168 research outputs found

    Hyperspectral Remote Sensing Data Analysis and Future Challenges

    Full text link

    Hyperspectral Unmixing on Multicore DSPs: Trading Off Performance for Energy

    Get PDF
    Wider coverage of observation missions will increase onboard power restrictions while, at the same time, pose higher demands from the perspective of processing time, thus asking for the exploration of novel high-performance and low-power processing architectures. In this paper, we analyze the acceleration of spectral unmixing, a key technique to process hyperspectral images, on multicore architectures. To meet onboard processing restrictions, we employ a low-power Digital Signal Processor (DSP), comparing processing time and energy consumption with those of a representative set of commodity architectures. We demonstrate that DSPs offer a fair balance between ease of programming, performance, and energy consumption, resulting in a highly appealing platform to meet the restrictions of current missions if onboard processing is required

    Técnicas de compresión de imágenes hiperespectrales sobre hardware reconfigurable

    Get PDF
    Tesis de la Universidad Complutense de Madrid, Facultad de Informática, leída el 18-12-2020Sensors are nowadays in all aspects of human life. When possible, sensors are used remotely. This is less intrusive, avoids interferces in the measuring process, and more convenient for the scientist. One of the most recurrent concerns in the last decades has been sustainability of the planet, and how the changes it is facing can be monitored. Remote sensing of the earth has seen an explosion in activity, with satellites now being launched on a weekly basis to perform remote analysis of the earth, and planes surveying vast areas for closer analysis...Los sensores aparecen hoy en día en todos los aspectos de nuestra vida. Cuando es posible, de manera remota. Esto es menos intrusivo, evita interferencias en el proceso de medida, y además facilita el trabajo científico. Una de las preocupaciones recurrentes en las últimas décadas ha sido la sotenibilidad del planeta, y cómo menitoirzar los cambios a los que se enfrenta. Los estudios remotos de la tierra han visto un gran crecimiento, con satélites lanzados semanalmente para analizar la superficie, y aviones sobrevolando grades áreas para análisis más precisos...Fac. de InformáticaTRUEunpu

    Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches

    Get PDF
    Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustard's unmixing tutorial [1] to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.Comment: This work has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensin

    Parameterized Implementation of K-means Clustering on Reconfigurable Systems

    Get PDF
    Processing power of pattern classification algorithms on conventional platforms has not been able to keep up with exponentially growing datasets. However, algorithms such as k-means clustering include significant potential parallelism that could be exploited to enhance processing speed on conventional platforms. A better and effective solution to speed-up the algorithm performance is the use of a hardware assist since parallel kernels can be partitioned and concurrently run on hardware as opposed to the sequential software flow. A parameterized hardware implementation of k-means clustering is presented as a proof of concept on the Pilchard Reconfigurable computing system. The hardware implementation is shown to have speedups of about 500 over conventional implementations on a general-purpose processor. A scalability analysis is done to provide a future direction to take the current implementation of 3 classes and scale it to over N classes

    A Novel Methodology for Calculating Large Numbers of Symmetrical Matrices on a Graphics Processing Unit: Towards Efficient, Real-Time Hyperspectral Image Processing

    Get PDF
    Hyperspectral imagery (HSI) is often processed to identify targets of interest. Many of the quantitative analysis techniques developed for this purpose mathematically manipulate the data to derive information about the target of interest based on local spectral covariance matrices. The calculation of a local spectral covariance matrix for every pixel in a given hyperspectral data scene is so computationally intensive that real-time processing with these algorithms is not feasible with today’s general purpose processing solutions. Specialized solutions are cost prohibitive, inflexible, inaccessible, or not feasible for on-board applications. Advances in graphics processing unit (GPU) capabilities and programmability offer an opportunity for general purpose computing with access to hundreds of processing cores in a system that is affordable and accessible. The GPU also offers flexibility, accessibility and feasibility that other specialized solutions do not offer. The architecture for the NVIDIA GPU used in this research is significantly different from the architecture of other parallel computing solutions. With such a substantial change in architecture it follows that the paradigm for programming graphics hardware is significantly different from traditional serial and parallel software development paradigms. In this research a methodology for mapping an HSI target detection algorithm to the NVIDIA GPU hardware and Compute Unified Device Architecture (CUDA) Application Programming Interface (API) is developed. The RX algorithm is chosen as a representative stochastic HSI algorithm that requires the calculation of a spectral covariance matrix. The developed methodology is designed to calculate a local covariance matrix for every pixel in the input HSI data scene. A characterization of the limitations imposed by the chosen GPU is given and a path forward toward optimization of a GPU-based method for real-time HSI data processing is defined

    Inference in supervised spectral classifiers for on-board hyperspectral imaging: An overview

    Get PDF
    Machine learning techniques are widely used for pixel-wise classification of hyperspectral images. These methods can achieve high accuracy, but most of them are computationally intensive models. This poses a problem for their implementation in low-power and embedded systems intended for on-board processing, in which energy consumption and model size are as important as accuracy. With a focus on embedded anci on-board systems (in which only the inference step is performed after an off-line training process), in this paper we provide a comprehensive overview of the inference properties of the most relevant techniques for hyperspectral image classification. For this purpose, we compare the size of the trained models and the operations required during the inference step (which are directly related to the hardware and energy requirements). Our goal is to search for appropriate trade-offs between on-board implementation (such as model size anci energy consumption) anci classification accuracy

    Enhancement and Edge-Preserving Denoising: An OpenCL-Based Approach for Remote Sensing Imagery

    Get PDF
    Image enhancement and edge-preserving denoising are relevant steps before classification or other postprocessing techniques for remote sensing images. However, multisensor array systems are able to simultaneously capture several low-resolution images from the same area on different wavelengths, forming a high spatial/spectral resolution image and raising a series of new challenges. In this paper, an open computing language based parallel implementation approach is presented for near real-time enhancement based on Bayesian maximum entropy (BME), as well as an edge-preserving denoising algorithm for remote sensing imagery, which uses the local linear Stein’s unbiased risk estimate (LLSURE). BME was selected for its results on synthetic aperture radar image enhancement, whereas LLSURE has shown better noise removal properties than other commonly used methods. Within this context, image processing methods are algorithmically adapted via parallel computing techniques and efficiently implemented using CPUs and commodity graphics processing units (GPUs). Experimental results demonstrate the reduction of computational load of real-world image processing for near real-time GPU adapted implementation.ITESO, A.C

    Evaluation of Edge AI Co-Processing Methods for Space Applications

    Get PDF
    The recent years spread of SmallSats offers several new services and opens to the implementation of new technologies to improve the existent ones. However, the communication link to Earth in order to process data often is a bottleneck, due to the amount of collected data and the limited bandwidth. A way to face this challenge is edge computing, which supposedly discards useless data and fasten up the transmission, and therefore the research has moved towards the study of COTS architectures to be used in space, often organized in co-processing setups. This thesis considers AI as application use case and two devices in a controller-accelerator configuration. It proposes to investigate the performances of co-processing methods such as simple parallel, horizontal partitioning and vertical partitioning, for a set of different tasks and taking advantage of different pre-trained models. The actual experiments regard only simple parallel and horizontal partitioning mode, and they compare latency and accuracy results with single processing runs on both devices. Evaluating the results task-by-task, image classification has the best performance improvement taking advantage of horizontal partitioning, with a clear accuracy improvement, as well as semantic segmentation, which shows almost stable accuracy and potentially higher throughput with smaller models input sizes. On the other hand, object detection shows a drop in performances, especially accuracy, which could maybe be improved with more specifically developed models for the chosen hardware. The project clearly shows how co-processing methods are worth of being investigated and can improve system outcomes for some of the analyzed tasks, making future work about it interesting
    corecore