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ABSTRACT

The task of ensuring that a software artifact is correct can be a very time

consuming process. To be able to say that an algorithm is correct is to say that it will

produce results in accordance with its specifications for all valid input. One possible

way to identify an incorrect implementation is through the use of automated testing

(currently an open problem in the field of software engineering); however, actually

correcting the implementation is typically a manual task for the software developer.

In this thesis a system is presented which automates not only the testing but also the

correction of an implementation. This is done using genetic programming methods to

evolve the implementation itself and an appropriate evolutionary algorithm to evolve

test cases. These two evolutionary algorithms are tied together using co-evolution

such that each population plays a large role in the evolution of the other population.

A prototype of the Co-evolutionary Automated Software Correction (CASC) system

has been developed, which has allowed for preliminary experimentation to test the

validity of the idea behind the CASC system. In these experiments, the CASC system

attempts to correct various insertion sort implementations. The success of the CASC

system in the insertion sort experiments demonstrates its potential, although further

research is needed to prove its scalability and generalizability for general purpose

use. The results of these experiments are presented along with a discussion of their

significance.
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1. INTRODUCTION

This thesis describes the Co-evolutionary Automated Software Correction (CASC)

system. As the name implies, the CASC system is used to perform automated soft-

ware testing and correction. This is done by employing Genetic Programming (GP)

techniques to evolve a software artifact while at the same time employing a problem

appropriate Evolutionary Algorithm (EA) to evolve test cases. These two EAs are

linked together to create a two-population competitive co-evolutionary system with

each population indirectly guiding the other in its evolution. A high level depiction

of the CASC system is shown in Figure 1.1.

In EAs, a fitness function determines how well an individual performs in the

scope of the stated problem. One major strength of the CASC system concept is

the reusability of a given fitness function to evolve multiple programs for the same

problem statement. The CASC system exploits the reduced complexity of the fitness

function relative to the software artifact being tested. The principle idea here is

that if a fitness function that is not very complex can be determined for a particular

problem, then that fitness function can be used to correct any program solution to

that problem, regardless of the complexity of the solution. For problems that require

complex algorithms, this is a particularly advantageous aspect of the CASC system.

The current state of the CASC system is an early prototype of the envisioned

system. The largest difference between the envisioned system and the current system

is that GP is used in a limited fashion to evolve the program population. Programs

are represented by trees in the system and reproduction is done using sub-tree swaps

(as per standard GP); mutation, however, is performed only on specific nodes in the

program tree (this is discussed in detail in Section 2.3.2). Regardless, enough work

has been done on the system to allow some preliminary experiments to be performed.

The results from these experiments will be presented in Section 4.

The CASC system is an application of evolutionary computing to software test-

ing, a subfield of software engineering. While this has been done before, this is the
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Figure 1.1: High Level Diagram of the CASC System

first time it has been extended to include automated software correction.

1.1. SOFTWARE ENGINEERING FOUNDATION

Software engineering can be defined as “the application of a systematic, dis-

ciplined, quantifiable approach to the development, operation, and maintenance of

software” [36]. Software testing is a subset of the software engineering process that

is focused on ensuring the correctness and completeness of a piece of software. There

are many different types of formal software testing and each type has many different

aspects. The general type of testing that the CASC system performs is black box

functional testing [29]. Black box testing is a method of testing where the tester has

no access to the internals of the program being tested, the only thing that can be seen

is the input going in and output coming out. Functional testing is simply testing (at

any level) for correct functionality of a program.

In the modern software development process, software testing is becoming in-

creasingly important, particularly in financial terms. In 1978 Jones [10] estimated

that catching an error in the system specification phase is approximately 50 times
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cheaper than it is to correct the error later in the system testing phase. In a 2002

news release [25] the National Institute of Standards and Technology (NIST) esti-

mated that software errors cost the U.S. economy approximately $59.5 billion a year,

which accounts for approximately 0.6 percent of the gross domestic product. In the

referenced news release, the NIST states that “although all errors cannot be removed,

more than a third of these costs, or an estimated $22.2 billion, could be eliminated by

an improved testing infrastructure that enables earlier and more effective identifica-

tion and removal of software defects”. From this, it is clear that efficient and effective

software testing and correction methods need to be developed in order to keep up

with advancements in software development methods.

1.1.1. Manual Software Testing. The general process of testing a piece of

software manually involves planning out the testing strategy to use on the software,

developing the actual test cases to use, executing the tests, gathering the results and

analyzing and interpreting them, and repeating the process for any bugs that were

identified. Manual software testing is often performed by a team of testers who have

been involved (at least to some degree) in the development process.

Most software testing performed today is done by human testers. The process of

testing a piece of software is quite time consuming. This is problematic because there

are many modern tools available to developers which makes them able to produce

code more quickly and efficiently, which means that testers are being asked to test

more and more code in less time. Because of this, testing is becoming a bottleneck

in the software production process.

1.1.2. Automated Software Testing. Automated software testing is

a growing field that is used to assist in the testing process. Typically, automated

testing is used to generate test cases, execute the tests, and/or compile and analyze

the results of tests [5]. The major drawback to automated software testing is that

it is expensive to implement which makes it hard to justify in the short term. The

number of tools and applications available to perform or assist in automated software

testing is growing as demand/necessity for the methodology increases.

Automated software testing is particularly well suited for agile software de-

velopment. Agile development is a method which develops software in a series of

(relatively) short iterations [29]. Each iteration is focused on the development of a
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single component of the software project and is implemented as though the compo-

nent is the entire project (i.e., each iteration implements the full development cycle

for a component). This means that there are many testing phases for each project

(one for each component), which is why automated testing lends itself well to this

method. Automated testing is quicker than manual testing and is easier to justify

since agile development yields more frequent testing phases.

In [4], the authors present a short survey of computational intelligence applied to

software testing, specifically test case generation. The key to applying computational

intelligence to test case generation is reducing the generation process to an optimiza-

tion problem. Miller and Spooner were the first to do this in [24]. The method

they presented involved setting the integers and conditional values in the program to

arbitrary constants to drive the program down a pre-specified execution path, then

various floating point inputs were provided as input to the program. Korel followed

this idea up in [11] and [12] by actually executing the program being tested, whereas

Miller and Spooner used symbolic execution. In Korel’s implementation, if the ex-

ecution follows the selected execution path at a branch point, then a 0 is assigned

to that branch point, otherwise a positive integer is assigned. So by minimizing the

assignments, an input can be selected which follows the selected execution path.

The survey in [4] also looks at evolutionary computation techniques which have

been applied to test case generation. In [22] and [23] GADGET (Genetic Algorithm

Data GEneration Tool) is presented by Michael et al. GADGET uses a method

somewhat similar to Korel’s except that instead of trying to find a single input which

will match an execution path, a set of inputs is sought which will maximize execution

path coverage in the program. This is accomplished using a genetic algorithm (a

type of evolutionary computation, discussed further in Section 1.2.1) to evolve the

inputs provided to the program. GADGET also supports random selection, gradient

descent, and simulated annealing as other methods to generate test cases. The results

shown in [23] are favorable, showing that the genetic algorithm slightly outperforms

the other methods, which is a particularly interesting result since the CASC system

employs a genetic algorithm to create test data.

The work of Pargas et al. is also briefly mentioned in the survey. In [26] Pargas

et al. present another test data generation method involving a genetic algorithm
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called TGen. The TGen tool operates somewhat similarly to GADGET. TGen was

compared to a random test data generator and performed quite well.

1.2. EVOLUTIONARY COMPUTATION FOUNDATION

Evolutionary Computation (EC) is a type of computational intelligence which

is inspired by the biological mechanisms of evolution. EC is a broad field which

encompasses many different varieties of EAs. A typical EA creates and evolves a

population of potential solutions for a given problem. The EA population initially

samples the problem space in a random fashion, but in successive iterations it becomes

more directed in its search for a solution. EAs are effective for solving Combinatorial

Optimization (CO) problems. CO problems usually have large problem spaces and are

classified as NP-Hard [2] (a class of problems which are believed to not be efficiently

solvable in general). EAs, however, typically have the innate ability of being able to

navigate large problem spaces well; this is why EAs so readily apply to CO problems.

CO problems can rise from many fields, such as mathematics, artificial intelligence,

and software engineering, which makes EC applicable to a large set of typically hard

problems.

As mentioned earlier, the field of EC encompasses many different algorithms

that all follow the same general evolutionary model, despite the fact that many of

these algorithms were developed independently of each other. Historically, the three

major algorithm families that made up EC were genetic algorithms, evolutionary

programming and evolutionary strategies. More recently, GP has also joined the EC

field. The CASC system uses two historical EA flavors: genetic algorithms and GP;

which are combined using co-evolution.

1.2.1. Genetic Algorithms. Genetic algorithms are one of the first EC

methods conceived and are still some of the more commonly used EA’s today. The

concept of the Genetic Algorithm (GA) was popularized by John Holland in the

1970’s, particularly in his book published in 1975 [9], which was focused on his studies

of adaptive behavior. The canonical GA is an EA whose individuals (i.e., the members

of the evolving population) are represented as fixed length binary bit strings (other

representations have since been used), which favor crossover over mutation as the

principle variation operator.
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Since the early 1990’s a push has been made to combine many of the original

algorithms in the EC field into one unified EA model. A typical cycle in the unified

EA closely follows the standard evolutionary cycle: initial creation (typically random,

but possibly seeded) followed by a cycle of reproduction and mutation, evaluation,

and competition. This cycle continues until a predetermined termination condition is

reached, such as a set number of generations have passed or a goal fitness is reached in

the population. The structure for an EA is laid out by the evolutionary mechanisms

it is based on, the only part that is application specific and must be decided by the

implementer is the representation for an individual and the fitness function used to

determine how well an individual is performing. If a non-standard representation is

used, then appropriate customized variation operators need to be defined.

In [19] researcher Timo Mantere discusses his research into the use of GAs to

generate test data during software testing. Mantere presents the various successes he

has had in applying a GA to automatically generate test data for applications in a

series of seven publications detailing his research. While all of these publications are

relevant to the CASC system, there are two in particular which not only automatically

generate test data, but also use co-evolution to evolve program parameters. These

papers are discussed further in Section 1.2.3.

1.2.2. Genetic and Evolutionary Programming. GP is a type of EA

in which the individuals being evolved store trial solutions in a tree representation.

As data structures, trees have a wide range of application; however, the application

which is most relevant to the CASC system is that of evolving computer programs.

In this implementation, each individual in a GP population will contain the parse

tree for the program which it ultimately represents. The first reported results of

GP were published by Steven Smith in 1980 [35]. In 1985 Nichael Cramer [3] also

published results yielded by using GP techniques. Since the early 1990’s, John Koza

has done a lot to popularize GP, particularly through his classic four-book series on

GP [13, 14, 15, 16]. William Langdon and Ricardo Poli are two researchers who

also have contributed significantly to the field of GP. In [18] Langdon presents many

new and emerging GP techniques are along with the original foundations of GP. Poli

has also done a lot of work on parallel distributed GP [28], which is focused on the

evolution of programs which can readily be parallelized.



7

The methods used by GP are very similar to that of a typical EA except the

evolutionary operators have been modified to interact with tree structures. Repro-

duction is performed using a crossover method in which subtrees are interchanged

between parents to create the offspring. This makes the reproduction operator a very

pivotal part of the evolutionary process because even exchanging a single subtree in

a program parse tree can greatly change the outcome of the program the parse tree

represents.

Mutation is performed by replacing a randomly selected subtree in an individual

with a randomly created subtree. This implies that the mutation operator must

be aware of the subtree functionality as to maintain the integrity of the program,

e.g., a subtree with a binary arithmetic operator as the root, such as the addition

operator, can only mutate to another binary operator subtree, such as subtraction,

multiplication, or division. Another option is to make the mutation operator capable

of removing or supplying operands in the event that the arity of the node changes.

To evaluate a GP individual representing a computer program, first the indi-

vidual’s parse tree is pretty-printed into its program form. The program is then

compiled, if necessary, and executed. The fitness is then determined based on the

output of the program.

Historically, Evolutionary Programming (EP) was used by Lawrence Fogel in

1966 [7] to evolve finite state automata; however, its applications have widened since.

In its current state, EP does not have any standard structure or representation.

Some of the original variations made to the classical EP model are very similar to

GP [6]. In these variants EP evolves expressions which can easily be transformed

into computer programs, which makes the variants very similar to GP, but unlike GP

only the numerical values are modified in the evolutionary process, the structure of

the expression/program remains the same. This is the (temporary) method being

employed by the CASC system to evolve the program population.

1.2.3. Co-Evolution. Co-evolution is an extension of the standard EA

model where the fitness of an individual is dependent on other individuals in its own

or other populations. This relationship can be categorized as either cooperative or

competitive. In nature the relationship can take on many forms, for example any

predator-prey or non-symbiotic parasite-host relationship represents a competitive
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(although necessary) mutual dependence. An example of a more cooperative rela-

tionship would be nectar seeking insects performing pollination for the plants which

supply the nectar.

The CASC system uses competitive co-evolution between a population of evolv-

ing programs and a population of evolving test cases. This competition is intended to

create a type of evolutionary arms race between the two populations. An evolutionary

arms race works much like an actual arms race except it occurs on a genetic level. As

the individuals in one population improve in fitness, pressure is placed on the indi-

viduals in the other population to improve as well. This process will continue and, if

given enough time to evolve, each population will ideally be driven to perform as well

as possible. The concept of an evolutionary arms race is not a new one. Christopher

Rosin [31, 32] performed extensive research on methods for competitive co-evolution,

examining the parasite-host relationship which yields the evolutionary arms race.

The co-evolutionary method has a unique set of problems which can arise during

the evolutionary process. These problems are inherently hard to detect, and as such

much work has been done in finding ways to pre-emptively counter these problems.

One possible problem that can occur in the co-evolutionary process is the phenomenon

known as evolutionary cycling. Evolutionary cycling is basically the evolutionary

version of rock-paper-scissors, i.e., the genetic configurations of the populations cycle

back on themselves and do not advance past a certain point. This phenomenon is hard

to detect because the cycle can involve hundreds of states. In [30] Rosin introduced

the concept of an evolutionary history or hall of fame. The main purpose of the

evolutionary hall of fame is to counter evolutionary cycling. The hall of fame works

by storing the best individuals of every generation, then the individuals in following

generations compete against individuals sampled from the other population(s) as well

as from the hall of fame. So, to perform well an individual must outperform both the

current generation’s best individuals as well as the best ancestral individuals, which

ideally will disallow cycling. This method is used in modern co-evolutionary systems

to not only counter the possibility of evolutionary cycling, but to also speed up (and

generally improve) the evolutionary process.

Another problem which can arise during the co-evolutionary process is evolu-

tionary equilibrium. This is where the evolving populations come to a point where
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they are content with their performance against the other population(s). This con-

tentness causes the evolution to fail in that the populations are no longer pushing

each other to improve. John Cartlidge is a researcher who has put considerable work

into addressing the potential problems in co-evolution [1], and this problem is one

which he addressed. The solution Cartlidge presents is to temporarily remove some of

the better individuals from one population causing the equilibrium to be lost, which

in turn would prompt the populations to start evolution again.

The third significant potential problem that can arise during co-evolution is

disengagement. In this case, one population evolves so much faster than the other that

all individuals of the other are utterly defeated, making it impossible to differentiate

between better and worse individuals without which there can be no evolution. To

counter disengagement Cartlidge uses his “reduced virulence” method to inhibit the

development of the excelling population, allowing the other population(s) to catch up

in terms of performance.

As it is so difficult to detect if and when the co-evolutionary problems are

actually occurring, it is typically better to use a pre-emptive strategy to counter

these problems. While the CASC prototype does not have any of the aforementioned

counter measures installed, the coming versions of the system are planned to have at

least some, if not all, of these counter measures implemented.

1.3. EVOLUTIONARY COMPUTATION APPLIED TO SOFT-

WARE ENGINEERING

Most of the current work in applying EC to software engineering is focused on

automating the testing process using EC. Testing of programs written using the object

oriented programming paradigm is currently a popular area of research. In [17, 38, 39]

Wappler (et al.) discusses various approaches to evolutionary unit testing of object-

oriented software, such as the use of strongly-typed genetic programming methods in

the evolutionary process or white box testing for the testing method. In [37] Tonella

discusses the use of an EA to perform the unit testing of objects (e.g., classes).

Tonella’s primary motivation was to test how an object performed given varying se-

quences of invocations of the object’s methods.
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In [40] Wappler discusses many recent results which show Particle Swarm Op-

timization (PSO, a close relative of EC) outperforming both general and problem

specific genetic algorithms as a test case generation technique. Since the test cases in

the CASC system are managed by an EA this result is particularly interesting. Wap-

pler found that for their application (testing of objects using EC) PSO outperformed

an EA in terms of both effectiveness and efficiency. This is discussed further as an

option for the CASC system in the Future Work section.

In [20] and [21] Mantere introduces a software testing method similar to that

of the CASC prototype. Mantere uses a two-population co-evolutionary system in

which one population is a set of test cases for an application and the other is a set of

various values for the parameters to be provided to the application being tested. Both

populations were evolved using a GA. Mantere discovered through this research that

the more control the GA had over the program parameters, (i.e., the more parameters

being evolved) the more positive the results were. This is an important result for the

CASC prototype (and, ideally, the envisioned CASC system), as it implies that the

prototype’s method of dynamically finding all the evolvable sections of code it can in

a program should make the results as positive as possible. For details on the CASC

prototype implementation, see Section 2.
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2. CASC SYSTEM OVERVIEW AND DESIGN

The CASC system combines the concepts of GP (see Section 1.2.2) and com-

petitive co-evolution (see Section 1.2.3). There are two populations being evolved:

a population of software artifacts (currently C++ programs) evolving using GP and

a population of test cases (i.e., program inputs) evolving using a test case appropri-

ate EA. The fitness for each software artifact is determined by how well it performs

against a set of test cases. Similarly, the fitness of a test case is determined by how well

it performs against a set of software artifacts. Since each population is attempting to

optimize these fitness values, an evolutionary arms race results.

The CASC system utilizes a two-population competitive co-evolutionary cycle,

which is basically two overlaid evolutionary cycles intersecting at the point of fitness

evaluation; Figure 2.1 depicts the co-evolutionary cycle used by the CASC system.

The general flow of the system is as follows:

1. System Initialization: Prepare the system (i.e., initialize data structures, read

in configuration settings, distribute relevant settings to system modules accord-

ingly, etc.).

2. Population Initialization: The two populations (program and test case) are

initialized/created.

3. Initial Evaluation: All of the individuals in the populations are evaluated and

assigned fitness initial values.

4. Reproductive Phase: Parents are selected, crossover is performed creating new

individuals, mutation is applied (if necessary) to a subset of the new individuals,

and the individuals are entered into the general population.

5. Evaluation: Evaluate all individuals and assign appropriate fitness values.

6. Competition and Termination: Poorly performing individuals are selected (us-

ing modified tournament selection) and removed from their population.

7. Check Exit Conditions: If any exit conditions are satisfied exit the evolutionary

cycle, otherwise go to step 4.
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Figure 2.1: The CASC Co-Evolutionary Cycle

In the system flow enumeration, steps 1-3 serve as a primer for the system

and are performed only once. Steps 4-7 are the actual evolutionary cycle used by

populations. Each population has its own evolutionary cycle that is separate from

the other population except for one point, the evaluation phase. These phases are all

described in more detail in the following sections.

2.1. CASC SYSTEM INITIALIZATION

Before the CASC system can be used it must be initialized. The primary purpose

of the system initialization is to read in the configuration values from the CASC

configuration file. The configuration file specifies how the system is to perform the

evolution, where it can find the program to test and correct, the population sizes,

exit conditions, etc. While some of the configuration parameters have default values

specified within the system (and as a result specifying them is optional), the majority

of the parameters must be specified, otherwise the system cannot (and will not)

function. See Appendix A for an example CASC configuration file.

2.2. POPULATION INITIALIZATION

Population initialization is performed differently for each population. The pro-

gram population is based off a seed program (i.e., the program to correct) which is
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read in from a source file and transformed into an evolvable tree, whereas the test

cases are generated randomly.

2.2.1. Program Initialization. The entire program population is based on

a single seed program that is provided to the system. Currently the program must be

written in C++ and the section of code to evolve must be enclosed by two comment

statements, designating the code block as evolvable code to the system (this code

section will be referred to as the evolvable section of the seed program). The format

of the comment statements as well as the actual comment is configurable via the

CASC configuration file.

Figure 2.2: Valid Seed Program

Figure 2.2 contains an example of a simple seed program; in this program the

tags to open and close the evolvable section are /*Open Critical Section*/ and

/*Close Critical Section*/, respectively. The code above and below the evolvable

section is stored as the common program header and footer shared by all programs in
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the CASC program population. The header and footer sections are stored and used

verbatim, no evolution is performed on these sections.

The seed program is read in and processed by the CASC parser. The code in

the seed file is read in line by line and stored as the common program header until

the evolvable section is encountered. The code in the evolvable section is read in

and put into a separate, temporary file. Once the end of the evolvable section is

encountered, the temporary file is closed and the remaining seed code is read in and

stored as the common program footer. At this point the CASC parser re-opens the

temporary file and parses the evolvable section. This parsing yields a lightweight parse

tree representing the evolvable section of the seed program, i.e., the first individual

of the program population. In an EA it is typically desirable to have the initial

population(s) be as diverse as possible, e.g., generated randomly. The CASC system

is to evolve a specified program, which makes a fully random initial population not

possible. So, initial population diversity is achieved by first making a clone of the seed

individual and then performing a modified mutation phase on the clone; this phase

will be referred to as the initial variation (IV) phase. The IV phase is very similar to

the mutation phase (which will be discussed in detail in Section 2.3.2). The principle

difference between the two phases is that the amount that a given individual can

change in the IV phase is determined randomly from a gaussian distribution, whereas

this amount is static in the mutation phase. On average, this will produce a fair

amount of moderately modified programs and a small amount of drastically modified

programs.

2.2.2. Parsing in the CASC System. EAs are typically very computation-

ally intensive processes. As with most systems which employ EAs, the computational

complexity of the CASC system is dominated by its evolutionary aspect. For this

reason every effort was made to reduce the computational complexity of the evolu-

tionary processes used. A large focus was put on minimizing the overall complexity

of the program Abstract Syntax Trees (ASTs, essentially a parse tree) that are used

by the CASC system. The ideal structure for the program AST would be something

that is lightweight and easy to traverse and manipulate.

The CASC system employs a parser generated by the ANTLR system [27] as

a front end to read in and parse the seed program. Basically, ANTLR is a parser
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Figure 2.3: The CASC Parser

generator. There are many capable parser generators available. ANTLR was chosen

due to its high degree of functionality and general usability. ANTLR works by taking

in a file containing the specifications for a language grammar and based off of the

grammar rules in the file a parser is produced. The output parser can be written in

a number of common programming languages. The CASC system itself is written in

C++ so that is the language that was used for the parser (i.e., a parser which parses

C++ and is written in C++). The ANTLR library of objects and functions is used
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as a backbone for the code generated from the grammar file. The output produced

by the parser (that is useful to the CASC system) is an AST. The form that the

AST takes (i.e., how the parse tree(s) are actually constructed) completely depends

on how the grammar is defined in the original grammar file; so for a given language

there could be many possible AST representations that are all correct.

The ANTLR system is used initially to create the parsing tools necessary to

parse a given language. These tools (and any output from them) are derived from

the various base objects in the ANTLR libraries; so any AST yielded from parsing

would be reliant on the ANTLR libraries. Also, the ANTLR data structures used

to hold the AST’s are large complex objects derived from multiple base classes in

the ANTLR libraries; these objects contain data and functionality that is largely not

useful to the CASC system. For these reasons the actual AST’s produced by ANTLR

are not used directly during evolution, instead trimmed down versions of the AST’s

are created by analyzing the ANTLR output AST’s. The trimmed down trees are

very lightweight and are not reliant on the ANTLR system. These reduced versions

of the AST’s are then passed on to the CASC system to be used in evolution. Of

course, this means that each new grammar that is used by the system needs to have

an associated AST translator either developed or provided. This may seem like a

drawback of the system; however, the alternative (of using the raw AST produced

from the parser) would most likely require that the grammar file itself be modified to

make the AST match what is expected in the CASC system, which in many cases is

expected to be more time consuming that writing an appropriate AST translator.

After the parsing tools have been created (step (1) in Figure 2.3), a library is

created that serves as the front end parsing for the CASC system. In a typical run,

a source code file will first be provided to the system (2). Next, the source code

file is preprocessed, during which the code sections to be evolved are picked out and

provided to the (ANTLR) parsing tools (3), which produces the ANTLR AST (4).

The AST produced by the parsing is then translated into a light-weight AST (5).

Lastly, this AST is provided to the CASC co-evolutionary system (6), which then

takes over.

The CASC AST deviates in some ways from the generally accepted idea of

how an AST/parse tree is represented. The main deviation is in how statements
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(conditionals and loops) are represented. Typically these are represented with the

body of the statement attached to the root node, e.g., an if statement would have

one child for the logic statement, a second child for the then section, and a third

child for the else section (if necessary). Instead, the CASC system gives both the

statement and the line(s) of code in the body of that statement their own trees (see

Figure 2.4 on page 20 and Appendix B for examples of CASC ASTs). Bodies of

statements are kept attached to the statements by keeping track of the scope level

that each tree belongs in. This implementation was used to decrease the access

time of the bodies of statements and to make it easier to separate statement trees

from operator/expression trees. Neither of these benefits are realized in the CASC

prototype. The former benefit will become apparent for larger programs with many

nested statements, while the latter is anticipated to be useful once GP has been

implemented in the system.

Currently the CASC system supports a basic/foundational subset of the C++

language. The parsing tools created by the ANTLR grammar file can handle the

majority of the C++ language; however, the AST translator only handles code pieces

relevant to the code that CASC has been evolving so far. In its current state the AST

translator supports all common operators, looping statements (for, while, do-while),

decision branching (if, if-else), numeric constants, primitive numeric variables (and

arrays), and function invocations. Updating the amount of the C++ language sup-

ported by CASC is a matter of updating the AST translator (assuming the ANTLR

parsing tools can handle the new code structure(s)) and updating the CASC pretty

printer that converts the trees back into code.

2.2.3. Test Case Initialization. Test case initialization is much simpler

than program initialization. The input for most programs can be expressed as one or

more lists of values of some type. This is exactly what a general test case is defined

as in the CASC system. The values for a test case are randomly generated and

assigned to an individual. Obviously different programs will require different types

of input, so there is an aspect to the test case generation that is problem specific

and must be specified for each new program. Along with the type of values, there

may be problem specific limitations on the actual values themselves. In simpler cases

this can be specified in the CASC configuration file, however, for more complicated
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limitations some problem specific code enforcing the limitations in question will need

to be written.

2.3. REPRODUCTION

Reproduction in both populations is performed using a tournament selection

method to determine the individuals to use as parents and a form of biased crossover

(in which the more fit parent will be favored to supply a gene) to produce the actual

offspring. The selection and crossover algorithms used are shown in Algorithm 1 and

Algorithm 2, respectively. After the specified number of offspring have been produced

it is then determined which offspring (if any) should be subjected to mutation. Lastly,

the offspring are introduced into the general population.

Algorithm 1 Parent Selection

//Parent 1 Selection
for i = 0 to TOURN SET SIZE do

TournSet1[i]← Unique Random Individual ID
end for
Parent1← ID of Most Fit Individual Represented in TournSet1

//Parent 2 Selection
for i = 0 to TOURN SET SIZE do

TournSet2[i]← Unique Random Individual ID
while TournSet2[i] = Parent1 do

TournSet2[i]← Unique Random Individual ID
end while

end for
Parent2← ID of Most Fit Individual Represented in TournSet2

2.3.1. Program Reproduction. As was mentioned previously, the CASC

prototype utilizes EP for the program evolution. In EP, the variables and numeric

values in a program evolve while the general program structure remains the same

across all individuals. The way it does this is by keeping the root nodes of the program

parse trees the same for all program individuals. This guarantees, for example, that a

loop tree will not transform to an assignment operator during crossover or mutation.
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Algorithm 2 Biased Crossover

MParent← More fit parent
LParent← Less fit parent
Offspring ← Clone of MParent
for i = 0 to NUM GENES do

Roll← Random Value Between 0 and 100
if Roll < (50−BIAS AMOUNT ) then

Offspring.gene[i]← LParent.gene[i]
end if

end for

This method is used as a stepping stone towards the ultimate goal of using GP to

evolve the programs (i.e., evolution of code structure as well as variables and numeric

values).

Program structure is maintained during reproduction by keeping the parse tree

root nodes in the offspring the same as the parents. Crossover is performed by using

the children of the root nodes as the genes which are being crossed over. Each offspring

starts out as a clone of the more fit parent. For every root in the offspring the child

nodes are iterated through. A random roll is made for each child to see if that child

(and the subtree it is the root of) will be replaced by the respective subtree in the less

fit parent. See Algorithm 2 for the general algorithm for this process; also Figure 2.4

gives a visual example of program crossover being performed (note: in this example

assume parent 1 is more fit than parent 2).

2.3.2. Program Mutation. After an offspring is created the system then

determines if the offspring will be mutated and, if so, by what degree; both the chance

for mutation and the amount of mutation are specified in the CASC configuration file.

Not every node in the parse tree is considered for mutation, though (this also helps

limit the problem space to a manageable size). Instead only very specific nodes are

considered. Performing mutation in this way allows the system to restrict mutation

to points in the program which affect its output the most while still maintaining the

general functionality of the program. This method also provides a way to get around

the question of how to mutate nodes which the concept of mutation does not readily

apply to (e.g., ‘else’ nodes, ‘=’ nodes, ‘do’ nodes, etc.). Algorithm 3 shows how the
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Figure 2.4: Program Crossover

CASC prototype determines if mutation should occur and, if so, to which control

points. An example of program mutation is shown in Figure 2.5 (page 22).

First, for each offspring individual the system randomly determines if mutation

should be performed (the chance of mutation occurring is specified in the configu-

ration file). If an individual is to be mutated, the system then analyzes the parse

tree(s) in the individual program, looking for points that are valid for mutation (these

points will be referred to as critical points). Critical points are defined as any nu-

meric constants and any variables in arithmetic expressions not already involving a

numeric constant. The reason for considering this subset of variables is that once an

unmodified variable (i.e., a variable not involved in an arithmetic expression) is mu-

tated, the variable is modified by adding or subtracting some amount from it and this

amount is expressed as a numeric constant, which is valid for mutation; so instead of

mutating an already modified variable, the numeric constant modifying the variable

is mutated. This method of expression modification is a naive method employed to
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Algorithm 3 Program Mutation

R← The set of all offspring for the current generation
for i = 0 to |R| do

Roll← Random number between 0 and 100
if Roll < MUTATIV E CHANCE then

CP ← Node IDs for control points in R[i]
NumChange← |CP | ·MUTATIV E PROPORTION
for j = 0 to NumChange do

ToChange← Unique random value between 0 and |CP |
Mutate CP [ToChange] in R[i]

end for
end if

end for

test the CASC prototype’s functionality on the simple programs used for the prelim-

inary experiments. A more sophisticated mutation method will come with further

iterations of the system.

After all of the critical points have been determined it is then decided which

points are to actually be mutated. This is done by randomly selecting points from the

total set of critical points. A critical point is mutated by adding or subtracting (there

is an equal chance of either occurring) some value to or from the value of the node. If

the point is a variable, then the variable node is replaced by a + or - node, of which

the variable is one child of and the numeric constant being added or subtracted is the

other. This arithmetic operation is guaranteed to be legal since the CASC prototype

only employs variables that are of numeric primitive types.

If the control point to be mutated is a numeric constant, then the value of the

node is modified by changing the value to be anywhere from -150% to 150% of the

current value. The amount of actual change is pulled from a gaussian distribution,

implying that the majority of changes will be moderate and a small number of the

changes will be drastic.

Once the specified number of critical points have been mutated, the process is

repeated for the next offspring to be mutated.

2.3.3. Test Case Reproduction. At the low level, test case reproduction is

implementation specific; however, from a high level perspective the general concept is
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Figure 2.5: Example Program Mutation

the same regardless of implementation. First, parents are selected using the selection

algorithm shown in Algorithm 1. Next, the biased crossover algorithm shown in

Algorithm 2 is used to create the offspring, where the genes are the values in the

test case. Both selection and crossover follow the algorithms in the referenced figures

closely. This process can easily be extended if and when more complicated test cases

are required.

2.3.4. Test Case Mutation. Like test case reproduction, the low level

details of test case mutation are implementation specific, but the high level process

is the same regardless of implementation. For each offspring the system randomly
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determines if mutation will be performed (the chance of mutation occurring is speci-

fied in the CASC configuration file, separate from the mutative chance in programs).

For each test case that is to be mutated, values are randomly picked from the test

case and modified according to the implementation. This process is repeated until

the specified number of values have been modified, then the mutation is complete.

2.4. FITNESS EVALUATION

The evaluation phase is the point where the two evolutionary cycles meet and

the populations interact. It is assumed that for the evolving programs, each set of

inputs will map to one and only one output (i.e., the programs being evolved are

deterministic). So, since it is very possible that a particular program and a particular

test case be paired up more than once in their lifetimes, the results of each pairing

are stored in a hash table in order to make sure that no program is executed twice

with the same input and to make previously obtained results efficiently available.

Both populations follow the same general algorithm for performing fitness eval-

uation. For each individual in the evaluating population the following steps are

performed. First a set of (unique) opponents to test the individual against is selected

from the opponent population. For each opponent selected, the hash table is checked

to see if the program-test case pairing has been done before; if it has, then the result

is retrieved and the opponent is removed from the opponent set.

Next, for each opponent still in the opponent set, program execution occurs. If

a program is being evaluated, then it is first compiled (if necessary) and then, if the

compile was successful, run with the various opponent test cases as inputs. If the

program fails to compile, then the evaluation is complete and the program is assigned

an arbitrarily low fitness. If the program execution takes longer than allowed (by the

configuration file) then it is considered to time-out and the trial is given a low fitness.

If a test case is being evaluated, then, for each program in the opponent set,

the program is compiled (if necessary) and executed with the test case as input. If

any of the programs fail to compile, then that trial is not considered in the test case

fitness calculation; if a program times-out the trial is still considered legitimate.

Often it makes most sense for the test case fitness to be the direct inverse of

the program fitness, in which case assigning the test case fitness is trivial. However,
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in some cases it may be more appropriate to, for instance, reward a test case for

exposing a unique error or execution path in a program, in which case the program

and test case fitnesses are related, but not a direct inverse of each other. For this

reason, the test case fitness design is problem specific; the fitness function used in the

prototype experiments is described in detail in Section 3.2.2.

After all executions have been completed the outputs are analyzed according to

the implementation specific fitness function and a fitness is applied for each trial. The

pairings and results are then hashed. Lastly, the fitness for the evaluating individual

is determined as the average fitness across all trials.

As with most programs that employ an EA, execution of the CASC system is

a very time intensive task. The evaluation phase is by far the most time consuming

phase for the CASC system. In order to reduce the amount of time needed to perform

the evaluations, the CASC system uses distributed computing to spread out its work

load. In its current state the CASC system can only work in a cluster environment

that supports the MPI (Message Passing Interface) system [8].

The CASC system uses a master-slave topology to perform evaluations. The

main node (the master) determines what program executions need to be performed

for a given evaluation and then writes commands detailing the program to run and

the data to use as input out to command files, creating one command file for each

worker (slave) node. Once a command file is completely written the worker which the

command file belongs to is woken up. The worker then reads in the commands from

the main node and begins to run the specified program(s), gathering fitness values as

the trials complete. After all the workers have been sent off to work the main node

prepares to receive the fitness values for the trials from the workers. After all the

trials have been accounted for the overall fitness is calculated and the workers are put

back to sleep. The distributed fitness evaluation algorithm used in the CASC system

is shown in Algorithm 4.

2.5. SURVIVAL SELECTION

Survival selection is performed using the same algorithm for both populations.

The only factor considered when deciding who to terminate is fitness, i.e., the new

individuals in the populations are just as likely to be removed as the older individuals.
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Algorithm 4 Distributed Fitness Evaluation

P ← Population being evaluated
R← Opponent population

for i = 0 to |P | do
// Determine Evaluation Set
for j = 0 to EV AL SET SIZE do

t← Unique opponent ID
if Hashed(P [i], R[t]) then

Retrieve old result for P [i], R[t] pairing and store it
else

EvalSet.push(t)
end if

end for

// Fill Worker Command Files and Wake Workers
Load← NUM WORKERS / |EvalSet|
Extra← NUM WORKERS % |EvalSet|
for k = 0 to NUM WORKERS do

Write < Load > executions to worker k command file
if Extra 6= 0 then

Write one more execution to worker k command file
Decrement Extra

end if
Wake worker k

end for

// Gather Results
Receive results from workers
Hash results
Calculate and apply fitness to P [i]

end for

For each population a reverse version of tournament selection is performed to

determine what individuals to remove. A group of individuals is randomly selected

from a population and the individuals with the lowest fitness in the group are removed.

If the size of the tournament set is s (for s greater than zero and less than the

current population size) then this method guarantees that the top s-1 individuals

in the population are safe from being terminated, which in most cases is desirable.

This process is repeated for each population until the population sizes are what was
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originally specified. This algorithm is shown in Algorithm 5.

Algorithm 5 Competition

P ← Population Competing

while |P | > MAX POP SIZE do
for i = 0 to COMPETE TOURN SIZE do

TournSet[i]← Unique random individual ID
end for
rem← ID of least fit individual represented in TournSet
Remove(P [rem])

end while

2.6. TERMINATION CRITERION

At the end of every generation the CASC system checks to see if any of the ter-

mination criterion have been met before continuing on. The CASC system currently

utilizes two termination criteria. First, if a specified fitness value is either met or ex-

ceeded by a program individual, then the run is considered a success and the system

terminates. Alternatively, if a specified number of generations is completed without

finding the goal fitness the the run ends and the best program found is presented as

the result. If neither of the termination criterion are satisfied, then the statistics on

the generation are output and the evolutionary cycles start all over again with the

reproductive phase.
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3. EXPERIMENTAL SETUP

The experiments performed on the CASC prototype focused on having the sys-

tem correct a sorting implementation, specifically insertion sort.

3.1. INSERTION SORT

Insertion sort is a simple sorting algorithm which divides the input data into two

sets, a sorted set and an unsorted set. The sorted set initially consists of only a single

element but with each iteration of the algorithm an element from the unsorted list is

inserted into the sorted list in the position it belongs relative to the other element(s)

of the list. This is continued until the unsorted list is empty and the entire data set

is sorted. Figure 3.1 shows a (correct) C++ implementation of insertion sort. The

bugged implementations that were used in the experiments were based off of this

implementation. The actual seed programs used in the experiments are discussed

further in Section 3.3.

Figure 3.1: Correct C++ Insertion Sort Implementation

3.2. IMPLEMENTATION SPECIFIC COMPONENTS

For each new program to correct there are implementation specific details about

the program that need to be addressed. The first of which is how fitness calculation

should be performed based on the output of the program. Of course, the insertion

sort algorithm has a well known solution which could easily be used to determine if

the output from a trial was correct; however, if the CASC system were to ever be
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used in a practical situation a known solution would likely not exist for the program

being evolved. So in order to emulate this the fitness calculation was made completely

independent of the known solution.

The second implementation specific portion of the CASC system is the repre-

sentation of a test case. Obviously, different programs require different input. The

CASC system needs to know how the inputs need to be formatted and how to present

them to the program being evolved. The design of the CASC system test cases was

made with this in mind, in an attempt to streamline the process of specifying new

test case types as much as possible.

3.2.1. Test Case Representation. For the insertion sort programs a

test case was a set of values to be sorted. The representation for this was a single

array of values. The length of the array was constant and the values themselves were

generated randomly but limited by bounds specified in the configuration file.

3.2.2. Fitness Calculation. The goal of the algorithm used to calculate

fitness for the insertion sort trials is to basically tell how sorted the output data is.

Naturally, an array of values is either in sorted order or it is not, but such binary

judgment is of no use to the CASC system. In order for the evolutionary process to

work, the fitness must be graduated; so a scoring function is used to determine how

sorted each output actually is. The optimal case obviously being having the data

sorted in correct order and the worst case being the data in reverse order.

For each element x the elements before and after x are inspected. A penalty is

incurred for each element a that came after x such that x > a and each each element

b that came before x such that x < b. Also, if an element is lost in the process (i.e.,

if the output data does not have all of the input data) a heavy penalty is incurred.

The algorithm for this scoring function is shown in Algorithm 6 and Figure 3.2 shows

an example fitness calculation.

The score for an individual can range from -(n2 - n) to n2 - n. Since the size

of the data arrays can vary between runs the last calculation in Figure 3.2 is used to

normalize the score to be between zero and one. This normalization is done just to

make the analysis of results easier and has no effect on the evolution.

For these experiments the program fitness function is defined as identical to the

output of the scoring function, while the test case fitness function is defined as one
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Algorithm 6 Scoring Function for Sorting Implementation
Score← 0
input← Data originally provided to the program
for i = 1 to n do

//Check if the data element is in the input
for m = 1 to |Input| do

if output[i] == input[m] then
Mark output[i] as found
Remove input[m] from the input array
Exit the for loop

end if
end for

// Only score values that were in the input
if output[i] is marked as found then

// Look at values before the current value
for j = 1 to i− 1 do

// If preceding value greater than current then penalize, otherwise reward
if output[i] < ouput[j] then

Decrement Score
else

Increment Score
end if

end for

// Look at values after the current value
for k = i + 1 to n do

// If value less than current then penalize, otherwise reward
if output[i] > ouput[k] then

Decrement Score
else

Increment Score
end if

end for
end if

end for

// Calculate Fitness
fitness← (Score + n2 − n)/(2 · (n2 − n))

// Penalize for any elements that weren’t found
for w = 1 to |input| do

Apply LOST ELM PENALTY to fitness
end for
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minus the output of the scoring function.

Fitness = NetScore+n2−n
2(n2−n)

= 11+25−5
2(25−5)

= 31
40

= 0.775

Figure 3.2: Example Insertion Sort Fitness Calculation

3.3. SEED PROGRAMS

Four programs were used to test the CASC prototype. Each seed program had

one common error (shared by the other seeds) and one unique error. The common

error causes the implementations to sort the values in descending order. This defect

was chosen because the worst case in the fitness function described in Section 3.2.2

would be yielded by an array of values in reverse order (i.e., descending instead of

ascending). Since the system is attempting to correct sorting programs which sort in

ascending order this seemed like a logical choice for the worst case. This defect, while
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relatively simple to correct (modification of two array subscripts), affects the fitness

of the seeds greatly.

The unique errors in the seed programs are “off by one” errors. This type of error

was chosen because, while it is simple to correct, it is very common in development.

The effect that the unique errors have can vary from having only a small impact on

the fitness to causing a run-time or time-out error in the program. The errors used

in the seeds attempt to span this large range of effects that these errors can have on

a program.

The evolvable sections of the four seed programs are shown in Figure 3.3 with

the errors in each highlighted. Figure 3.1 can be used as a reference to see the exact

errors.

Figure 3.3: Seed Programs

3.4. CASC CONFIGURATIONS

The role of the variation operator mutation is to explore the problem space.

So for this reason a base experimental set was used as well as three other sets of

experiments which used modified mutation values. The first set used an enhanced

mutation rate (i.e., higher chance of child mutation) relative to the base experiment.

The second set used an enhanced mutative proportion (i.e., mutation affects more



32

genes). Lastly, the third set has both an enhanced mutation rate and proportion.

The relevant configuration values used in all the experiments are shown in Table 3.1

and Table 3.2. The termination conditions used in the experiments were maximum

number of generations and goal fitness, as specified in Table 3.1.

Configurations Common to Both Populations
Max. Number of Generations 200
Goal Fitness 1.0
Population Size 20
Number of Children Per Generation 5
Number of Opponents During Evaluation 6

Program Population Configuration
Parent Selection Tournament Size 5 (20%)
Competition Tournament Size 5 (20%)

Test Case Population Configuration
Parent Selection Tournament Size 3 (15%)
Competition Tournament Size 3 (15%)
Number of Values in Test Case 20
Range of Values 0-100

Table 3.1: Configuration Values

Program Mutation (%) Test Mutation (%)

Rate Proportion Rate Proportion

Base Set 33 9 33 25

Set 1 66 9 66 25

Set 2 33 27 33 50

Set 3 66 27 66 50

Table 3.2: Mutation Percentages
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Five full runs were conducted, each run consisting of 16 experiments (four seed

programs with four different configurations). A typical single experiment using the

above configuration values takes around 90 hours to complete on the Missouri S&T

Numerically Intensive Computing (NIC) cluster. During experimentation, four to

five experiments would typically be running at one time on the NIC-cluster. The

end result is that a full run can take anywhere from a week to two weeks to execute.

Clearly, the amount of time required to run a single experiment is decidedly less than

optimal. Potential solutions to this issue are discussed further in the Future Work

section (Section 6).
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4. RESULTS AND DISCUSSION

Four different programs were run using four different configurations at five runs

a piece, yielding 80 experimental runs in total. First the results will be presented and

discussed in the scope of each seed program. Next a look at the performance of the

CASC system as a whole will be presented. In this discussion, let the notation SPX

denote seed program X.

4.1. SEED PROGRAM A RESULTS

The unique bug placed in SPA was not really a bug at all. The modification of

the starting point in the outer loop actually just resulted in the loss of an iteration

that would not perform anything. Thus, the main problem presented in SPA was the

common error causing the data to sort in reverse order. The correction of this error

requires a minimum of two modifications, specifically adjustment to the array indices

used in the second expression in the inner for-loop.

As can be seen in Figure 4.1, the first two runs struggled to correct the error,

achieving a max fitness of 0.146. Runs four and five had slightly better results, yielding

a top fitness of 0.557. The third run was the most successful of the five, yielding an

individual with a 1.0 fitness in the initial population. The evolvable section for this

individual is shown in Figure 4.2.

There are a few interesting things about this result. The first thing is that both

of the bugs present in SPA have been fixed in this individual. Even though the unique

bug in SPA was not really a bug at all it is still corrected. In and of itself this does not

affect the program at all; however, when paired with the other modifications made it

becomes necessary.

The sections highlighted in blue and orange in Figure 4.2 are the next sections

of note. The blue section actually has no affect on the program, it just makes the

logic evaluation in the outer for loop a little different than in the correct version

shown in Figure 3.1, leaving the program itself functionally unmodified. The orange

section, on its own basically accelerates the sort by one iteration, causing the program

to skip the first intended iteration and adding an extra iteration to the end, which



35

Figure 4.1: Summary of Seed Program A Data

Figure 4.2: Evolvable Section of Most Fit Result From Seed Program A
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would cause the program to walk off the data array (which could potentially yield a

run-time error or lose a value from the data set).

The orange modification paired with the correction of the unique SPA bug makes

the loss of the first iteration acceptable (since, as was noted earlier, with unique SPA

bug corrected the first iteration does nothing). However, the program can still walk

off the data array. This means that the program does sort data, which is a good

result, but also inconsistently causes a run-time error. This inconsistency brings up

some interesting points, which are discussed in the Future Work section (Section 6).

Figure 4.3: Summary of Seed Program B Data
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4.2. SEED PROGRAM B RESULTS

The unique error in SPB caused the first element in the data array to be left out

of the sort. The effect this error has on the fitness is absolutely dependent on the data

itself. If the first element in the input data is supposed to be the last element, then

the error will have a considerable effect on the fitness. However, if the first element

is in its proper place, then the error would have no effect at all.

Figure 4.4: Evolvable Section of Most Fit Result From Seed Program B

The results of the SPB experiments are summarized in Figure 4.3. As can be

seen in the figure, the second, fourth and fifth runs seemed to really struggle with the

bugs, yielding a top fitness of 0.214. Runs one and three, however, performed quite

well. The top individual produced by the run one experiments yielded a fitness of

0.957. The top individual from run three (and the best individual produced by the

SPB experiments) yielded a fitness of 0.975. The evolvable section of this individual

is shown in Figure 4.4.

The first thing of note about this result is that it is very similar to the best

result produced for SPA. The only difference is the section in Figure 4.4 highlighted

in orange. This section is the unique bug for SPB. The evolution managed to correct

the common error but was not able to correct the unique SPB error, and in the process

of trying introduced a new error (the inconsistent error described at the end of the

previous section).

Inspection of the evolvable section of the top individual produced by run one

(shown in Figure 4.5) brings up an interesting point. The error unique to SPB is
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still present, however the errors from the SPA result are not. This means that this

program actually has fewer errors than the more fit program from run 3, yet it has

a slightly lower fitness. The test cases used to evaluate the individuals along with

the nature of the unique SPB error (described at the beginning of this section) can

safely be assumed to be the cause of the discrepancy between the two fitness values.

This would imply that future experiments may benefit from subjecting individuals to

more trials during the evaluation phase, to make it less likely that an individual is

only tested against easy opponents.

Figure 4.5: Evolvable Section of Second Most Fit Result From Seed Program B

4.3. SEED PROGRAM C RESULTS

The unique error in SPC is a fairly common error which has a large effect on

the program (and the fitness). The inner for loop is supposed to be a decrement loop

(i.e., the loop control variable decreases by one each iteration) but in SPC it is an

increment loop. In the worst case, this error can cause the program to walk off of the

data array resulting in the loss of values from the data set and/or cause a run-time

error. Correcting the error is simple enough, only requiring the modification of the

third expression in the inner for loop. The results from the SPC experiments are

shown in Figure 4.6.

Runs one and two performed moderately well, yielding a top fitness of 0.30. The

experiments in runs three, four, and five had more success. Both runs four and five

yielded individuals with a fitness of 0.717, the highest in the SPC experiments. The

evolvable section of the program yielded by run 3 is shown in Figure 4.7. The red
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Figure 4.6: Summary of Seed Program C Data

Figure 4.7: Evolvable Section of Most Fit Result From Seed Program C (Run 3)
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section in the figure will cause the program to not consider the last two elements in

the data array, the green section will cause the first element in the data set to not

be considered and the blue section is the error unique to SPC . This means that the

system managed to correct the common error; however, while trying to correct the

unique error introduced two more errors into the program.

Figure 4.8: Evolvable Section of Most Fit Result From Seed Program C (Run 5)

The evolvable section of the best program seen in run 5 is shown in Figure 4.8.

Despite having the same fitness, the run 3 and run 5 results are quite different. The

red section in Figure 4.8 is correct, whereas in the run 3 result the same section has

two errors. Instead of skipping the first data element, the green section in the run 5

will result in the program walking off the data array. The one similarity that the run

5 result has with the run 3 result is that they both fixed the common error, while

missing the unique error.

Based on these results it may seem like the SPC experiments were not very

successful; however, there is one more aspect to consider. The average standard devi-

ation in the end population (based on fitness) for the SPC experiments is 0.142, which

is slightly larger than would be ideal for an end result. A large standard deviation

in the final population implies that convergence on a solution had not yet occurred;

however, the average end standard deviations in the SPC experiments are only some-

what large (relative to the observed fitnesses), meaning that convergence was likely

to happen soon. which means that this result is more of an intermediate result rather

than a final one. The average end standard deviation in the SPA experiments is

0.130, which shows that the SPA experiments may have terminated prematurely as

well. Due to the amount of time these experiments typically take, it would be ideal
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if the system could either detect if this was the case before ending an experiment or

possibly continue the execution of a terminated experiment. These possibilities are

discussed further in the Future Work section (Section 6).

4.4. SEED PROGRAM D RESULTS

The unique error in SPD results in an extra iteration of the inner loop, allowing

the program to provide negative array indices to the data array. This is similar to the

error in the SPA result, allowing the program to walk off of the array; however, most

operating systems are much more cautious when it comes to negative array indices.

This means that this error will result in a run-time error much more often than the

error in the SPA result.

This makes these experiments particularly hard, since if a run-time error occurs,

then a very low, constant fitness value is given to the program. Since the majority

of the initial population will most likely still have this error, then the majority of

the population will have the same fitness. This can be seen in the results shown in

Figure 4.9.

In runs one, two, and five the standard deviation of the initial population is zero,

meaning that there is absolutely no diversity in the population. Population diversity

is very important in EC since it is responsible for guiding the evolutionary process.

If there is no diversity at all, then the algorithm is reduced to a glorified random

search. The effect this has can be seen in the results for the SPD experiments. In

sets one and two of run one the system was unable to make any progress whatsoever

with the program; however, in the base set it was able to find an individual which

yielded an individual with a fitness of 0.522 (note: set three of run one experienced

technical difficulties and cannot be shown at this time). However, run two (which

started in the exact same way as run one) had success in all four of its experiments.

Each one found an individual with a 1.0 fitness within the first four generations

of evolution. Run three also found an individual with a 1.0 fitness, in the initial

population. Run four was also able to find an individual yielding 1.0 fitness in all four

of its experiments. Lastly, the run 5 experiments all started without much promise,

but ended up performing fairly well, yielding a top fitness of 0.536. So the results of

the SPD experiments range from complete inability to make any advancement with
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Figure 4.9: Summary of Seed Program D Data

Figure 4.10: Evolvable Section of Most Fit Result From Seed Program D
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the program up to success.

The evolvable section of the individual with 1.0 fitness from run two, set one is

shown in Figure 4.10. The system was able to correct the common error, but unable

to correct the unique error. As was mentioned earlier, the error unique to SPD is very

similar to the error in the SPA result. This is a good example of how an error of this

type can in one case result in a run-time error for the program (e.g., the individuals

of run one, sets one and two) and in another case result in no problem at all (e.g.,

the most fit individuals of the SPA and SPD experiments). This further underscores

the fact that something needs to be done to address this type of error.

4.5. CASC PERFORMANCE ACROSS ALL EXPERIMENTS

The experiments as a whole provide information on how the CASC system

performed in general. Information regarding the effect that the different mutation

values had on the evolutionary process, the system’s ability to navigate the problem

space, and the overall success rate of the system are the major results yielded from

these experiments.

4.5.1. Effect of Mutation Configurations. As was described in Section 3,

there were four different configurations used on each seed program. These configu-

rations differed only in the mutative rate and mutative proportion. The base used

fairly low values for both of these, set one used an increased mutative rate (relative

to the base set), set two used an increased mutative proportion, and set three used

increased values for both rate and proportion.

The various configuration sets were used to explore the effect that the mutation

configuration could have on the CASC evolutionary process. Figure 4.11 shows a

summary of the experimental results with a focus on the four configurations. In this

figure, values highlighted in red performed worse than the base set, values highlighted

in green performed better than the base set, and values in black were equivalent (or

very nearly equivalent) to the base set.

There is no clear trend in the values shown in Figure 4.11 so the Wilcoxon

rank-sum test was applied to these values in an attempt to determine if they came

from distributions with equal means (i.e., if the population means are significantly

different). The test was performed between the base configuration and set one results,
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Figure 4.11: Results of Configuration Sets

base configuration and set two results, and base configuration and set three results.

For all three tests on all four seed programs it was found that the population means

were not significantly different. This result could be due to lack of samples; each test

was run with only 5 samples per set. Another possible cause could be that the CASC

evolutionary system is not very sensitive to mutative adjustments. In any case, this

result needs to be investigated, which is discussed more in the Future Work section

(Section 6).

4.5.2. Population Diversity. The diversity of the evolving population

is very important to an EC algorithm. If a population is diverse that means that

there is a large amount of unique genetic material in the population, making the

reproduction and mutation phases very effective. Alternatively, if a population is not

very diverse, then the individuals are similar, meaning that there is not very much
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unique genetic material in the population. Lack of unique genetic material hinders

the reproduction and mutation phases, which in turn hinders the entire evolutionary

process. The standard deviation of a population fitness is one metric for the diversity

of a population.

Figure 4.12: Example of Standard Deviation Change in Program Population

Figure 4.12 shows a graph representing the amount of change per generation

in the standard deviation of the program population’s fitness in four experiments

which were run to completion (i.e., 200 generations); specifically the four SPA run

one experiments. A negative value in this graph means a reduction in the standard

deviation of the population (i.e., a loss of diversity). A typical EC algorithm will

have quick initial convergence on a solution and then display minor to moderate

perturbations, representing the individuals exploring the problem space around the

local maxima (and potentially moving to other local maxima). All four sets show the

quick initial convergence but the perturbations that follow are very small. Around
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generation 120, however, set 2 begins to show the type of movement that is desirable

in the population diversity, even though the movements are still somewhat small.

This further promotes the hypothesis from the previous section, stating that higher

mutative proportion seems to be beneficial to the CASC evolutionary process. Even

though set 2 does display some desirable behavior in diversifying its population,

the changes are still somewhat diminutive. For this reason it would most likely

be beneficial to look into methods which further promote population diversity in the

evolutionary process.

The initial population diversities indicate how well the method of creating the

program population by cloning and mutating the seed program is working. The

majority of the initial populations have standard deviations around 0.5, except for

runs one and two of the SPD experiments. In fact, if those two extreme cases are

omitted, the average initial population standard deviation is 0.542, indicating that on

average there is a good spread of individuals in the initial population. This implies

that the population creation method is quite effective and is working as intended.
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5. CONCLUSION

The focus of this thesis was to show whether or not a co-evolutionary system

linking an evolutionary cycle employing GP techniques with a evolutionary cycle

employing EA techniques could be used to perform software testing and correction.

A prototype of such a system was introduced for use in preliminary experimentation

and ultimately show the validity of this concept. The principle difference between the

prototype and the system envisioned was the use of an EP algorithm (rather than GP)

to evolve the program population. While the use of this algorithm somewhat changes

the applicability of the system, EP and GP are similar enough that the prototype is

still functional as a proof of concept for the envisioned CASC system.

A total of 80 experiments were conducted using the prototype. Each experiment

consisted of seeding a program with two errors (of varying severity) and providing it to

the system. Also the configurations which control the system’s behavior were varied

for each experiment. Success in these experiments is indicative of the validity of the

CASC concept. The prototype reported 16 such successes. While the results yielded

from these successes still had some errors (all of which fall in a category of errors which

the prototype cannot yet detect consistently) the majority of the successful results

were very near being truly correct. All of the results (both successful and otherwise)

have conveyed a great deal of information about the system’s current operation,

possible venues of future experimental investigation, and potential improvements that

can be made to the system which were not apparent before. While the prototype may

not have yielded the success rate that will be expected from the completed system it

still served its purpose as a prototype well, yielding enough successes to indicate that

there is in fact validity to the CASC concept. Further work is required to determine

the system’s real world validity.
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6. FUTURE WORK

As was mentioned before, the current CASC system is a prototype. There is

still much work to be done on the system. These are some of the main improvements

that could be made to the system:

• The highest priority improvement to the system is making the program evo-

lution actually able to modify the structure of the code, not just the critical

points; i.e., make the system use an unrestricted GP algorithm to evolve the

program population. Employing unrestricted GP for this problem will result in

an explosion in the size of the problem space, and thus pose a very considerable

challenge to the CASC system. Methods to counter this increase in problem

space size are already being investigated. The method currently being investi-

gated to counter this problem is to represent (and evolve) programs in a more

abstract fashion, i.e., rather than using specific code elements (e.g., for, while,

do-while) in program representation, use more generalized code elements (e.g.,

loop). From each abstract program multiple specific programs (represented in

the typical fashion) could be created. The specific programs could be evaluated

in the same way as they are currently and based off of these evaluations the

abstract programs could be evaluated and, as a result, evolved.

• The long run-times of the CASC prototype are a serious issue. A few options

to alleviate this problem are:

– A method has been devised to make the CASC system use symmetric

multiprocessing as well as cluster parallel computing. The main idea is

to make the system support server-client style multi-computing, making

the system able to run on any networked set of computers capable of using

shared (primary or secondary) memory. In the proposed system, the server

would perform the duties that the main node does in the current system

and the client(s) would be the worker nodes.

– The system spends a great deal of time compiling programs. Reducing the

number of compiler invocations would significantly decrease the system
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run-time. Batch compiling the evolvable sections of the programs would

result in much fewer compiler invocations. The feasibility of batch program

compilation in the CASC system needs to be investigated.

– Being able to run more experiments concurrently would also increase the

productivity of the system. In order to do this, more computing resources

are required. The National Science Foundation manages a large cluster

known as the Teragrid, allotting computing time on this cluster would

be a huge benefit to the CASC project. More locally, the Missouri S&T

Intelligent Systems Center manages a cluster for their funded research

and the Missouri S&T Natural Computation Laboratory is considering

construction of a Beowulf cluster to be used by the lab members.

• Work has been discussed to make the CASC system not only able to modify

program structure but to also write the programs itself. It would do this ac-

cording to some set of specifications that would be provided to the system. If

this addition was successful, then the system would be able to write and correct

its own code.

• Wappler’s Particle Swarm Optimization (PSO) implementation [40] was able

to outperform an EA as a search technique for test data generation. Since the

CASC system uses an EA to evolve the test cases, some work should be done

to investigate if PSO would be appropriate for the CASC system. Use of PSO

in a co-evolutionary system falls close the concept that Travis Service, a fellow

lab-mate in the Missouri S&T NC-Lab, recently published on a method called

co-optimization [34, 33]. Co-optimization is based on co-evolution, the primary

difference is that the controlling algorithms for each of the populations are not

required to be based on an evolutionary model. Co-optimization allows the

evolutionary model to be removed in favor of a technique better suited to the

class of problem being addressed. It is likely that co-optimization would be

useful to the CASC system, since the scope of problems that the system can

face is large.

• As was seen in many of the experimental results, there is an error which can

occur inconsistently in programs produced by the system, which may result in a
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false positive. Work needs to be done to enable the system to catch such errors,

since this is clearly undesirable.

• Currently, parameter tuning is used to determine the configuration values used

by the system (i.e., values are determined before hand and stay static during

the run). Adaptive parameter control [6] allows for the various configuration

values in the system (e.g., mutative rate, mutative proportion, etc.) to change

during the evolutionary process in response to the state of the population(s).

Dynamic configuration parameters may help the system navigate the problem

space more effectively, possibly overcoming the problems seen in the prototype

with local maxima.

• It appeared that the SPC experiments were terminated somewhat prematurely.

It may be beneficial to have a way to use population diversity (or lack thereof)

as a termination condition. Additionally, if the state of the system could be

stored, it would be possible to pick up a previously terminated experiment and

continue its execution. Storing the state of the system would entail storing

the program population, test case population, and the state of the random

number generator used in the system. The feasibility of these additions should

be investigated.

• A parameter sensitivity analysis is necessary to find the configuration vales

which have the most affect on the evolutionary process in the CASC system.

• Currently the CASC system uses an evolutionary model similar to that of the

general EA model rather than the classical GP evolutionary model. The main

difference between the two models is that in the general EA model, reproduction

occurs and then mutation possibly occurs and in the classical GP model either

reproduction or mutation can occur for an individual, but not both. The use of

the EA model instead of the GP model may explain the reason why the system

is not very sensitive to changes in the mutation configurations. This needs to

be investigated further.
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Aside from the major improvements listed previously, there are certainly many

more smaller improvements that need to be made, and many more will be discovered

with further experimentation and development.



APPENDIX A

CASC Configuration File
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# *********************************

# ***** General Configuration *****

# *********************************

# File to output run info to

Log File = ./runLog.txt

# Method to seed random number generator, can be ’random’ or a file

# can be specified which contains seed values

Seeding Method = random

# Number of generations per run

Number of Generations = 200

# Whether or not to report all individual’s fitness values and the end

Dump Fitness Upon Completion = 0

# Number of slots to have in the hash table

Hash Table Size = 200

# Amount of time to allow a program to run before deciding time-out

Alloted Program Run Time (sec) = 2

# Number of runs to complete

Number of Runs = 1

# Fitness value that, if achieved, signals completion

Goal Fitness = 1

# Directories to hold the temporary test bed files

Test Bed Root Dir = ./tbfiles/

Test Bed Exe Dir = ./tbfiles/exe/

Test Bed Output Dir = ./tbfiles/output/
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# Directory to hold command files for the worker nodes

Command File Dir = ./workerCmd/

# Number of opponents to evaluate an individual against

Set Size = 6

# ***********************************

# ***** Test Case Configuration *****

# ***********************************

# Number of test case individuals to have in the test case population

Test Population Size = 20

# Number of values in the test case

Test Array Length = 20

# How many pairs of parents to pick out in reproduction (i.e. how

# many children are produced per generation)

Number of Parent Pairs (test) = 5

# Percentage of the population to use in selection tournament

Tournament Percentage (test) = 0.15

# The chance that a child will be mutated

Mutation Rate (test) = 0.66

# The percentage of genes that will mutate during mutation

Mutative Proportion (test) = 0.25

# Min and max values for the values in a test case

Element Min Value = 0
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Element Max Value = 100

# Percentage of the population to use in competition tournament

Competition Tournament Percentage (test) = 0.15

# *********************************

# ***** Program Configuration *****

# *********************************

# Number of program individuals to have in the program population

Program Population Size = 20

# Program that is to be evolved and corrected

Program To Evolve = ./someProgram.cpp

# Tags to designate evolvable code in the seed program

Critical Section Open Tag = //Open Critical

Critical Section Close Tag = //Close Critical

# File to hold temporary proeprocessor output

Preprocessor Output File = ./preproc.csc

# How many pairs of parents to pick out in reproduction (i.e. how

# many children are produced per generation)

Number of Parent Pairs (prog) = 5

# Percentage of population to use in tournament parent selection

Tournament Percentage (prog) = 0.2

# The chance that a child will be mutated

Mutation Rate (prog) = 0.66
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# The percentage of critical points that will mutate during mutation

Mutative Proportion (prog) = 0.09

# Percentage of the population to use in competition tournament

Competition Tournament Percentage (prog) = 0.2

# ***********************************

# ***** Implementation Specific *****

# ***********************************

# The number of distinct values to use in the LCS alphabet

LCS Alphabet Size = 5



APPENDIX B

The Phases of a Program in the CASC System
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B.1. INSERTION SORT SEED PROGRAM
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B.2. CASC AST OF SEED PROGRAM
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B.3. AST OF PROGRAM RESULTING FROM EVOLUTION
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B.4. PROGRAM RESULTING FROM EVOLUTION
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