly solutions [22,24]. Normally, residential loads consist of washing machine,
freezer, fans, lights, laptops, television, heater, dishwasher, microwave woven, and so on. Most of the
residential consumers suffer from load shading, unstable voltage levels, service line loss, higher utility
tariff, unscheduled system maintenance, and so on. To overcome these limitations, it is important to
build an effective energy optimization method. To address these issues, a smart grid architecture is
proposed with an efficient home energy management scheme (HEMS) to provide a profitable and
sustainable solution.

The proposed community-based smart grid architecture illustrated in Figure 1, consists of three
different scenarios considering local utility supply, renewable energy sources (RESs) such as solar cell
and windmill and backup battery storage system (BBSS). It has three different energy communities
such as community A, B, and C. To identify residential consumer effectively these communities are
considered. Moreover, we have considered three scenarios where scenario 1 considers a residence with
local utility supply as the primary source of energy whereas scenario 2 considers renewable energy
as the primary source of energy and local utility supply as the secondary source. Besides, scenario
3 uses renewable energy and backup battery storage system (BBSS) as a primary source and local
utility as secondary source in case of scarcity. When any particular consumer request power and met
by the energy community is called satisfied power demand. In a day, during any particular period
if any user requests power to the community and receives sufficient power called satisfied power
demand. An efficient power-sharing algorithm is developed to meet user power demand using battery
power sharing among the community. The novelty of this research is power-sharing technique for the
residential consumers within the community [25].

A backup battery storage system (BBSS) bank is used to tackle emergency cases while all other
power supplies are off. The BBSS charging and discharing are performed based on real-time pricing in
order to reduce daily operation cost. Each residence has local utility supply, solar and wind power
generation, smart battery, and smart meter. The smart meters are connected with all smart home
appliances via a wireless connection. The use of smart meters (SM) in smart grid facilitates to record
the exchange of information between utility companies, and electricity consumption. Home appliance
usages are managed by scheduling and switching on/off some of them and track consumption over a
period [26].
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Figure 1. Proposed community-based smart grid architecture.

A smart home provides an excellent interface between household applicants and home appliances
to keep energy use record and take essential and effective decisions [27]. All home appliances are
connected via smart meters and permit a consumer to move energy use from peak-hours to mid-peak
or off-peak hours [28]. It is capable of detecting the energy use charges in real-time by taking some
electrical parameters.

The advanced smart metering architecture in the smart grid framework outlined in Figure 2
consists of metering and communication infrastructures. The SM unit includes time-of-use price
monitoring, demand-side management, and automatic meter reading.
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Figure 2. Advanced smart metering architecture in the smart grid framework.

The wireless communication technologies permit dual flow to enable the smart meter. Thus,
smart meter permits exchange information with distant centers and to execute the control instructions.
Multiple home appliances are connection with the smart meter in the residential premises by the aid
of home area network (HAN). Wireless technologies such as ZigBee, Wi-Fi, and WiMAX [29,30] are
effectively used in the smart grid environment. The benefits of advanced smart metering infrastructure
are outlined below:

• Time-of-use pricing information can acquire from the distant consumer price indications.
• Customer’s energy use information can accumulate, store and notify any particular time intervals

or real-time.
• A detailed load patterns can develop the energy management process effectively.
• Smart meter can locate and identify the outages of any particular consumer by sharing a control

message throughout the entire energy community.
• Power circuit can open or close over a long distance.
• Feasible to identify line losses and stealing exposure.

These meters send and receive information from the power data aggregator unit (PDAU) and
permit residential consumers to handle their household appliances distantly. SMs of those communities
are designed in such a way that allows them to be monitored by PDAU. If any users have extra demand,
the smart meter sends a demand message to PDAU. After receiving the message, PDAU executes
a power-sharing algorithm (PSA) to sequentially fulfill the user demand. Frist, PDAU forwards a
demand message in the whole community. If the neighbor user can meet the extra demand, PDAU
channels the excess stored energy of neighbors to the desired user. If demand cannot be fulfilled
by neighbor users within the community, power will be acquired from the local utility companies.
Moreover, if all power suppliers are unable to provide power then if any other user who wishes to
receive power can take from BBSS by the permission of PDAU. PDAU is the main controller of this
infrastructure. The BBSS keeps charging through the charge controller via a local utility supply while
energy charges at low price intervals. Besides, BBSS can discharge when the community consumer
energy demand is increased or all other supplies are off. To implement this framework, a simulator is
designed and developed to evaluate the home user power consumption and cost considering satisfied
power demand (hourly & daily basis) for one week. This method can save a significant amount of
energy and cost compared to the existing systems.

3. System Modeling

This section deals with system components such as solar and wind generator, energy storage
system, loads and utility grid, and a typical energy consumption profile for residential consumer’s and
home appliances considering peak-load, mid-peak, and off-peak loads and real-time electricity prices.

25



Energies 2020, 13, 4288

3.1. System Components

3.1.1. Solar Generator

Photovoltaic (PV) panels use sunlight to convert solar energy into usable DC electricity. The
amount of PV power generated depends on the array size, solar radiance and solar insolation. Solar
radiance is emphatically relying on surrounding climate and varies significantly as depicted in Figure 3.
In order to gain maximum yield, PV panels are equipped with maximum power point tracking (MPPT)
technology [31]. The performance of a PV system is assessed based on its output power. Output power
depends on the size of the array and the overall efficiency of the installed PV system. PV power output
as a function of solar irradiance and being operated at MPPT mode is defined using the following
equation:

Ps = ïs ∗A ∗ SI(1 + γ(t0 − 25)) (1)

Figure 3. Predicted solar irradiation over a 24 h horizon.

In Equation (1) above, ïs represents efficiency, and A is the PV panel area. SI is the solar irradiation,
t0 is the air temperature, γ is the temperature coefficient of the maximum output power and is usually
denoted as a negative percentage per ◦C or K. The PV technology and manufacturing parameters
have great impact on γ, this study considers γ as −0.005/◦C. The range of γ for silicon cells is between
0.004–0.006 per ◦C [32]. The expression of power for several solar PV panels is given below:

PsT = PsxNs (2)

where Ns is the number of solar generators.

3.1.2. Wind Generator

Wind power is a vital renewable energy resource that continues to thrive around the world due
to features such as abundance, clean nature and being readily available. It is the method of power
generation by rotating turbine blades installed at an elevated height. However, power generated from
wind turbines is highly intermittent and stochastic in nature. It is highly dependent on the available
wind speed and significantly varies based on the installation height. Figure 4 below illustrates wind
speed over a range of time. The following power-law equation is used to convert wind speed recorded
by anemometer (installed at tower heights) and transfer them based on hub heights [33]:

26



Energies 2020, 13, 4288

v
v0

=

(
h
h0

)∝
(3)

where velocity at hub height h0 is v0, velocity at hub height h is v, and the power-law exponent, α,
depends on several parameters as presented in [34] which takes a value of 1/7 for open space. The
wind turbine power as a function wind velocity can be represented as a piece-wise function below [35]:
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where the rated power is Pr, the wind rated speed is vr, the cut-in wind speed is vc, and the cut-off
wind speed is vf. Turbine manufacturers define a cut-in and cut-off speed for safety issues. The wind
generator does not produce any power beyond the cut-offwind speed. The expression of total power
for a number of wind turbines is given below [36]:

PwT = PwxNw (5)

where Nw is the number of wind generators.

Figure 4. Predicted wind velocity over a 24 h horizon.

3.1.3. Backup Battery Storage Systems (BBSS)

The different types of energy storages, such as superconducting magnetic energy storage, batteries,
flywheel energy storage, and compressed air energy storage, are studied in power system. Each of the
energy storage devices has different features such as high-power density, high-energy density, high
response time and so on. In this study, electrochemical batteries are used due to its high energy density.
The charging and discharging of ESS can reduce the effect of the unpredictable nature of renewable
energy sources (RESs) on the smart grid to balance power generation and demand. The expression for
charging and discharging of battery is given as below”

BL(t) = BL(t− 1) + ΔtPc(t)ïc for charging (6)

BL(t) = BL(t− 1) + ΔtPd(t)ïd for discharging (7)

Subject to the following constraints:

Pc,max > Pc > 0
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Pd,max < Pd < 0

BLmax > BL(t) > BLmin

where the battery charging power at time t is Pc(t), the battery discharging power at time t and Pd(t), the
energy storage at time t is BL(t), the time interval is Δt, the charging efficiency is ïc, and the discharging
efficiency is ïd. This study considers ïc and ïd as unity for simplicity.

3.1.4. Loads and Utility Grid

The load profiles of residential users are illustrated in Figures 5–7. There are three different load
patterns shown in separate figures. The maximum load is approximately 0.43 kW during peak-hours,
the mid-peak hour is 0.42 kW during intermediate-hours and the minimum load is 0.32 kW during
off-peak hours.

Figure 5. Predicted load profile of a house during peak hours over a 24 h horizon.

Figure 6. Predicted load profile of a house during mid-peak hours over a 24 h horizon.
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Figure 7. Predicted load profile of a house during off-peak hours over a 24 h horizon.

The estimated loads can meet the primary home appliances such as washing machine, freezer,
fans, lights, laptops, television, heater, dishwasher, microwave woven etc. Home user energy demand
patterns are fluctuating with time. It is assumed that the energy demand profiles are same for all
residential consumers. Several measurements output values can shape the diverse energy demands
for individual consumer.

Figure 8 indicates the real-time electricity prices for energy purchase per unit that is taken as a
grid model in this study. These dynamic prices help electricity customers to schedule flexible loads,
such as water heaters and washing machines. Electricity prices are generally announced an hour
ahead from a distribution management company. We have considered a community smart grid that is
connected to the grid.

Figure 8. Predicted average electricity prices of a house over a 24 h horizon.

We have considered that the project is executed in an environment where building renewable
energy plant is encouraged by the local government and the generated power can exchange to the
utility grid without any transfer threshold. This process is due to insufficient power production,
leading to low voltage outlines in the smart grid energy community. As a result, renewable energy
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owner can add more money on their utility business to help community inhabitants as well as to
get profits.

3.1.5. Mathematical Modeling of a Smart Home for the Proposed Power-Sharing Algorithm

In this section, we analyze and model the electrical smart home appliances with renewable energy
sources (RESs), backup battery storage system (BBSS), and related mathematical parameters in detail.
The mathematical model contains different parts such as photo-voltaic system, small scale windmill,
smart battery, backup battery storage system, utility tariffs, home appliances and their expenditure, etc.
Renewable energy is generated by the solar cells and windmill that store in a smart battery. Total local
renewable energy generation is formulated by the given equation:

PB = pPV + pW (8)

where PB is the battery power storage, PPV and PW denote the solar photovoltaic and wind power,
respectively. The power generation by photovoltaic solar cell, PPV, and wind mill, PW, are directly
stored in a smart battery which is outlined by PB. The total capacity of the battery is greater than sum
of solar and wind power in order to save the battery from overcharge.

A single residential consumer all smart home appliances energy consumption is defined by the
given equation:

ETHA =
∑

(EL + EWM + ER + EC + EDW + EH) (9)

where ETHA denotes the total energy of home appliances, EL indicates lighting load, EWM illustrates
washing machine, ER presents refrigerator load, EC denotes computer load, and EDW is the energy
taken by dishwasher and EH is the heating load.

All home users considered renewable energy as a primary source and utility as a secondary source.

EU = (EB + EBB) − ETHA (10)

where EU represents the user energy consumption, EB is the battery energy and EBB is the backup
battery energy. Similarly, ETHA indicates the total home appliance’s energy of residential consumers.
The user energy consumption is equal to the sum of battery and backup battery storage minus the
total home appliances energy. Home users extra power demand is meet by the utility system and it is
defined by the given Equation (11) and extra energy is formulated by the Equation (12).

EEE =
∑

(EUO − EU) (11)

EEEC =
∑

((EUO − EU) × EUC)) (12)

EEE represents the extra energy, EUO is the energy of utility operator and EU is the user power.
Similarly, EEEC defines the extra energy cost and EUC illustrates the utility cost. We have considered
four user energy communities and the total energy consumption are calculated by the given equation:

ETUC = Σn
i=1ETU = (EU1 + EU2 + EU3 + EU4) (13)

where n equals to 4 (the total number of user energy communities) and ETU represents the total user
energy. We have considered a group of twenty home users in our proposed community smart grid and
the total energy consumption in a community is given by the following equation:

ETUE = Σn
i=1EUE = Σ(EU1 + EU2 + EU3 + EU4 . . . . . . . . . . . . . . . . . . . . .+ EU_N) (14)
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where ETUE represents the total user energy and EU denote the individual user energy. Total users
energy cost in a community is carried out by the given equation:

ETUEC =
∑

(EU1 + EU2 + EU3 + EU4 . . . . . . . . . .+ EU_N) x EUC (15)

where ETUEC represents the total user energy cost and EU denote the individual user energy and EUC

illustrates the individual user energy cost. The total number of hours in a day is given by the given
equation which is 24 h.

HTNH = ΣT
i=1EH (16)

where T equals to 24 due to 24 h in a day and HTNH represents the total number of hours and EH

denote the hourly user energy consumption. Total energy consumption and cost for a week is shown
in the given equation:

DTND = ΣW
i=1ED (17)

where W equals to 7 and DTND represents the total number of day and ED denotes the daily user energy
consumption. Total satisfied power demands are carried out by the given Equation (18)

pTSPD =
∑

pSPD (18)

where PTSPD denotes the total satisfied power demand and PSPD represents the satisfied power demand.
However, the sum of individual satisfied power demand is equal to the total satisfied power demand.

3.2. The Proposed Algorithm and Simulations

In this section, we introduce the simulation framework and proposed a power-sharing algorithm.
An advanced and efficient power-sharing algorithm is proposed which defines the step by step
simulation execution process and priority basis energy management for residential consumers is placed
in the Appendix A.

The Proposed Power-Sharing Algorithm (PSA)

The real-time electricity prices are considered in the simulation process, allowing us to overcome
the conventional optimization problems. To resolve these issues an efficient algorithm is designed
called power-sharing algorithm (PSA). The PSA is used to optimize the new proposed community-
based smart grid model considering a backup battery storage system (BBSS) [37]. In this study PSA is
also discussed to effectively share user battery power and backup energy storage within the community
smart grid. The prime objective of the proposed algorithm is to minimize the energy cost with a high
level of customer satisfaction. Residential consumers consume most of the energy to meet their smart
home appliances. When smart battery and local utility are unable to support, a BBSS is connected with
the power data aggregator unit (PDAU) to support the electricity supply. BBSS channels the energy to
the respective user by the coordination of PDAU. All decisions including emergency case are made
by PDAU. If the residential user (RU) energy consumption is greater than the battery capacity then
battery needs to charge. At that time the user sends a demand message to the PDAU. Taking approval
of PDAU, the user can receive shared energy from other user battery. Moreover, when all supplies are
off, the requested user receives power from the BBSS service.

4. Simulation Results

The proposed energy management procedure and simulation results are outlined in this section
to analyze and compare the effectiveness of the proposed HEM scheme. An on-grid tied smart grid
framework is taken into account in this research. Sufficient PV solar and wind power generation reduce
the utility tariffs. An efficient power-sharing algorithm (PSA) is developed to effectively manage
residential consumer’s smart battery power-sharing. We have also considered a backup battery storage
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system (BBSS) having a group of a battery bank to support residential consumers while all supply
is off. The capacity of BBSS is selected as 30 kWh, and the minimum and maximum energy storage
margins are taken as 5 kWh and 30 kWh, respectively.

The primary energy level of the BBSS is considered as 10 kWh. The smart grid constraints and the
other input values are presented in Table 1. The input data are picked from real-time investigations.
However, those are a bit scaled up or down due to precise application of this research. We have
considered three smart grid scenarios, one existing and two proposed to compare the percentage of
energy and cost savings. The simulation results are used to compare with the existing scenarios to
show how the proposed scheme is better for reducing energy demand and cost significantly. It also
evaluates the hourly and daily energy consumption and prices considering satisfied power demand to
make the comparison effectively to propose an economic solution for residential consumers.

Table 1. Simulation parameters.

Parameters Value Unit

Solar PV system
Total area, A 125 m2

Efficiency, ïs 16 %
Maximum power 20 kW

Wind generators
Cut in velocity 3 m/s
Cut out velocity 25 m/s
Rated speed 10 m/s
Maximum power 20 kW

Battery
Initial energy level, BLo 10 kWh
Maximum energy level, BLmax 30 kWh
Minimum energy level, BLmin 5 kWh
Energy capacity 30 kWh
Total hour 24 h
Total day 7 d
Total user 20
Total iteration 10
Energy cost 0.072 €/kWh

4.1. Case Study

Several case studies are carried out to presents the residential consumer’s energy consumption
patterns and compare due to get economic solutions. A group of 20 residential consumers is considered
to have several smart grid communities to evaluate energy and cost through some case studies. Besides,
we have considered three scenarios one existing and two proposed. In scenario-1, all residential
consumers have power supply from local utility only whereas in scenario-2, all residential consumers
have a power supply both from the local utility and RESs. Moreover, in scenario-3, all residential
consumers have power supply from local utility, renewable energy and, backup battery storage system
(BBSS).

• Scenario 1: Residences with local utility support only;
• Scenario 2: Residences with local utility support and RESs;
• Scenario 3: Residences with local utility support, RESs and BBSS.

4.1.1. Case I

In this case, residential consumers considered a local utility as their primary source of energy.
There is no renewable energy generator and energy storage system to support while power shortage.
This approach is completely unable to manage economic issues and energy minimization due to the
absence of RESs and backup battery storage systems (BBSS). All residence appliances receive energy
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from local utility and use as much as they require and after a certain time pay for the utility bills.
Energy consumption and electricity cost management for three scenarios over 24-h time horizon is
illustrated in Figure 9. In this research, we have considered scenario 1 as existing whereas scenario 2 is
the proposed energy management scheme. Residential consumers have different load patterns such as
peak-load, off-peak and mid-peak loads. The load profiles are presented in Figures 5–7. To optimize
residential consumer’s energy consumption and cost it is necessary to take some efficient initiatives
and techniques.

Figure 9. Energy consumption and electricity cost management for three scenarios over 24 h
time horizon.

Some effective strategies and RESs integration are taken in to account in the proposed scheme.
From Figure 9 it is clear that the highest energy consumption is attained by scenario 1 and the lowest
energy consumption is cut by scenario 3.

4.1.2. Case II

A typical power production using solar panel and wind turbine is considered that are figured
in Figures 3 and 4, respectively. The spasmodic power production from wind and solar generators
is completely stochastic. Sometimes it is tough to meet residential consumer power demand due to
unpredictable power generation. To overcome these issues a backup battery storage system (BBSS) is
introduced in the smart grid environment. The comparison of proposed and existing energy and cost
management over 24 h time horizon is presented in Figure 10 and the relationship of proposed and
existing energy, and cost management for case II is tabulated in Table 2.

Table 2. Comparison of the proposed and existing energy, and cost management for case-II.

Scenarios Energy (kWh) Cost (EUR) % Saving

Existing 77 5.50 0
Proposed 1 50 3.60 35
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Figure 10. Comparison between proposed-1 and existing scenario of energy and electricity cost
management over 24 h time horizon.

The comparison between proposed 1 and existing energy and cost management scheme over 24-h
time horizon is presented in Figure 10 and solar and wind power generation is presented in Figures 3
and 4, respectively. Renewable energy generation is stored in a smart battery thus residence consumers
can use and share battery power when they require. The electricity cost for this case study is 3.60 EUR,
which is 35% less than the existing approach. It should be mention that the cost-saving is high due to
the power purchasing from grid and RESs power generator. Moreover, during the peak hours, RESs
generates the extra power than the exact demand and it is an extra reason behind the dramatic increase
in profits.

Satisfied power demand: When residential consumers can not satisfy power demand by local
utility supply then RESs can support power demand using an efficient power-sharing algorithm (PSA).
Renewable energy generation is stored in a smart battery and residential consumers can use and share
their battery power each other when they require. Figure 11 presents the satisfied power demand
management between existing and proposed scenarios over 24 h time horizon.

Figure 11. Satisfied power demand management between existing and proposed scenarios over 24 h
time horizon.

Figure 12 presents the satisfied power demand management between existing and proposed 1
scenario over 24 h time horizon. In the case of scenario 1, the total number of satisfied power demand
is empty due to local utility supply only. However, scenario 2 has both local utility and renewable
energy generation support, for this reason, it can satisfy 18% power demands and tabulated in Table 3.
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Figure 12. Comparison of satisfied power demand management between proposed 1 and existing
scenario over 24 h time horizon.

Table 3. Comparison of the proposed and existing satisfied power demand management for case-II.

Scenarios Satisfied Power Demand % Saving

Existing 0 0
Proposed 1 16 18

4.1.3. Case III

To validating the efficiency of the offered method, the simulation procedure is executed to evaluate
the daily energy and cost considering a backup battery storage system (BBSS) and power generation
from RESs. The day with RESs power generation and BBSS is added to the simulation to notice the
retort of the energy and cost minimization. Figure 13 presents the energy consumption and electricity
cost management for three scenarios over 24 h time horizon. The electricity charge of the surviving
method is 3.60 EUR with a day simulation period. 24-h simulation is observed in the proposed energy
management approach where the BBSS is charged from the utility grid up to 30 kWh. Besides, during
the high price hours of the electricity, BBSS fully discharged to fulfill the power demand. Again the
BBSS consumed electricity for charging itself from the grid during the low price hours and touches
the highest level of energy. A comparison between the offered approach and the existing ones is
revealed in Table 4. The BBSS takes charge from the RESs and reaches the highest levels of energy in
the subsequent time slots. The proposed 2 scenario can save energy and cost up to 45% compared to
the existing method.

Satisfied power demand: When residential consumers can not satisfy power demand by local
utility supply then an efficient power-sharing algorithm starts to satisfy user power demand using
renewable energy sources and BBSS. Figure 14 presents the comparison of the satisfied power demand
management between existing and proposed 2 scenarios over 24 h time horizon. In the case of the
existing scenario, the total number of satisfied power demand is empty due to local utility supply only.
However, the proposed 2 scenario has local utility, renewable energy generation, and BBSS support, for
this reason, it can satisfy the highest numbers of power demands which are 22.5% and demonstrated
in Table 5.
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Figure 13. Comparison between proposed-2 and existing scenario of energy and electricity cost
management over 24 h time horizon.

Table 4. Comparison of the proposed and existing energy, and cost management for case-III.

Scenarios Energy (kWh) Cost (EUR) % Saving

Existing 50 3.60 0
Proposed 2 42 3.00 45

Figure 14. Comparison of satisfied power demand management between proposed-2 and existing
scenario over 24 h time horizon.

Table 5. Comparison of the proposed and existing satisfied power demand management for case-III.

Scenarios Satisfied Power Demand % Saving

Existing 0 0
Proposed 2 20 22.5

4.2. Discussion

In this section, the overall energy and cost minimization for the residential consumers is outlined
based on several case studies. Case I is completely unable to minimize energy and monetary cost
due to the absence of an alternative sources of energy and BBSS. However, case II and case III can
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save a significant amount of energy and cost considering renewable energy, BBSS and satisfied power
demand. Percentage of savings is tabulated in Table 6 to identify the most profitable case.

Table 6. Comparison of the proposed and existing energy, and cost management within case-I, II,
and III.

Cases Energy (kWh) Cost (EUR) % Saving

Case I 77 5.50 0
Case II 50 3.60 35
Case III 42 3.00 45

Figure 15 presents the percentage of energy savings management within different case studies
over 24 h time horizon. Case II can save 35% energy consumption whereas case III can save 45%. The
pink line indicates the percentage of energy savings which is sharply increasing due to cost-effective
energy management.

Figure 15. Percentage of energy savings management within case-I, II, and III over 24 h time horizon.

On the other hand, Figure 16 illustrates the percentage of monetary cost savings management
within different case studies over 24 h time horizon. Case II can save 35% energy cost whereas case III
can save 45%. The pink line indicates the percentage of energy cost savings which is linearly increasing
due to economic energy optimization.

The comparison of average daily energy consumption and cost management within three different
cases are tabulated in Table 7. From Figure 17 the daily energy consumption is the greatest in case I
whereas in case II and case III is declining. Evaluating several case studies the overall energy and cost
reduction is profitably accelerated in case II and case III due to considering RESs, BBSS, and PSA in the
smart grid environment. To get dual supply opportunity we have considered an on-grid tied smart
grid system.
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Figure 16. Percentage of energy cost savings management within case-I, II, and III over 24 h time horizon.

Table 7. Comparison of the average daily energy consumption and cost management within three cases.

Cases Energy (kWh) Cost (EUR)

Case I 77 5.50
Case II 50 3.60
Case III 42 3.00

Figure 17. Comparison of average daily energy consumption and cost management within case-I, II,
and III.

In case any load shading due to system maintenance then RESs and BBSS can support a part of
the energy community. Sometimes residential consumers cannot estimate load management properly
due to unpredictable RESs generation. However, the outlined efficiency is not much due to RESs and
BBSS limitations. A large BBSS and the best quality of RESs can significantly increase the percentage of
energy and cost savings. However, the residential consumers may not be interested or effort the cost
due to huge primary investment.

A comparison of energy consumption and cost for a single residential consumer in a day is
illustrates in Figure 18 and Table 8 to get a basic idea regarding energy and respective cost within
different scenarios. The highest energy consumption shows in scenario-1 whereas the lowest energy
consumption is done by the scenario 3.
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Figure 18. Comparison of the average daily energy consumption and cost management for a single
user within three scenarios.

Table 8. Comparison of the average daily energy consumption and cost management for single user
within three scenarios.

Scenarios Energy (kWh) Cost (EUR)

Scenario 1 3.85 0.27
Scenario 2 2.50 0.18
Scenario 3 2.10 0.15

A comparison of the proposed and existing satisfied power demands within different case studies
are illustrated in Figure 19 and tabulated in Table 9. In Figure 19 the pink line indicates the percentages
of satisfied power demand savings which are 18% and 22.5%, respectively. Case III has 4.5% more
satisfied power demand savings than case II and 22.5% more savings than case I. The prescribed
percentage of savings is not much and the amount can be accelerated with the aid of a large backup
battery bank and RESs system. However, it requires large space and huge primary investment. For
this reason, the residential consumers may not effort or interested to invest a large amount of economy.
Moreover, the proposed model can be implemented effectively on a small scale micro-grid environment.

Figure 19. Percentage of satisfied power demand savings within cases I, II, and III over 24 h time horizon.
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Table 9. Comparison of the proposed and existing satisfied power demands within case-I, II and III.

Cases Satisfied Power Demand % Saving

Case I 0 0
Case II 16 18
Case III 20 22.5

4.3. Case Comparison

The vital concern of this research is the case comparison to understand and outline the most
cost-effective solution to minimize energy and cost for the residential consumers. Case I consider fixed
utility tariffs and a nominated kW demand thus the consumer cannot exceed the allocated energy
demand which is set by the utility companies. For this reason, the consumer cannot avoid the peak
load and higher utility tariffs. Case II demonstrated an idea to overcome these difficulties by installing
RESs with a utility grid to compensate the peak load and higher utility costs. However, it is not always
possible due to dependency on solar irradiation and wind velocity during cloudy weather and winter
season. The compared amount is not much higher due to the moderate size of ESS. However, installing
a large BBSS requires a big battery bank, leading greater energy costs which consumers may not effort.

Finally, case III has additional backup battery storage systems (BBSS) compared to case II to
eliminate the mentioned difficulties which is presented in Figure 20. The BBSS is charged during low
energy cost periods and discharges when peak loads and extra demand arise. We have taken into
account the point of view that the initial investment for RESs and BBSS is cost-effective and sustainable.
A depreciation cost is considered with RESs and BBSS to make the proposed model more realistic.
Government and many energy providers encourage residential consumers by providing home loans for
installing small scale renewable energy generators. This may be a flexible opportunity for low-income
bracket individuals and mid-category consumers. The proposed model can be implemented effectively
on a small scale micro-grid environment.

Figure 20. Comparison of the percentage of energy and cost saving for cases I, II and III.

5. Conclusions

A home energy management scheme for smart grid community with renewable energy sources
and backup battery storage system is developed in this paper for a group of residential consumers.
The residential energy management (REM) problem with consumer’s energy consumption, cost
minimization, and satisfied power demand is modeled. The home appliances’ priorities, energy
availability and real-time energy pricing are considered in the proposed power-sharing technique. The
offered model with the power-sharing technique is implemented in a practical system considering
twenty residential consumers. The economic benefits of the proposed REM scheme with BESS
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are investigated with three different scenarios. The financial analysis of the proposed technique is
conducted to show the monetary savings which is guaranteed in our proposed scheme. It is clear from
the simulation results that the recommended scheme can save energy and costs by up to 35% and 45%
compared to existing methods. Also, the results outline that the proposed method can save satisfied
power demands by up to 16% and 22.5% compared to the existing method. From overall analysis,
the proposed REM model can enhance the benefits of the RESs and BBSS integration. Moreover, the
simulation outcomes prove the potential benefits of the residential consumers and endorse the green
effort to improve the sustainability and effectiveness of the power management infrastructure.

Author Contributions: M.M.U.R., F.G., M.A.H. and M.S.A. initiated the idea, designed the energy management
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Nomenclature

SG smart grid pW Wind power
SM smart meter ETHA total home appliances
HEMS home energy management scheme EL lighting load
PDAU power data aggregator unit EWM power by washing machine
DSM demand-side management WR power taken by refrigerator
PSA power-sharing algorithm EC power taken by computer
HANs home area networks EDW power taken by dishwasher
SMA smart metering architecture EH power taken by heater
DSO distribution system operator EBB backup battery storage
RESs renewable energy sources EEE users extra energy
EMS energy management system EEEC users extra energy cost
ESS energy storage system PUC utility company
SI solar irradiation PUP utility price
PV photovoltaic CT total number of community
PwT total wind power RUT total number of residential users
PsT total solar power ETUE total users energy
BLo initial battery energy level ETUEC total users energy cost
BLmax maximum battery energy level HTNH total number of hours
BLmin minimum battery energy level DTND total number of days
EB battery storage pTSPD total satisfied power demand
pS solar power IT total number of iteration
REM residence energy management ECE cost of energy

BCSB capacity of smart battery
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Appendix A

Algorithm A1: Power-Sharing Algorithm (PSA)

1: Initialization.
2: Load data.
3: Start simulation.
4: Iteration.
5: Generate random values.
6: if user power ≥ battery power then
7: Charge user battery.
8: Otherwise, the user battery is the maximum.
9: end if

10: else if found healthy battery then
11: Charge user battery.
12: Otherwise, search for another healthy battery.
13: end else if

14: if all power supply off then
15: Use a backup battery storage
16: Otherwise, use the user battery.
17: end if

18: Evaluate energy & prices.
19: Evaluate satisfied power demand.
20: repeat step 4
21: until iteration ≥ 10
22: Stop simulation
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Abstract: This paper presents a two-level hierarchical energy management system (EMS) for
microgrid operation that is based on a robust model predictive control (MPC) strategy. This EMS
focuses on minimizing the cost of the energy drawn from the main grid and increasing
self-consumption of local renewable energy resources, and brings benefits to the users of the
microgrid as well as the distribution network operator (DNO). The higher level of the EMS comprises
a robust MPC controller which optimizes energy usage and defines a power reference that is
tracked by the lower-level real-time controller. The proposed EMS addresses the uncertainty of
the predictions of the generation and end-user consumption profiles with the use of the robust MPC
controller, which considers the optimization over a control policy where the uncertainty of the power
predictions can be compensated either by the battery or main grid power consumption. Simulation
results using data from a real urban community showed that when compared with an equivalent
(non-robust) deterministic EMS (i.e., an EMS based on the same MPC formulation, but without the
uncertainty handling), the proposed EMS based on robust MPC achieved reduced energy costs and
obtained a more uniform grid power consumption, safer battery operation, and reduced peak loads.

Keywords: hierarchical control; robust control; predictive control; microgrid; uncertainty; prediction
interval; energy management system

1. Introduction

The integration of large numbers of distributed energy resources (DERs) into the electricity
distribution system may play an important role in improving its resilience and sustainability. However,
when high penetrations of distributed generation (DG) occur, the management of local and wide-area
flow may be compromised and power quality may not satisfy required standards [1].

In [2–4] it is reported that the active management of DG units and controllable loads in different
sections of the distribution network (DN) is an acceptable approach for increasing the penetration of
DG into a passive DN. The active management of a DN requires the integration of control strategies
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at different levels in a smart grid framework, as well as communication technologies that allow the
connection of DG units to the DN.

This work deals with active management within a DN, namely an energy management system
(EMS) for an “energy community”. In the context of an increasing trend for small-scale microgrids
to encourage the local consumption of energy generated from their RES instead of exporting any
surplus to the main grid, energy communities are now appearing where end-user customers manage
their local DERs for the benefit of their own microgrids [5]. This may apply to a community that is
either geographically co-located or that exists as a virtual entity distributed around a much larger
geographical space, with their capabilities “aggregated” by a communications network via web-type
services. In this context, the main distribution grid supplies the energy deficit that the microgrid may
have. The energy community concept is growing in popularity in the UK, and regulatory change
may occur in the foreseeable future that may make the costs of operating this type of community less
prohibitive [6].

Hierarchical schemes with multiple levels have been proposed to exploit the benefits of different
types of EMS. One possible division lies in the use of optimal controllers (optimal EMSs) or non-optimal
controllers (non-optimal EMSs). Most EMSs for scheduling that have been reported in the specialized
literature are based on optimal controllers. Loads and energy resources must be predicted in advance,
making the effectiveness of optimal approaches dependent mainly on the accuracy of the prediction
models. Computation times can also be significantly longer than those for non-optimal EMSs,
particularly when using nonlinear predictors. When prediction models cannot capture the behavior of
the system or be implemented in real-time, other options are controllers with real-time decision-making
capabilities. These can be based on instantaneous power measurements rather than prediction profiles
as in [7], or on rules (“rule-based” control) as in [8–11]. For this type of EMS, the aim is usually to
reduce energy costs by the efficient use of a battery and maximizing the use of renewable energy to
satisfy local demand, while maintaining the reliability of the electrical system. They do not require a
detailed model of the system and can respond quickly to changes in the system. However, they are not
guaranteed to be optimal and can lead to inefficient energy usage.

Model predictive control (MPC), also known as receding horizon control, is an optimal control
strategy that has been used for optimal EMSs. It is based on the optimization of the system’s
performance over a prediction horizon, which is repeated in each sampling time. Often, the goal of
the EMS is to economically manage the DERs to meet certain power quality standards. Therefore,
predictions of the renewables and demands are used to find the optimal commitment and dispatch the
DER units during a prediction horizon according to some selected performance criteria [12]. Some
examples of EMSs based on MPC are reported in [13–18].

An important aspect for optimal EMSs is uncertainty—in this case of the prediction profiles of
available renewable energy and end-user consumption [19]. One common paradigm for handling
uncertainty is robust optimization, which uses uncertainty sets and combines a worst-case analysis with
min–max formulations to obtain optimal solutions that are robust against variations in a parameter with
respect to a nominal value (optimal worst-case scenario) [20]. Robust optimization for the scheduling
of microgrids has been used for different configurations, such as wind power optimization [21],
provisional microgrids [22], and distributed EMSs [23], among others. Robust MPC is a family of MPC
controllers which includes robust optimization for handling uncertainties in the predictions, and has
also been used for the microgrid EMSs [24–27]. An EMS where the bounds of the uncertainty are
given by fuzzy interval models is proposed in [25]. This type of model will be used for the uncertain
prediction profiles in this work. All these works dealing with robust optimization find an optimal
predicted sequence of control actions that is fixed at each sampling time. However, it is known from
the theory of dynamic programming that allowing some compensation of the predicted sequences,
as a function of the predicted states or uncertain variables, allows the optimization to find improved
solutions. In this case, the optimization is said to be performed over a control policy. Few cases of
EMS implement optimization over control policies. While a computationally inefficient (optimization
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problem with exponentially increasing size with the prediction horizon) robust MPC based EMS is
proposed in [28], a more efficient formulation [29] optimizes a predicted sequence of nominal control
actions which is corrected by linear terms of disturbances that would affect the system.

In this context, this paper presents a two-level hierarchical EMS for microgrids, where the
higher-level controller is based on robust MPC. The aim of the hierarchical two-level architecture,
similar to that of [30,31], is to incorporate the benefits of schemes based on both optimal controllers and
real-time decision making. Therefore, the EMS comprises a rule-based approach at the lower level with
real-time control capabilities and a robust MPC at the higher level to manage the energy efficiency and
uncertainties in the predictions of renewable energy resources and end-user load profiles. The main
contribution of this work is the design of a robust MPC controller based on fuzzy intervals for the higher
level. This controller considers a robust optimization over a control policy parameterized by gains
that compensates the uncertainties of the predictions, which are modeled based on fuzzy intervals.
The control policy is similar to that of [29], but it was designed according to the particular microgrid
considered in this work so that the uncertainty of the power predictions can be compensated either by
the battery or main grid power consumption. This compensation enables the controller to find better
solutions than other robust MPC formulations with no uncertainty compensation. The predictions
of renewable generation and demand are given by fuzzy interval models, which characterize the
uncertainty and capture the nonlinearity and temporal dynamics.

Simulation results were obtained using data from a real urban residential community and show
the benefits of the proposed strategy. The proposed hierarchical EMS based on robust MPC (robust
EMS) achieved a more uniform grid power consumption when compared to the same hierarchical EMS
based on MPC (deterministic or non-robust EMS) but without uncertainty handling, since it was able
to keep the community power flow closer to the reference power defined by the higher-level controller.
It could also achieve safer battery operation and reduced peak loads compared to the deterministic
EMS, in addition to typical features of EMSs such as energy cost minimization. The benefits of the
robust EMS are due to the incorporation of uncertainty in the formulation and its compensation
scheme, which helps the systems to be prepared for errors in the predictions that might yield
sub-optimal decisions.

The remainder of this paper is organized as follows: Section 2 presents the problem statement.
Section 3 describes the lower level of the EMS: the Community Power Controller at the microgrid level.
Section 4 provides the details of the higher level of the EMS: the proposed novel robust predictive
control strategy based on fuzzy prediction interval models. Section 5 presents the simulation results
showing microgrid operation based on real load and photovoltaic energy profiles from a town in the
UK. The last section provides the main conclusions and recommends future work.

2. Problem Statement

A hierarchical EMS as in [30,31] is considered in this work. This paper presents an improvement
with respect to these two, as only the lower-level controller within the hierarchy is defined in [30],
while uncertainty is not tackled in [31]. The EMS in this work comprises two levels: the microgrid
(energy community) level and the main grid level, as shown in Figure 1. Within this framework,
the proposed microgrid is composed of domestic demand (a number of non-controllable loads),
a number of renewable generation units, and an energy storage system (ESS). Several ESSs could
easily be considered in the formulation by including constraints for all of them. However, a single
ESS was considered here for simplicity of exposition. This configuration of microgrids is typically
associated with groups of dwellings or small villages, and mainly incorporates renewable resources
such as photovoltaic arrays and wind generators.

The microgrid can freely use the power from the ESS and the renewable generation, and it can
purchase power from the distribution network operator (DNO) for consumption, but it cannot sell. A
maximum power limit is set to reduce power peaks of the energy bought from the DNO, and no power
can be sent back to it. The ESS also can consume energy in order to store it. The entire renewable
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generation is either consumed by the loads or stored in the ESS. In this context, the role of the DNO is
to supply energy when the renewable generation and the ESS cannot provide enough power to satisfy
the demand.

Figure 1. Hierarchical energy management system (EMS) Structure.

At the main grid level, a robust MPC controller operates to provide a realistic power reference
(Pmgref) for the microgrid, of the power to be consumed from the DNO: this is the “Energy Profiler”.
At the microgrid level, the “Community Power Controller” aims to track these references in real-time.

The robust MPC implements an optimization of the predicted performance cost given by the price
of the energy bought from the main grid, while considering the uncertainty associated with predictions
of the renewable generation and consumer load and operational constraints. A sampling time of 30
min was considered because energy markets tend to operate with half-hourly update rates, which
defines the update frequency of Pmgref.

At the microgrid level, the Community Power Controller operates with a sampling time of 1 min
to control the net power flowing from the main grid to the microgrid (Pmg) in order to track the
power reference (Pmgref) sent from the Energy Profiler, while satisfying demand and guaranteeing safe
ESS operation.

The following sections present the details of the Community Power Controller at the microgrid
level and the robust MPC for the main grid level.

3. Community Power Controller at the Microgrid Level

The ESS is the only dispatchable DER in the proposed microgrid. Thus, the Community Power
Controller can only set the charging/discharging power profile (PB) of the ESS (see Figure 2) in order
to track Pmgref as sent by the Energy Profiler. PB > 0 indicates the ESS is discharging (generation) and
PB < 0 indicates the ESS is charging (load). The ESS consists of a power converter and battery packs,
however converter losses are not considered in this study.

The active power of the aggregated microgrid consumption (PL) and aggregated renewable
generation (PRG) are measured at the point of common coupling with a sampling rate of 1 min to
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calculate the net power (Pnet) of the microgrid (given by Pnet = PL − PRG). The error between the
microgrid power target and the net power is given by:

emg(k) = Pmgref(k)− Pnet(k). (1)

Therefore, emg is the required power from the ESS (PB) so that the instantaneous microgrid
power Pmg tracks the target Pmgref provided by the robust MPC in the Energy Profiler. Based on this,
the microgrid-level controller sets the power of the ESS as PB = emg as long as certain constraints are
satisfied, as now described.

LP

Energy Storage
System

Real-time 
Controller

Renewable 
Generation

Load

Microgrid

mgrefP

RGP

netP

mgPmge BP

Estimators

SoC chg dischg
max max,P P

BP

netP

Figure 2. Block diagram at the microgrid level. SoC: state of charge.

For safe operation of the ESS, the maximum available power for charging (Pchg
max) and discharging

(Pdischg
max ) is calculated as in [32,33]. These power values are obtained to prevent battery damage by

over/under charge (state of charge, SoC) or voltage, or by exceeding the rated current or power limit.
The ESS power PB cannot exceed these values. Likewise, SoCmin = 0.2 and SoCmax = 0.8 are the
minimum and maximum values allowed for the SoC. These were set to increase the lifespan of the
batteries, because capacity fade is typically accelerated by operating profiles with high average SoC
and deep discharge levels [34]. To ensure operation within these limits, the SoC value is estimated
based on an unscented Kalman filter [35], with outer feedback correction loops as presented in [36].
This is because Bayesian estimation algorithms have been demonstrated to be a well-suited estimation
tool for nonlinear problems such as SoC estimation, and they have several advantages including
real-time implementation and use of empirical models that better deal with limited and noisy data
compared to methods such as ampere-hour counting, internal impedance measurement, and open
circuit voltage measurement [37,38].

If the constraints defined above are violated, PB is set as close to emg as possible to satisfy these
constraints. Thus, the microgrid-level controller output PB obeys the following rules:

R1 : i f emg(k) ≥ 0 and SoC(k) ≥ SoCmax then PB(k) = 0;

R2 : i f emg(k) ≥ 0 and SoC(k) < SoCmax then PB(k) = −min(emg(k), Pchg
max(k));

R3 : i f emg(k) < 0 and SoC(k) ≥ SoCmin then PB(k) = min(−emg(k), Pdischg
max (k));

R4 : i f emg(k) < 0 and SoC(k) < SoCmin then PB(k) = −min(PRG(k), Pchg
max(k)).

(2)

The instantaneous microgrid power (Pmg) is given by:

Pmg(k) = Pnet(k)− PB(k), (3)
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and this tracks Pmgref as long as the resulting values of PB and SoC do not violate constraints.

4. Robust Model Predictive Control

The role of the higher-level controller is to calculate the reference power (Pmgref) so that it
minimizes the energy cost for the community, but also ensures that it can be tracked reasonably well
by the Community Power Controller based on the available resources (PB and PRG) and load (PL).

The proposed EMS is based on robust MPC, and thus it requires models to predict the expected
value and variability of the demand, as well as the energy available from the renewable resources
over a prediction horizon. Clearly, the performance of the robust EMS depends on the quality of these
models. In this work, fuzzy prediction interval models are used, as presented next.

4.1. Fuzzy Prediction Interval Model

Fuzzy prediction interval models are used to predict the expected values and the uncertainty of
the net power of the microgrid (Pnet). These predictions are used in the main grid-level robust MPC,
with a sampling time of 30 min. Since the original data has a 1 min resolution, Pnet(k) represents the
average of the measurements (made once per minute) for the 30 min following time instant k.

The fuzzy prediction interval model proposed in [39] is adopted in this work. The fuzzy model
for obtaining the predicted expected value of Pnet is given by

P̂net(k) =
R

∑
r=1

βr(Z(k))P̂r
net(k) =

R

∑
r=1

βR(Z(k))[1 Z(k)]θr = ΨTΘ, (4)

where Z(k) = [Pnet(k − 1), . . . , Pnet(k − Ny)], the number of rules is R, βr is the activation degree, θr

is the coefficient vector of the consequences, and P̂r
net(k) = [1 Z(k)]θr is the local output at time k

of rule r, with r = 1, . . . , R. ΨT = [ψT
1 , . . . , ψT

R] is the fuzzy regression matrix, and ΘT = [θT
1 , . . . , θT

R]

is the coefficient matrix for all rules. The maximum regressor order corresponds to one day before
(Ny = 48), and some of these input variables can be discarded using a sensitivity analysis [40].
The Gustafson–Kessel clustering algorithm is used to find R and the parameters of βr(·). Parameters
Θ are estimated by the least-squares method [41].

The predictions for j steps ahead made at time k are:

P̂net(k + j) =
R

∑
r=1

βr(Z(k + j))P̂r
net(k + j), (5)

where Z(k + j) = [Pnet(k + j − 1), . . . , Pnet(k + j − Ny)], j = 1, . . . , N.

Fuzzy prediction interval models provide the lower (P̂net(k + j)) and upper (P̂net(k + j)) bounds
predicted at time k such that the real values of Pnet(k + j) satisfy P̂net(k + j) ≤ Pnet(k + j) ≤ P̂net(k + j),
with a certain coverage probability p, for j = 1, . . . , N where N is the prediction horizon. It is proposed
in [39] that the lower and upper bounds (P̂net) and (P̂net) are estimated by

P̂net(k + j) = P̂net(k + j) + αk+j ITS(k + j), (6)

P̂net(k + j) = P̂net(k + j)− αk+j ITS(k + j), (7)

where ITS(k + j) = ∑R
r=1 βr(Z∗(k + j))ITS

r (k + j), with ITS
r (k + j) = σ̂r(1 + ψ∗T

r (ψrψT
r )

−1
ψ∗

r )
1/2

, is the
component associated with the covariance of the error between the observed data and the local
model outputs. The current input ψ∗T

r is associated to a new datum Z∗(k + j). Additionally, αk+j are
scaling parameters that are tuned using experimental data so that the interval defined by [P̂net(k +
j), P̂net(k + j)] contains the actual values of Pnet(k + j) with a given coverage probability. The next
section presents deterministic and robust MPC formulations using fuzzy prediction interval modeling.
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The deterministic MPC is presented to illustrate the basics of the formulation, and it will be used as
a basis for comparison. Focus is later given to the robust MPC, which is the main contribution of
this work.

4.2. Deterministic EMS

The role of the MPC scheme at the main-grid level is to minimize the cost of the power delivered
to the microgrid from the main grid. This controller uses a model of the microgrid dynamics to find its
predicted behavior, which assumes that there are no losses, nor congestion or voltage regulation issues
for the power transfer from the DNO to the microgrid and between elements within the microgrid.
The sampling time of the model and the controller is Ts = 30 min. The prediction horizon of the
controller is N = 48; the power references one day ahead (48 steps with Ts = 30 min) are found to
optimize the predicted behavior for a one-day ahead operation. More precisely, at each discrete time k,
an optimization problem uses this model to find the optimal sequence of Pmgref(k + j), j = 0, . . . , N − 1
that minimizes the energy consumption during the prediction horizon N.

The system dynamic is given by the evolution of the energy in the ESS (EB). These dynamics
must be included in the MPC optimization, and are described by a simplified linear model:

EB(k + j + 1) = EB(k + j)− TsPB(k + j). (8)

The prediction of future states requires an estimation of the current state, obtained from the
unscented Kalman filter at the microgrid level, which sends this information to the upper layer.

The power balance at the microgrid level must also be imposed in the MPC optimization.
This constraint is invoked as

Pmgref(k + j) = P̂net(k + j)− PB(k + j). (9)

Here, the net power of the microgrid is given by its expected values P̂net(k + j), which are
obtained by the fuzzy prediction model defined in (5). Other constraints that must be considered in
the optimization include the minimum and maximum limits of battery capacity:

Emin = 0.2Cn ≤ EB(k + j) ≤ Emax = 0.8Cn, (10)

where Cn is the nominal capacity, and the limits for charging and discharging of the ESS are

−Pdischg
max (k + j) ≤ PB(k + j) ≤ Pchg

max(k + j), (11)

where the bounds are approximated linearly, such that Pdischg
max (k + j) = αdPmax

B SoC(k + j) and

Pchg
max(k + j) = αcPmax

B (1 − SoC(k + j)). Here, Pmax
B is the maximum instantaneous power given

by the manufacturer, and αd and αc are tuned parameters which avoid violation of the under/over
SoC limits, respectively. The last constraints to be used are the minimum and maximum grid powers:

−Pmin
mg ≤ Pmgref(k + j) ≤ Pmax

mg . (12)

Since the EMS aims to maximize self-consumption (i.e., minimize energy exported to the main
grid) and to minimize the power drawn from the main grid during peak periods, Pmin

mg = 0 was
chosen, and Pmax

mg can be chosen arbitrarily in order to reduce power peaks that are purchased from the
main grid.
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With these considerations, and because the EMS also aims to minimize costs, the optimal control
problem to be solved at time k is given by:

min
{Pmgref(k+j)}j=0,...,N−1

N−1

∑
j=0

C(k + j)Pmgref(k + j)Ts (13)

subject to (8)–(12) all for j = 0, . . . , N − 1,

where C(k + j) is the energy price which is a known parameter for the EMS and is based on a Time of
Use tariff scheme; the price of the unit of energy depends on the hour within the day. This is a linear
program. In this paper, we solved the problem using a Matlab implementation of an interior-point
algorithm for linear programs. Finally, only the first element of the sequence {Pmgref(k + j)}j=0,...,N−1
(namely, Pmgref(k)) is actually sent as a reference to the microgrid, and the procedure is repeated at
time k + 1 (i.e., 30 min ahead).

4.3. Robust EMS with Explicit Uncertainty Compensation

The formulation of Section 4.2 ignores the uncertainty of the predictions of Pnet. While the
closed-loop nature of the controller provides some robustness to uncertainty, its explicit inclusion in
the formulation may bring further benefits in performance, as discussed in [42], and will be seen in
Section 5. This section deals with uncertainty handling in the controller formulation.

Fuzzy prediction interval models are used to model the uncertainty of Pnet predictions. The real
values Pnet(k + j) satisfy Pnet(k + j) = P̂net(k + j) + ΔPnet(k + j), where P̂net(k + j) is the expected
value of the prediction and ΔPnet(k + j) is the deviation of the actual value from the prediction.
This deviation is uncertain, but satisfies

ΔPnet(k + j) ∈ [ΔP̂min
net (k + j), ΔP̂max

net (k + j)], (14)

where
ΔP̂max

net (k + j) = P̂net(k + j)− P̂net(k + j)

ΔP̂min
net (k + j) = P̂net(k + j)− P̂net(k + j),

(15)

for j = 1, . . . , N − 1. These intervals are designed to have a minimum interval width and guarantee
that the future real values fall within the interval with a certain coverage probability.

The solution for deterministic optimal control problems such as deterministic MPC is a sequence
of fixed control actions. However, this is conservative when there are uncertain components, as
this ignores the fact that there will be a correction of the disturbances by the closed-loop operation
of the controller. Instead, finding a sequence of control actions or decision variables that depend
on the predicted states or that can be corrected with the predicted values of uncertain variables
allows the optimization to find improved solutions. It is shown in [43,44] that a computationally
efficient alternative to acknowledge these corrections in the optimization is to explicitly compensate
the uncertain terms with linear gains L(k + j). The robust MPC formulation proposed here follows
this idea, but was adapted to satisfy the power balance constraint (9). As a result, the compensation is
performed either by the ESS or the main grid consumption.

The following control laws for the predicted inputs of the optimization at time k, PB and Pmgref,
which are coupled by (9), are proposed:

PB(k + j) = P̂B(k + j) + L(k + j)ΔP̂net(k + j), (16)

Pmgref(k + j) = P̂mgref(k + j) + (1 − L(k + j))ΔP̂net(k + j), (17)

where P̂mgref(k + j), P̂B(k + j) and L(k + j) are the optimization variables for j = 0, . . . , N − 1. This can
be interpreted as follows: if Pnet(k + j) = P̂net(k + j) (thus ΔP̂net(k + j) = 0), then PB(k + j) = P̂B(k + j).
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Otherwise, the predicted input to be applied to the system is compensated by L(k + j)ΔP̂net(k + j).
Note that the compensation Pmgref(k + j) is given by (1 − L(k + j))ΔP̂net(k + j), so that the balance
equation for the expected values

P̂mgref(k + j) = P̂net(k + j)− P̂B(k + j) (18)

is enough to satisfy the full balance for the real values (9). The following constraint is used on L(k + j):

0 ≤ L(k + j) ≤ 1, (19)

which indicates that the deviation of the real value from the prediction is compensated by PB(k + j)
and Pmgref(k + j) in a proportion defined by L(k + j).

The predicted control laws of (16) and (17) depend on the uncertain values ΔP̂net(k + j), and so
will the predictions of EB. However, the optimization problem as posed in (13) (a linear program)
cannot be solved with uncertain values. A worst-case approach is taken, where ΔP̂net(k + j) are
assigned to take the worst possible values according to some criterion. Consider (12), which imposes
the limits for Pmgref and in the current setting is equivalent to

P̂mgref(k + j) + (1 − L(k + j))ΔP̂net(k + j) ≤ Pmax
mg ,

−P̂mgref(k + j)− (1 − L(k + j))ΔP̂net(k + j) ≤ Pmin
mg .

These inequalities depend on ΔP̂net(k + j), which is uncertain, so it is not known what value
it will take. Therefore, these are enforced by taking a worst-case approach, as is common in robust
MPC. They are implemented by setting ΔP̂net(k + j) to take the values that reduce freedom the most for
P̂mgref(k+ j) in each of the inequalities: ΔP̂max

net (k+ j) and P̂min
net (k+ j), respectively. Thus, the constraints

above are enforced in the optimization as

P̂mgref(k + j) + (1 − L(k + j))ΔP̂max
net (k + j) ≤ Pmax

mg ,

P̂mgref(k + j) + (1 − L(k + j))ΔP̂min
net (k + j) ≥ Pmin

mg . (20)

Note that these constraints are linear because ΔP̂max
net (k + j), ΔP̂min

net (k + j) are known for the
optimization, and only P̂mgref(k + j) and L(k + j) are optimization variables. For all constraints
associated with the ESS, the worst case is considered to be that where Pnet(k + j) is the largest;
that is, ΔPnet(k + j) := ΔP̂max

net (k + j). This is the case with the most deficit of renewables with respect
to demand, which is the instant where the ESS is needed the most to provide flexibility and reduce the
energy bought from the grid. Therefore, constraints (8), (10), and (11) are reformulated as:

−Ts

j

∑
i=0

P̂B(k + i)− Ts

j

∑
i=0

L(k + i)ΔP̂max
net (k + i) ≤ Emax − EB(k), (21)

Ts

j

∑
i=0

P̂B(k + i) + Ts

j

∑
i=0

L(k + i)ΔP̂max
net (k + i) ≤ −Emin + EB(k), (22)

P̂B(k + j) + L(k + j)ΔP̂max
net (k + j) ≤ Pdischg

max (k + j),

P̂B(k + j) + L(k + j)ΔP̂max
net (k + j) ≥ Pchg

max(k + j). (23)
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With all these considerations, the optimization problem to be solved at each time k is

min
x

N−1

∑
j=0

C(k + j)P̂mgref(k + j) Ts (24)

subject to (18)–(23) all for j = 0, . . . , N − 1,

where x = {P̂mgref(k + j), P̂B(k + j), L(k + j)}j=0,...,N−1.
This is also a linear program, and is solved with the same Matlab solver as for (13).

Finally, Pmgref(k) is sent as a reference to the microgrid, and the procedure is repeated at time k + 1.
Using this robust MPC guarantees the satisfaction of constraints for the worst cases incorporated

in the optimization. For instance, it ensures that the power reference sent does not instruct the lower
level to sell energy to the grid nor that the power bought is greater than the upper limit. On the other
hand, using worst-case constraints may introduce conservativeness to the solutions, which may be
reflected as economic costs, because worst cases may not occur.

5. Case Study

The performance of the hierarchical EMS based on robust MPC was tested by the simulation of
a community connected to the main grid, made up of 30 dwellings with a 50% level of photovoltaic
power penetration (i.e., 15 dwellings have a photovoltaic array) and an ESS made of lead-acid batteries
with a 135-kWh capacity.

Data for winter from a town in the UK was used [45]. For this scenario, a three-level Time of Use
tariff (similar to [46]) was considered for buying energy from the grid for each day of the simulation.
The prices are shown in Table 1.

Table 1. Energy price during the day.

Hours 00:00–06:00 06:00–16:00 16:00–19:00 19:00–23:00 23:00–24:00

Energy Cost 5 p/kWh 12 p/kWh 25 p/kWh 12 p/kWh 5 p/kWh

5.1. Fuzzy Prediction Interval for Net Power of the Microgrid

Load and photovoltaic power data available for a town in the UK were used to develop the fuzzy
prediction interval model described in Section 4.1 for the net power given by Pnet = PL − PRG. The data
cover a period of 90 days corresponding to the winter season, and this was divided into training,
validation, and test data sets. The maximum value of Pnet was 67.57 kW and the minimum value was
−45.09 kW, and a sampling time of 30 min was used.

The fuzzy model and regressors obtained during the identification for the predictor of
Pnet(k) were:

P̂net(k) = f fuzzy(Pnet(k − i1), . . . , Pnet(k − in)), (25)

where {i1, . . . , in} = {1, 2, 8, 25, 26, 32, 38, 42, 43, 44, 46, 48} and the optimal structure of the model has
four rules. Note that exogenous variables were not included in the model.

The prediction interval coverage probability (PICP), which quantifies the proportion of measured
values that fall within the predicted interval, and the prediction interval normalized average width
(PINAW), which quantifies the width of the interval, were used as indexes to evaluate the quality of
the interval for h-step-ahead predictions:

PICP(h) =
1
T

T

∑
k=1

δk+h, (26)
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PINAW(h) =
1

TR

T

∑
k=1

(
P̂net(k + h)− P̂net(k + h)

)
, (27)

for h = 1, . . . , N, where Pnet(k) is the real value of Pnet, R is the distance between the maximum and
minimum values of Pnet(k) in the data set, and δk+h = 1 if Pnet(k + h) ∈ [P̂net(k + h), P̂net(k + h)];
otherwise, δk+h = 0. Additionally, the root mean square error (RMSE) and the mean absolute error
(MAE) were used to evaluate the accuracy of the prediction model associated with the expected value.

In this study, the prediction interval model was tuned at a PICP of 90% for all prediction instants.
Table 2 shows the performance indexes associated with three different prediction horizons for the
test dataset. The results indicate that the fuzzy prediction interval was effectively tuned to a PICP of
90%, and that the interval width (PINAW) increased with the prediction horizon. Figure 3 shows the
one-day-ahead prediction intervals for three days of the test dataset. The red line is the one-ahead
prediction (P̂net) of the net power of the microgrid (Pnet), the blue points are the actual data (Pnet) used
to evaluate the performance of the fuzzy prediction interval model, and the grey box is the prediction
interval which is characterized by the lower (P̂net) and upper (P̂net) bounds.

The expected value (P̂net) and lower (P̂net) and upper (P̂net) bound predictions provided by
the prediction interval were used in the deterministic and robust EMSs, as explained in Sections 4.2
and 4.3.

Table 2. Performance indices of fuzzy prediction interval model. MAE: mean absolute error; PICP:
prediction interval coverage probability; PINAW: prediction interval normalized average width; RMSE:
root mean square error.

Performance Indices
Prediction Horizon

One Hour Ahead Six Hours Ahead One Day Ahead

RMSE (kW) 4.5136 5.0471 5.1974
MAE (kW) 3.2995 3.7316 3.7530
PINAW (%) 22.73 27.62 28.02

PICP (%) 88.22 89.79 89.83
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Figure 3. One-day-ahead prediction interval for Pnet tuned at PICP = 90%.

5.2. Hierarchical EMS Results

The performance of the EMS based on robust MPC with fuzzy interval models (Section 4.3) is
analyzed in this section. For this purpose, it was compared with the deterministic EMS presented in
Section 4.2. Simulation results for this comparison are presented in the following.

Figure 4 shows the responses obtained with the hierarchical EMSs (deterministic and robust)
for operation over two days. Results were consistent with the daily distribution of the energy prices.
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Since energy from the main grid was most expensive in the 16:00–19:00 h time block, the EMS controlled
this power to be close to zero. The opposite behavior occurred during morning and late night hours
(0:00–06:00 and 23:00–24:00) when the energy price was considerably cheaper. It can also be seen that
in both deterministic and robust approaches the power reference (Pmgref), as sent by the higher-level
MPC controller (in red), could be tracked reasonably well by the lower-level controller (Pmg, in blue).
Tracking errors occurred when the maximum available battery power for charging or discharging was
less than the ESS power required by the microgrid (see the rules in Section 3). Additionally, Figure 4
shows that the robust EMS found a flatter Pmgref than the deterministic EMS, which is good for the
distribution network operator because it minimizes the grid power profile fluctuations. Several metrics
justify and quantify the flattening, as will be discussed below.
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Figure 4. Performance of the proposed hierarchical EMS: (a) Deterministic approach; (b) Robust approach.

Table 3 shows the energy costs, the RMSE of the tracking error of the power reference (Pmgref),
the equivalent full cycles (EFC), and the loss of power supply probability (LPSP) for one week of
simulation using the deterministic and robust EMSs (see Appendix A for definition of EFC and
LPSP). It can be seen that the robust EMS reached a better operation cost than the deterministic EMS.
Additionally, the lower RMSE with the robust EMS means that there was a better tracking of the power
reference (Pmgref) sent by the higher level to the microgrid (see Figure 4). The lower EFC of the robust
EMS means that fewer cycles were used by the ESS which directly improved the state-of-health and
lifetime of the ESS. As battery aging (measured by the state-of-health) is a function of the elapsed
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time from the manufacture date, as well as the usage by consecutive charge and discharge actions,
a lower EFC improves the battery life time. Finally, the LPSP, which is the fraction of time where the
microgrid cannot fulfill the load requirements using the reference power (Pmgref) defined by the higher
level and the available resources of the microgrid (renewable generation and ESS), was 3.780% for the
deterministic EMS and 2.927% for the robust EMS. This was because the robust approach compensated
for the uncertainty of generation and demand and could avoid the scenarios measured by the LPSP.

Table 3. Performance indices during a simulation of one-week duration. EFC: equivalent full cycles;
LPSP: loss of power supply probability.

EMS Strategy
Cost RMSE EFC LPSP

(£) (kW) Cycles (%)

Deterministic EMS 168.01 1.22 6.40 3.780
Robust EMS 165.28 1.14 6.07 2.927

Table 4 shows the energy bought by the community from the main grid during the time periods
associated with different tariff prices. C1 is the time with the cheapest price and C3 is the time with
the highest price. As discussed above, the operation of both hierarchical EMSs was consistent with
these price bands: more energy was bought at C1 and C2, less energy was bought at C3. Note that
the robust EMS bought more at C1 than the deterministic EMS. However, it spent less in C2 and
considerably less than the deterministic EMS at C3. It is apparent then that the robust EMS managed
to obtain savings with respect to the deterministic EMS by being better at planning against worst cases;
namely, it avoided buying energy when it was most expensive.

Table 4. Energy distribution at different prices.

EMS Strategy
C1 C2 C3

(kWh) (kWh) (kWh)

Deterministic 990.361 934.338 25.483
Robust 994.081 931.231 15.321

Finally, for further evaluation of the EMSs, several indexes of operation are presented in Table 5.
These are the load factor (LF), the load loss factor (LLF), positive power peak (P+), negative power peak
(P−), the maximum power derivative (MPD), and the average power derivative (APD). See Appendix
A for detailed definitions, but the interpretations of these are presented next.

Table 5. Quality indexes for the power profile of the main grid. APD: average power derivative; LF:
load factor; LLF: load loss factor; MPD: maximum power derivative.

EMS Strategy LF LLF
P+ P− MPD APD

(kW) (kW) (kW/min) (kW/min)

Deterministic 0.3869 0.2452 30.00 0 29.63 0.1889
Robust 0.4459 0.2880 25.90 0 22.48 0.1318

The LF describes the flatness of the power response: values close to 1 are associated with
flat responses while values close to 0 indicate the presence of large peaks. The LLF quantifies the
losses incurred as a result of peak power: values close to 1 describe flat responses with small losses,
while values close to 0 indicate large losses due to large peaks [7]. The MPD is the maximum value of
the rate of change between two consecutive points of the main grid power in its absolute value [10,47].
The APD is the average of the absolute value of the rate of change of the main grid power.

The LF was greater for the robust EMS than for the deterministic case (LF = 0.4459 and LF =
0.3869, respectively). This clearly indicates that the response for the robust EMS was flatter (which
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is also consistent with the results of RMSE and EFC reported above). Similarly, LLF = 0.288 for the
robust EMS, and LF = 0.2452 for the deterministic EMS. Therefore, the hierarchical EMSs resulted in a
reduction of the peak power and a reduction of losses due to peak power.

The positive power peak (P+) and negative power peak (P−) for the hierarchical EMS were
limited by constraints as explained in Section 4. The limits were Pmin

mg = 0 kW, which guarantees
that no energy was exported to the main grid, and Pmax

mg = 30 kW. The robust EMS works in a more
conservative manner for the upper limit. It attempts to avoid sub-optimal operation due to worst-case
scenarios: thus, it allows smaller peaks (P+ = 25.9) kW than the deterministic EMS (30 kW) (see also
Figure 5).

The last two metrics were also improved using the proposed robust-MPC-based EMS: the MPD
and APD were reduced compared with the deterministic EMS. Finally, a lower APD corresponds to a
flatter main grid power, which is consistent with previously analyzed indicators.

Overall, it can be seen that the deterministic and robust hierarchical EMSs provide mechanisms for
efficient energy management. However, the robust EMS provided improvements over the deterministic
EMS, which can be explained because the uncertainty management in the robust EMS helps the system
to be prepared for errors in the predictions that might yield sub-optimal decisions.
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Figure 5. Main grid power profiles.

6. Conclusions

In this paper, a two-level hierarchical EMS based on robust MPC was presented for the operation
of energy communities (microgrids), considering the uncertainty of the renewable energy resources
and electrical load consumption. The robust MPC has a special structure which enables compensation
of the uncertain predictions by the battery within the microgrid or consumption from the main grid.

While the deterministic EMS could effectively operate the microgrid, the robust EMS consistently
performed better over several indicators of performance considered in the work. Most importantly:
improved operational cost, flatter response of the power drawn from the main grid, and a greater
capacity to satisfy demand from the microgrid. This is because robust MPC handles uncertainty and
prepares better for unexpected changes in the microgrid generation or loads.

Future work will incorporate real-time prices in the formulation to reflect the price on the
wholesale market. A market scheme that allows the selling of excess energy from the microgrid
to the main grid will also be considered. Additionally, the benefits of the proposed hierarchical
EMS based on robust MPC will be explored for energy communities such as factories, schools,
commercial parks, among others; other communities using different types of loads; distributed
generations, such as biomass-based generation; or energy storage technologies, such as hydrogen or
flywheels. Finally, the incorporation of demand-side management (DSM) strategies into the robust
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MPC formulation could be studied to determine an optimal demand schedule, helping to generate
desired changes in the load profile.
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Abbreviations

The following abbreviations are used in this manuscript:

EMS Energy management system
MPC Model predictive control
DNO Distribution network operator
DER Distributed energy resource
DG Distributed generation
DN Distribution network
ESS Energy storage system
SoC State of charge
PICP Prediction interval coverage probability
PINAW Prediction interval normalized average width
RMSE Root mean square error
MAE Mean absolute error
EFC Equivalent full cycles
LPSP Loss of power supply probability
LF Load Factor
LLF Load loss factor
MPD Maximum power derivative
APD Average power derivative

Appendix A. Performance Indices for the Power Profile of the Main Grid

Several indexes that evaluate the quality of the power profiles sent from the main grid to the
micro-grid were used to compare the results obtained with the different control strategies. These indices
are described in the following.

RMSE is the root mean square error:

RMSE =

√√√√√ T
∑

k=1
(Pmgref(k)− Pmg(k))

2

T
, (A1)

which represents the capability of the microgrid to follow the power reference (Pmgref) sent by the
higher level in the hierarchical EMS.
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The equivalent full cycles (EFC) is the number of full discharges that an ESS performs throughout
its time use [48]:

EFC =
Edis(Ah)

Cn
, (A2)

where Edis[Ah] is the discharge energy during the simulation time and Cn is the nominal battery
capacity. The EFC is a metric associated with the life cycle of the ESS. In this approach, one cycle per
day is the desired EFC (EFCdesired).

The loss of power supply probability (LPSP) is the ratio between the energy deficiency and the
total energy demands for a period of time [49]. In this approach, the energy deficiency occurs when
(Pnet(k)− Pmgref(k))Ts > 0, which means that the available maximum power of the ESS (Pdischg

max ) cannot
fulfill the load, and therefore the energy deficiency is supplied from the main grid. When this happens,
the microgrid cannot follow the power reference (Pmgref) perfectly, and therefore Pmg = Pmgref + ED.
A lower value of LPSP indicates a higher probability that the load will be satisfied. The LPSP is defined
as [50]

LPSP =

T
∑

k=1
Tk

T
, (A3)

where Tk is the number of instants when an energy deficiency occurs and T is the total simulation time.
The load factor (LF) is given by

LF =
Avg(Pmg)

max(Pmg)
, (A4)

and quantifies the ratio between the average grid power (PAVG
mg ) and peak grid power (Pmax

mg ) during a
given period. An improvement to the LF value indicates a peak load reduction.

The load loss factor (LLF) is a measure of losses incurred as a result of peak power:

LLF =
Avg(P2

mg)

max(P2
mg)

. (A5)

The maximum power derivative (MPD) is the maximum value of the rate of change between two
consecutive points of the main grid power in its absolute value:

MPD = max(|ΔPmg(k)|), (A6)

where ΔPmg(k) = Pmg(k)− Pmg(k − 1).
Finally, the average power derivative (APD) is the average of the absolute value of the rate of

change of the main grid power

APD =
1
T

T

∑
k=1

|ΔPmg(k)|. (A7)

In this Appendix, the maximum and minimum values were taken over the whole simulation period.
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Abstract: Recent developments and advances in distributed energy resource (DER) technologies make
them valuable assets in microgrids. This paper presents an innovative evaluation framework for
microgrid assets to capture economic benefits from various grid and behind-the-meter services in
grid-connecting mode and resilience benefits in islanding mode. In particular, a linear programming
formulation is used to model different services and DER operational constraints to determine the
optimal DER dispatch to maximize economic benefits. For the resiliency analysis, a stochastic evaluation
procedure is proposed to explicitly quantify the microgrid survivability against a random outage,
considering uncertainties associated with photovoltaic (PV) generation, system load, and distributed
generator failures. Optimal coordination strategies are developed to minimize unserved energy and
improve system survivability, considering different levels of system connectedness. The proposed
framework has been applied to evaluate a proposed microgrid in Northampton, Massachusetts that
would link the Northampton Department of Public Works, Cooley Dickenson Hospital, and Smith
Vocational Area High School. The findings of this analysis indicate that over a 20-year economic life,
a 441 kW/441 kWh battery energy storage system, and 386 kW PV solar array can generate $2.5 million
in present value benefits, yielding a 1.16 return on investment ratio. Results of this study also show
that forming a microgrid generally improves system survivability, but the resilience performance of
individual facilities varies depending on power-sharing strategies.

Keywords: economic analysis; energy storage systems; microgrid; resilience

1. Introduction

Battery energy storage systems (BESSs) operating within microgrids and in isolation can improve
the electrical grid’s operational flexibility [1]. The ability of microgrids to act as an isolated grid capable
of islanding away from a region’s interconnected electrical grid can also enhance resilience for parties
covered by microgrid assets [2]. In recent years, an extensive body of literature has formed around
questions addressing the economic and resilience benefits of microgrids.

Optimal sizing and scheduling of remote microgrid assets operating in isolation have been
addressed in several recent studies. For example, [3] proposes a risk-based stochastic approach to
optimally scheduling microgrid assets. In [4], a Monte Carlo simulation-based stochastic programming
approach is used to define an optimal design for a remote microgrid based on reliability and cost criteria.
Based on the assessment of a subset of representative days, annualized costs and fuel consumption rates
are minimized through the optimal scaling and operation of microgrid assets in [5]. The coordination
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of wind turbines, an energy storage system and a diesel generator operating in a remote microgrid is
achieved through a dynamic programming method in [6].

There have also been several articles recently published that focus on maximizing the economic
benefits of distributed energy resources (DERs) operating behind-the-meter (BTM) under normal
conditions while in grid-connected mode. A mixed integer programming method is proposed in [7] for
optimally scaling battery energy storage systems (BESS) to minimize total investment and minimize
the deviation between scheduled and actual imported power to the end user. Optimal DER planning
with the objective of minimizing fuel consumption while complying with state renewable energy
mandates at industrial sites and campus communities is addressed in [8]. The authors address this
problem through the use of Lagrange Multipliers with consideration given to numerous factors,
including climate conditions, environmental regulations and energy resource availability. In [9],
the economic returns of a BESS are evaluated while operating BTM at a military base in the Independent
System Operator New England (ISO-NE) territory and when being used to minimize energy and
demand charges, reduce capacity payments and participate in regional demand response programs.
This study evaluates a range of BESS power and energy capacities in order to optimally scale the
system based on the landscape of economic opportunity.

There is a smaller subset of the literature base dedicated to simultaneously evaluating the economic
and resiliency performance of microgrids. In [10], the authors propose a resiliency-oriented microgrid
optimal scheduling method. Under normal operation, it minimizes the operating costs of the microgrid.
For resiliency analyses during outages, it solves a max–min problem to minimize the worst-case energy
imbalance. Although both economic and resiliency are covered in the analyses, limited bill reduction
benefits (only time-of-use pricing) is considered and no asset failure is modeled. The authors of [11]
evaluate both the economic and resiliency benefits of DERs, including BESS and photovoltaic (PV)
units, integrated into large buildings. This study evaluates the energy cost reductions associated with
microgrid operations but does not include the value of outage mitigation. In [12], an approach is
proposed for optimally scaling a solar-plus-storage system in order to minimize financial losses caused
by disruptions resulting from grid outages. In [13], a method is proposed for incorporating the value of
resilience delivered by BESSs and PV systems into investment decisions for building-scale microgrids.

The main contributions of this paper are twofold.

• Unlike many existing microgrid planning and expansion studies that consider either economic or
resilience benefits, this paper presents an innovative evaluation framework for microgrid assets
to capture economic benefits from various grid and BTM services in grid-connecting mode and
resilience benefits in islanding mode.

• As for the resiliency analysis, an innovative method was proposed to explicitly quantify the
microgrid survivability against a random outage. The method proposed here models the stochastic
nature of PV generation, system load, and potential distributed generator (DG) failure during an
outage. In addition, to optimally use the microgrid assets, coordination strategies are developed
to minimize unserved energy and improve system survivability, considering different levels of
system connectedness. In particular, rules are proposed to fairly distribute unserved energy
among facilities when load shedding becomes inevitable.

The proposed framework has been applied to evaluate a proposed microgrid in Northampton,
Massachusetts that would link the Northampton Department of Public Works (DPW), Cooley Dickenson
Hospital (CDH), and Smith Vocational Area High School (SVAHS). The findings of this analysis indicate
that over a 20-year economic life, a 441 kW/441 kWh BESS and 386 kW PV solar array can generate
$2.5 million in present value benefits, yielding a 1.16 return on investment (ROI) ratio. Results of this
study also show that forming a microgrid generally improves system survivability, but the resilience
performance of individual facilities varies depending on power-sharing strategies.

The rest of this paper is organized as follows. In Section 2, we present an overview of the Northampton
Microgrid Project (NMP) and outline the methods and data used to perform the economic and resilience
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evaluations of the NMP. Using the proposed methods, NMP economic returns were defined and resiliency
analysis was performed for a number of representative scenarios characterized by season, system
connectedness, DER availability, and outage durations. Analysis results are presented in Section 3.
Section 4 presents a discussion of the results within the context of other recent microgrid assessments.
Section 5 presents study conclusions.

2. Materials and Methods

The City of Northampton, Massachusetts, in partnership with the CDH, was awarded a $3,078,960
grant from the Massachusetts Department of Energy Resources (DOER) to develop a microgrid as part
of its Community Clean Energy Resiliency Initiative. The grant stemmed from a DOER-supported
analysis of three linked Northampton facilities. These facilities include: CDH, the SVAHS, and the
Northampton DPW. SVAHS is a 10-building school campus that serves approximately 600 people a
day. The facility also acts as the regional Red Cross Emergency Shelter while providing emergency
overflow services for CDH. The Northampton DPW provides support for a number of critical city
functions, including emergency services radio communication, flood control, stormwater systems,
and clean water processing and delivery. The CDH campus includes emergency services facilities,
as well as a number of other patient care facilities and serves approximately 2500 people each day
under normal conditions and 1000 during an emergency. All three facilities are shown in Figure 1.

 
Figure 1. Satellite Google Earth image of CDH, SVAHS, and Northampton DPW. Map data:
Apache License, Version 2.0, Google, 2020 [14,15].

The NMP, which is in the design phase, is planned to be comprised of PV, energy storage, a biomass
facility, and diesel generators. During normal operations these assets will be operated in isolation in
order to minimize the electricity bills of each separate facility. In the event of an outage these assets will
be aggregated to create an islanded microgrid capable of enhancing the resiliency for all three facilities.

Currently, CDH operates a 275 kW biomass steam turbine generation unit and a 175 kW turbine
supporting a 700 ton absorption chiller. CDH is considering the addition of a 386 kW PV array, as well
as a 441 kW/441 kWh BESS. Under current NMP plans, the BESS included in the microgrid will use a
lithium-ion battery technology. This was chosen over a sealed lead acid battery due to the sensitivity of
the latter to deep discharges, which the battery would face during outage events. While a lithium-ion
battery’s economic life would not typically be expected to exceed 10 years, this analysis assumes that
an augmentation plan, or extended warranty, is purchased to extend its life to 20 years. Additionally,
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SVAHS currently has a 106 kW PV array installed and existing diesel generators at the three sites
include:

1. 155 kW at SVAHS;
2. 40 kW at the DPW; and,
3. 2.4 MW at the CDH (3 units at 800 kW each).

Figure 2 presents the aforementioned power components as currently configured at all three
facilities when operating under either normal or emergency conditions. The enhanced microgrid as it
would operate during power outages is presented in the far-right box. Note that the biomass facilities
were excluded from the resiliency analysis because they would trip off during voltage sags and would
therefore be unsuitable for providing power when operated in islanded mode.

Figure 2. Existing and planned power components of the Northampton microgrid project.

The objectives in conducting this research have been to define and model the financial and resilience
opportunities available to the City of Northampton, Massachusetts associated with installing a microgrid
connecting the Northampton DPW, CDH, and SVAHS. This section presents the methodologies
employed on our economic and resiliency assessments.

2.1. Economic Methodology

The energy assets proposed for the microgrid were modeled to enable simulation of Northampton
microgrid operations. Bundling of services (providing multiple services over a set period) was analyzed
and the improvement in the overall economics of the microgrid evaluated.

The Battery Storage Evaluation Tool (BSET—PNNL, Richland, WA, USA), which was developed by
this project team for Pacific Northwest National Laboratory (PNNL), was used to estimate the economic
benefits of a BESS and a PV unit. A large linear programming problem was formulated to maximize
the total benefits from multiple value streams, considering various system- and component-level
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constraints, such as power balancing, BESS charging/discharging limits, state of charge dynamics,
models for each individual use cases and their couplings. The mathematical basis of the BSET model
was presented in [16].

Economic benefits associated with NMP operations were modeled in BSET for a one-year period.
BSET was used to determine the value of each use case or service and the number of hours the BESS
would optimally engage in providing each service. After microgrid operations were modeled for one
year, the results were used for several purposes, including: (a) evaluating the economic benefits of the
planned BESS and PV additions, and (b) assessing microgrid capacity to improve resiliency.

This economic assessment evaluates each of the services outlined below:

• National Grid demand charge reduction
• National Grid demand response program participation
• ISO-NE installed capacity tag reduction
• Outage mitigation
• Energy purchase reduction through PV array production
• PV renewable energy credits (RECs)

Each of the services above and their associated methodologies will be described later in this section.
Prior to this discussion, we focus first on the load analysis that supported the economic optimization.

2.1.1. Load Analysis

The CDH and SVAHS each have historical interval electricity data available from the utility to
assist with understanding electric loads, variation, and sizing of the microgrid system (Figures 3 and 4).
However, the Northampton DPW facility did not have a record of electrical load at such intervals, and only
monthly billing totals were available. Therefore, the Facility Energy Decision System (FEDS—PNNL,
Richland, WA, USA) software was used to derive representative load profiles for the DPW buildings.

Figure 3. SVAHS hourly peak load, 2016.
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Figure 4. CDH hourly peak load, 2016.

FEDS is a building energy simulation and analysis tool developed by PNNL, which has been used
extensively to understand energy use and opportunities for cost-effective energy saving projects within
single building and multi-building campuses across the U.S. and around the world. FEDS relies on
detailed building system inputs and is backed by a sophisticated inference engine to allow for relatively
quick yet robust modeling of building systems, loads, and energy use. Key inputs range from building
types, size, vintage, location, hourly weather data, plus details on occupancy, building envelope,
lighting, heating, cooling, ventilation (HVAC), and hot water systems. Based on the inputs and
inferred parameters, FEDS performs an hourly simulation of energy use at each technology, end use,
and building level. An hourly profile for energy use for each fuel consumed is one of the outputs and
is used to represent the electricity load profile for buildings for resilience assessments and input for
sizing of backup power or microgrid systems [17].

There are two buildings at the Northampton DPW site: a small administration building and a
garage. These are shown in the satellite image in Figure 5. The administration building is 3868 ft2

and was built in 1973. The 20,700 ft2 garage is an old trolley barn built around the start of the 20th
century, and provides vehicle bays, shops, and some limited office space. Without the ability to
perform an on-site walk-through, available data on occupancy, HVAC, and hot water systems were
provided by City of Northampton staff, along with the result of recent assessments that included
information on envelope characteristics, lighting types, and counts. Google Earth satellite and street
view imagery (Apache Software Foundation, Wakefield, MA, USA) was used to help validate select
data, and fill in gaps regarding modeling geometries, construction characteristics, window fraction,
and more. Energy billing data was also provided by the city, including monthly electricity and natural
gas consumption for recent years.

FEDS models were developed for each of the two DPW buildings based on data provided and
gathered from available sources. One of the unique features of FEDS is that it requires only a relatively
small set of input parameters in order to begin modeling. Parameters not specified are automatically
inferred by FEDS to the most likely value based on all of the specified inputs (including but not limited
to building type, size, vintage, location, use, and technology types). These inferences are based on a
combination of building survey data, building codes, equipment standards, along with decades of
experience with buildings and building systems. All inferred values can be reviewed, updated or
overridden by the modeler.

Screen captures of the two DPW FEDS models are shown in Figure 6. They show high-level
building inputs for each model, along with some of the details modeled for lighting, HVAC, and hot
water systems. Additionally, FEDS is able to infer base plug and process loads for each building based
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on use type. For the DPW garage, two distinct use areas were modeled covering the garage/shop and
office areas.

Once developed, the FEDS models were reviewed and calibrated to recent historical meter data to
ensure a representative simulation and resulting load profiles. A weather adjustment was applied to
the typical meteorological year weather data used by the FEDS simulation, based on the actual weather
trends for each calibration year. The models were calibrated to both 2017 and 2018 metered consumption
data for each building. Both models were calibrated to match the annual energy consumption while
maintaining similar monthly magnitude and trends. Results of the calibration comparing monthly
electricity consumption from the FEDS simulation compared to actual consumption are highlighted by
Figure 7.

Once the building models were satisfactorily calibrated, each building model was simulated with
FEDS to produce a representative hourly load profile covering an entire year. A typical meteorological
weather year was applied to represent typical historical weather patterns against the calibrated models.
The resulting annual hourly electric load profile for the two DPW buildings, as simulated by FEDS,
is shown in Figure 8.

 
Figure 5. Satellite image from Google Earth shows location of Northampton DPW buildings (garage
on top and administrative building on bottom). Map data: Apache License, Version 2.0, Google,
2020 [14,18].
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(a) 

 
(b) 

Figure 6. FEDS screen shots show the DPW garage (a) and administrative building (b) models. Created
via the FEDS software [17].

  
(a) (b) 

Figure 7. Results of FEDS simulated model calibration show monthly electricity consumption vs.
actuals for the DPW garage (a) and administrative building (b).
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Figure 8. Combined electric load profile for DPW.

2.1.2. Use Cases

This section defines the use cases that could result in financial benefits to the NMP partners.
The methods used to assign value to the benefits tied to both BESS and PV operations are defined.

National Grid Demand Charge Reduction

The three sites that comprise the microgrid all purchase energy from National Grid—a large
distribution utility that serves customers in Massachusetts and beyond. Every month, each of these
microgrid members faces a demand charge of $5.76/kW on their energy bills, which is correlated to
their single highest 15 min load between the hours of 8:00 am and 9:00 pm, Monday through Friday.
If the BESS reduced the peak load in a given month by 200 kW by discharging at the appropriate times,
then $1152 is obtained in value each month. Of the three sites of the microgrid project, a CDH account
had the largest peaks in summer months and, therefore, stands to gain the most benefit through
demand charge reduction. Therefore, the battery was modeled at CDH using BSET and historic load
data defined in Section 2.1.1.

National Grid Demand Response Program Participation

A BTM BESS could participate in the Connected Solutions Program, which compensates
commercial and industrial customers to curtail their energy when the ISO-NE system is forecasted to
be at its peak. A participating BESS would be compensated for the amount of energy curtailed on a
pay-for-performance basis.

The program offers three options to participate:

1. Targeted dispatch to reduce load at the peak hour of the year (two to eight dispatch events per
summer), valued at $35/kW—summer.

2. Daily dispatch to reduce load at the peak hour of the year and during daily peaks in July and
August (30–60 dispatch events per summer), valued at $200/kW—summer.

3. Winter dispatch to reduce load during five peak hours of the winter, valued at $25/kW—winter.

The events last between two to three hours for daily dispatch and three hours for targeted dispatch.
An event can happen anytime between 2:00–7:00 pm on non-holiday weekdays during summer or
winter. For a 441 kW/441 kWh BESS, only one-third of its capacity could be bid into the demand
response program because the basis of compensation is the average energy discharged during the
three-hour window.

Based on input directly from a distribution utility in Massachusetts, we assume the daily dispatch
events will start on 1 July and would be held on every non-holiday weekday from 4:00–7:00 pm until
all 60 calls take place. The summer and winter targeted dispatch are typically scheduled to occur on
the days when the utility expects the summer and winter peaks to happen, respectively. For the winter
program, we assume that calls occur on the five peak days registered during winter, which all fall
between 1 January and 7 January.
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We assume that the BESS would participate in the daily dispatch and targeted winter dispatch
program. While additional benefits could be obtained by participating in the summer targeted dispatch
program, the BESS would have to provide twice the capacity to obtain those benefits simultaneously
while also participating in the daily dispatch program. Therefore, we exclude the summer targeted
dispatch program.

ISO-NE Installed Capacity Tag Reduction

The members of the Northampton microgrid face a monthly charge called the installed capacity
(ICAP) tag. The charge amount is dependent on their measured load during ISO-NE’s peak hour
each year. This calculation is made only once a year but affects the following year’s monthly bills.
That is, an ICAP calculated in July of 2020 will not take effect until June 2021 at the start of the next
billing season.

The price for the ICAP follows an annual schedule, multiple years of which are shown in Table 1.
Forecasts beyond the actual values provided in the table were provided by National Grid for an
analysis of a BESS deployed on Nantucket Island, Massachusetts. More information regarding this
forecast can be found in [19].

Table 1. Independent System Operator New England (ISO-NE) installed capacity (ICAP) tag rates 2018–2023.

Year Start Year End Capacity ($/kW—Month)

June-2018 May-2019 9.55
June-2019 May-2020 7.03
June-2020 May-2021 5.30
June-2021 May-2022 4.63
June-2022 May-2023 3.80
June-2023 May-2024 2.00

Typically, the ISO-NE annual peak occurs in June, July, or August and usually between the hours
of 2:00–5:00 pm. It is also important to note that it will almost certainly be coincident with one of the
National Grid demand response events described previously. That is, by hitting all National Grid
demand response events during a summer, it is almost guaranteed to hit the ICAP tag date/time,
picking up double benefits for the same load reduction. Table 2 shows historic values of when the
ICAP tag has been called.

Table 2. ISO-NE historic ICAP tag dates.

Year Date Time

2001 9 August 2 pm
2002 14 August 2 pm
2003 22 August 2 pm
2004 30 August 3 pm
2005 27 July 2 pm
2006 2 August 2 pm
2007 3 August 2 pm
2008 10 June 2 pm
2009 18 August 2 pm
2010 6 July 2 pm
2011 22 July 2 pm
2012 17 July 4 pm
2013 19 July 4 pm
2014 2 July 2 pm
2015 29 July 4 pm
2016 12 August 2 pm
2017 13 June 4 pm
2018 29 August 4 pm
2019 30 July 5 pm

74



Energies 2020, 13, 4802

Reductions in load tied to PV production are also included in the value obtained for this use case.
Solar production reduces the registered demand during the system-wide peak, thereby reducing the
total kW-demand that forms the basis of the ICAP tag.

Outage Mitigation

In the event of an outage, the BESS has the capability to effectively operate in an islanded mode.
This operation would be monetized in terms of the value of lost load (VOLL). To estimate the benefits
that can be derived from outage mitigation, historical events were examined at DPW and SVAHS.
CDH does not experience outages due to the presence of onsite generation, but outages do occur at the
Northampton DPW and SVAHS. From these historical outage occurrences, the timing and duration of
the outages were defined for these facilities.

In order to assign monetary values to reducing or eliminating potential outages, the findings
of [20] from Lawrence Berkeley National Laboratory were used. This process estimates costs based
on customer group (residential, small commercial and industrial (<50,000 annual kWh load) and
medium/large commercial and industrial) and the duration of the outage. Figure 9 presents an example
of the trendline used to estimate the cost for different lengths of outage for medium/large commercial
and industrial customers.

Figure 9. Value of lost load by outage duration to medium/large commercial and industrial customers.

Outages were modeled with no foresight, meaning that the BESS would not be prepared for
outages but rather would use available energy based on its state of charge, along with energy output
from the PV unit, to address any outage. The savings to customers served by the microgrid is estimated
to be $13,085 annually based on the aforementioned cost assumptions and the duration and frequency
of outages.

Energy Purchase Reductions from PV Production

As previously described, the members of the Northampton microgrid purchase their energy from
National Grid at time of use rates. The installation of the 386 kW solar array at CDH will reduce their
monthly electricity purchases for all hours when the array generates energy.

To evaluate the potential energy production from solar PV panels in Northampton, a number of
solar profiles were used with an established solar PV production model. The solar data was gathered
from the National Solar Radiation Database (NSRDB)—specifically, the Physical Solar Model (PSM)
dataset. This dataset provides both a large temporal coverage over 20 years of data, as well as relatively
fine spatial resolution (4 × 4 km) for all locations in the continental U.S. (Figure 10). The data used in
this evaluation is hourly (though 30-min data is also available) [21].
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Figure 10. NSRDB data viewer. Created via the NSRDB [21].

The data itself is not measured data but rather modeled data based on satellite observations and
models that estimate the impact on solar parameters due to atmospheric conditions. A comprehensive
evaluation of the modeling techniques can be found at [22], which shows that modeled PSM data has a
mean bias error of ±5% to ±10%, depending on the solar parameter. Though higher accuracy is always
more desirable, for the purposes of this analysis this data was deemed sufficient.

Based on the PV modeling, the solar is expected to produce approximately 406,228 kWh of energy
each year. An annual rate of degradation of 0.5% was assumed.

PV RECs

RECs are renewable energy certificates that solar owners receive at a rate of 1 REC per MWh
of produced solar energy. These certificates are oftentimes sold to utilities so that they may meet
renewable portfolio standards outlined in their state. Electricity providers must obtain RECs as proof
that they have met guidelines for renewable generation. Various programs exist across various states
that offer higher compensation for RECs, Massachusetts included. However, the 386 kW solar array
would currently only be able to qualify for Class I RECs, which could be sold in the Class I REC auction.

Figure 11 shows recent Class I REC prices, including those in Massachusetts, from Power Advisory,
LLC. Using these auction prices in combination with the solar production analysis, value can be
estimated [23].

Figure 11. ISO-NE class 1 REC prices ($/REC).
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2.1.3. Valuation Model

PNNL used BSET to model the operation of a BESS and a PV unit on an hourly basis over a
year to evaluate their benefits. For each service, revenue or avoided costs were defined on an hourly
basis using the methods outlined in the previous section, along with any power reservation or energy
requirements to satisfy the demands of each use case. BSET was then used to co-optimize the benefits
among these services, subject to the technical constraints of the BESS. Model output includes the value
of, and the number of hours the BESS would be engaged in providing, each service.

2.1.4. Costs and Financial Parameters

The individual cost components of the project are broken down in Tables 3 and 4. Table 3 presents
upfront costs incurred at the outset of the project except for fixed operations and maintenance (O & M)
costs, which are incurred on an annual basis. For Table 4, it is assumed that major maintenance
is conducted in Years 7 and 14 with full battery module replacement in Year 10. Maintenance and
replacement are required to ensure battery operation for 20 years—lithium-ion systems typically have
a 10-year usable life otherwise.

Table 3. Initial costs of energy storage systems.

Item Cost

DC Modules and Battery Management System $226,013
Power Conversion System $187,425

Power Control System $44,100
Electrical Balance of Plant $44,100

Construction and Commissioning $70,560
Fixed O & M Cost (per year) $3969

Total $576,167

Table 4. Major maintenance and battery replacement costs for lithium-ion systems.

Item Cost

Major Maintenance ($/kW) $275
Battery Replacement ($/kWh) $100

The cost of the PV array was estimated based on the median $2.95/watt cost from commercial solar
producers in Massachusetts, estimated by the Massachusetts Clean Energy Center for 2018–2019 [24].
Based on this cost estimate, the total cost of the 386 kW array is estimated to be $1.14 million. A detailed
pro forma for the BESS and PV systems were prepared to estimate full costs. The financial parameters
used in the pro forma are presented in Table 5.

Table 5. Financial parameters used in pro forma.

Parameter Value

Energy Storage Book Life 20 years
Inflation Rate 2.5%

Benefit Growth Rate 2.64%
Discount Rate 2.2%
Insurance Rate 0.7%

PV Degradation Rate 0.5%/year

Based on the combination of costs and financial parameters outlined previously in this section,
the researchers were able to produce a pro forma that accounted for full system costs. For the BESS,
total costs for Northampton amount to $1,024,299. For the solar PV, the present value cost is $1,298,844
based on the median $/watt rate for commercial PV installations in Massachusetts from 2018–2019 [24].
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2.2. Resilience Analysis Methodology

A resiliency analysis was conducted in addition to the economic analysis. The objective of the
resiliency analysis is to understand the system survivability against a random outage with different
starting times and durations in summer and winter seasons, considering different system connectedness,
DER availability, and impacts of DG failure rates. The benefits of microgrid operations from the perspective
of resiliency is evaluated by comparing the survivability across various scenarios. This section presents
the key assumptions and modeling method.

2.2.1. Resiliency Modeling Methodology

To evaluate system resiliency, we randomly generated a large number of outages for each scenario
characterized by changes in outage duration, season, system configuration, and DER availability.
For each outage event, we formulated an optimal dispatch problem to minimize load shedding.
The outputs of the optimal dispatch problem include whether there is any load shedding, DER operating
levels, and hours with load shedding for each facility. The results from all outage events are used to
calculate the survivability (the probability of the system to survive a random outage) and statistics of
unserved energy at the facility level.

In the optimal dispatch formulation, we model the physical capability and operation of each DER:

• For the BESS, we adopt the linear model developed in [16] to capture power and energy limits,
charging/discharging efficiencies, and dynamics of battery energy state.

• For PV, the same normalized power output in economic analysis is scaled by the installed capacity
to calculate its power output in maximum power point tracking mode. Please note that dump
energy from PV is allowed when the system cannot absorb all power from PV.

• For DG, a simplified linear model is used to represent fuel efficiency and power output limits.
DG failure rates under different operating conditions are also considered.

Variables of hourly unserved energy are introduced to capture hourly load shedding in each
outage event. A power balancing constraint is introduced for each hour at either the system or facility
level, where the total supply from DERs plus unserved energy is equal to the load. For each outage
event, the total fuel consumption cannot exceed the onsite fuel storage capacity. The objective of
the optimal dispatch problem is, therefore, to minimize the total unserved energy during an outage.
When there are multiple optimal solutions, the one with the least fuel consumption is preferred.
Additional modeling details are provided as follows.

2.2.2. System Connectedness

We consider three levels of connectedness in the resiliency analysis:

1. No microgrid: This is the case where power-sharing is not enabled among the three facilities.
During an outage, each facility purely relies on its local resources to support its load until power
balance is maintained at the facility level.

2. Limited microgrid: In this case, power-sharing is allowed but the three DGs at CDH are reserved
for the local load. Only the power from PV and the BESS can be exported to support the load at
the other two facilities.

3. Full microgrid: This is the case where power can be fully shared among three facilities.

Please note that in limited and full microgrid mode, when load shedding cannot be avoided,
we need to determine how to distribute load shedding among the three facilities. In the following,
let the term “net demand” at a facility denote the deficit of local generation in relation to the local
load. To ensure realistic and reasonable load shedding, we impose two rules during post processing of
the results:

• a facility should not import and export power simultaneously, and
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• the amount of energy a facility imports each hour should be proportionate to its net demand.
In other words, the total amount of energy export should be proportionally distributed to all
facilities requiring energy import according to their net demand.

2.2.3. DG Failure

Three types of DG failure described in [25] are considered in this resiliency analysis:

1. Fail to start: a DG fails to start up on demand.
2. Fail to load: a DG fails to pick up load after started.
3. Fail to run: a DG fails in the second hour of serving load or later.

The status of each DG is simulated in each hour according to the flowchart in Figure 12.
The function rand() generates a random number that is uniformly distributed between 0 and 1. PFTS,
PFTL, and PFTR respectively denote the probability of the three types of failure in an hour. Once a
failure occurs, the corresponding DG becomes unavailable and DERs need to be re-dispatched for the
remaining hours of an outage.

Figure 12. Flowchart to simulate distributed generator (DG) failure in each hour.

The optimal dispatch of available assets is formulated as a linear programming problem.
The primary objective is to minimize total unserved energy and the secondary is to minimize
fuel consumption. The decision variables include: generation power (negative for BESS charging)

from each asset in the k-th hour p(〈asset_type〉,〈site〉)
k , BESS discharging power p+k , charging power p−k ,

energy state s(CDH)

k , imported power at each site in the k-th hour p(i,〈site〉)
k , and unserved load at each

site in the k-th hour l̃(〈site〉)
k . Input parameters are hourly load at each site l(〈site〉)

k , energy capacity of

the BESS at CDH E(CDH), the efficiency of charging η− and discharging η+, rated power of each asset
P(〈asset_type〉,〈site〉), and hourly power output from PV P(PV,〈site〉)

k in maximum power point tracking mode.
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In the full microgrid mode, the optimization is formulated as minimize:

λ
∑

k

(̃
l(CDH)

k + l̃(SVAHS)
k + l̃(DPW)

k

)
+ R

∑
k

(
p(DG, CDH)

k + p(DG, SVAHS)
k + p(DG,DPW)

k

)
(1)

subject to
0 ≤ s(CDH)

k ≤ E(CDH), ∀k, (2)

p(BESS,CDH)

k = p+k + p−k ,−P(BESS,CDH) ≤ p−k ≤ 0 ≤ p+k ≤ P(BESS,CDH),∀k, (3)

s(CDH)

k − s(CDH)

k−1 = −p+k
η+
− η−p−k ,∀k, (4)

0 ≤ p(DG,CDH)

k ≤ P(DG,CDH),∀k, (5)

0 ≤ p(DG,SVAHS)
k ≤ P(DG,SVAHS),∀k, (6)

0 ≤ p(DG,DPW)

k ≤ P(DG,DPW),∀k, (7)

0 ≤ p(PV,CDH)

k ≤ P(PV,CDH)

k ,∀k, (8)

0 ≤ p(PV,SVAHS)
k ≤ P(PV,SVAHS)

k ,∀k, (9)

l̃(CDH)

k ≥ 0, l̃(SVAHS)
k ≥ 0, l̃(DPW)

k ≥ 0, ∀k, (10)

p(BESS,CDH)

k + p(DG,CDH)

k + p(PV,CDH)

k + p(i,CDH)

k = l(CDH)

k − l̃(CDH)

k , ∀k, (11)

p(DG,SVAHS)
k + p(PV,SVAHS)

k + p(i,SVAHS)
k = l(SVAHS)

k − l̃(SVAHS)
k , ∀k, (12)

p(DG,DPW)

k + p(i,DPW)

k = l(DPW)

k − l̃(DPW)

k , ∀k, (13)

p(i,CDH)

k + p(i,SVAHS)
k + p(i,DPW)

k = 0, ∀k, (14)

where R is the fuel consumption rate of DGs and λ is a large constant to guarantee that reducing
unserved load energy is prioritized over fuel conservation.

In the limited microgrid mode, only the power from PV and the BESS can be exported to support
the load at the other two facilities. Another constraint is added to ensure that the power exported from
CDH does not exceed the total power from the BESS and PV:

− p(i,CDH)

k ≤ p(BESS,CDH)

k + p(PV,CDH)

k , ∀k. (15)

In the case of no microgrid, (15) should be replaced by (16) to disable power sharing.

p(i,CDH)

k = p(i,SVAHS)
k = p(i,DPW)

k = 0, ∀k (16)

3. Results

This section is divided into two sections presenting first the economic analysis results and, last,
the results of the resiliency analysis.

3.1. Economic Analysis Results

The economic analysis is designed to define the value that the NMP can achieve and to inform the
development of operational guidelines for securing value post deployment. In so doing, the analysis
could also be useful to other microgrid operators facing similar investment decisions and those
attempting to extract maximum value from existing microgrid assets.

80



Energies 2020, 13, 4802

3.1.1. Evaluation of Benefits and Costs

In this section, benefits associated with BESS and PV operations are specified. Results are presented
in Table 6 and Figure 13.

Table 6. Northampton microgrid 20-year present value benefits vs. costs.

Component Benefits Costs

Demand Charge Reduction $183,662 -
NG Demand Response $711,674 -

ICAP Tag Reduction $605,555 -
Outage Mitigation $274,308 -

PV Energy Payment Reduction $478,620 -
PV RECs $256,878 -

BESS Costs - $1,026,833
PV Costs - $1,138,700

Total Benefits and Costs $2,510,697 $2,165,533

Figure 13. Twenty-year benefits and costs for the Northampton microgrid.

Over the 20-year economic life of the BESS and PV array, we estimate that the benefits would total
approximately $2.5 million, presented in present value terms. Of the benefits tied to BESS operation,
the largest portion (28.3% of total benefits) results from demand response benefits, which measure
$711.7 thousand. The second largest benefit of BESS operations is from ICAP tag reduction at $605.6 thousand
or 24.1% of total benefits. PV benefits, comprised of energy savings and RECs, total $735.5 thousand or
29.3% of the total. When compared to present value system costs of $2.2 million, net benefits are calculated
at $345.2 thousand. The overall return on investment is 1.16, meaning that every dollar of investment
would be expected to yield $1.16 in returns.

The research team conducted sensitivity analysis (SA) to test the effects of varying certain parameters
on study results. The various scenarios are outlined below and their impacts were measured in comparison
to the base case. SA was performed by making the following adjustments to the assumptions:

• SA 1: Vary discount rate by +/−1%
• SA 2: Vary price growth rate by +/−1%
• Use DOER grant to eliminate cost of BESS.

The results of each SA are presented in Figure 14. Note that the table with results appears below
the figure. Decreasing the discount rate by 1% led to an increase of $311 thousand in total net present
value (NPV) benefits, while increasing it by 1% decreased NPV by $166 thousand. Increasing the
annual benefit growth rate by 1% resulted in an NPV increase of $264 thousand and a 1% decrease
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resulted in an NPV drop of $129 thousand. Using a grant from the DOER to eliminate all capital costs
associated with the BESS would improve NPV by $577 thousand.

Figure 14. Sensitivity analysis results.

3.1.2. Financial Impact of Incentives

There are a number of incentive programs that could improve the financial results of the
NMP. NMP partners have already taken advantage of the Community Clean Energy Resiliency
Initiative administered by the Massachusetts DOER. The NMP was awarded a $3.1 million grant
under this program, which was designed to address long-duration outages, a need that became
clear after Massachusetts experienced significant electricity service disruptions in the aftermath of
Hurricane Sandy.

Several clean energy incentive programs could also yield benefits for this and other microgrid
projects. If the PV and/or storage were procured through a power purchase agreement with a private
third-party vendor, additional tax benefits could accrue to the vendor and ultimately be passed through
to the partners. With the capital cost of the PV system and BESS exceeding $1.7 million, the value
of a 30% Federal Investment Tax Credit would be $515 thousand. Microgrid financials could also
be improved as a result of a statewide carbon tax. Carbon taxes around the world reach as high as
$139 per ton CO2e in Sweden [26]. To explore the value of a $50/ton carbon tax, the annual value of CO2

savings associated with PV production (406 MWh) was first multiplied by the average CO2 emissions
(808 pounds) per MWh of net generation for the State of Massachusetts [27]. That yields 164 tons
of annual CO2 emission reductions, which would be valued at $8206 annually or $160 thousand in
present value terms over a 25-year economic life of the PV array.

3.2. Resiliency Analysis Results

Following the proposed modeling method, we performed comprehensive analysis for the system
considering 72 scenarios with different combinations of the following aspects:

1. With and without the 386 kW PV at CDH
2. Outage durations: 3 days, 7 days, and 14 days
3. With and without modeling DG failure rates
4. Seasons: summer (June–October) and winter (November–May)
5. System connectedness: no microgrid, limited microgrid, and full microgrid.

In all scenarios, 10,000 outage events are generated to evaluate the system survivability.
Key resiliency analysis results are summarized as follows.
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3.2.1. With PV Array at CDH

One of the key metrics of resiliency is the survival rate of a system. It is calculated as

Survival Rate =
Number of outage instances where no load shedding occured

Total number of simulated outage instances
× 100%. (17)

The survival rate and fuel consumption of the system under various scenarios are presented in Figure 15.
In the figure, different colors are used to differentiate facilities, and shapes for system connectedness.
The summer season is denoted by filled markers, whereas the winter season is represented by unfilled
ones. Marker sizes are used to represent outage lengths. In addition, a dot is added to the center of the
marker for scenarios where DG failures are considered. The exact numbers are recorded in tables in the
following sections for 3 days, 7 days, and 14 days outages, respectively.

 
Figure 15. Survival rate and fuel consumption of the system with PV arrays at CDH.

Three Days Outages

The survivability for each facility with different levels of connectedness is summarized in the key
observations and insights provided below, which are based on the results presented in Table 7.

Table 7. Mean survival rates of the system with CDH PV in 3 days outages.

Season Scenario
No DG Failure With DG Failures

CDH SVAHS DPW CDH SVAHS DPW

Summer
No MG 100.00 45.39 94.11 96.75 27.58 52.69

Limited MG 100.00 96.50 100.00 97.06 60.50 83.44
Full MG 100.00 100.00 100.00 97.67 98.20 99.36

Winter
No MG 100.00 10.92 75.85 99.55 6.54 41.43

Limited MG 100.00 79.10 89.92 99.57 44.70 67.37
Full MG 100.00 100.00 100.00 99.64 99.61 99.90

MG =Microgrid.

• Forming a microgrid helps to increase survivability for all facilities, and the “Full Microgrid”
mode results in the highest resiliency level.

• In the “No Microgrid” and “Limited Microgrid” modes, SVAHS and DPW are more likely to
survive outages in summer than those in winter because their loads are generally lower in summer.
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• When DG failures are considered, survivability of CDH in the “Full Microgrid” mode is slightly
better than that in the “Limited Microgrid” mode. Limited power-sharing from CDH causes
frequent charging and discharging of the battery, which leads to more frequent DG start-ups and
increasing DG failures.

The mean total fuel consumption of the system in the same outages are presented in Table 8.
The diesel reserve of 15,200 gallons is more than enough to cope with 3 days outages. In fact, it is likely
to be sufficient for any outage shorter than two weeks.

Table 8. Mean diesel fuel consumption (gallons) of the system with CDH PV in 3 days outages.

Season Scenario
No DG Failure With DG Failures

CDH SVAHS DPW CDH SVAHS DPW

Summer
No MG 3385 166 36 3379 127 27

Limited MG 3243 260 90 3321 184 68
Full MG 3592 1 0 3583 5 2

Winter
No MG 2886 218 51 2883 165 38

Limited MG 2802 287 90 2861 208 68
Full MG 3179 0 0 3177 1 1

MG =Microgrid.

Seven Days Outages

The survival rates of the system and the fuel consumption in 7 days outages are summarized in
Tables 9 and 10, respectively. We have very similar observations as in 3 days outages. The benefit of
forming a microgrid becomes more significant.

Table 9. Mean survival rates of the system with CDH PV in 7 days outages.

Season Scenario
No DG Failure With DG Failures

CDH SVAHS DPW CDH SVAHS DPW

Summer
No MG 100.00 41.24 88.95 94.39 13.51 22.42

Limited MG 100.00 91.29 100.00 93.03 31.38 49.61
Full MG 100.00 100.00 100.00 94.38 95.56 97.54

Winter
No MG 100.00 2.91 70.75 98.68 0.92 18.43

Limited MG 100.00 69.86 89.35 98.76 19.34 35.17
Full MG 100.00 100.00 100.00 98.99 98.72 99.57

MG =Microgrid.

Table 10. Mean diesel fuel consumption (gallons) of the system with CDH PV in 7 days outages.

Season Scenario
No DG Failure With DG Failures

CDH SVAHS DPW CDH SVAHS DPW

Summer
No MG 7889 391 84 7874 224 45

Limited MG 7569 600 210 7854 302 114
Full MG 8378 1 0 8346 15 5

Winter
No MG 6758 506 118 6754 286 64

Limited MG 6564 665 210 6783 349 115
Full MG 7440 0 0 7433 4 2

MG =Microgrid.

Fourteen Days Outages

The survival rates of the system and the fuel consumption in 14 days outages are summarized in
Tables 11 and 12, respectively. Key observations and insights are provided below.
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Table 11. Mean survival rates of the system with CDH PV in 14 days outages.

Season Scenario
No DG Failure With DG Failures

CDH SVAHS DPW CDH SVAHS DPW

Summer
No MG 25.27 0.08 8.35 23.50 0.03 0.49

Limited MG 8.02 26.53 60.86 8.41 0.76 4.04
Full MG 8.04 8.39 7.98 7.51 7.83 7.92

Winter
No MG 85.50 0.00 44.43 85.47 0.00 3.29

Limited MG 70.04 34.63 72.74 69.78 2.38 6.54
Full MG 67.71 67.29 67.12 67.18 66.48 66.88

MG =Microgrid.

Table 12. Mean diesel fuel consumption (gallons) of the system with CDH PV in 14 days outages.

Season Scenario
No DG Failure With DG Failures

CDH SVAHS DPW CDH SVAHS DPW

Summer
No MG 14,713 428 31 14,696 230 34

Limited MG 13,195 1573 405 14,462 401 143
Full MG 15,173 0 0 14,775 105 28

Winter
No MG 13,475 945 203 13,465 357 76

Limited MG 12,672 1622 418 13,548 468 144
Full MG 14,712 0 0 14,647 20 5

MG =Microgrid.

• Compared with 3 days and 7 days outages, survival rates drop significantly for prolonged outages
due to fuel shortages;

• Survival rates in summer are lower because the total energy consumption is higher;
• CDH is more likely to survive in the “No Microgrid” mode, because fuel is conserved for CDH by

not sharing power while shedding loads at SVAHS and DPW.

3.2.2. Without PV Array at CDH

To evaluate the benefits of installing the PV array at CDH in terms of the resiliency improvement
of the system, we run a similar analysis for the system without the PV array and compare the results
with the previous ones. The results are presented in Figure 16.

Three Days Outages

Compared with the case with CDH PV, significantly lower survival rates of SVAHS and DPW under
the “Limited Microgrid” mode are observed because the PV and BESS were the only assets that can help
support the load at SVAHS and DPW under this mode. Results are presented in Tables 13 and 14.
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Figure 16. Survival rate and fuel consumption of the system without PV arrays at CDH.

Table 13. Mean Survival rates of the system without CDH PV in 3 days outages.

Season Scenario
No DG Failure With DG Failures

CDH SVAHS DPW CDH SVAHS DPW

Summer
No MG 100.00 44.97 94.49 96.20 25.80 52.37

Limited MG 100.00 64.94 100.00 95.24 33.53 70.05
Full MG 100.00 100.00 100.00 96.81 97.59 99.03

Winter
No MG 100.00 10.52 76.48 99.09 5.75 43.36

Limited MG 100.00 26.01 81.79 98.73 12.79 52.70
Full MG 100.00 100.00 100.00 99.11 98.94 99.87

MG =Microgrid.

Table 14. Mean diesel fuel consumption (gallons) of the system without CDH PV in 3 days outages.

Season Scenario
No DG Failure With DG Failures

CDH SVAHS DPW CDH SVAHS DPW

Summer
No MG 3515 189 36 3507 143 27

Limited MG 3363 306 90 3422 218 68
Full MG 3761 1 0 3749 5 2

Winter
No MG 2974 228 50 2971 172 38

Limited MG 2874 318 90 2918 233 68
Full MG 3291 0 0 3287 2 1

MG =Microgrid.

Seven Days Outages

For 7 days outages, there are similar observations as for 3 days outages. The survivability
differences between “No DG Failure” and “With DG Failures”, as well as that among different levels
of system connectedness, become more significant due to the longer outage duration. Results are
presented in Tables 15 and 16.
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Table 15. Mean survival rates of the system without CDH PV in 7 days outages.

Season Scenario
No DG Failure With DG Failures

CDH SVAHS DPW CDH SVAHS DPW

Summer
No MG 100.00 41.19 89.13 93.34 10.51 21.83

Limited MG 100.00 54.54 100.00 92.76 12.53 33.30
Full MG 100.00 100.00 100.00 92.85 94.37 97.10

Winter
No MG 100.00 2.48 71.64 98.17 0.57 18.28

Limited MG 100.00 8.18 79.96 97.68 1.52 22.73
Full MG 100.00 100.00 100.00 98.32 97.82 99.16

Table 16. Mean diesel fuel consumption (gallons) of the system without CDH PV in 7 days outages.

Season Scenario
No DG Failure With DG Failures

CDH SVAHS DPW CDH SVAHS DPW

Summer
No MG 8203 443 84 8182 242 45

Limited MG 7836 728 210 8062 362 114
Full MG 8778 1 1 8738 17 5

Winter
No MG 6956 529 117 6952 291 64

Limited MG 6703 760 210 6873 398 116
Full MG 7693 0 0 7682 6 2

MG =Microgrid.

Fourteen Days Outages

Compared to results with PV arrays at CDH included, worse survival rates across the board are
observed. The energy that would have been generated by PV arrays will have to be generated by DGs
instead. The fuel shortage is therefore aggravated. Results are presented in Tables 17 and 18.

Table 17. Mean survival rates of the system without CDH PV in 14 days outages.

Season Scenario
No DG Failure With DG Failures

CDH SVAHS DPW CDH SVAHS DPW

Summer
No MG 14.17 0.00 0.00 14.96 0.00 0.01

Limited MG 0.00 17.56 62.03 4.48 0.09 3.81
Full MG 0.00 0.00 0.00 0.00 0.00 0.00

Winter
No MG 79.22 0.00 26.93 82.20 0.00 1.67

Limited MG 58.47 0.00 65.79 64.49 0.00 4.24
Full MG 54.02 54.04 53.98 53.81 53.06 53.59

MG =Microgrid.

Table 18. Mean diesel fuel consumption (Gallons) of the system without CDH PV in 14 days outages.

Season Scenario
No DG Failure With DG Failures

CDH SVAHS DPW CDH SVAHS DPW

Summer
No MG 15,107 71 21 15,058 57 13

Limited MG 13,253 1549 398 14,451 418 143
Full MG 15,198 2 0 14,748 140 38

Winter
No MG 13,839 795 192 13,822 302 71

Limited MG 12,866 1621 418 13,598 487 144
Full MG 14,928 0 0 14,800 38 9

MG =Microgrid.

87



Energies 2020, 13, 4802

An interesting observation under the “No Microgrid” mode is that CDH is more likely to survive
when DG failures are considered. This is because the failures of DGs at SVAHS and DPW effectively
save fuel for CDH. The benefit of such savings is manifested in the 14 days outages cases due to the
shortage of fuel. Similar phenomena can also be observed in the “Limited Microgrid” mode.

4. Discussion

This report examines the economic and resilience benefits of a proposed microgrid in Northampton,
Massachusetts that would link the Northampton DPW, CDH, and SVAHS. We modeled financial
benefits of microgrid operations—including demand response revenue, capacity charge reduction,
demand charge reduction, outage mitigation, energy charge reductions due to solar PV energy
production, and renewable energy credits—by simulating one-year of microgrid operations in BSET.
The simulation resulted in an estimate that is technically achievable given the capacities of the
microgrid assets and the co-optimization algorithms that ensure no double counting of benefits.
To evaluate resilience benefits, we performed a comprehensive analysis for the system considering
72 scenarios characterized by changes in outage duration, season, system configuration, and distributed
generator availability.

There are a number of studies that have estimated the economic benefits of DERs in the northeastern
U.S. In these studies, outage mitigation benefits are typically measured in terms of improvements
in outage statistics (e.g., system average interruption duration index, system average interruption
frequency index) or VOLL to customers. In [19], the Nantucket Island distribution network was
modeled using two open-source simulation programs, OpenDSS (Electric Power Research Institute,
Palo Alto, CA, USA) and GridLAB-D (PNNL, Richland, WA, USA), and historic outages over an 11-year
period were modeled with the change in outage costs to customers due to the use of a combustion
turbine generator with a temperature-dependence maximum capacity of 16 MW and a 6 MW/48 MWh
lithium-ion BESS being measured. In [28], VOLL was estimated for a number of scenarios varying
based on BESS energy capacity, with the BESS being used to provide power to the town’s police station
and dispatch center in an islanded mode during outages.

This paper presents a comprehensive approach that considers both economic and resilience
benefits. While the economic analysis effectively captures stacked value streams and an innovative
method was used to quantify microgrid survivability against a random outage, more research could be
done to evaluate tradeoffs between economic and resilience objectives. In addition, a refined model
could be used to optimally scale microgrid assets given resilience targets or to maximize resilience
benefits with net costs of the assets set to meet certain budget constraints.

5. Conclusions

This report examined the operational and economic benefits of a microgrid proposed in
Northampton, Massachusetts that would link the Northampton DPW, CDH, and SVAHS. Historically,
all three of these facilities have experienced half-day to two days outages due to severe weather events
with the longest outage in recent years lasting three days. A DOER-supported analysis investigated
the potential to link these three facilities together and confirmed the capability of the three campuses
to island from the grid and continue operating for up to three days with grant-supported investments
in microgrid infrastructure. If successfully implemented, the microgrid could offer substantial benefits
to the facilities by mitigating the outages to which they have historically been subjected.

PNNL was engaged by the U.S. Department of Energy to review, modify, and model these
potential benefits, as well as evaluate the technical performance and financial opportunities available
to the NMP partners. The results provide insights into operation of the microgrid by the three partners.
The following lessons were drawn from this analysis:

1. Over a 20-year life, the BESS and the 386 kW solar array are estimated to generate $2.5 million in
present value benefits. This value exceeds the $2.2 million in present value costs necessary to
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install, maintain, and operate the assets. The overall ROI ratio for the project under this scenario
is 1.16.

2. Sensitivity analysis showed that decreasing the discount rate by one percent led to an increase of
$311 thousand in NPV benefits while increasing it by one percent decreased NPV by $166 thousand.
Increasing the annual benefit growth rate by 1% resulted in an NPV increase of $264 thousand
and a 1% decrease resulted in an NPV drop of $129 thousand. Using a grant from the DOER to
eliminate all capital costs associated with the BESS would improve NPV by $577 thousand.

3. With the PV array included at CDH, forming a microgrid helps increase survivability of all
facilities when a three days outage strikes. Limited power sharing under this scenario causes
frequent charging and discharging of the battery system, which leads to more frequent DG
start-ups and increasing DG failures. When there is a full microgrid, no DG failure, and it is
the winter season, all three facilities have a survivability of 100%. With no microgrid and the
assumption of DG failures, the SVAHS survivability drops to 6.54% and DPW survivability drops
to 41.43%.

4. Under seven days outage scenarios, the benefits of forming a microgrid become more significant.
With full sharing between all microgrid members, all facilities are able to withstand 100% of
the outage in both summer and winter. When factoring in DG failure probability, the average
survivability across all three facilities when the microgrid exists drops to around 95% per facility
in summer and 99% per facility in winter. If no microgrid exists, the survivability of SVAHS and
the DPW during a seven days outage in summer and assuming no DG failure drops to 41.24%
and 88.95%, respectively. Under the same scenario, but with DG failure assumed, the SVAHS
survivability drops to <1% and DPW to 18.43%.

5. When 14 days outages are considered, survivability drops significantly due to fuel shortage.
Summer survivability is lower than winter due to higher total energy consumption. Under all
scenarios under this outage duration, CDH has higher survivability when no microgrid exists.
When a full microgrid is assumed, all facilities have an approximate eight percent survivability
rate in summer regardless of DG failure. In winter, this increases substantially to about 67% across
all facilities. In summer and without a microgrid, CDH has an approximate 25% survivability
rate while SVAHS has <1% and DPW has an 8.35% survivability, assuming no DG failure. If DG
failure is assumed, both SVAHS and DPW have <1% chance of surviving the outage while CDH
only drops to 23.5%.

6. When the potential PV array at CDH is removed from the microgrid configuration, survival rates
drop for SVAHS and DPW especially. Compared with the case with CDH and PV, significantly
lower survival rates of SVAHS and DPW under “Limited Microgrid” mode are observed,
because the PV and BESS were the only assets that can help support the load at SVAHS and DPW
under this mode.

7. The worst subset of scenarios for resilience across all scenarios is a 14 days outage with no PV.
Under this configuration and when there is a full microgrid in summer, there is a zero percent
survivability rate across all facilities both with and without DG failure considered. In winter,
the survivability under the same configuration increases to approximately 53% for each facility.
CDH is consistently better off with no microgrid during long-duration outages as they are able to
reserve fuel that would otherwise be shared with other microgrid members.

The results of this and other similar microgrid assessments demonstrate that when certain
conditions are present, well-designed microgrids hold the potential to achieve resiliency goals while
largely, if not entirely, paying for themselves through grid operations. While diesel and natural
gas-fired generators may offer the least costly option for achieving resiliency goals, their operation may
be limited to emergency conditions due to noise and emission constraints. Microgrids that include
generators plus PV and BESSs could lower the net cost of the system required to meet resiliency goals
by generating revenue during normal grid operations to offset system costs.
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Abbreviations

BESS battery energy storage system
BSET Battery Storage Evaluation Tool
BTM behind-the-meter
CDH Cooley Dickenson Hospital
DER distributed energy resources
DG distributed generator
DOER Massachusetts Department of Energy Resources
DPW Northampton Department of Public Works
FEDS Federal Energy Decisions System
HVAC heating, ventilation, and air conditioning
ICAP installed capacity
ISO-NE Independent System Operator New England
NMP Northampton Microgrid Project
NPV net present value
NSRDB National Solar Radiation Database
O&M operations and maintenance
PNNL Pacific Northwest National Laboratory
PSM physical solar model
PV photovoltaics
REC renewable energy credit
ROI return on investment
SA sensitivity analysis
SVAHS Smith Vocational Area High School
VOLL value of lost load
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Abstract: This paper introduces an energy management and control method for DC microgrid
supplying electric vehicles (EV) charging station. An Energy Management System (EMS) is developed
to manage and control power flow from renewable energy sources to EVs through DC microgrid.
An integrated approach for controlling DC microgrid based charging station powered by intermittent
renewable energies. A wind turbine (WT) and solar photovoltaic (PV) arrays are integrated into
the studied DC microgrid to replace energy from fossil fuel and decrease pollution from carbon
emissions. Due to the intermittency of solar and wind generation, the output powers of PV and WT
are not guaranteed. For this reason, the capacities of WT, solar PV panels, and the battery system
are considered decision parameters to be optimized. The optimized design of the renewable energy
system is done to ensure sufficient electricity supply to the EV charging station. Moreover, various
renewable energy technologies for supplying EV charging stations to improve their performance are
investigated. To evaluate the performance of the used control strategies, simulation is carried out in
MATLAB/SIMULINK.

Keywords: DC microgrid; electric vehicles; resilient microgrid; solar PV; wind turbine; charging
station; control

1. Introduction

Recently, electric vehicles (EVs) became more widespread, and thus, installing EV charger stations
is substantial to satisfy the electrical energy demand of a large number of EVs [1]. However, due to the
extended electrical grids, fast EV charger stations, parking lots, and residential areas can supply the
electrical energy desired to charge EVs. Energy management control strategies are required for the
charger stations for designing and calculating an optimal contracted ability to promote performance and
operation [2–4]. Effective battery chargers represent a substantial role in the evolution of modern EVs.
The characteristics of the battery charger affect the battery life and charging energy efficiency, as well as
the charging time. EV battery chargers should have the key advantages of higher power density, higher
efficiency, better reliability, smaller size, lighter weight, and cheaper cost. The operation of the charger
circuit relies fundamentally on power circuit topology, power circuit passive and active devices, soft
switching techniques and control schemes [5]. Mostly, the EV-charger control techniques can be carried
out by using analog/digital controllers, digital signal processors, microcontrollers, and some particular
integrated circuits. However, this depends upon the complexity of the power circuit topology, cost,
and the power rating of converters. Although plug-in electric vehicles (PEVs) are being promoted in
the market with the objective of reducing the pollution from conventional automobiles, the energy
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demands for charging the EV batteries are still supplied by power generated by conventional fossil
fuel sources. For this reason, many researchers have proposed the solution of charging PEVs using
renewable energy sources like photovoltaic (PV) and wind. Numerous pilot projects are also carried
out to charge PEVs from solar PV and wind energy systems [4–9]. These projects are still in the
development stage [10]. Moreover, due to the economic and social benefits, research work on charging
stations powered by the PV system has engaged researchers worldwide. Generally, the use of solar
energy charger is a dependable source for charging small scale electric vehicles, such as scooters, golf
carts, and airport utility carriages [11]. The use of photovoltaic powered chargers in a parking lot
is analyzed in [12]. A photovoltaic PV-based charging station that is connected with the utility grid
is described in [13,14]. Solar PV parking lot chargers and other application models to supply PEVs
with solar energy are explored in [15]. Economic studies of PV powered charging stations have been
done by [16,17]. Reference [18] depicts how intelligent control algorithms can support PEVs and PV to
integrate with the existing electrical power systems. PV system provides a potential source for PEV of
median generation capacity, while PEVs represent a dispatchable load for low and extra PV generation
during periods of light load demand.

For the stand-alone microgrid, energy management system (EMS) can control demand/supply
balance and maximize the environmental or economic benefits. EMS is a key technology for stable
microgrid operation. For the stand-alone wind-diesel microgrid in [19], an optimal EMS strategy is
proposed, which optimizes the charging/discharging cycles of storage system and system operation
cost according to the prediction of wind turbine (WT) output and load demand. A novel EMS-based
on a rolling horizon strategy for a renewable-based microgrid, which includes PV, WT generator, diesel
generator, and energy storage system (ESS), is proposed in [20]. In [21], a control strategy to reduce
power fluctuations is proposed, which utilizes the ESS to smooth the output power of the wind farm.
DC microgrids have a less complex control strategy which only adopts P-V droop, mitigates the need
for reactive power compensation, and reduce the circulating reactive power. Furthermore, elimination
of frequency and phase angle would ease the resynchronization to the utility grid. Without reactive
power and harmonics, DC microgrids could also offer a better quality of power [22]. They can feed the
DC loads directly by avoiding the conversion losses.

Renewable energy-based charging stations (wind and solar) are friendly EV charging that reduces
fossil fuel exhaustion, optimizes investment cost and accommodates fluctuations of generated power
by renewable sources. The evaluation objectives of charging stations include operational performance
and customer acceptance of charging equipment; pricing criteria to encourage off-peak charging;
and grid impacts [23]. Hence, adopting a DC microgrid is presented for enhancing the resilience and
optimum operation of microgrid, including distributed generation [24]. The broad problem considered
in this research is the optimization of energy flows in the DC microgrid. For this reason, a stable,
robust and optimal supervisory control algorithm is substantial for the large scale hybrid dynamical
system of PEV charging station. Since the system is subjected to random variations in solar power
and the connected vehicles in the parking lot, the system operation must be robust against these
disturbances. In a DC-microgrid, buses can be classified into four types: Generation bus, DC load bus,
batteries energy storage system (BESS) bus, and connection bus to AC-microgrid using voltage-source
converters (VSCs). Moreover, these types of buses can be divided into two groups according to their
contribution to microgrid operation and control, which are power bus and slack bus. The power bus
absorbs power from/to the microgrid on its own. Typical examples are variable DC-loads and variable
(non-dispatchable) generation, such as photovoltaic and wind turbines generation systems. In contrast,
slack buses are responsible for balancing the power surplus/deficit resulting from power buses and
maintaining stable operation of the microgrid.

Generally, in the largely inhibited parking lot, interventions are focused on removing fully charged
EVs, to give non-charged EVs a chance to be an effective to realize powerful utilization of the charging
infrastructure [25]. Specifically, two resilience measures are considered, the resilience related to the
amount of energy delivered to EVs and the resilience related to the average charging time, are provided
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for the EV charging station. Resilience can be defined as the ability of the studied system to withstand
disturbance state and return to a regular state quickly. It has become a new challenge facing the EV
charging station design [26]. A related key performance indicator (KPI) is the percent of sessions
with a low charging time ratio to the total charging time divided by the amount of total connection
time [27,28]. However, these sessions are often a burden during peak hours and daytime. To increase
availability for other EV users, the fully charged EVs should be removed.

References [29,30] propose power management strategies for an autonomous DC-microgrid
based on a PV source, a supercapacitor, electrochemical storage, and a diesel generator. However,
these papers have difficulties in achieving power balance, while accounting for the slow start-up
characteristic of the diesel generator, the self-discharge of an SC. Moreover, the economic operating
mode of the diesel generator can increase the total energy cost of the DC-microgrid. References [31,32]
has studied a test bed to investigate the dynamic response of a DC-microgrid to major disturbances,
but it did not calculate the resilience of the studied DC-microgrid. References [33,34] have investigated
the dynamic response of microgrids powered by renewable energy sources, but they did not define
resilience of the studied systems.

This paper presents the control strategy of an isolated standalone EV chargers station incorporated
in a DC microgrid. This control strategy is investigated using proportional-integral controllers (PI).
This controller will regulate the charging of EVs. The proposed EMS is considered promising, due to
its robustness and simplicity that makes this suitable for applications in the future smart DC microgrid.
A new resilience measurement is defined as the ratio of the normalized system, integrated within its
maximum permissible recovery time after the disturbance to the performance integral in the ordinary
state. This measure enables the resilience of various systems to be compared on the same comparative
scale. To estimate the resilience of DC microgrid, a resilience measurement scheme is developed.

2. System Description

A DC microgrid is a low-voltage network that consists of several energy components, such as
controllable loads and distributed energy resources (DERs). The standalone system can decrease the
carbon footprint and reduce the losses of power transmission [35]. Figure 1 shows a standalone DC
microgrid supplying EVs charging station. The studied system is composed of WT, photovoltaic (PV),
and energy storage systems (ESS), such as battery bank. In this system, controllable loads include
electric vehicles (EVs). The EVs are charged from DC microgrid through DC-DC converters controlled
by a charging regulation control scheme. The battery bank has a dual power flow in the whole system
that acts as the energy provider and consumer according to the condition of wind turbine and PV
panels’ production. The configuration of the standalone charging station is shown in Figure 1. The PV
connected to the DC microgrid through a DC-DC converter controlled by the maximum power point
tracker (MPPT) scheme. The wind generator connected to the DC microgrid through an AC-DC and
DC-DC converters. At the same time, the battery bank charged and discharged from DC microgrid
using a bidirectional DC-DC converter.
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Figure 1. Configuration of the proposed DC microgrid based charging station.

2.1. Configuration of Electric Vehicle

The PEV has three major subsystems: Electric propulsion subsystem, Power source, and Auxiliary
system. The electrical propulsion subsystem is composed of the electronic controller; DC-AC power
converter; electric traction motor; driving wheels, and mechanical transmission. Based on the control
input signals from the accelerator and brake pedals, the electronic or digital controller provides the
required control commands to switch on or off the power converters which in turn coordinate the
power flow between the electric motor and the EV battery source. However, the backward power
flow is due to regenerative braking of the EV, and consequent regenerative energy can be maintained
to charge EV Battery. The energy management unit (EMU) cooperates with the electronic controller
to deal with regenerative braking and its recovered energy. Generally, the auxiliary power system
supplies the necessary energy at various voltage levels to auxiliaries in EV, particularly the power
steering units and temperature control. The successful utilization of EVs over the next decade is
promoted according to international standards and regulations. Safety codes and standards define a
wide range of issues related to EVs. For example, article 625-18 of the national electrical code [36],
requires that cables and connectors for levels 2 and 3 be de-energized unless connected to an EV
for charging. Typically, there are various types of charging systems for EVs, and generally, they are
categorized as level 1, level 2 charging, and level 3 charging, as shown in Figure 2. All commercial
EVs have the capability to charge using level 1 or level 2 charging systems. Level 1 and 2 charging are
ranged from 2 to 20 kW single or three-phase to supply AC charging current of up to 80 A. Level 2
chargers are equipped with SAE J1772 AC charging port to charge the EV batteries. Level 3 charging,
delivers a rapid DC charging method to charge the vehicle batteries at installed stations. This charging
technique practices a 3-phase source with a DC output to the vehicle.
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Figure 2. Block diagram of different types of charging systems.

2.2. Capacity Sizing of the Charging Station

In this paper, the charging station is considered far away from a community. The charging point
in the station provides four typical DC chargers and two fast DC chargers (the fast charger typically
requires 20 min to complete charging 80%, while the standard charger requires about 11 h to complete
80% charging). For example, the Nissan leaf car has about 24 kWh lithium-ion battery banks to store
and supply power for EV motor [37–40]. Hence, within 30 min it reaches about 80% of its capacity at
level 3 charging condition.

In this paper, the maximum capacity of the charging station output power was assumed. The load
demand is treated as a changeable parameter and pursues normal allocation. For a public charging
station, the chargers should endorse standard chargers, in order to be utilized for various types of
EVs. Home charging usually uses AC charging and it includes two types of charging; level 1 charging
(120 V) and level 2 charging (240). On the other hand, DC faster chargers are largely used in the
commercial chargers stations. The capital cost of the charging station will be cut-price as the prices of
wind and solar PV generator apparatus come down. Any overabundant energy from WT and PV can
be accumulated in the energy storage batteries. The optimal sizing of WT, PV and battery capacities
could depend on the variance of wind velocities and solar irradiance. Table 1 shows the renewable
sources-based specifications of the charging station.

Table 1. The output of the charging station.

Output Qty Working Hours

Faster DC charger 50 kW 2 24
DC standard charger 10 kW 4 24

Lights and other loads 10 kW 12
The total output 150 kW

The charging station is designed, such as the maximal output power is 150 kW. The daily operation
time is 24 h and seven days a week. The typical battery bank capacity is 24 kWh (Nissan Leaf, 2014).
The calculated maximal demand for the charging station is 4728 kWh every day. The most popular
charging technology, based on Japan’s EV association standard [36,37], can deliver 50 kW output.
However, the power rating of the charger is 90 kW at Tesla’s supercharger station. Then the car can
travel about 240 km after charging for 30 min. In this paper, it is assumed that the DC fast charger rates
50 kW output.
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3. Control Strategy for PV/Wind/Storage Hybrid System

3.1. Control Scheme of the Boost DC-DC Converter Interfacing PV Array

The boost conversion stage is used to regulate the voltage from the PV panel and extract the
maximum power. The PV panel voltage Vpv and the input current Ipv are sensed frequently. Then the
MPPT control algorithm utilizes these two values and calculates the reference power that the PV panel
requires to be operated at MPP conditions. The MPPT is achieved using an inner current loop and an
outer voltage loop, as shown in Figure 3. By increasing the current drawn from the boost converter,
results in reducing the panel output voltage. Therefore, the outer voltage compared with a reference
value and feedback is regulated using PI controller gains. Hence, the output voltage is prevented from
exceeding the adjusted value. On the other hand, the resulting signal from the MPPT controller is
regulated using a PI controller. Then the output of the internal loop is compared with the reference
current produced by the outer loop to generate the PWM signal [38–40].

Figure 3. Maximum power point tracker (MPPT)control of boost DC-DC converter.

3.2. Control of the Boost DC-DC Converter Interfacing Wind Turbine

The control scheme of the WT generator includes maximum power point extractor for standalone
variable speed WT with a permanent magnet synchronous generator (PMSG) and DC bus voltage
control. The boost power converter is correctly adjusted to supply the maximum available generated
power from the WT using the rectified DC voltage and current drawn from the rectifier output.
The charging station works in standalone operation mode. Hence, the generated energy should be
transferred through the DC microgrid to the electric vehicle loads. The power reference is generated
from the comparison of the DC-link actual and reference values. The generated control signals are
adjusted by using PI controllers to give power reference. For maintaining the DC microgrid voltage at
its desired value, the PWM modulation signals of each converter are controlled regardless of variations
in wind speeds and vehicles charging loads. The aim of using the boost converter is to regulate
the rectified DC voltage to a higher voltage level for supplying generated power to the station DC
microgrid. The DC microgrid voltage will be in the range of 280–320 V. DC-DC converters are controlled
to obtain maximum power point operation MPP to maximize gathered wind power and to optimize
the electrical energy produced by the PV panels. Figure 4 explains the control scheme of the boost
converter. The parameters of PMSG are listed in Table 2. Thus, the measured input current and voltage
values are used in the power optimizing algorithm or power tracker MPPT. The rectified DC voltage
value (VDC) is provided to a look-up table that defines a predefined maximum power point (MPP)
characteristic curve.
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Figure 4. Control of the wind turbine (WT) boost converter interfacing DC microgrid.

Table 2. PMSG parameters [29].

Parameter Value Unit

Stator resistance 0.02 Ω
d-axis inductance Ld 7 mH

q-axis inductance 7 mH
Vpk/krpm 98.7

No. of poles (P) 8
Moment of inertia 8 × 10−3 N-msec2

Mechanical time constant 0.04

3.3. Control of Bidirectional DC-DC Converter Interfacing Battery Bank

As shown in Figure 5, the bidirectional converter consists of a high-frequency inductor L, filtering
capacitor CDC and two half-bridge switches (S1 and S2), which enable a bidirectional flow of current.
There are two voltage controllers with appropriate control blocks to realize the desired energy flow in
various conditions. The controller produces a reference current of energy charging and discharging.
The first controller is for DC-bus voltage regulation, and the second controller is for battery voltage
control. To improve energy management in the charging station and the DC microgrid, backup
energy storage batteries are used. The battery bank is connected to the DC-microgrid employing a
bidirectional DC-DC power converter. This converter carries out double tasks: A battery charging
regulator and a boost converter to supply power from the battery bank to the DC microgrid when
the PV panels and wind sources have insufficient power to charge the electric vehicle loads. As a
standalone charging station, the most convenient operating condition takes place when the electric
vehicle power and the PV and wind extracted power agree. However, too deep discharge of the battery
bank is not recommended, as, at a low battery bank voltage, there is a confined range of charging
energy, which may cause over-voltage in DC microgrid during, e.g., energy recovery from the EVs side.
On the other hand, there is a limited range of discharging energy, and the batteries have to be protected.
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Figure 5. Control scheme of battery energy storage.

3.4. DC Microgrid Control Method

In the studied DC microgrid, a control scheme has been implemented to balance the DC voltage
bus and to control the power supply to meet the load demand in islanded mode. In this control,
one unit source acts as a master controlling the full system, while the rest of the units work as current
sources (i.e., as “Slaves”). In this way, there will not be the voltage difference between the outputs of
the DC sources, because the Master unit regulates the voltage values of all the output units; therefore,
current will not circulate between the sources.

The DC microgrid is measured and compared with a predefined reference voltage, and the voltage
error is processed through a compensator (PI block) to obtain the desired impedance current reference
for the current loop. This compensator can be expressed in the following way [33]:

ILre f = kp(Vre f −VMG) + ki

∫
(Vre f −VMG)dt (1)

where ILref is the reference current for the DC-DC converter. Vref is the reference voltage for DC
microgrid, and VMG is the actual voltage. Kp and ki are the proportional and integral controller
coefficients for voltage loop. The power flow is controlled by a current controller who compares
the impedance current in the master unit with the reference current desired to stabilize the system,
the error is processed through another PI block to obtain the desired duty cycle for the converter which
acts as a Master. The PI block can be expressed as:

d = kip(ILre f − IL) + kii

∫
(ILre f − IL)dt (2)

where ILref is the reference current for the DC-DC converter. IL is the actual measured current. Kip and
kii are the proportional and integral controller coefficients for the current loop. The problem of this
control topology is the dependence on the master unit, and if there is a fault in this unit, the control
will stop working properly [27]. To increase the reliability of the system, three different sources can act
as a master unit, decreasing the chance to fault in the microgrid control. The energy storage system
(ESS) can control the voltage level and the power flow through a bidirectional converter. When the
microgrid is working in an islanded mode, this source will act as a “master” remaining the voltage at
300 V and meeting the load demand. If there is a fault in the ESS or the state of charge (SOC) level is
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not properly to control the microgrid in an islanded mode. There is a voltage controller implemented
with a voltage and a current loop as it is shown in Figure 6.
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Figure 6. Representation of DC droop (a) The particular droop of two DG units; (b) v-I droop for the
DC microgrid.

The DG units are interfaced through DC-DC converters to the DC microgrid. The individual
droop-based power-sharing in the DC microgrid is represented in Figure 6a. The DC-link voltage of
each DC-DC power converter is drooped with the DC generated power (PDCJ) utilizing the droop
coefficient mDCj as represented in the equation:

V∗oj = Vn
oj −mDCjPDCj (3)

where V∗oj, Vn
oj are the reference and no-load DC-link voltages of the DC-DC power converter, whereas

the subscript j refers to a DG unit in the DC microgrid. The delivered DC power from each DG unit
(Pacj) is wirelessly specified to supply the connected DC-load (PDCL), following the equality

mDC1PDC1 = mDC2PDC2 (4)

where PDCL = PDC1 + PDC2.
The primary requirement for a DC microgrid operation is to maintain the common DC-link

voltage within a predefined range. Different measures shall be taken by each terminal of DC microgrid
according to microgrid operation conditions. Therefore, a reliable and fast control scheme is essential
for acknowledging system operation status. The DC-link voltage is a proper indicator of the DC
microgrid’s operational condition. An equivalent circuit of the DC-mircogrid, including the BESS
and PEV is simplified, as shown in Figure 7, where PDC and PAC represent to the total power flow
on the DC side of microgrid (PV panel, Battery bank and DC/DC power converters) and the AC-side
(inverter and the AC load). From Figure 7, the instantaneous power relationship in the DC-microgrid
is described by

Pdc(t) = PBESS(t) + pc(t) + PPEV(t) + Pac(t) (5)

where PDC is the DC power delivered by the DC-DC converter to the DC-microgrid, PBESS is the power
supplied to (or by) the BESS, Pc is the power to the DC-link capacitor, PPEV is the power required for
charging the plug-in electric vehicles PEV, and PAC is the power required by the inverter for supplying
the AC load.
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Figure 7. DC power flow diagram.

4. Energy Management Control Strategy

The amount of energy that can be produced by the PV or wind generator is calculated using the
input data, such as hourly solar irradiance, wind speed, and ambient temperature. The total value of
generated output power (Psources) is compared with the load demand energy (PPEVs) to estimate the
energy flow distribution between the energy storage unit and the loads. Surplus energy is stored in
the battery banks. The control strategy of the hybrid PV-wind charging station is described by the
flowchart in Figure 8. According to Figure 8, the control strategy is applied according to four different
cases as follows:

If Psourcs (Ppv + Pw) > PPEVs, then PESU = Psources − PPEVs. If the irradiance level and wind speed
are high enough, the output power empowers the connected electric vehicles, and the exceeding power
is stored in the battery bank.

If Psourcs·(Ppv + Pw) = PPEVs, then PESU = 0. That is, if the irradiance level and wind speed are just
enough, to empowers the connected electric vehicles and no excess power to charge the battery bank.

If Psources < PPEVs and PPEVs − Psources ≤ PESU, then PPEVs − Psources = PESU. That is, if the PV and
wind generators cannot supply the load, then the load is supplied directly from the DC-microgrid,
and the battery converter is switched on.

If Psources < PEVS and PEVS − Psources > PESU, in this case, the energy stored in the battery bank is
not enough to charge connected PEVs. Then the PEVS and battery bank are disconnected.

The supervisory controller is divided into two main functions. The first function identifies the
mode of operation according to the conditions and situation of individual microgrid components.
The second function is integrated into intelligent systems, such as converters and inverters that
determine the performance of individual components in that mode of operation. The switch over in
the battery charging mode takes place either when the state of charge of the battery is lower than the
minimum SOClow or when there is a sudden decrease in the required power for load and state of charge
of the battery is lower than maximum SOChigh. Therefore, when loading power decreases, the surplus
power is utilized to charge the batteries if it is not fully charged. The individual components can be
controlled easily using a built-in controller, such as the DC-DC converter controller. Thus, the energy
management system (EMS) is responsible for achieving the optimal operation of the DC microgrid.

The energy management control algorithms overcome the unbalance between power produced
from distributed generation (DG) units and load. This can be done when the SOCs of ESS are sufficient.
In the case of ESS failure or an inappropriate SOC value, the master unit becomes the wind turbine.
In case of that, the load is greater than the available energy production, and the controller of the
DC-microgrid is not able to balance the power flow of the system, the solution will be the load shedding.
In case that the power generated by the sources is bigger than the load consumption, one of the
distributed generators will be disconnected from the microgrid.
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Figure 8. Flow chart of energy management control for the PV/wind/storage system.

The operation of the charging station DC-microgrid can be divided into four operation modes.
The power flow direction is changing during various operation modes of the DC-microgrid based
charging station, as illustrated in Figure 9. These modes of operation can be explained as follows:

Mode 1: VDC ≥ VDC3: PEV charging and battery bank charging mode

The PV panels produce enough power, and this appears in an increase of the DC-link voltage to be
higher than VDC3. This additional energy produced by the PV panels and the wind turbine is supplied
to the batteries through a bidirectional DC-DC converter. As soon as the PEVs are fully charged, all the
power produced by the PV and wind sources is delivered to the battery banks.

Mode 2: VDC1 > VDC > VDC3: Charging by PV power

At this operating mode, the PEV is charged using the power generated by the PV system. In this
case, the controller ensures that the PEV battery is not exceeding the over-charging limit. Thus,
the controller terminates PEV charging when PEV voltage exceeds VBH (the voltage relating to 95 %
state of charge of the PEV battery). This interval continues as long as the value of DC-link voltage is in
a range between VDC1 and VDC3.

Mode 3: VDC3 ≤ VDC < VDC2: Wind turbine supplying power and battery bank discharging

During this mode, the power produced by the wind turbine is less than the required power for
charging the PEV. Therefore, the whole power produced by the wind turbine is transferred to the PEV,
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and the additional amount is supplied by the battery bank. However, the DC-link voltage changes
with the variation in solar irradiation and wind speed. Thus, any variation in the DC-link voltage
at the DC-microgrid is monitored by the controller to produce a proper voltage at the output of the
bidirectional DC-DC power converter. The renewable energy sources continue charging the PEV;
whereas, the battery banks cover the peak load demand.

Mode 4: Case-1: VDC < VDC-1 and IDMD < IDMD-max

In this mode, the PV panels and wind turbines do not produce any power, due to inconvenient
weather conditions. The boost DC-DC power converter is isolated, and the battery bank supplies the
power required for charging PEVs. At any instant, during this mode, if the DC-link voltage VDC
exceeds VDC-1, the controller moves the system to work in Mode 2. The bidirectional DC-DC power
converter regulates the output current and voltage for charging the PEV battery. As the battery bank is
at off-peak, it continues to supply energy until the vehicles are completely charged. The controller
terminates the charging process of PEV by disabling the DC-DC converter when the battery voltage
VBat exceeds its maximum value VBH.

Case-2: VDC < VDC-1 and IDMD ≥ IDMD-max

This case is similar to case 1, but local demand exceeds the maximum demand of the microgrid.
During this period, the PEV can be charged using the stored energy in the BESS if it is enough to
cater to the charging process of PEVs. This continues until the state of charge of BESS (battery bank)
decreases below its minimum value (SOC < SOCmin). At this moment, the charging process of PEVs
is stopped tentatively by de-activating the bidirectional DC-DC power converter. Once the renewable
energy power is back to off-peak conditions (i.e., IDMD < IDMD-max) the charging process of the PEVs is
restored, and the controller supervises charging parameters.

 
Figure 9. Different modes of operation.

An example of the electric vehicle load supplied by the DC-microgrid is shown in Figure 10 for
one day period. Figure 11 shows the solar irradiance, temperature and wind velocity profiles during a
typical day in Sohag city, Egypt. The wind speed profile starts with 5 m/s at time 1 h, rises to 9 m/s at
time 6 h, then falls down to 5 m/s at time 10 h, etc., as shown in Figure 11. The generators meet the load
during the night. In the morning when the sun comes up, and the PV starts generating, the PV charges
the BESS until the PV generation and the BESS state of charge are high enough that they can meet the
load on their own without the generators. The load is then transferred to the PV/BESS system, and the
generators turn off. The BESS and PV power the load together from 7–8 a.m. when PV generation is
not yet high enough to meet the load by itself. At 8 a.m., when PV can fully meet the load, the BESS
stops discharging. Excess PV generation is used first to charge the BESS and then remaining excess is
curtailed. In the evening, PV generation decreases, until the PV and BESS can no longer meet the full
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load. Some of the PV generation is curtailed because the BESS is already fully charged. At this point,
the generators turn on again and supply the load overnight.

Figure 10. Electric vehicle load profile supplied by the DC-microgrid.

Figure 11. The solar radiation, temperature and wind velocity profiles during a typical day.

5. Simulation Results and Discussion

Simulation results are obtained based on the typical daily load profile of the studied EV presented
in Figure 11. The calculated produced renewable power and load during a typical day in the studied
system is shown in Figure 12. The hybrid system model is verified by implementing the detailed
models in a MATLAB/ Simulink environment. This model presents an alternative emergency power
system based on lithium-ion batteries. This model also features an energy management system for

105



Energies 2019, 12, 4240

hybrid electric sources. The energy management system regulates the power between the energy
sources and loads according to a predetermined control strategy. The Simulink model of the studied
DC microgrid is shown in Figure 13. The specifications of the studied DC-microgrid are shown in
Table 3:

 
Figure 12. Daily profiles of renewable power generation and load in the studied system.

Table 3. System parameters.

Item Description

PV Array
composed of 330 modules SunPower

SPR-305E-WHT-D with series and parallel
combination (Nser = 5 Npar = 66) rating 100 kW

Wind turbine

Rated output power = 10 kW
Wind speed base = 12 m/s

Base rotational speed = 500 rpm
Initial rotational speed = 200 rpm

Moment of inertia = 0.08 p.u

Li-ion battery A 48 V, 500 Ah, system

Battery state of charge SOCmin–SOCmax: 60–90 [%]

Bidirectional DC-DC converter A 50 kW, A controlled voltage/current outputs

Inverter system A 150 kVA, 270 V DC in, 200 V AC, 60 Hz

The DC microgrid voltage is shown in Figure 14. The DC-link voltage is an indication for the
DC generated power. Figure 15 represents the output voltage and output current of PV panels.
The photovoltaic power generation is set to the Maximal Power Point Tracking, which is proportional
to the irradiance solar radiation and (W/m2). These typical weather data at intervals of one hour are
collected. There is much meteorological software can estimate the solar radiation and the ambient
temperature. In this figure, the solar irradiation is reduced from 1000 W/m2 to 850 W/m2 at time 2 s.
Consequently, the total generated current from PV panels is reduced from 29.6 A to 25 A. The battery
bank compensates the fluctuations of the difference between the microgrid reference power and all
the passive power variations of the DC microgrid (PV/wind power and total loads). The battery bank
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voltage, charging and discharging current is shown in Figure 16. The corresponding state of charge
SOC of the battery bank is shown in Figure 17.

The wind turbine model comprises mathematical models of wind turbines and wind speed
simulation. Figure 18 shows how the voltage at generator terminals (instantaneous value) changes
with time. Figure 18 shows the corresponding generated current. The output power of the wind
generator is proportional to the cube of the wind speed. A sudden variation of wind speed from 12 m/s
to 9 m/s happens at a time of 3 s. However, the temporal variations of the PMSG rotational speed,
torque, voltage, and output power follow that of the wind speed. The rectified output voltage of the
wind generator is shown in Figure 19.

Figure 13. The Simulink model of the studied DC microgrid.

Figure 14. DC-microgrid DC-link voltage.
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Figure 15. PV panels output voltage and current.

Figure 16. Battery bank voltage and current.

Figure 17. Battery bank SOC.
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Figure 18. Wind generator output voltage and current.

Figure 19. The rectified voltage of PMSG output.

The voltage in the line and the current fed to the inverter for AC charging are shown in
Figures 20 and 21, respectively. The current drawn from the AC system is sinusoidal, due to the AC
filters employed. The lack of such AC filters will directly feed the harmonics into the grid source.
A 3-phase AC load is used to emulate the EV charging load profile. The load profiles were generated
using SIMULINK, and then the hourly energy results were configured into a suitable format. For each
month, three day types were used to represent the annual load: Peak day, weekday, and weekend.
The total powers from different sources and loads are shown in Figure 22. A step change in load
power occurs at time 4–5 s from 20 kW to 60 kW. During this period, the peak power is compensated
from the battery bank. The electrical power performance, current-voltage characteristics and system
response confirm that the system has satisfactory performance under conditions of a step changing
power reference and loads disturbances.
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Figure 20. AC side voltage for AC charging.

Figure 21. AC side charging current.

Figure 22. Different power values for sources and loads.
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6. Resilient DC-Microgrid

DC microgrid configurations are evaluated that can be used to integrate PV and wind generators
alongside existing batteries’ energy storage systems (BESS) to increase resiliency at the site. The BESS
units are sized to support the charging station load for one hour in this operation condition. There
will be cloudy intervals or early morning/ late afternoon hours when PV and wind generators will
not be capable of delivering the required charging load. During those times, the BESS is required to
supply the EV loads until PV or wind generation supplies the charging station load. An integrated
solution was proposed so that all energy sources operate in an integrated manner and are centrally
controlled. Therefore, the BESS does not require to be sized for the full load in this operation scenario.
The DC-bus Voltage of microgrid effects time of charging. Then the time of charging can be calculated
according to the voltage and capacity of the battery. This measure takes into account the robustness of
the system against disturbances and the quickness of the recovery [27].

R =

∫ Ta

t0
Vdc−bus(t)dt

Ta
(6)

where VDC-bus is the DC bus voltage. R is the resiliency, Ta is the recovery time.
The resilience of an electrical microgrid can be defined as “the ability of the microgrid to sustain

against disturbances and return to its normal state quickly”. This definition includes the two remarkable
attributes, recovery and response, and is compatible with the definitions given in references [27,28].
The schematic diagram of the system’s resilience concept is illustrated in Figure 10. However, disruption
occurs at time t0, as shown in this figure, and the system performance (DC bus voltage) falls from Q0

to Q1. By taking adequate action, the system returns finally to original DC-link voltage at time t1.
As shown in Equation (6), the resilience measure is able to comprehensively represent the ability

of the system to withstand the disruption and recover rapidly. Here, 0 < R< 1. Therefore, when R = 1,
it means that the system has perfect resilience: Either its performance degradation is 0, or it can recover
from disruption instantaneously. In case R = 0, it designates that the system is completely troubled
immediately upon disruption and cannot recover within the maximum permissible recovery time. It is
obvious that systems with higher values of R are more resilient.

The performance curve Q(t) is used to describe the system resilience of microgrid. The performance
loss function from disruption is defined by the integral of the curve, followed by a gradual recovery
(i.e., the shadowed area in Figure 23). This measure achieves the robustness of the system versus
disturbances (load disturbance and intermitted generated energy from renewable sources) and the
quickness of the recovery action. By calculating the area under the curve of Figure 24, the DC-bus
voltage is recovered from VDC = 96% to 100% and the time from 4 to 4.06 s and dividing this by time
0.06; then the resiliency will be 0.98. It means the system is near perfect resilient.

A new resilience measure is proposed in this paper for DC microgrid. It comprises using the
maximum admissible recovery time as the considered time interval and enabling an estimation method.
Resilience measurement scheme is used to estimate the resilience of different microgrid designs. It is
also used to verify whether the resilience goal of microgrid can be satisfied, and choose a resilient
method that can sustain the disruption and return the microgrid to the normal state as quickly
as possible.
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Figure 23. The schematic representation of resilience [27].
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Figure 24. Dc-link voltage for calculating the resilience.

7. Conclusions

This paper has presented an energy management technique for an isolated DC-microgrid supplying
EV charging station. The standalone DC microgrid is verified by implementing the charging station
model in a MATLAB/Simulink environment. The EMS control system is designed to regulate renewable
energy sources status, battery SOC, and load demand. For an accurate evaluation of EMS strategy,
hourly variations of renewable generation and a typical EV load are utilized as input data. The solar
irradiation is reduced from 1000 W/m2 to 850 W/m2 at time 2 s. A sudden variation of wind speed from
12 m/s to 9 m/s happened at a time of 3 s. However, the temporal variations of the PMSG rotational
speed, torque, voltage, and output power follow that of the wind speed. A step change is applied
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in the load power then the battery bank compensates the fluctuations of the difference between the
microgrid reference power and all power variations of the DC microgrid (PV/wind power and total
loads). The electrical power performance, current-voltage characteristics and system response confirm
that the system has satisfactory performance under conditions of a step-changing power reference and
loads disturbances. The results indicated that the integration of intermittent wind and solar energy
sources in microgrid should be designed carefully in standalone operation. The proposed control
strategies can provide excellent performance under different operating conditions. BESSs can increase
the reliability of the system because they can store excess renewable energy during low-demand
periods and can supply during high-demand periods.
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Abbreviations

The following abbreviations are used in this manuscript:

DC Direct Current
AC Alternating Current
EMI Electromagnetic Interference
DG Distributed Generation
BMS Battery Management Systems
SOC State of charge
EV Electric vehicle
PMSG Permanent Magnet Synchronous Generator
IDMD Maximum demand current
PEV Plug in Electric Vehicle
BESS batteries energy storage system
EMS Energy management Strategy
EMU Energy management unit
ESS Energy Storage system
DG distributed generation
MPP Maximum power point
MPPT Maximum power point tracking
PV Photovoltaic
PI Proportional-integral
WT Wind Turbine
WTCS Wind Turbine Conversion System
DERs Distributed Energy Resources
HVAC heating, ventilation, and air conditioning
PWM pulse-width modulation
RE Renewable Energy
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Abstract: All-electric ships, and especially the hybrid ones with diesel generators and batteries,
have attracted the attention of maritime industry in the last years due to their less emission and
higher efficiency. The variant emission policies in different sailing areas and the impact of physical and
environmental phenomena on ships energy consumption are two interesting and serious concepts
in the maritime issues. In this paper, an efficient energy management strategy is proposed for
a hybrid vessel that can effectively consider the emission policies and apply the impacts of ship
resistant, wind direction and sea state on the ships propulsion. In addition, the possibility and
impact of charging and discharging the carried electrical vehicles’ batteries by the ship is investigated.
All mentioned matters are mathematically formulated and a general model of the system is extracted.
The resulted model and real data are utilized for the proposed energy management strategy. A genetic
algorithm is used in MATLAB software to obtain the optimal solution for a specific trip of the
ship. Simulation results confirm the effectiveness of the proposed energy management method in
economical and reliable operation of the ship considering the different emission control policies and
weather condition impacts.

Keywords: hybrid diesel/battery ships; energy management; emission management

1. Introduction

Shipping has been a significant human action throughout history, especially in international and
inter-regional trading applications. Different types of technologies have been used for providing the
propulsion force of ships so far. All-electric ships are one of the recently introduced technologies which
is referred to the ships that use electricity to provide the propulsion force [1]. Required electricity of
these ships can be generated by different resources like diesel and gas power generators, batteries,
and clean energies like fuel cell, or by hybrid of these resources [2–5]. At the moment, the hybrid of
diesel generators and batteries is known as a popular method for supplying the all-electric ships loads
and reducing the emission [6,7].

Energy management of all-electric ships has been thoroughly studied in the literature, so far.
In [8], the authors use unconstrained, large-scale, global optimization to solve the energy resources
scheduling problem of a large green ship with diesel power generator, batteries, photovoltaic panels
and cold ironing as energy resources. A dynamic programming approach is used in [9] to solve the
energy management problem of an all-electric ship with hybrid diesel/battery system considering
emission limitations. A nonlinear procedure is used to achieve a control strategy of all-electric powered
ships with only a hybrid energy storage system as the energy resource. In order to address shipboard
load fluctuations, the authors of [10] apply a real-time model predictive control based on energy
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management strategy. They also use an integrated perturbation analysis and sequential quadratic
programming algorithm to solve the optimal scheduling problem of a ship with hybrid batteries and
ultra-capacitors. In [11], a combined cooling heat and power plant in the hybrid diesel/battery ships is
introduced and a multi-energy configuration for it is proposed. In order to reduce the ship operating
cost and gas emissions simultaneously, a multi-objective optimization problem is solved. In [12],
a non-linear method is used to find the optimal control strategy of an all-electric ship supplied with
a hybrid storage system. Shipboard loads power scheduling problem is solved using the particle
swarm optimization method in [13]. Energy management of hybrid fuel cell/battery system for
propulsion of ships has also appeared in the literature recently. In [14], a rule-base method is proposed
for energy management of a hybrid fuel cell/battery ship. Simultaneous optimal component sizing
and energy management of a hybrid fuel cell/battery ship are studied in [15]. Reference [16] applies
a multi-scheme energy management method for optimizing the total energy consumption of a hybrid
FC and battery system. Reference [17] proposes a non-linear model for optimal energy management of
a hybrid fuel cell/battery ship under different operation scenarios.

Reviewing the above mentioned studies shows that there are still some gaps in the field of the
energy management methods for all-electric ships. First of all, although it has a strong impact on the
propulsion load, ship resistance due to sea waves is not discussed and formulated in detail in these
studies. The impacts of wind direction and sea state of the operation of the ships are not formulated in
the methods. Moreover, the ability of all-electric ships that carry vehicles in providing the possibility
of charging to electric vehicles is not formulated in the aforementioned studies. This paper focuses on
integrating impacts from water resistance and wind on the propulsion load. So, the main contributions
of the paper are summarized as follows:

• An energy management method for the ships sailing in Inter-regional areas considering different
emission constraints in different areas of the traveling route.

• Formulating the water resistant for the understudy ship in detail and integrating the resistance
formulations in the energy management problem.

• Considering the impacts of wind direction and sea state on the efficiency of electric motors.

The rest of the paper is organized as follows. Section 2 presents the problem description.
In Section 3, ship’s resistance is formulated. The relation between fuel consumption and power
is determined in Section 4. The problem is formulated in Section 5. Numerical results are presented in
Section 4 followed by concluding remarks in Section 5.

2. Problem Description and Preliminaries

2.1. Problem Definition

A hybrid diesel/battery ship with a 1000 kW diesel generator and 300 kWh battery is considered.
This ship sails on a special route involving both domestic and international waters. It is assumed
that the ship can provide the possibility of charging the electric vehicles that it carries by itself.
The maximum power transmission for charging electric vehicles is assumed to be constant and limited.
The single line electric diagram of the ship is shown in Figure 1.
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Figure 1. Single-line electric block diagram of the ship.

It should be noted that this type of ships usually sail a specific route two or three times per day.
Energy management at each journey is performed considering discharging the batteries between
predetermined values such that the total energy storage of the batteries are shared among all daily
journeys. At the end of each day, after the last journey, the batteries are charged using cold-ironing
in harbor. Since in this paper, the main focus is on only one journey, only the constraints related to
discharging the batteries up to predetermined values at the end of understudy journey are considered
in the modeling.

Basic parameters of the case study ship are presented in Table 1 and illustrated in Figure 2.

Table 1. Basic parameters of case study ship.

ρs (kg/m3) S (m2) L (m) ϑ (m2/s) g (m/s2) ∇ (m3) B (m) T (m) β

1.005 490.77 49.830 1.188 × 10−6 9.8 485.5 11.297 1.920 0.7874

Figure 2. Illustrative representation of the understudy ship parameters.

It is assumed that the travelling starts from a country with specific emission restriction in its own
domestic waters. No emission restrictions are considered for international waters. So, when the ship
enters the international waters no emission restrictions is imposed to the ship operation. When the
ship leaves the international waters and enters to the domestic waters of the destination country new
emission control restrictions should be considered in the operation of the ship.

Different studies show that wind direction and sea state can affect the performance of ship electric
motors [18]. It is assumed that the traveling route is short. So, the wind direction and condition of the
sea in different traveling route locations can be predicted and known in the power scheduling problem.

The variations in ship’s speed during travel lead to changes in ship’s resistance. The consumed
fuel is also characterized as a function of shipping speed and also ship’s speed-dependence resistance.
So, in order to determine the amount of fuel consumption, the relation between the ship’s speed and
resistance should be taken into account.

Considering all above mentioned assumptions, the aim of this paper is to determine the optimal
speed adjustment of the ship during the journey and scheduling the batteries and electric vehicles
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charging considering the emission limitation, weather condition, and ship resistance such that the
optimal operation cost is achieved.

It is assumed that energy resources scheduling is performed for different portions of the sailing
route. Each portion is denoted by index x and the set of all portions is defined by X.

2.2. Ship’s Resistance Formulation

Considering the ship’s speed-dependent resistance and as mentioned in [19], the propulsion force
is proportional to shipping speed as follows:

Px
m = R(Vx)× Vx (1)

where Px
m denotes the electric motors’ power in kW, R(Vx) is the ship’s speed-dependent resistance,

and V is the shipping speed in (m/s). Ship’s resistance is represented as:

R(Vx) = CT(Vx)
ρs

2
Vx

2S (2)

where ρs is mass density, S is the wetted surface of the ship, and the total resistance coefficient, denoted
by CT , is given by:

CT(Vx) = CF(Vx) + CR(Vx) + CA + CAA + CAS, (3)

where CF, CR, CA, CAA, and CAS represent the frictional resistance coefficient, the residual resistance
coefficient, the incremental resistance coefficient, the air resistance coefficient, and the steering
resistance coefficient, respectively. The frictional resistance coefficient, denoted by CF, is formulated as:

CF(Vx) =
0.075(

logRn(Vx)
10 − 2

)2 , (4)

Rn is the Reynolds Number and is defined as:

Rn(Vx) =
Vx × L

ϑ
(5)

where L and ϑ are the length of the waterline and the coefficient of kinematic viscosity, respectively.
CR is expressed as a function of Froude number. The Froud number is defined as below:

Fn(Vx) =
Vx√
g × L

(6)

where g is the standard gravity. According the the available studies [19] the relation between CR
and Froude number is highly dependent on the parameters of the ship. In [19] relation between CR
and Froude number is depicted using some curves obtained by experimental results. In order to
find the best curve for the ship under study, two parameters should be calculated. The first term is
a length-displacement ratio that is defined as below:

LD =
L

∇ 1
3

(7)

The second term is the prismatic coefficient ϕ of the model given by:

ϕ =
∇

L × B × T × β
, (8)

where ∇, B, T, and β denote volumetric displacement, breadth, draught, and mid-ship section area
coefficient, respectively. Using these two parameters the corresponding curve for CR versus Froude
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number can be found in [19]. Curve fitting is applied to assign a mathematical formulation to the
relation between CR and fourth-degree. The following polynomial function represents this relation:

103CR(Vx) = (0.00942 × Vx
4 − 0.1827 × Vx

3 + 1.413 × Vx
2 − 4.927 × Vx + 6.75)× 10−3 (9)

Now, it should be noted that this curve is valid for the case that B
T = 2.5. Below formulation is

used to find the value of CR for other B
T values:

103CR(Vx) = 103CR, B
T =2.5(Vx) + 0.16

(
B
T
− 2.5

)
(10)

The incremental resistance coefficient, CA, depends on the length of the waterline and for understudy
ship equals to 0.4 × 10−3. It is also assumed that CAA = 7 × 10−5, CAS = 4 × 10−5. Mathematical
representations of all resistant coefficients and the total resistant coefficient curve CT are depicted in
Figure 3. Ship’s resistant is obtained by including the calculated value of CT using (3), (4), (9), (10) and
above-mentioned information.

Figure 3. The resistance coefficients versus shipping speed.

2.3. Fuel Consumption

The following formulation is used to find the mass of fuel consumption for a specific output
power of the diesel generator [20]:

MF
x = SFOC × Px

DG, (11)

where PDG is the output power of the diesel generator in (kW) and MF
x is the fuel consumption in (g/h).

Specific fuel oil consumption (SFOC), in (g/kWh), is the measure of the amount of fuel consumed in
(g) by the diesel generator to produce a unit of energy in (kWh). The SFOC at different loading of the
diesel generator is derived from the performance curve, which can be obtained from the manufacturers.
The SFOC curve is shown in Figure 4.
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Figure 4. The SFOC curve for a diesel generator [20].

Considering that the SFOC in 100% output power of the power generator is 211 g/kWh [20]
and capacity of diesel generator is 1000 kW, curve fitting using cftool in Matlab software is applied
in Figure 4 to assign a mathematical function to the relation between the output power of the diesel
generator and SFOC as below:

SFOC = 2.04 × 10−10 × Px
DG4 − 6.88 × 10−7 × Px

DG3

+ 8.689 × 10−4 × Px
DG2 − 0.474 × Px

DG1
+ 300.8

(12)

2.4. Impacts of Weather Condition on the Motors’ Performance

One of the goals of this paper is considering the effects of weather condition on the optimal energy
management of the ship. Reference [18] has already studied the impacts of wind direction and sea
state on the fuel consumption efficiency of the ships. In [18], calculation are performed for ships with
diesel engines whereas understudy ship in this paper is an all-electric ship that uses electric motors.
However, since the fuel consumption and output power in diesel engines have a linear relation, same
impact can be considered for wind direction and sea state on the efficiency of output power of the
motors. So, obtained results in [18] are used in this paper to model the impact of wind speed and sea
state on the efficiency of the motors. In the rest of this paper, the phrase “motors’ efficiency” refers
to the motors’ electrical efficiency plus the ability of electric motors in reaching the ship’s speed to
a specific value. Analysis in [18] shows that tail wind, beam wind and head wind have different
impacts on the fuel consumption of ships. Around the operation point of understudy system, tail wind
and beam wind have similar impacts on the motors’ efficiency and head wind reduces the motors’
efficiency about 4%. Coefficient CWD

x is introduced to consider the impact of wind direction on the
motors’ efficiency. We have:

CWD
x =

{
1 if x ∈ XT,B

0.96 if x ∈ XH
, (13)

XT,B refers to the set of portions in which the wind blows to Tail or Beam of the ship and XH is to
the set of portions in which we have head wind.

The Beaufort scale is also used in [18] to categorize the different states of the sea and their impacts
on the performance of motors. According to the Beaufort scale, 13 scales {0, 1, ..., 12} are used to
describe the sea state. Scale 0 represents the calm state and scale 12 defines a hurricane sea. In [18],
the focus is on three states 4, 5, and 6. In state 4, wind speed is between 20 to 28 km/h and wave height
is between 1 to 2 m. In state 5, wind speed is between 29 to 38 km/h and wave height is between 2 to
3 m, and in state 6, wind speed is between 39 to 49 km/h and wave height is between 3 to 4 m. Based
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on the analysis in [18], considering the state 4 as the base case, in states 5 and 6 the motors’ efficiency
decreases about 4% and 8%, respectively. Coefficient CSS

x is introduced to consider the impact of see
state on the motors’ efficiency as below:

CSS
x =

⎧⎪⎪⎨⎪⎪⎩
1 if x ∈ XSS4

0.96 if x ∈ XSS5

0.92 if x ∈ XSS6

, (14)

Sets XSS4, XSS5, and XSS6 refer to sets in which the sea state is 4, 5, and 6, respectively. Now, using
coefficients CWD

x and CSS
x the motors efficiency is formulated as below:

e f m = e f ele × CWD
x × CSS

x (15)

e f ele represents the motors’ electrical efficiency. It should be noted that since the traveling time
period is short, it is assumed that wind direction and sea state are known at the beginning of the sailing.

3. Optimization Problem

In this section, the optimal scheduling problem of the hybrid diesel/battery ship is formulated.
The goal is to minimize the total shipping operation cost considering diesel generator’s operation
constraints, the battery’s operation constraints, time limitation, the fuel consumption limit,
and emission constraint. The whole sailing route is divided into several portions. It is assumed that the
adjusted variables are constant during each portion of the trip. The problem is formulated as below:

min ∑
x∈X

(CF MF
x + CBDPDch

x − CEV PEV−ch
x )tx + K × ∑

x∈X−{1}
(Vx − Vx−1)

2 (16)

s.t. tx =
Dx

3.6 × 103Vx
, (17)

MF
x =

PDG
x

3.6 × 106

(
2.04 × 10−10 × PDG

x
4 − 6.88 × 10−7 × PDG

x
3
+ 8.689 × 10−4 × PDG

x
2

− 0.474 × PDG
x

1
+ 300.8

)
(18)

Pm
x = RTVx = 246 × (

0.075

(log41.94×10−6Vx
10 − 2)

2 + (0.00942 × Vx
4 − 0.1827 × Vx

3 + 1.413 × Vx
2

− 4.927 × Vx
1 + 6.75 + 0.54)× 10−3 + 0.4 × 10−3 + 0.07 × 10−3 + 0.04 × 10−3)× Vx

3 (19)

0 ≤ PDG
x ≤ PDG,max (20)

PDG
x − PDG

x−1 ≤ Rmax (21)

SOCB ≤ EB
x

Bmax ≤ SOCB ∀ x ∈ X (22)

PDch
x ≤ RDch ∀ x ∈ X (23)

Ydc
x = 1 i f PDch

x ≥ 0 (24)

EB
x = EB

x−1 −
[

e f ch(1 − Ydc
x ) +

1
e f dc Ydc

x

]
× PDch

x tx (25)
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EB
0 = E0, EB

Nx
= Ef (26)

∑
x∈X

tx = T̄ (27)

∑
x∈X

MF
x tx ≤ Mmax (28)

F × MF
x

Mcargo × Dx
≤ EEOImax,A

x ∀ x ∈ XA (29)

F × MF
x

GT × Dx
≤ EEOImax,B

x ∀ x ∈ XB (30)

PEV−ch
x < PEV−max

x (31)

∑
x∈X

PEV−ch
x tx = EEV−max (32)

PDG
x + PDch

x = Pload
x +

Pm
x

e fm
+ PEV−ch

x (33)

The first term of objective function (16) is the cost of fuel consumption. CF and Mx present the
fuel price in ( $

g ) and the consumed mass of fuel in ( g
h ), respectively. The second term in (16) denotes

a cost that refers to batteries degradation due to discharging. CBD is its price and PBD is the discharged
power of the batteries in portion x. As mentioned before, it is assumed that the ship provides the
possibility of charging electric vehicles. The third term is the total income for charging electrical
vehicles on board CEV and PEV−ch are the price and power of charging electrical vehicles at the portion
x, respectively. tx is the traveling time at portion x in (h). The last term in the objective function is
a penalty that prevents fast variations and fluctuations in the speed of the ship during the sailing.
Parameter K denotes the importance of this penalty function in the optimization.

Constraint (17) represents the relation between speed and time period of each portion.
Constraint (18) defines the relation between fuel consumption and output power of diesel power
generator using Equations (11) and (12). Equation (19) denotes the relation between motors’ power,
speed, resistant, an weather condition.

Constraint (20) corresponds to the maximum output power of diesel generator where PDG,max is
the rated power of the diesel generator. Changing the operation point of the diesel generator happens
at the beginning of the portion x and is limited. Constraint (21) limits the variation of the diesel
generator’s output power when the ship arrives at the portion x.

Constraints (22)–(26) are related to the batteries operation limitations. SOCB and SOCB are upper
and lower bounds of the batteries state of charge (SOC), respectively. The charging and discharging
power of the batteries is limited to RDch in (23). Constraint (24) is used to determine the charging or
discharging state of the batteries. Adjusting the zero or one value to Ydc

x helps us to assign charging or
discharging efficiencies to the batteries operation in constraint (25). The equality constraint (25) is used
to update the energy storage of the batteries at the end of each portion of the trip. Constraints in (26)
assign the initial and final energy storage of the batteries.

Traveling time period is limited by (27). Total available mass of fuel is limited to Mmax in (28).
In this paper, it is assumed that the emission control policies are various in different portions

of the sailing route. Sets XA and XB refer to the portions close to the start and ending points of the
sailing routes, respectively. The maximum value for the emission index in sets XA and XB are different.
Constraints (29) and (30) are defined to illustrate these different emission control policies. In (29)
and (30), F is the coefficient for converting mass of fuel to CO2, GT represents the gross tonnes of the
ship, and EEOImax,A

x and EEOImax,B
x denote the emission limits in the areas of sets XA and XB. No

emission restriction is considered for other portions of the sailing route.
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Constraint (31) limits the power transfer for charging the electric vehicles to PEV−max
x and

constraint (32) denotes the maximum free energy storage capacity in the candidate electric vehicles in
ship for charging, i.e., EEV−max.

Constraint (33) represent the power generation and consumption balance of the ship. Parameter
Pload

x denotes the shipboard loads except the motors power in portion x.
Proposed optimization problem (16)–(33) is non-linear model. The Genetic Algorithm (GA)

toolbox in MATLAB software is applied to solve this optimization problem.

4. Simulation Results

In this section, the proposed energy management strategy is applied to the real case study ship
introduced in Section 2 and Table 1. Other required information for the simulation are presented in
Table 2. Shipboard loads are presented in Figure 5. The understudy ship is assumed to operate
on the Sweden-Denmark ferry route Goteborg-Frederikshavn. The length of the route is about
110 km and the crossing time is 5 h. The sailing route is divided into 15 portions and the length
of each portion is 7.33 km.

Table 2. Parameters of the energy system.

Parameter Value

Rated power of the diesel generator (PDG,max) 1000 kW
Power ramp rate of the diesel generator (Rmax) 250 kW

Total power of electric motors (Pmax
e ) 1000 kW

The efficiency of electric motors (e fele) 0.85
The batteries capacity (Bmax) 300 kWh

Charge and discharge rate of the batteries 50 kW
Maximum SOC of the batteries (SOCB

) 0.8
Minimum SOC of the batteries (SOCB) 0.2
Charging efficiency of batteries (e f ch) 0.85

Discharging efficiency of batteries (e f ch) 0.95
Fuel consumption to CO2 conversion coefficient (F) 3.2

Gross tonnes of the ship (GT) 650 t
EEOImax,A

x for Denmark territorial waters 23 tCO2
t×Nm

EEOImax,B
x for Sweden territorial waters 26 tCO2

t×Nm
Power transmission limit for charging the EVs (PEV−max

x ) 20 kW
Total required energy for charging the EVs (EEV−max

x ) 70 kWh
Fuel tank capacity (Mmax) 1500 kg

Weighting coefficient of speed variations penalty function (K) 50
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Figure 5. Shipboard load at different route portions.

According to the 1982 United Nations Convention on the Law of the Sea, the territorial sea of each
country is a belt of coastal waters extending at most 22 km from the baseline of a coastal state. Since it
is assumed that the emission controls are for the territorial waters of each country and the length of
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each portion is 7.33 km, the first three portions of the route are assigned to the emission control area of
Denmark and last three portions of the route are assigned to the emission control area of Sweden.

Wind direction and sea state at each portion are presented in Table 3. In Table 3, symbols TB and
H represent the tail or beam wind and head wind respectively, and symbols S4, S5, and S6 represent
the sea states 4, 5, and 6 respectively. According to (13) and (14) and information in Table 3, values of
motors’ efficiency in (15) at each portion of the route is calculated as shown in Figure 6. As shown in
Figure 6, in first seven portions the weather condition affects the motors’ efficiency less than the last
eight portions of the sailing route. In next subsections, first, the simulation results of the proposed
model (16)–(33) that is refereed as the base case is presented and compared with the case that no
emission policy restrictions are considered. Then, impacts of weather condition on the simulation
results are investigated and operation costs at different operation cases are compared.

Table 3. Wind direction and sea state in different portion of the trip.

Portion 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Wind direction H H H TB TB TB TB TB TB H H H H H H
Sea state S4 S4 S4 S4 S4 S5 S5 S6 S6 S6 S6 S6 S6 S6 S5

Figure 6. Impacts of weather condition on the motors’ efficiency.

4.1. Simulation Results of the Proposed Energy Management Method

Optimal scheduling results of different variables are presented in Figures 7–11. In Figure 7,
the speed is presented in Knot unit that is more common unit for speed measurement at seas. We have
V(Knot) = 0.5144 × V(m/s)= 1.852 × V(km/h). As shown in Figure 7, emission limitations impose
reducing the ship’ speed in first and last three portions of the route. Since the emission limitation
in first three portions are more than emission limitations in the last three portions, the speed in first
three portion is scheduled less than the speed in the last three portions. In international waters,
i.e., portions 4–12, the ship’s speed changes such that the fast variations in the speed is prevented,
the power ramp rate constraint of the diesel generator is satisfied and the ship arrives to the distention
on time. This has let to an almost symmetrical scheduling for the speed in these portions.

Scheduled output powers of the diesel generator are presented in Figure 8. According to Figure 8
diesel generator’s output power has a trend similar to the trend of speed due to the direct dependency
of speed to power. In international waters, produced energy by the diesel generator in the First 50%
of the route is about 6.5% less than its produced energy in the next 50% of the route. This happens
because in the First 50% of the route the efficiency of the motors are high and hence, less energy is
needed to reach to the scheduled speed. Power ramp rate constraint of the diesel generator is activated
in portions 12 and 13.

Figure 9 compares the batteries’ operation in the base case and the case that emission restrictions
are not considered. When emission restrictions are ignored the batteries are discharged step by step
during the sailing, but when the emission restriction are considered the battery is discharged mostly in
first and last three portions. In fact batteries’ energy is discharged in these portions for supplying the
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motors instead of producing energy by diesel generator to meet the emission policy restrictions and
also arrive to the destination on time.
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Figure 7. Ship speed scheduling results.
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Figure 8. Scheduling results of the diesel generator’s output power.
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Figure 9. Energy storage of batteries at different route portions.
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According to Figure 10, EVs are mostly charged when the ship is in international waters and sail
in a stable speed. The average charged power of the EVs reduces when the ship is in the areas with
emission restriction and when the speed changes rapidly.
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Figure 10. Scheduling results of EVs’ charged power at different route portions.

Values of the emission index used in (29) and (30) are presented in Figure 11. As shown in
Figure 11, emission is controlled in the first and last three portions of the route compared to the case
that emission restrictions are not considered in the model. Figure 11 also shows that for the understudy
system, considering the emission restrictions in some areas has led to increasing the total value of
emission index over all route portions about 34%. So, it can be concluded that local emission limitations
might help for reducing the emission in specific areas but increases the emission in overall which is
not proper environmentally.
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Figure 11. Emission index values at different route portions.

4.2. Impacts of Weather Condition on the Results

In order to study the impacts of weather conditions on the results, a simulation is performed
after removing equations related to weather conditions, i.e., Equations (13)–(15) from the optimization
problem. Simulation results are presented in Figures 12–14. As shown in Figures 12 and 13, ignoring
the weather conditions in the formulation results less estimated generated power by diesel generator
(dashed blue line) and more estimated speed (blue line) for the ship in some portions when the motors’
efficiency decreases in the base case. This is obviously the result of ignoring the wind direction and sea
state in the model. However, although these impacts are ignored in the mathematical formulation,
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they will affect the ship operation in practice. In fact, in order to reach to the scheduled analytical
speed (blue line) in Figure 13, the actual required output power for diesel generator will be similar to
the Figure 12 (pink line). But this power is above the maximum output power of the diesel generator
and the output power will be set on the maximum value in these portions (green line). This leads to
reduction in the speed of the ship in these portions of the route and could lead to delay on arriving the
ship to its destination.

The charging and discharging scheduling of the batteries is also affected by ignoring the impacts
of weather conditions in the optimization problem. Figure 14 compares the charging and discharging
scheduling of the batteries in the case of ignoring the impacts of weather condition with the base case.
According to Figure 14, while in the base case the most discharged power of the batteries are used in
first and last three portions, the batteries are discharged almost uniformly in the case that the impacts
of weather condition are ignored. This difference is explained as follows. The output power of diesel
generator in both cases is limited in the first and last three portions because of the emission restrictions
in the first and last three portions of the route. Now, due to the impacts of weather condition on the
motors’ efficiency more required power is calculated for the motors in the base case compared to the
case that the impacts of weather condition are ignored. Since, the output power of the diesel generator
is limited in both cases due to emission restrictions, this extra required in energy in the base case in
the first and last three portions is obtained from the batteries. This leads to more discharged power of
batteries in the first and last three portions at the base case compared to the case that the impacts of
weather condition are ignored.

It should be noted that in this paper only the impacts of three consecutive sea state conditions out
of thirteen different conditions are considered in the model. Considering more states can highlight the
impacts of weather conditions on the energy management results significantly.
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Figure 12. Comparing the output power of the diesel generator with and without considering the
impacts of weather conditions.
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Figure 13. Comparing the speed of the ship at different portions of the route with and without
considering the impacts of weather conditions.
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Figure 14. Comparing the energy storage of the batteries with and without considering weather
impacts at different route portions.

4.3. Comparing the Operation Cost of the Ship in Different Cases

In this subsection, the ship’s operation cost is investigated in different cases. Understudy cases
are as follows:

Case 1: fixed speed, discharged power of batteries, and charged power in EVs in all portions;
Case 2: optimal resources scheduling without emission policy restrictions;
Case 3: optimal resources scheduling without considering weather condition; and
Case 4: optimal resources scheduling considering weather conditions and emission restrictions.

Simulation results are presented in Table 4. As shown in Table 4, case 2 is the least fuel
consumption and operation cost case in which there is no emission limitation and also the impacts of
weather conditions are considered in the model. Case 1 that is the most common method for supplying
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the resources in the ship is about 0.8% more expensive because of ignoring the impacts of weather
condition. When the emission restrictions are considered in the model (case 4), the operation cost
increases about 28%. If the weather conditions are ignored in the formulation (case 3), analytical
operation cost obtains USD 782 but in practice the operation cost will be USD 833.69 due to impacts
of weather conditions on the realized operation of the ship. This means that considering the weather
condition in the formulation can reduce the total operation cost up to 3.5%.

Table 4. Comparing the fuel consumption, emission, and operation cost in different cases.

Fuel
Consumption

(Liter)

Total Emission
Index Violations

(tCO2/t*NM)

Total
Operation Cost

($)

Case 1 502.8 59.28 634.54
Case 2 498.4 59.62 629.55
Case 3 655.4 3.5 833.69
Case 4 633.12 0 804.81

5. Conclusions

In this paper, cost effective energy management problem of a hybrid diesel/battery ship that sails
in areas with different emission control policies is studied. The understudy energy system utilizes
diesel generator and batteries as the electric energy resources. Ships’ electric motors, shipboard loads,
and electric vehicles that need to be charged while carrying by the ship are the main electric loads.
The proposed method formulates the relation between the speed and the resistant of the understudy
ship. This helps to find an accurate model for determining the relation between the required propulsion
power and the speed of the ship. Moreover, impacts of wind direction and sea state on the efficiency of
the ship’s electric motors are formulated and involved in the model. A non-linear optimization model
is proposed for the understudy energy system and the genetic algorithm is used to solve the problem.
The proposed method is applied to a real case ship. Simulation results confirms the effectiveness
of the proposed method in minimizing the operation cost, satisfying different operation constraints,
and providing the required energy for charging the electric vehicles while considering the emission
restrictions in different areas. Simulations results shows that considering the impacts of weather
condition on the results can reduce the operation cost of the ship up the 3.5% and ignoring the impacts
of weather condition not only affect the scheduling of the batteries significantly but also leads to delay
on arriving to the destination on time. Simulation results also shows that while limiting the CO2

emission in some areas satisfies the emission restrictions in that areas, it can lead to increasing the total
produced CO2 in overall which is not proper environmentally.
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