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ABTRACT 

Processing power of pattern classification algorithms on conventional platforms 

has not been able to keep up with exponentially growing datasets. However, 

algorithms such as k-means clustering include significant potential parallelism 

that could be exploited to enhance processing speed on conventional platforms. 

A better and effective solution to speed-up the algorithm performance is the use 

of a hardware assist since parallel kernels can be partitioned and concurrently 

run on hardware as opposed to the sequential software flow. A parameterized 

hardware implementation of k-means clustering is presented as a proof of 

concept on the Pilchard Reconfigurable computing system. The hardware 

implementation is shown to have speedups of about 500 over conventional 

implementations on a general-purpose processor. A scalability analysis is· done 

to provide a future direction to take the current implementation of 3 classes and 

scale it to over N classes. 
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1. INTRODUCTION 

The goal of this chapter is to introduce the reader to various components in the 

current work. Data analysis is considered an important problem in the research 

circles and how that could be best achieved is an important question that appeals 

to many young researchers. Years of work in collecting samples and massive 

datasets do not have any value proposition if researchers do not understand what 

they mean. Therefore the necessity for faster data analyses has been the focus of 

many researchers. 

1.1 DATA ANALYSIS 

Several real world classification problems are characterized by a large number of 

inputs and moderately large number of classes that can be assigned to any input. 

Two popular simplifications have been considered for such problems: (i) feature 

extraction, where the input space is projected into a smaller feature space (ii) 

modular learning, where a number of classifiers, each focusing on a specific 

aspect of the problem, are learned instead of a single classifier [1 ]. Several 

methods for feature extraction and modular learning have been proposed in the 

computational intelligence community. 

Analysis of land cover types from airborne/space borne sensors is an important 

classification problem in remote sensing [7]. Due to advances in sensor 

technology, it is now possible to acquire spectral data simultaneously in more than 

100 bands, each of which measures the integrated response of a target over· a 
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narrow window of the electromagnetic spectrum. The bands are ordered by their 

wavelengths and spectrally adjacent bands are generally statistically correlated 

with target dependent groups of bands [7]. Using such high dimensional data for 

classification of land cover potentially improves distinction between classes but 

dramatically increases problems with parameter estimation and storage and 

management of the extremely large datasets [7). 

1.1.1 HYPER-SPECTRAL DATA ANALYSIS 

Hyper-spectral data is pixel information collected over 100-1000 spectral bands 

simultaneously. Hyper-spectral methods for deriving information about the Earth's 

resources using airborne or space-based sensors yield information about the 

electromagnetic fields that are reflected or emitted from the Earth's surface, and in 

particular, from the spatial, spectral, and temporal variations . of those· 

electromagnetic fields [10). Chemistry-based responses which are the primary 

basis for discrimination of the land cover types in the visible and near infrared. 

portions of the spectrum are determined from the data acquired simultaneously in 

multiple windows of the electromagnetic spectrum. In contrast to airborne and 

space-based multispectral sensors, which acquire data in a few ( <10) broad, 

channels, hyper-spectral sensors can now acquire data in hundreds of windows, 

each less than 10 nanometers in width. Because many land cover types have only 

subtle differences in their characteristic responses, this potentially provides greatly 

improved characterization of the unique spectral characteristics of each, and 
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therefore increases the classification accuracy required for the detailed mapping of 

species from remotely sensed data [1 O]. 

1.2 CLUSTERING TECHNIQUES 

Data analyses, for instance, interpretation of Landsat images that involve huge 

datasets imply no meaning and is impractical as well for direct manipulation [6]. 

Some methods of data compression must initially be applied to reduce the size of 

the dataset without losing the essential component of the data. Most of such 

methods sacrifice some detail though. Clustering technique is one such protocol 

that has been used for data analysis both as a compression algorithm and for 

quick-view analysis. Generically speaking, clustering involves dividing a set of data 

points into non-overlapping groups, or clusters, of points, where points in a cluster 

are more similar to one another than to points in other clusters. The main goal of 

clustering is to reduce the size and complexity of the dataset. Clustered· sets of 

points require much less storage space and can be manipulated more quickly than 

the original data [3]. The value of a particular clustering method will depend on 

how closely the reference points represent the data as well as how fast the 

program runs. There have been several algorithms proposed in the past for 

clustering data for the purpose. of compression and dimensionality reduction. Two 

such methods are the supervised (knn) and unsupervised (k-means) methods. In 

the Knn method, the feature space, described in chapter3 is partially divided into 

testing set and training set. The classifier is trained on the training set and the 
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testing set is used to test the performance of the classifier derived [22]. This thesis 

. focuses on the unsupervised learning scheme. 

1.2.1 K-MEANS CLUSTERING 

A non-hierarchical approach to forming good clusters is to specify a desired 

number of clusters, say, k, then assign each case (object) to one of k clusters so 

as to minimize a measure of dispersion within the clusters. A very common 

measure is the sum of distances or sum of squared Euclidean distances from the 

mean of each cluster. The problem can be set up as an integer-programming 

problem but because solving integer programs with a large number of variables 

is time consuming, clusters are often computed using a fast, heuristic method 

that generally produces good (but not necessarily optimal) solutions. The k­

means algorithm is one such method. 

The k-means algorithm [25] starts with an initial partition of the cases into k 

clusters. Subsequent steps modify the partition to reduce the sum of the 

distances for each case from the mean of the cluster to which the case belongs. 

The modification consists of allocating each case to the nearest of the k means 

of the previous partition. This leads to a new partition for which the sum of 

distances is strictly smaller than before. The improvement step is repeated until 

the improvement is very small. The method is very fast. There is a possibility that 

the improvement step leads to fewer thank partitions. In this situation one of the 

partitions (generally the one with the largest sum of distances from the mean) is 
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divided into two or more parts to reach the required number of k partitions. The 

algorithm can be rerun with different randomly generated starting partitions to 

reduce the chances of the heuristic producing a poor solution. Generally the 

number of "true" clusters in the data is not known. Therefore, it is a good idea to 

run the algorithm with different values for k that are near the number of clusters. 

one expects from the data to see how the sum of distances reduces with 

increasing values of k. 

This algorithm has its origin in the data-mining field [1 ]. It is utilized for 

classification purposes and to discoyer anomalies and patterns in both small and 

large data sets. There exist many different variants of k-means clustering - most of 

which are variants adapted for special purpose environments. With the growth of 

data collected on operational and transactional data, the field of data mining has 

become increasingly important. The growth of data has been accelerated with the 

commercialization of the Internet and the increased use of personal computer. In 

this environment collection of individual metrics is relatively cheap and unobtrusive 

to the user. Companies who have been collecting vast amount of data on 

consumer habits are now confronted with the dilemma of what to do with all the 

data. This is where k-means clustering becomes useful. It provides a remedy 

tailored to this problem and reveals patterns that otherwise are obfuscated. In 

short, it can be said that k-means is a common solution to the segmentation of 

multi-dimensional data [8][9]. However, these large amounts of data sets require 
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large computational capacity. The nature of this problem is ideally implemented on 

a high performance computing architectural node. 

1.3 HARDWARE IMPLEMENTATION 

K-means algorithm developed in high performance computing (HPC) architectures 

[19] drastically increases the achievable parallelism with small transformation in 

the conventional algorithm. K-means is an iterative algorithm that assigns to each 

pixel a label indicating which of K clusters the pixel belongs to. The conventional 

software implementation of k-means algorithm uses· floating-point arithmetic and 

Euclidean distances. Floating-point arithmetic and the multiplication-heavy 

Euclidean distance calculation are efficient on a general-purpose processor, but 

they have large area and speed penalties when implemented on an FPGA [3]. In. 

order to get the best performance of k-means on an FPGA, the algorithm needs to 

be transformed to eliminate these operations. An alternative distance measure, 

Manhattan distances, that does not require multiplier was used to develop the 

macro on the hardware. Measurement using full precision and truncated bit widths 

were performed, examined and presented. A direct translation of the standard 

software implementation of k-means would result in a very inefficient use of FPGA 

hardware resources. Alternatively, changes to the conventional algorithm have 

been done to better realize the performance on the hardware. 
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Figure 1.1: The Pilchard Board 

1.3.1 PILCHARD SYSTEM 

A high performance architecture called Pilchard [18] shown in Figure 1.1 

developed at Chinese University of Hong Kong has been used to perform 

measurements of this clustering technique. One of the main advantages of trying 

to map k-means clustering is the inherent massive parallelism that can be 

exploited within the algorithmic level. Other hardware level optimizations have 

been discussed later in this manuscript. 

The efficient interface and low cost model of the Pilchard architecture makes it 

suitable for various applications including cryptosystems, image processing and 

speech processing, clustering techniques, in addition to rapid prototyping. The 
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unique features about pilchard are that it uses DIMM slot as an interface as 

opposed to PCI thereby leveraging bandwidth. A picture - of the Pilchard card is 

shown in Figure 1.1 [18] . 

The other distinct advantages of Pilchard when compared with other FPG A  

pl atforms available at University Of Tennessee are the use of one big virtex chip, 

easy interface, minimal overhead either in hardware resources and t iming. 

Developers cari concentrate more on algorithmic part it ioning, if needed, instead of 

worrying much about part it ioning program or data within multi-chip modules on the 

prototype board. Addit ionally much time can be spent on algorithm development 

rather than focusing on complex interfacing. Chapter 4 explains some of the other 

features of the Pilchard system. For complete information, refer the Pilchard user 

guide [18]. 

1.4 SCOPE OF THE THESIS 

K-means algorithm , presented as a proof of concept over a hardware unit and 

more specifically on the Pilchard system, is applied to both synthetic and hyper­

spectral datasets. Primarily, the five points summarized below are the focus of the 

current work. 

1 . Implementing k-means software version. 

2.  Analysis of scalability of k-means on FPG A  units. 

3. Developing a methodology flow design to real ize the algorithm on the 

hardware; 
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4. Discussing design issues of k-means clustering on hardware, with 

reference to Pilchard system and implementing it. 

5. Cluster classification verification of the algorithm using synthetic and 

hyperspectral datasets. 

Chapter 1 introduces the reader to all the main idea and briefly discusses about 

each of the topics. Chapter 2 details some of the background work done by 

various researchers in implementing clustering algorithms on hardware units as 

well as hardware-software co-design models. Chapter 3 provides information 

about the algorithm itself and some of its variants. Certain acceleration approaches 

are detailed followed by the description of hyperspectral datasets. Some pre­

processing techniques used on the data have been explained. Chapter 4 

describes a bit about the hardware platform that has been used in this work to 

realize the algorithm. The benefits and bottlenecks of using the system have been 

pointed out. Furthermore, hardware blocks available within the platform have been 

described to familiarize a reader with limited or no knowledge about the hardware 

system. Chapter 5 describes the methodology and the approach taken in the 

design of the algorithm. Chapter 6 details the implementation of the design 

including the scripts used. Also, the results obtained are presented followed by 

interpretation of the numbers. Chapter 7 discusses conclusion of the thesis work 

followed by future work that could be interpolated from the current one. 
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2. RELATED WORK 

A numb er of research ers have worked on clusteri ng algori thms, especia lly k­

means. Enormous research focus has been on da ta mi ni ng and multi -spectra l 

pattern classi ficati on applicati ons usi ng k-means algori th m. Some research ers 

have worked on classi fication of hyper-spectra l i mages but th e focus has been 

on th e quali ty of c lusters and handli ng of hu ge data sets. Th e nature of th e 

algori th m as i s  di sc ussed i n  chapter 3 revea l_ s that th e changes i n  fi nal c luster 

centers/c lassi ficati on are rob ust to changes i n  th e ground condi tions. Th i s  

rei nforces th e fact that speed is  sti ll a main  concern and fast number crunching of 

massive datasets becomes a matter a signi ficant i mportance. 

2.1 K-MEANS CLUSTERING ON FPGA-BASED PLATFORMS 

Few research groups have experi mented to map k-means algori th m to re­

configurable fabric i n  order to achi eve some accelerati on. Such experi ments 

have ' feel-good' results but there has not been a h igh performance-computi ng 

platform coupled wi th reconfi gurable elements to really be able to exploi t the . 

tremendous potentia l para lleli sm inherent wi thin  th e algori th m. Th e archi tectural 

goal of h igh performance reconfi gurab le computi ng nodes i s  to achieve 

hardware-like performance and software-like flexibi li ty. Image processing 

algori thms are natural candidates for h igh performance computi ng due to th ei r 

inh erent paralleli sm and intense computational demand [1 ). 

1 0  



Mainly, two thesis topics based on this have been produced. The first one [7] is a 

work titled 'K-means clustering for Color Image processing on Reconfigurable 

Hardware Board' conducted experiments on Annapolis Microsystems Wild Force 

FPGA-based custom computing machine. Two facts were established as an 

outcome of their experiments. One, custom-computing machines are suitable for 

intermediate-level image processing algorithms. Two, a custom computing 

approach permits image-processing appl ications to run at high speed. 

The second thesis [1 ] also from the same research group at Northeastern 

University, Boston did simi lar work as the fi rst one but on hyper-spectral images. 

A couple of transformation techniques have been employed to take advantage of 

FPGA elements and presented pros and cons of such implementation.  

Manhattan distance measure was employed to classify points under a certain 

category and this helped el iminate multipl iers in hardware that turns out to be 

area and speed expensive. The other major technique involved in the work was 

improving computational time by the use of input data truncation . However, the 

number of bits to be truncated was not rationalized but has been observed at the 

same token, that a significant improvement was obtained by truncating input data 

by 2 bits . A speed up of two orders of magnitude faster than the same algorithm 

run in software was shown [1 ] .  The current work presented in this document tries 

to rational ize the exact number of bits that could be truncated with an acceptable 

percentage error in accuracy of the final cluster centers. Nevertheless, the 

classification of points into N number of classes does not change. Again the 
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hardware implementation was targeted to Annapolis Microsystems Wildstar PCI 

board with three Xi l inx Virtex 1 000 FPGAs and 40 MB of ZBT SRAM. The design 

classifies 61 4 X 51 2 pixel images with 1 O channels of 1 2  bits data per pixel into 8 

clusters . The design returns the cluster number for each p ixel ,  as well as the 

accumulated values for each channel of each cluster and the number of pixels in 

each cluster. One of the processing elements PE1 is used by the design and has 

interface to the host PC I · bus . The registers mapped onto the host PCI bus hold 

the control signals , cluster centers , and cluster accumulators . The two 64 bit 

memory ports hold the pixel data, so that 1 28 bits of the image can be accessed 

each clock cycle. Each pixel is 1 20 bits ( 1  O channel/1 2 bits) , and the image is 

mapped into the memories so that one whole pixel is accessed each clock cycle 

with 8 unused bits. The design has a 1 0-stage pipel ine and one pixel is classified 

every clock cycle [1 ] .  

Thomas Fry and Scott Hauck of University of Washington , Seattle have done 

related work on a RC-based system which compresses the data stream before 

down l inking. By developing image compression routines on a reconfigurable 

platform, they have established it is possible to obtain the computational 

performance required to compress a satell ite's data in real time and at the same 

time retain the abil ity to modify the system post-launch [27] . The algorithm used 

is the Set Partitioning in Hierarchical Trees (SP IHT) image compression 

algorithm, which is similar to k-means also regarded as a compression algorithm. 
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More importantly the hyper spectral data has been represented as a fixed-point 

number. Similar representation has been considered in this thesis. 

Researchers at Los Alamos National Laboratory, USA and I RISA - CNRS, 

France have implemented a hardware/software co-processing model on a hybrid 

processor for k-means clustering [6]. The experiments were done on two models 

of the Altera Excalibur board, the first using the soft I P  core 32-bit NIOS 1 . 1  RISC 

processor, and the second with the hard I P  core ARM processor. A comparison 

of the performance of the sequential k-means algorithm with three different 

accelerated versions was reported as an outcome of the experiments. 

Granularity and synchronization issues were considered when mapping an 

algorithm to a hybrid processor. The results indicated that a speed-up of 1 .8 X 

was achieved by migrating computation to the Excalibur ARM hardware/software 

as compared to software only on a Gigahertz Pentium I ll. Speedup on the 

Excalibur NIOS was limited by the communication cost of transferring data from 

external memory through the processor to the customized circuits. The dual port 

memories of the Excalibur ARM, accessible to both the processor and 

configurable logic, overcame the limitation and has had the biggest performance 

impact of all the techniques studied [6][2]. 

Dominique Lavenier, researcher at I RISA, CNRS France has conducted some 

independent research of k-means clustering on various prototype hardware and 
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implemented k-means using systol ic or l inear arrays to exploit algorithmic level 

parallel ism [6] . 

2.2 K-MEANS CLUSTERING ON OTHER PLATFORMS 

Research groups at John Hopkins University, Laurel and University Of Maryland, 

Col lege Park have looked into efficient k-means clustering heu ristics l ike Lloyd's 

Algorithm but haven't experimented any of them on scalable architectu res or 

hardware assisted platforms [28] . 

University Of Minnesota has researched advantages of implementing K-means 

algorithm on the DANCE (Defin itive Axiomatic Notation for Concurrent Execution) 

Multitude paral lel execution arch itecture and compared it to equivalent MPI 

based routine and showed improvements. The implementation was based on 

DANCE program that was invented specifical ly for the general-purpose parallel 

processing Mu ltitude architecture. A DANCE program specifies the task without 

having to expl icitly schedule the paral lel ism [29] . 

Researchers l nderjit S. Dhi l lon and Dharmendra S. Modha at the IBM T J Watson 

Research Center developed k-means clustering algorithm on a distributed 

memory multiprocessor environment with message passing models [4] . 

Researchers S Ray and RH Turi [8] at the Monash Un iversity in Australia looked 

at determination of the number of clusters in K-means clustering and appl ication 
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in color image segmentation in a totally software kind of environment. Other 

researchers as A.A Schowengedt [9], David Langrebe [21] have conducted 

experiments related to K-means clustering but haven't used any kind of hardware 

assist to upgrade the analysis and performance. 

2.3 CHAPTER SUMMARY 

This chapter discussed some of the contributions of other research groups 

relating to k-means clustering and some of the benefits of implementing k-means 

clustering on a variety of platforms. The rest of this thesis document discusses 

the approach taken in the current work followed by the implementation of the 

algorithm on the Pilchard system. The following chapter will introduce the reader 

the details of the k-means clustering algorithm and the advantages of using the 

algorithm over a hardware platform. 
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3. K-MEANS CLUSTERING 

In the previ ous chap ter, some related work done i n  the p ast with reference to K­

means c lustering was pointed out. In addi ti on to describing the K- means 

clusteri ng algori thm in some detail, thi s chap ter presents the massive p otential 

parallelism that can be tapp ed and few ways of accelerating the algorithm by the 

way of minor transformati ons and bit width reduction done on the input vector . 

. A lso, two p opularly known pre-processi ng techniques that have been employed 

in the imp lementati on are summarized. 

3.1 ALGORITHM OVERVIEW 

This algorithm is wi dely used in the data- mining f ield. It is utilized for 

classificati on purposes and to discover differences and patterns in both small and 

large data sets. There exi st many different var iants of K- means c lustering - most 

of which are variants adap ted for sp ecial purp ose environments [2] . With the 

growth of data collec ted on operati onal and transactional data, the fi eld of data 

m.ini ng has become increasing ly i mportant. The growth of data has been 

accelerated with the commerc iali zation of the Internet and the i ncreased use of 

p ersonal computer. In thi s environment collec tion of individual metrics i s  

relatively cheap and unobtrusi ve to the user . Companies who have been 

collec ti ng vast amount of data on consumer habits are now confronted with the 

dilemma of what to do with all the data. This is where K-means clustering 

becomes useful. It provi des a remedy tailored to thi s problem and reveals 

patterns that otherwise are obfuscated and not otherwise discernible [1 ] .  There 
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has been an increasing interest in clustering genomic data and analyzing DNA 

sequences. K-means is a common solution to the segmentation of multi­

dimensional data. However, these large amounts of data sets require large 

computational . capacity. The nature of this problem is ideally implemented on a 

high performance computing architectural node (19]. 

Given a set of N pixels, each composed of S spectral channels, and represented 

as a point in S-dimensional Euclidean space (that is, Xn e R0
, with n = 1 . . .  N) ; we 

partition the pixels into K clusters with the property that pixels in the same cluster 

are spectrally similar (3]. Each cluster is associated with a "prototype" or "center'' 

value which is representative of (and close to) the pixels in that class. One 

measure of the quality of partition is the within-class variance [3] ; this is the sum 

of squared (Euclidean) distances from each pixel to that pixel's cluster center. 

The k-means clustering algorithms (there are several variants) provide an 

iterative scheme that operates over a fixed number (K) of clusters, while 

attempting to simultaneously optimize center locations and pixels assignments. 

To begin with, the algorithm passes over all the data points, and reassigns each 

to the cluster whose center it is closest to. After the pass through the data, the 

cluster centers are recomputed. Each iteration reduces the total within-class 

variance for the clustering, so it is guaranteed that after enough iteration, the 

algorithm will converge, and further passes will not reassign points. It bears 

remarking that this is only a local minimum. There may be an assignment of 
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pixels to classes that produces a smal ler within-class variance, but to search al l 

possible assignments (there are KN/K! of them) would be an impossibly large task 

for all but the smallest values of N .  This problem is known to be NP-complete [3) . 

3.2 APPROACHES FOR ACCELERATION 

One of the most important goals of this work is to be able to util ize hardware 

units to increase processing speed. The standard software implementation of k­

means uses floating-point arithmetic and Euclidean distances. Floating-point 

arithmetic and the multipl ication heavy Eucl idean distance calcu lation are fine on 

a general-purpose processor, but they have large area and speed penalties 

when implemented on a FPGA [ 1 ] [3] [7) . In order to get the best performance of 

k-means on FPGA, the algorithm needs to be transformed to el iminate these 

operations. Manhattan distance as opposed to Eucl idean d istance is considered · 

in the present implementation . Manhattan distance measures uses adder and 

absolute value computational blocks that are far less expensive than the 

multipl ication units on the hardware. K-means clustering technique is shown in 

Figure 3. 1 . 

Fixed-point division operators have been implemented within the hardware fabric 

and thus have considerable effect in increasing the computational speed. The 

effects and results are discussed in chapter-6. 
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Figure 3.1 :  K-means Algorithm 
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Two i mportant approach es for acceleration have been reported posi ti ve for 

improvements on th e hardware units. One, bei ng th e use of Manha ttan distance 

measures. I nput data bit width truncation being th e oth er. Th e input data size 

reducti on could be easily extended to data width truncati on of intermediate 

representation upon careful analysis. 

Essentially, in K-means c lustering, th e points are assigned to cluster cente rs to 

wh ich they are c losest; for th e minimum-variance cri terion, "c losest" is defined i n  

terms of th e Euc lidean distance. Th e definition in terms of Manhattan distance is 

reported to be less acc urate but easier to i mplement and si gnificantly faster on 

th e hardware [1] [3] [7]. To perform k-means iterati on, one must compute th e 

distance from every point to every center. I f  there are N points, K centers, and D 

spectral channels, th en there will be O (N K D) operations [1 ]. For th e Eucli dean 

di stance, each operation requires computing th e square of a number. 

The Euclidean distance has several advantages. For one, th e distance is 

rotationally invariant [1 ] [7] . Furthermore, minimi zing th e Euclidean distance 

minimizes th e with in-c lass variance. On th e flip side Euc lidean di stances are 

more expensive. than alternati ve approaches we are considering for accelerati on. 

The Manhattan distance, corresponding to p =  1 ,  is  th e sum of absolute values of 

th e coordinate differences [1 ]. In hardware, calculati ng th e Euclidean distance 

would be significantly slower than calculating th e Manhattan distance. Th is is due 

to the fact that a multi plication is  required for every channel and every cluster per 
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pixel, so the amount of parallelism that can be . exploited in the hardware 

implementation would decrease drastically. The Manhattan distance is 

approximately twice as fast in software as Euclidean, but significantly faster in 

hardware [1] [7]. 

The research group at Northeastern University, Boston and Space and Remote 

Sensing Sciences Group at Los Alamos National Labs have conducted 

experiments and reported results stating that Manhattan measures are 

acceptable for k-means clustering [1 ]. Data independent and data dependent 

experiments were conducted to determine if the use of cheaper metrics were 

acceptable. Figure 3.2 shows the data independent experiments estimation on 

how often points would be mis-assigned because of the use of a cheaper metric. 

Note that although the relative variance is decreasing for large values of D, the 

rate of misclassification is monotonically increasing. For the Manhattan metric, 

the misclassification rate saturates at about fifteen percent, but for the Max 

metric, the error rate begins to approach fifty percent. That is, for very large 

dimension D, the Max metric is not much better than just assigning points to 

clusters at random. As expected, the linear combination performs better than the 

Manhattan distance. The improvement is substantial for smaller dimensions (D 

<10), but the difference becomes small for large dimensions. 
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Figure 3.2: Misclassification Rate for Different Distance Metric [1] 
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The research group also performed data dependent experiment on A VI RIS data 

sets. Each AVI RIS image was classified with each of the distance measures, so 

there were twenty trials (5 images * 4 distance measures). Each trial used K = 16 

clusters and stopped after convergence or fifty iterations. The within-class 

variance for the AVI RIS data cubes was measured with most of the images 

exhibiting less than a 6% increase for using Manhattans over Euclidean 

measures [1 ]. 

One of the major improvements in the use of technique is the capability that has 

been developed to establish the amount of truncation and still retain acceptable 

within-class variance. Previous researchers have reported that small amounts of 

truncation, figure 3.3 can vastly improve the performance of huge datasets 

comprising of hundreds and thousands of spectral information [1 ][17]. The 

current work attempts to quantify the term 'small amount' so as to answer the 

question, how small is small. To approach this problem, a fixed-point version of 

the algorithm is developed both full precision and truncation applied. The 

truncation of the bits is increased and run until the algorithm breaks. In other 

words till the algorithm puts out an acceptable within-class variance. With the aid 

of A IRT collector class and statistics class summarized briefly in chapter 5, 

overflows were detected and the iteration stopped when detected. The bit width 

at that point is taken as the final bit length to represent a data point with 

maximum truncation. 
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The other single most important approach is the implementation of d ivision 

operators within the hardware fabric. Researchers who have done similar work 

have implemented division operators, a part of the k-means clustering on the 

host computer. This thesis work tries to analyze how much improvement in 

performance gain was obtained in eliminating some of the communication delay 

between the host computer and the pilchard subsystem. Additionally, data-path 

area and latency introduced in the design cycle has also been reported. 

3.3 DATA SETS 

The hardware implementation deals with the classification of synthetically 

generated datasets of different sizes. It also deals with classification of different 

materials based on the hyper-spectral reflectance data of the materials. The raw 

reflectance data is obtained from the JPL as observed by the earth looking 

satellites. There are three classes of materials namely manmade materials, 

minerals and soils. The high-order statistical and wavelet based features are 

extracted [section 3.3.2] from each sample to perform a feature space. 

Unsupervised learning algorithms are applied on the feature space to classify the 

given sample. 

3.3.1 RAW DATA 

Two kinds of data sets, synthetic and real data from JPL spectral library have 

been used to verify the design on the hardware. Initial cluster centers generated 

at random with mean of O and standard deviation of 1. The size of the matrix is 3 
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x M, where the number three represents the number of cl asses in the cl uster and 

M is the number of principal features of the cl uster. Normall y, an image analyst 

determines the number of cl usters. 

The raw data consist of wavelength versus refl ectance data of different material s 

obtained from Jet Propul sion Laboratories (J PL) spectral l ibrary [20] . Th is J PL 

S pectral Library includes laboratory refl ectance spectra of 160 mineral s in digital 

form. Data for 135 of th e mineral s are presented at three different grain sizes: 

125-500µm, 45-125µm, and <45µm. This study was undertaken to ill ustrate the 

effect of particl e size on the shape of the mineral spectra. Ancil lary information is 

provided with each mineral spectrum, incl uding the mineral name, mineralogy, 

suppl ier, sampl ing l ocal ity, and our designated sampl e number. In the original 

publ ication the spectra we�e separated into cl asses according to the dominant 

anion or anionic group present, which is the cl assification scheme traditional ly. 

used in mineral ogy. The three main classes incl ude manmade m aterial s, 

minerals and soil s [20] . 

Th e data for th ree cl asses exist in th ree di fferent directories wi th each directory 

containing the text files for each material . Each sample text fil e consists of a 

header describing the ch emical information and the range of wavelengths used 

etc. For feature ex traction purposes these headers are removed with onl y 

wavel ength and the refl ectance data remaining in the tex t fil es. 
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3.3.2 DATA PRE-PROCESSING 

A number of preprocessing steps are performed before data is used as an input 

vector to the hardware blocks. Two important steps are performed to transform 

the ram vector to a more usable format. 

1 . Feature Extraction 

2. Principal Component Analysis (Critical features selection) 

3.3.2.·1 FEATURE EXTRACTION 

The feature extraction is the main part of the project since the accuracy of the 

classification depends on deriving the non-correlated independent features, . 

which distinctly describe the material. In this project we derived the high order 

statistics of each data sample describing the shape of the wavelength versus 

reflectance data and wavelet based features. 

3.3.2.1.1 HIGHER ORDER STATISTICS 

The hyper spectral data for each material exists in wavelength versus reflectance 

data format and thus studying about the statistics of this two dimensional data 

provides valid features since each different material wil l  have .particularly different 

reflectance and thus deriving the statistics will provide efficient index for 

classification. The high order statistics include the following four: 
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The mean gi ves the average reflectance of the data, standard devia tion gi ves the 

varia tion of the data in the di stributi on, skewness gi ves the relati ve symmetry of 

the data and kurtosi s gi ves the relative flatness of the graph of the gi ven da ta. 

3.3.2.1 .2 WAVELET BASED FEATURES 

Wavelet transform gives the ti me-frequency informati on of the gi ven si gnal. Thi s  

two-domai n represen ta ti on makes i t  a useful transform in  signal  analysi s. Thi s  

technique uses decomposi ti on of the ori ginal si gnal i nto di screte wavelet 

coeffi ci ents. The wavelet coeffi ci ents effecti vely represent the si gnal completely 

and the knowledge of these coeffi cients we ca n reconstruct the whole si gna l. In 
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this projects the statistics and the energy of these coefficients is derived to act as 

features for classification purposes. The original data is decomposed using the 

Daubechis wavelet is used for decomposing the reflectance data by four levels. 

The mean, variance and energy of the coefficients form each level are derived 

and used as features. 

Thus the feature extraction gives 16 independent features for each sample text 

file or each material. The feature space is constructed with three different 

classes. Before the pattern classification is done the feature space is normalized 

so that the adjacent features are in comparable scale. Each column of the 

feature space is independently normalized using the formula 

where µ is the mean and cr is the standard deviation. 

3.3.2.2 PRINCI PLE COMPONENT ANALYSIS 

Principle component analysis is done to eliminate the correlated feature vector, 

thus making the feature space into useful minimum thus helping in dimensionality 

reduction. The algorithm of the PCA is as follows: 

1. The covariance matrix of the feature space is calculated. 

2. The Eigen values and the corresponding Eigen vectors are calculated. 
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3. The Eigen value matrix is arranged in ascending order of magnitude 

correspondingly arranging the Eigen vector matrix. 

4. The sub matrix of Eigen vectors is chosen to be multiplied with the dataset 

depending on K where is k is obtained from the following formula, where n 

is the loss of energy. 

5. The obtained set of the Eigen vectors is multiplied with the training set to 

reduce the dimensionality of the data set. 

3.4 CHAPTER SUMMARY 

This chapter discussed the details of the k-means clustering algorithm and small 

transformations that could be applied to the algorithm to achieve better 

performance on the hardware. Also, a brief description of the hyper-spectral data 

pre-processing steps has been described. The next chapter discusses the 

platform for implementing the algorithm. Additionally, reasons for . choosing the . 

platform and design issues relating to the system are also discussed. 
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4. HARDWARE PLATFORM 

In the previous chapter, a few variants of k-means clustering were introduced 

and an overview of the most common variant of the algorithm was discussed. 

Also, different algorithmic level transformations for acceleration and the 

organization of data sets that the algorithm operates on were detailed. This 

chapter introduces the hardware assist that has implemented for k-means 

clustering. 

4.1 WHY PILCHARD? 

Mainly, there are three reasons for choosing the Pilchard system. For one, the 

architecture of the pilchard system is such that it mounts on the D IMM slot as 

opposed to the PCI.  The D IMM slot has a greater bandwidth and speed and 

hence is preferred over a PCI bus. Secondly, the host interface design takes 

relatively less time to comprehend and use. Hence, the learning curve is fairly 

short when compared to complicated interfaces of other prototype boards such 

Wildforce and Wildcard that are available at the Microelectronics Laboratory in 

the University of Tennessee. In this way, users can concentrate more on their 

designs rather than on understanding complicated host interfaces. Third:' and by 

far the last main reason for choosing pi lchard is that it's a fairly new hardware 

assist for educational and research use and is readily available for use at the 

University of Tennessee. Unlike the Wildforce and the · Wildcard hardware 

platforms that have multiple FPGA on the mezzanine card, the pilchard system 

has one big virtex FPGA on the board. This eliminates the use of any kind of 
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partitioning methods for fai rly big designs. Also, de-skew techniques for off-chip 

signals and vice versa can be avoided . 

4.2 PILCHARD SYSTEM 

Pilchard board is a high performance-computing card that has b_een used to 

target the algorithm down to Xil inx Virtex 1 000e chip part [ 1 8] .  This chapter 

briefly describes the board and the arch itecture of the FPGA part embedded in 

the · mezzanine card. Figure 4. 1 shows a picture of the Pi lchard card . 

This card developed by researchers led by Dr. Phi l ip Leong [1 8] at the Chinese 

University of Hong Kong is not an off the shelf commercial board but a platform 

for the research environment and educational purposes. As we go along the way 

Figure 4.1 : The Pi lchard Card [1 8) 
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in successful ly mapping the design to the FPGA on the Pi lchard board, the 

advantages and the downsides of the system are discussed . Figure 4.2 

describes some of the sal ient featu res of the Pilchard system.  

It has been reported that the system has an efficient interface , i s  a low cost 

model and is su itable for various applications that include cryptosystem,  image 

processing and speech processing, clustering and rapid prototyping. Other 

significant features include high data transfer rate capabi l ity due the DIMM RAM 

interface, communication speed of up to 1 33MHz directly with the CPU, shorter 

learning curve, 27 bits external 1/0 outlets including clock signal outs for 

hardware debugging and monitoring etc. Xchecker cable is required to download 

the bit stream to the FPGA. 

The users are provided with a set of VHDL source and other usefu l files. 

1 .  pi lchard.vhd: The top level VHDL code which wraps the core and 

interfaces with the D IMM slot directly. 

2. pcore. vhd: This is a standard template and al l user designs go inside this. 

Figure 4.3 shows the entity port l ist of the VHDL core. 

Figure 4.4 shows the internals of the Virtex 1 000e chip part and an overview of 

the Virtex architecture is described in section 4.3. 
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DIMM interface 

64-bit Data 1/0 

Host I nterface 

1 2-bit Address Bus 

External (Debug) I nterface 27 bits 1/0 

Configuration Interface X-Checker, Multi-Link and JTAG 

Maximum System Clock Rate 1 33MHz 

Maximum External Clock Rate 240MHz 

FPGA Device XCV1 000E-HQ240-6 

Dimension 1 33mm X 65mm X 1 mm 

OS Supported GNU/Linux 

Configuration Time 1 6s (using Linux download program) 

Figure 4.2: Features of Pilchard Platform [30] 
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library ieee ; 
use ieee . std_logic_l�64 . al l ; 
use ieee . std_logic_uns igned . al l ; 

entity pcore is  
port ( 

elk : in std_logic ; 
clkdiv : in s td_logic ; 
rst : in std_logic ; 
write : in std_logic ; 
addr : in std_logic_vector ( 13 downto 0 ) ; 
din : in std_logic_vector ( 63 downto 0 ) ; 
dout : out std_logic_vector ( 6 3 downto 0 )  
) ; 

end pcore ; 

Figure 4.3: Entity Dec laration of pcore.vhd 
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Figure 4.4: Virtex Architecture Overview [1 1 ]  
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3. pilchard.ucf: This a constraint file to the place and route program during 

the process of mapping the design to logic cells inside the FPGA. Pin 

assignments and the clock period of the design are specified here. 

4. iob_fdc.edif: A synthesized netl ist for the 1/0 blocks in pilchard.vhd 

4.3 VIRTEX 1 000E ARCHITECTURE 

Virtex architecture comprises an array of configurable logic blocks (CLBs) 

surrounded· by programmable input/output, all interconnected by fast, versati le 

routing resources. 

• CLBs provide the functional elements for constructing logic 

• IOBs provide the interface between the package pins and the CLBs 

• The large amounts of routing resou rces allow the largest and the most 

complex designs to be mapped to these elements. Virtex FPGAs are 

SAAM-based devices that provide better performance than previous 

generations of FPGA. 

Designs can achieve synchronous system clock rates up to 200 MHz includ ing 

the 1/0 [1 8]. Furthermore;  I/O's are fu lly compl iant with PCI specifications. 

CLBs interconnect th rough a general routing matrix (G RM). The GRM comprises 

an array of routing switches located at the intersections of horizontal and vertical 

routing channels . The Virtex architecture also includes the fol lowing circu its that 

connect to the G RM. 
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• Dedicated block memories of 4096 bits each 

• Clock DLLs for clock-distribution delay compensation and clock domain 

control 

3-state buffers (BUFTs) associated with each CLB that drive dedicated 

segmentable horizontal routing resources. 

4.3.1 CONFIGURABLE LOGIC BLOCK 

Configu rable logic blocks have four logic cel ls (LC) as basic components. An LC 

includes a 4-input function generator; carry logic, and a storage element. The 

CLB also contains function generators to provide functions of five or six inputs . 

Other elements in a Virtex Sl ice include 

• Look-Up Tables 

• Storage Elements 

• Additional Logic 

• Arithmetic Logic 

• BUFTs 

• Block SelectRAM 

The Block SelectRAM memories are organized in columns.  All Vi rtex devices 

contain two such columns, one along each vertical edge. These columns extend 

the fu l l  height of the chip. Each memory block is four  CLBs h igh, and 

consequently, a Virtex device 64 CLBs h igh contains 1 6  memory blocks per 
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Table 4.1 : Virtex-E Block SelectRAM Amounts [1 1 ]  

Virtex-E Device # Of 'Blocks Block SelectRAM bits 

XCV50E 1 6  65,536 

XCV1 00E 20 81 ,920 

XCV200E 28 1 44,688 

XCV300E 32 1 31 ,072 

XCV400E 40 1 63,840 

XCV600E 72 294,9 1 2  

XCV1 000E 96 393,2 1 6  

XCV1 600E 1 44 589,824 

XCV2000E 1 60 655,360 

column, and a total of 32 blocks . Table 4. 1 shows the amount of block 

SelectRAM memory that is avai lable in each Virtex device. 

4.3.2 DELAY-LOCKED LOOP (DLL) 

A DLL purpose in the Vi rtex device is to el iminate skew between the clock input 

pad and the internal clock-input pins throughout the device . Each DLL can drive 

two global clock networks. The DLL monitors the input clock and the distributed 

clock and automatical ly adjusts a clock delay element. In addition to this , the DLL 

provides advanced control  of mult iple clock domains; It provides four  quadrature 

phases of the source clock, in addition to provisions of doubli ng the clock or 

d ividing the clock by multiple factors of 1 .5 ,  2 ,  2.5,  3 ,  4, 5 ,  8 or 1 6 . 
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The DLL also operates as a clock mirror. By driving the output from a DLL off 

chip and then back on again ,  the DLL can be used to de-skew a board level clock 

among multiple Virtex devices. In order to guarantee that the system clock is 

operating correctly prior to the FPGA starting up the configuration, the DLL can 

delay the completion of the configuration process unti l after it has achieved lock. 

4.4 DESIGN ISSUES OF K-MEANS ON PILCHARD 

There have been quite a few successfu l implementations l ike encryption engines 

that have been reported with the Pilchard [1 8] . However, there are sti l l few critical 

design issues with the system, particu larly with pattern classification algorithms 

l ike K-means. These issues and l imitations offset some of the advantages 

pertaining to the Pi lchard system. 

4.4.1 SPEEDS AND FEEDS 

Later in this chapter, a methodology flow of the design and ad-hoc approaches to 

decide number of bits to represent data points are discussed. The smaller the 

number of bits required to represent a dataset, better would be the performance 

in terms of speed and data-path a�ea. However, accuracy needs to be traded off_. 

Arguably, since the k-means clustering techn ique is used for quick view analysis 

and data compression ,  the speed needs for massive number crunching has been 

treated more important in the research community. Figure 4.5 refers to this 

problem. 
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Figure 4.5: Problem of Speeds and Feeds 

Smaller 1/0 indirectly limits the speedup but smaller b it rep resentations can solve 

this prob lem to a certain extent. This is because the 1/0 channel now transports 

more of such data points that are packed together in one write cycle. However, if 

the p ixel representation cannot be further reduced to smaller bit width; an 

increase in copies of hardware computational b locks does not enhance 

performance. H ardware units could be optimized for best achievable· results but 

is almost always limited by the 1/0 of the prototyp e. The Virtex 1 000e FPG A  has 

about a million gates that the user designs could use. The K-means core takes 

about 10% of the Virtex chip and therefore, there is a natural thinking that the 

· core engine could be rep licated at least nine times to take advantage of the 

p lenty of hardware resources. This is given the fact that processing of one 

observation point is independent of the processing of another and hence 

parallelism can be exp loited at the algorith mic level. This proposition is, however, 
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inval id , s ince the gateway 1/0 is band l imited to a 64-bits transfer for every 

write64() transaction . The data can be packed if fewer b its represent the data 

point. Such data packing can be a solution to the bandwidth saturation problem. 

4.4.2 LIMITATIONS AND BOTTLENECKS 

Bottlenecks that limit performance numbers are 

1 .  Limited block RAMs available in the chip part .  Unl ike other usual 

prototyping boards , _ the pi lchard system is devoid of on board RAMs that 

would enable the user to store the enti re image on the board before 

starting hardware operations . This means that the entire image or any 

data set needs to be stored within the FPGA. More importantly, the 

onboard RAMs normally are OMA mapped to the memory of the host and 

hence cuts down overheads cost in data transfer cycles . 

2 .  Limited support for handshaking protocols complicate development of 

streaming applications on the hardware. 

3 .  The core template for the 1/0 registers has 1 4bits of address lines but only 

8bits could be used for hardware addressing. 

1/0 is a 64bit bi-directional data bus, so data transfer from the host to the re­

configurable unit is bandwidth l imited . Since the enti re image is stored with in the 

FPGA before the start of hardware operations, a number of cycles of latency are 

introduced from the data transfer from the host to the re-configurable blocks. The 

latency introduced increases as the data size increases and this eventual ly 

offsets the performance benefits obtained by exploiting inherent paral lelism . One 
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way that has been used to solve the problem is to transfer as many data points 

as possible per write cycle. 

4.5 CHAPTER SUMMARY 

This chapter briefly described the reasons for choosing the Pi lchard 

development board for the k-means clustering implementation and the 

architectu re of the Pilchard system as welt In addition to this, hardware 

subsystems within the Pi lchard , such as the architecture of the Vi rtex 1 000e 

FPGA have been described. The design issues and bottlenecks of the system 

have also been identified and presented. The next chapter discusses the 

approach and methodology adopted for the implementation . 
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5. METHODOLOGY 

In the previous chapter, a few hardware platforms were mentioned and Pilchard 

was chosen as the current hardware assist for the clustering implementation. In 

addition to this, the architecture of the target Virtex 1000 e chip was summarized 

and the limitations of the system with respect to the k-means algorithm were 

pointed out. The chapter discusses the methodology and approach taken in this 

design with respect to the Pilchard system as the design platform. 

5.1 INTRODUCTION 

The Methodology and approach in problem solving is a key to an effective and . 

productive design. This is particularly true for a design that needs to meet the 

'time-to-market' constraints. This chapter discusses the top down approach with 

a focus on finding a near optimal implementation on the hardware assist. Here, 

the optimality is primarily based on the speed of the computation and the 

correctness of the classifier. 

Bit truncation techniques during the input and intermediate stages have been 

shown to cause dramatic increases in performance and speed [1]. A protocol has 

been established to quantify the maximum number of the bits that could be. 
truncated at different levels. Hardware implementations with fewer bits tend to 

decrease the data path area and the critical path of the design, thereby 

enhancing the performance and speed of the design. In addition to the 

quantifying bit truncation, tested approaches that have worked well with other 

platforms have been implemented on the Pilchard system. 
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Figure 5 .1 shows the methodology flow of the design. The golden code is 

even tually tran slated to hardware un its at the output of the flow. 

5.2 MATLAB GOLDEN CODE 

A given Matlab code shown in Figure 5.2 is treated as a golden code an d all the 

results of the final implemen tation is based on the results of this Matlab code. 

The data set is a floatin g-poin t number an d all the iterative operation s are 

floatin g-point operation s. An attempt has been · made to port the algorithm to 

floatin g poin t C and this code was later modified in to a fixed- poin t version . The. 

floatin g poin t C was developed an d the results are compared with the Matlab 

version . Sin ce,· at this poin t the operation s in both Matlab an d C are floatin g­

poin t, the results had to match with 100% accuracy an d was verified to be the 

· same. · A fixed-poin t version of C was then developed using the fixed-poin t 

package available in the AI RT library. While in the developmen t stage, an 

iterative search was performed to iden tify min imum bit-width required to avoid 

any overflow of bits. The fo llowin g figure shows the flowchart o f  an iterative 

search. 

The bit len gth of the fraction al part of the number was decided by comparin g the 

results of the floating-poin t C versus the fixed-poin t C for an acceptable 

percen tage error. 
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Figure 5.1:  Methodology Design Flow 
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[m ,  n ]  = size (X ) ; 
% generate k random number of n-dimension as init ial mean value 
Rl = randn ( k ,  n ) ; 

% start classif ication ,  initial class assignment 
Y ( : , 1 : n ) = X ;  
di ff = Inf ; 
while dif f > 0 
% choose the shortest distance to cluster 

for i=l : m  
.D = sqrt ( sum ( ( repmat (X ( i ,  : ) , k , 1 ) -Rl ) . � 2 ,  2 ) ) ;  

[ S ,  I ]  = sort ( D ) ; 

Y ( i , n+ l )  = I ( 1 ) ; 
end 

% recalculate the mean 
R2 = zeros ( k ,  n ) ; 
for j = l : k  
p = 0 ;  
for i=l : m  
i f  Y ( i , n+l ) -- j 
R2 ( j , . :· ) = R2 ( j , : ) + Y ( i , 1 : n )  ; 
p = p + l ;  
end 
end 
if p > 0 
R2 ( j , : ) = R2 ( j , : ) / p ;  
end 
R ( j ) = norm ( Rl ( j , : ) -R2 ( j , : ) ) ; 
end 
% calculate the largest di fference 
di ff = max ( R )  ; 
Rl = R2 ; 
fprint f ( ' Mean vector is \n ' ) ;  
disp ( R2 ) ; 
end 
mu = R2 ; 

Figure 5.2: Golden Matlab Code 
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5.3 FIXED-POINT C 

One of the main things in the present work is an attempt to be able to say that for 

an acceptable error percentage , n times the speed of computation of standard 

software implementation , where n > 1 ,  is the speedup of the algorithm 

implemented in hardware over a conventional microprocessor. K-means 

clustering inherently is robust and thus is insensitive to small changes in the 

ground conditions. This is to say that a predetermined small level of error is 

acceptable as long as a considerable amount of speedup results. The trade off 

factors and the numbers related to this are discussed in the chapter 6. 

5.3.1 BIT-WIDTH TRUNCATION 

A procedure was developed to determine exactly the number of bits that cou ld be 

used to min imally represent a data point. The minimum bit representation helps 

achieve the fastest k-means algorithm on the hardware but not necessarily the 

best qual ity resu lts. However, if the classification of data points does not change 

then the experiment is treated as successfu l regardless of the accu racy of the 

convergence. A trial and error attempt is made to repeat the process until an 

acceptable optimum point on the speedup vs. percentage error was determined. 

Two experiments were conducted to individually identify the minimum number of 

integer and fractional bits to represent the input data point. Two separately run 

algorithms to determine minimum widths are described in five steps as shown 

below. A simple example is demonstrated to i l lustrate the idea of bit truncation 
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meth od. As th e number of bits required to represent th e p ixel is reduced th e 

data-path area on th e FPG A drastically roll off. A more compact data-path 

normally tends to reduce th e critical path and increase th e computation speed. 

To determine number of integer b its 

Step1 - Start with th e fixed point of type < 1 6, 0> with 1 6  integer b its and 0 

fractional bits. 

Step2 - Run th e data points th rough th e fixed-point k-means code. 

Step3 - Feed th e results to th e statistics tool to ch eck for overflows and validate 

cluster classifications with th e results from th e golden code. 

Step4 - If overflows were not detected and the data correctly classified; truncate 

th e data to 1 5  integer b its; < 1 5, 1 > 

Step5 - If detected, step back to th e previous iteration to decide th e minimum bit 

representation. 

Figure 5 .3 is th e b lock diagram of the procedure developed to determine th e 

minimum integer b its and Figure 5 .4 is a similar diagram to determine minimum 

fractional bits. 
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Figure 5.3: Procedure for Determin ing Minimum Integer Bits 
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Figure 5.4: Procedure for Determining Minimum Fractional Bits 
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1 st byte 

Figure 5.5 Full Precision (I + F) 16-bit Fixed Point 

Consider a single dimensional 16-bit pixel as shown in Figure 5.5. Also, assume 

16-bit representation as full precision and the normalized range of pixel values -1 

to 1. 

Determine number of fractional bits; A similar approach as the previous one is 

used to determine the fractional part. 

Step1 - Start with the fixed point of type <2, 14> with 2 integer bits and 14 

fractional bits. 

Step2 - Run the data points through the fixed-point k-means code. 

Step3 - Feed the results to the statistics tool to check for overflows and verify 

cluster classifications with the results from the golden code. 

Step4 - If overflows were not detected and the data correctly classified ; truncate 

the data to 13 fractional bits and so on; < 2, 13>. 

Steps - If detected; go back to the previous iteration to decide the minimum bit 

representation. If the classification breaks and or the overflows detected at lets 

say F=10, then the minimum fractional bits needed would be F=11; 

The end result obtained is shown as in Figure 5.6. 
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I 2bi ts, 11 11bi ts, F I 3bi ts truncated 

Figure 5.6: Modified 13-bit Representation of Pixel 

Therefore the to tal numb er of bits need ed to full y rep resent the pi xel value would 

be 13bits. Right now this complete process· is manually performed , but can be 

easily auto mated using scrip ting uti li ties. The overflow  statistics is co llec ted over 

different iterations wi th the help of fxpStati stics co llec tor c lass described briefly 

below. The cl ass is avai lab le in the A IRT fixed -point lib rary. 

5.4 AIRT BUILDER 

AIRT Builder [31] is an elec tronic desi gn tool  that translates a C-based func tional 

spec ification of an algorithm into an RTL (Register Transfer Level) HDL 

descrip tion. The inp ut to AIRT build er is a descrip tio n of an algorithm, expressed 

in a subset o f  C, op tionall y enhanced with fixed -po int c lasses as provided by 

AI RT library. Th e fixed-po int data  types and operators in th is library give the 

designer full control over the d imensions of  the d ata p ath operators. 

5.4.1 'fxpStatistics' COLLECTOR CLASS 

AIRT Library [31] also provides an auxi l iary cl ass, fxpStati stics ,  of which 

instances can be hooked up to instances of the N umb er c lass (and its derivatives 

of course) .  They will then be notified when an AI RT  Library variab le is 

co nstruc ted , destructed , read from or written to . The fxpStat is tics protoco l 
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class is typically used to collect statistics on the dynamics of the fixed-point 

variables, as well as to build special profiling and analysis functions. 

5.4.2 OVERFLOW LOGGING 

The statistics class has a built-in utility that automatically performs overflow 

logging on selected variables. Overflow occurs when an attempt is made to store 

a value that exceeds the range-capacity of a given variable. The Number class 

automatically keeps track of such an event, and sets a status flag in the NbrRef 

object that is passed to the statistics class. So, an overf
°

IowDetect class is 

created, which implements the wri te ( )  protocol class such that the overflow 

flag is checked. For every overflow event a message is produced and the 

overflow counter is incremented. 

5.4.3 ' fxpTrace ' STATISTICS CLASS 

This fxpTrace class can be used to gather statistics on AI RT Library variables, 

even if one does not have C++ knowledge. This class has been built in inside 

AI RT Library, and only requires the use of fxptrace .  h as an include file. The 

fxptrace . h file can be found in the - A IRT Library installation. Note that the 

statistics information cannot be gathered from global variables. The statistics 

output resulting from running the application code is produced in a file called 

trace . out .  
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5.5 CHAPTER SUMMARY 

This chapter describes the approach adopted for implementation of the algorithm 

on the Pilchard. Procedures to determine minimum bit widths and different steps 

involved in taking the given golden code down to the bit level have been 

discussed. The next chapter describes the details of the actual parameterized 

implementation. Constraints and pragmatic considerations of the implementation 

have also been described. 
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6. IMPLEMENTATION AND RESULTS 

This chapter deals with the hardware implementation of the classifier, k-means 

clustering and compares it with the standard software version implemented on a 

P3/Linux platform. It begins with details about the architectural block diagram 

description followed by the description of the memory and the core models with 

functional simulations. Subsequently, timing simulations are shown to meet time 

closure constraints that were specified earlier on. A variety of scripting utilities 

were employed to solve this iteratively tedious problem. 

6.1 INTRODUCTION 

In Figure 6.1 the Pilchard development board is shown to illustrate the 

architecture of the design. Different colors are shown to represent multiple clock 

circuits that have been incorporated in this design. The portion of the architecture 

shaded with plum color runs at the system speed of 133 MHz and the blue 

portion of the circuitry runs at half the system clock speed. The inputs are 

buffered into the dual port memory, which feeds into the core circuit at a speed 

that the design can handle. The current experiments show that the clock speed 

could be increased to about 66MHz, which is half the system clock speed. 

The pilchard has clock DLL's set up in a way that different factors of the system 

clock can be used to drive the design. Factors of 2,3,4,5 and so on could be 

used, as design gets bigger and complicated. 
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Figure 6.1 : Block Diagram of the Implementation 

The next section introduces the design flow procedure and the other portions 

chapter deals with the design details fol lowed by the presentation of results and 

discussions. 

6.2 DESIGN IMPLEMENTATION FLOW 

A conventional design flow is used to implement the design on hardware. Figure 

6.2 is the flow procedure block diagram that i l lustrates the steps involved in 

translation a hardware description language to bit pattern that can be loaded into 

the hardware via the Xchecker cable. Two important steps namely synthesis and 

place and route are involved . 
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The inputs to the synthesis tool are the design files developed by the user along 

with the pi lchard wrapper fi le and any other available synthesized netl ist 

developed by the user earl ier on. Two synthesis tools, in this case, FPGA 

Compiler and Synplify are used to synthesize the design to pilchard.edf. One of 

them cut the design area by almost 30%. The synthes ized netl ist is then fed into 

the Xi l inx Place and Route tool with certain p lacement constraint included in the 

User Constraint Fi le. During the MAP process, the User Constraint File provided 

by the developers of Pi lchard and any user-defined constraints translates to a 

Physical Constraint File. The PAR, TRACE, B ITG EN and XPOWER programs 

use this constraint file to create a characterized bitstream. The design is also 

back annotated for post layout gate level verification . 

6.3 DESIGN VERIFICATION FLOW 

Functional and post layout gate level simu lations models are developed to verify 

the K-means implementation . Modelsim simulation software is used to develop 

the models. The beginning stages of the design are tested for functional ity by 

feeding the test vectors to the compi led code using Models im. The blocks are 

tested individually and then incremental ly to verify the functionality. The design 

fi les are then synthesized and routed on a chip for the purpose of back 

annotation. The annotated sdf file is then used instead of the orig inal design files 

to verify gate level - simu lation with the same test vectors. Figure 6.3 is a block 

diagram to i l lustrate the idea of design verification. 
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6.4 HOST - HARDWARE DESIGN FLOW 

The bitstream generated is downloaded to the Pi lchard system and the host 

software used the read and write routines to transfer data back and forth . These 

are the only two simple routines available for the pilchard interface. Absence of 

handshake signals or other sophisticated routines l ike DMA transfer or interrupt 

controller make it harder to implement designs with constant data streaming. 

Figure 6.4 i l lustrates the idea of interfacing software and hardware . 

6.5 HARDWARE MODEL 

A hardware model is developed to reproduce the results of K-means clustering 

algorthim on the FPGA system.  Figure 6.5 is a 41 -stage pipelined 

implementation of the algorithm and the sub-units of the architecture are detailed 

in this section. 

write64() 
Host Software ... PILCHARD 

Code 
read64() � 

00 E 

· Pi lchard.bit f---+ Download.exe _. SYSTEM 

Figure 6.4: Interfacing Hardware and Software 
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6.5.1 MEMORY MODEL 

As described in chapter 4 ,  one of the major drawbacks of the pi lchard system is 

the unavailabil ity of on-board RAMs. This necessitates the use the block RAMs 

available within the FPGA unit. Three sets of dual port rams have been used. 

The first one [R1 ]  is used to store the enti re image, the second [R2] to hold the 

initial and intermediate cluster centers and the thi rd one [R3] for holding the final 

cluster centers . 

The control signals to R 1 , R2 and R3 are from a global state machine that 

set/reset registers globally. At the end of the convergence, a soft reset is 

t riggered to reset al l  global registers to the ' Idle' state . 

The 64 bit data is transferred to R1 and R2 on the positive edge of the clock. The 

bus l ine is organized in a way that 1 6  bits of a pixe l, 1 6  bits of initial cluster 

centers C1 , C2 and C3 are packed together and transferred to the block RAMs at 

the same time. As is stated earlier in chapter 5, only 1 3  bits were required to 

represent the data set obtained from Jet Propu lsion Laboratory. The remaining 

1 2  bits were used for any extra addressing needs. The control signals from the 

FSM help unpack the bits for further number crunching. 

The design is incorporated in such a way that the 64-bit bus l ine holds only a 

single element of the pixel ,  otherwise cal led 'feature vector' along with the class 
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center values of similar features. Thus, if 10 feature vectors represent a pixel, 

also called an observation, it would take 1 O clocks plus transfer overheads to 

load a single observation into the RAMs. The main advantage of packing and 

loading a pixel this way is that the number of features used to represent the data 

does not change or add additional circuitry. The downside though could be the 

use of extra RAM blocks required to store massive datasets. This one, along with 

unavailability of on-board rams limits the designer to handle data sizes with a 

certain limit. However, within the constraint, it certainly works to the advantage of 

the designer. The block level architecture of R1 and R2 is shown in Figure 6.6. 

Consider a pixel with three features. Assume the features X, Y and Z represent a 

spatial domain. Figure 6. 7 is a pixel located in a 3-dimensional space. 

Let the pixels be represented as Pxi, Pyi, Pzi and the class centers be Cx
j, Cy

j, C); 

where i E N and 0<j<3. The first pixel is loaded into the RAM in 3 clock cycles and 

the next one takes three more clock cycles to load up. The process is continued 

until the block rams are filled up or till all the pixels get loaded if the size of the 

dataset is smaller than size of the block RAMs. 

The current design is scalab_le for number of features from 1 to 16 and the 

memory model remains the same. This eliminates any additional circuitry, 

hardware costs and other engineering costs. 
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" " " " " 
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Control 
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64-bit data 

,ll D .____ __ 

Address 13-bit Cl 13-bit C2 13-bit C3 3bit Pix 

clka 

clkb 
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enb 

wea 

addra [ 7 : 0 J  

addrb [ 7 : 0 J 

dina ( 63 : 0 J  

dinb [ 63 : 0 J 

clka 

clkb 

ena 

enb 

wea 

addra [ 7 : 0 ] 

addrb [ 7 : 0 J 

dina [ 63 : 0 J 

dinb [ 63 : 0 ]  

Rl 

douta [ 63 : 0 J  

doutb [ 63 : 0 J  

douta [ 63 : 0 ]  

doutb [ 63 : 0 ] 

R2 

Figure 6.6 : Dual Port Memory Receive Data Layout 
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Figure 6.7: Spatial Representation of a Pixel with Three Features 

Figure 6.8 i l lustrates the architecture of R3 dual port RAM.  It mainly serves two 

pu rposes . 

1 .  Transferring cluster centers and state outputs back to the host 

2. Hardware debugging. 

This is qu ite similar to looking at the simu lation waveform for functionality 

verification , but is even better, since it outputs the resultant numbers in a real 

world environment that can then be verified. 

The use of 27 pin outputs to spectrum analyzer is another available technique to 

do hardware debugging. The use of R3 just avoids usage of additional/external 

hardware resources. 

65 



Local 

State 

Machine 
R3 

Hardware_Debug_ln 

Read/W rite API 

Hardware_Debug_Out 

Figure 6.8: Dual Port Memory Transfer Data Layout 

The sta te machine desc ribed in sec tion 6 .5 .3 controls the start and stop of the 

processing cycle. A lso, the state machine controls the way the RAM read s out 

and feeds into the core. Some of the controls signals emanating from the sta te 

machine are d isc ussed in this sec tion to show how exac tly the memory mod el 

works in this design. The illustration of the id ea is aided with pictures, pre-layout 

and post layout simulation mod els. 

The RAM keeps accumulating the data until it fills up completely and when it 

reac hes the last add ressable line, the FSM sets a start register to signal high 

enabling the start of the core engine. Another register keeps track of the address 

count as the add ress start to move up. 
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The start signal is held high until the core completes all the iteration and spits out 

results back to the block rams. 

The dual port RAMs are basically used to isolate the system speed with the 

design speed. The memory models have been tested for functionality and back 

annotated for post layout analysis. 

6.5.2 CORE ENGINE 

There are three pieces that basically integrate into a core engine. They are 

1. Distance Determination 

2. Pixel Classification/Re-Classification 

3. Division and Cluster Centers Determination 

These three pieces are at the heart of the implementation and are major 

components in the solving of this tediously iterative problem. The implementation 

as mentioned earlier is based on a heuristic approach and is not necessarily an 

optimal solution. 

Each of the blocks _ is described in the following sections with corresponding RTL 
models. 

6.5.2.1 DISTANCE DETERMINATION 

This unit basically com·putes the distance between the pixel and the class's 

cluster center. Manhattan distance metric is used to find the closest distance. 
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The schematic for the distance determination data path is shown in Figure 6.9. 

The sub_abs RTL block takes each feature of the pixel and evaluates the 

Manhattan distance for each corresponding feature of the class centers. The 

Manhattan distances of all features then add up to determine the. distance of the 

current pixel . The features feed into the processing engines serially that has 

been maximally pipelined. Amdahl's law limits the benefit of more pipeline 

stages. 

The state machine control signals keep track of the number of featu res to add up 

and reset the accumulator to zero for the next set of pixel featu res to be 

processed . The equation represents the logic implemented 

Manhattan D istance: [P 1 , C 1
] = f P; - c! l + IP: � c� j + jPz

1 - c! I  

Manhattan Distance: [P1 , C2 l= IP; - c; l + IP: - c: l + IPz

1 - c: j  

Manhattan Distance: [P 1 , C3 ] = 1P; - c; j + IP: - c! l + IP2

1 - c: j  

The accumu lator is reset to zero after 3 clock cycles. The control circuit controls · 

the number of feature vectors that goes into the accumulator. This is important 

because the pixels are sent in serial ly to the processing engine and a counter 

keeps track of start and end of a pixel and sets/resets the accumulator 

accordingly. 
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ABS1 ABS2 ABS3 
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Figure 6.9: Manhattan Distance Computation 
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6.5.2.2 PIXEL CLASSIFICATION/RE-CLASSIFICATION 

This piece of the design is a bit tricky and a picture is drawn to comprehend the 

design. Figure 6. 1 O shows the pseudo-RTL model for the pixel classification unit. 

To begin with, the Manhattan distance computed for each pixel to all the three 

class centers is compared against each other to determine the least distance. 

The classify logic determines which class the pixel belongs to. Since the pixel is 

already available for the add/shift logic to use, a look-ahead addition is performed 

for all the classes and presets back to the previous values if they don't belong to 

the class. The classify logic makes the decision whether to step back or not. 

The number of pipeline stages change as the feature size is incremented. This is 

because the shift register keeps track of the feature value for a pixel set and 

resets the pre-calculated values to the previous state after all the features /pixel 

have been processed. This requires a shift pipeline to hold all and only the 

number of feature values per pixel. The VHDL for this is also parameterized. In 

chapter 7, a way to build a dynamical ly parameterized pipel ine is detai led. 

The look-ahead addition is similar to the carry look-ahead adder, the difference 

being that while the latter operates on bits and carries overflow bits to the 

adjacent bits, the look-ahead adder just operates on real numbers. 
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Figure 6.1 0:  Pixel Classification Pseudo-RTL Model 
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6.5.2 .3 FINAL CLUSTER CENTERS DETERMINATION 

Three division operators have been implemented within the FPG A. The division 

operators are blocks generated from the Xilinx' s core generator utility. A 32 bit 

pipelined divider model takes 36 clock cycles to fetch the division results. W ith 

the dividers inside the FPG A, it remains idle for a certain number of clock cycles 

before it starts to determine the updated centers for the cluster classes. 

However, it is found that the latency cycles are far fewer than having the dividers 

do their function on the host processor. 

_ At the end of the division, a div_complete is sent out to the state machine to 

transition it to the next state. The values are then updated to the R2 dual port 

RAM for the next iteration to begin. The process continues until the centers 

converge. 

6.5.3 FINITE STATE MACHINE 

FSM is basically a machine with a fixed number of i nternal options or 

possibilities. These could be as few as 2 or any number of separate possibilities, 

each determined by some combination of input parameters. 

The finite state machine is implemented as a Moore machine as shown in F igure 

6.11. I t  sends out global control signals controlling the data path of the design. In 

other words, the state machine controls both the core engine and the memory 

modules of the design. 
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start_en='0' 

IDLE 
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div_complete='0' 
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UPDATE 
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DECIDE 

j > 1 024 

DONE 

Figure 6.1 1 :  One Hot Encoded State Machine 
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The salient features of the state machine are listed below 

1. One-hot encoded. 

2. State variables are registered. 

3. Control is global and resets all the registers globally after reaching the 

DONE state. 

The VHDL entity of the state machine is shown in Figure 6.12 

The control starts with an IDLE state and stays in the same state till the 'start 

enable' signal goes high. The start signa1 is basically a signal off another local 

state machine that controls writing, reading and addressing of the dual port 

RAMs. In other words, when the RAMs are ready to feed data into the core, it 

sends out a start enable signal. When the IDLE state detects this signal it jumps 

to the NORMAL state enabling the core to do its intended function. 

The state is not transitioned until the entire set of the data is processed and 

pixels re-classified. At this point, the state machine detects the 'division complete' 

signal and moves to the DECIDE state. The purpose of the DECIDE state is to 

check for a condition such as the number of iterations before the core halts 

processing. For example, if the number were chosen as 50, a counter state 

variable checks for 50 counts before changing the state to the DONE state. Until 

this condition reaches, the states· loop around first to UPDATE state where it 

updates the reclassified values, then to the NORMAL state and back to DEGIDE 

state. 

74 



e:m;.ity contro lle r is 

p ort ( 

e lk :  

r eset: 

start en: 

div _complet e: 

p ix_en : 

s oft_reset: 

finish: 

state out : 

start_ update: 

end Con;. rol ler 

in std_logi c; 

in std_logi c; 

in std_logi c; 

in std_logi.c; 

out st d_logic ; 

out std_ logic ; 

out std_ logic ; 

out std_logic_vec:tor ( 4  doi:mtoO ) ; 

out std_logic ) ;  

Figure 6.1 2: FSM Entity Declaration 

6.6 HOST INTERFACE 

As is stated in chapter 4, the pilchard has a very simple and efficient host 

interface. The read and write cycles are 64-bit bus transfers each . The downside 

is the unavailabil ity of handshake protocols. 

First, the code begins with a memory map of the hardware in the host machine.  

Second , the data to be processed is read into a matrix of p X q, where p is the 

number of the rows indicating an observation and q is the number of columns of 

featu res per observation . Third ,  the data is sent out to the pi lchard using the 

write64() API in several cycles until the enti re dataset is down l inked to the 

hardware. The s ize of the dataset cannot exceed the size of all the blocks RAMs 

avai lable in the FPGA. It is worthwhi le to reiterate at this point one of the 
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disadvantages of the Pilchard system, unavailability of on-board RAMs. Th e on­

board RAMs as in W ild force system allows O MA transfers of th e data to it or 

allows it to map directly to the external hardware with minimal bus cycles. 

Logically, th is effect tends to get prominent wh en handling larger data sets. 

Fourth , wh en th e core finish es processing the entire data set, a soft reset is set 

h igh , all th e registers are reset to zero and read64() API reads out th e final 

cluster centers stored in th e dual port RAM. 

6.7 DESIGN SCRIPTS 

Scr ipting is programming tech nique mainly used to automate repetitive tasks. 

Scripting has been widely used in hardware design circles wh ere th e flow of 

taking a specification down to bit patterns hasn' t  changed dramatically ·over more 

than a decade. Some of the scripts used in th is design are discussed in detail in 

th is section. 

6.7.1 SIMULATION AND DESIGN VERIFICATION 

Modelsim simulator is used to develop simulation models before and after layout. 

Th is simulator has been widely used in the digital and mixed design community 

to verify th eir designs for functionality and timing. Th e VHDL is first parsed, 

ch ecked for syntax and semantics and th en compiled using a Modelsim program 

'vcom' . Th e compiled. code is simulated for over a ch osen time interval using 

'vsim' . 
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The University of Tennessee has the latest version of the Xi l inx Al l iance tools but 

the Xil inx4. 1 i series pack has been used instead of the newer Xi l inx5. 1 i .  The 

reason for this is that the current Pi lchard development board has bui lt in 

packages that uses the former version and it has been found empirically that the 

primitives in the Xil inx5 . 1  i series has compatibil ity issues. 

Three important steps encoded into 3 scripts are required to verify the design for 

functional ity and timing. Figure 6. 1 3  shows the initial step to compile the Coregen 

memory blocks into a l ibrary, Figure 6. 1 4  shows the next step of compil ing the 

core and running it through the test bench and final ly Figure 6 . 1 5  shows the 

script for timing simulation . 

vmap Xil inxCoreLib XilinxCoreLib 

vcom -work XilinxCoreLib /sw/Xilinx4 . l i/vhdl/src/XilinxCoreLib/ul_utils. vhd 

vcom -work XilinxCore Lib 

/sw/Xi linx4 . l i/vhdl/src/XilinxCoreLib/m.ea_init_file__pac:k_v3_1.vhd 

vcom -work XilinxCoreLib 

/sw/Xilinx4 . li/vhdl/src/XilinxCoreLib/blkmemdp__pkg_v3_1 .vhd 

vcoa -work Xi linxC ore Lib 

/sw/Xilinx4 . li/vhdl/src/XilinxCoreLib/blkmemdp_v3_l_c amp.vhd 

vcoa -work XilinxCoreLib /sw/Xilinx4. li/'Vhdl/src/XilinxCoreLib/blkmemdp_v3_1. 'Vhd  

vcom -work work ram64b_s64_s64 .vhd 

Figure 6.1 3: Script to Compile Memory Primitives into Xil inxCorelib 
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vma.p dwa.re /hame/chandra/HodelSim./synopsys/dxJare 

vma.p dmll /hame/chandra/HodelSim./synopsys/dxJOl 

vma.p dml2 /hame/chandra/HodelSim./synopsys/dxJ02 

vcom -l.JOrk l.JOrk . /DllJOl_sub_inst. vhd 

vcom -l.JOrk l.JOrk . /DllJO 1 _ absval _inst. vhd 

vcom -l.JOrk l.JOrk • /DllJO l _ cnp2 _inst . vhd 

vcom -l.JO rk work . /DllJOl_add_inst. vhd 

vcom -l.JOrk l.JOrk . /cmp2. vhd 

vcom -l.JO rk l.JOrk . I sub _abs . vhd 

vcom -l.JO rk l.JOrk . /subtract_verl.vhd 

vcom -l.JO rk l.JOrk . I shi ftN. vhdl 

vcom -l.JOrk l.JOrk . /ccxm.pare_ver2 .vh.d 

vcom -l.JO rk l.JOrk . /controller .vhd 

vcom. -l.JO rk l.JOrk . /pcore .vhd 

Figure 6.1 4: Script to Compile the Core 

vmap sim.prim. smprim. 

vcom. -l.JO rk simprim. -explicit 

/sw/Xilinx4 . l i/vhdl/s rc/simprim.s/ simprim._Vpa.ckage . vhd  

vcom. - l.JO  rk simpr i.m -e xplicit 

/StJ/Xilinx4 . l i/vhdl/s rc/s imprim.s/simpr im._VI TAL.vhd 

vcom. -l.JO rk simpr:i:ln -expli cit 

/sw/Xi linx4 . l i/vhdl/s rc/simp rim.s/ simpr im._Vc am.panents. vhd 

vcom. -work l.JOrk time_si1. vhd 

vcom -work l.JOrk pcore_s cm.p_tb. vhd 

vsim. -sd ftyp U4_ PC ORR=t me _s im.. sdf pcore _scmp _ tb 

Figure 6.1 5: Script to Verify Back-Annotated Results 
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The script shown in Figure 6.1 5 sets up and maps library components to the 

current working directory. Also, the last line in the script does a timing simulation 

of the design. 

6.7.2 SYNTHESIS AND RTL GENERATION 

Two tools have been employed to verify the correctness and quality of the 

design. Synplicity was primarily used to view gate-level RTL schematics and 

optimize unused or unrelated logic. Synopsys's FPGA Compiler is the other tool 

used to verify and synthesis the design into a gate-level netlist. The netlist is in 

the EDIF [Electronic Data Interchange Format] that the Xilinx's Place and Route 

tool uses to lay the design out. 

6.7.2.1 SYNTHESIS FLOW 

The synthesis script in Figure 6.1 6 is probably the most important script in the 

design and the brief explanation of the script is done in this section. Lines 1 

through 7 define variables. The device present in the Pilchard system is targeted 

with a speed grade of 6. A directory export_dir is created to hold design 

information that needs to be exported for use with the other following programs. 

Lines 8 through 9 remove old versions of the project and then create a new one. 

Lines 1 O through 1 2  opens the existing project and sets up project variables. 

Lines 1 3  through 26 identify the design source files and analyze each of them in 

hierarchical order. Lines 27 through 29 set up don't touch attribute to already 

optimized blocks. This saves some considerable CPU time and keeps the best-
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optimized design untouched . Line 30 is a very important step in the synthesis 

process. The options specified with the create_chip command line decide 

performance resu lts to a very great extent. For example, '-el iminate' option 

synthesizes the design by the way of flattening it. This leads to a very optimal 

design in terms of timing but the downside being large design cycle time. 

Essential ly this creates a chip targeted for $TARGET with the default part and 

speed grade. The chip is named $chip and $top ind icates the top-level design. 

The remaining l ines in the script basically optimizes, shows error and warning 

messages, writes out PPR netl ist and constraints to the export directory and 

reports timing resu lts . Figure 6. 1 6  shows the details of the synthesis process. 

6.7.2.2 OPTIMIZATION METHODS 

Few optimization methods at d ifferent levels are employed. At the architectural 

level ,  the design is maximally optimized by the use of 

1 .  41 -stage pipelined model 

2. One hot encoded state machine 

3. Carry look-ahead logic for adds and subtracts. 

4. Re-use of DesignWare and Coregen models for efficient design etc. 

5 .  Clock Gating 

At the synthesis level ,  few optimization methods such as register retiming, 

synthesis of flattened design were used . In  addition to this speed level of 6 is set 

and the design is over constrained to run at 1 50 MHz for better synthesis results . · 

80 



set proj pilchard_proj 

set top pilchard 

set target VI RTHXB 

set devi ce Vl OOO EHQ240 

set spee d  - 6  

set chip pilchard 

set export_dir . 

exe c  ra -r f $proj 

cre at.e_proj ect -dir _ $proj 

open_p roject $proj 

pro j_ e xp ort_ t iming_ constraint 

def ault_clock_frequency = 15 0 

"yes " 

add fi le -l ibrary WORK -form.at. VHDL vhdl /DtiJOl_add_inst . vhd 

add_file -library WORK -form.at. VHDL vhdl/DtiJOl_absval_inst. vhd 

add file -library WORK -form.at. VHDL vhdl /DtiJOl_sub_inst. vhd 

add_fi le 

add file 

add_file 

add fi le 

add file 

-l ibrary WORK 

-l ibrary WORK 

-1 ibrary WORK 

-library WORK 

-library WORK 

-form.at. 

-form.at. 

-form.at. 

-form.at. 

- form.at. 

VHDL vhdl /DtiJOl _ cm.p2 _inst . vhd 

VHDL vhdl /sub_abs .vhd 

VHDL vhdl/subt ract_ver_l . vhd 

VHDL vhdl /shi ftN. vhdl 

VHDL vhdl /cm.p2 .vhd 

add_fi le -library WORK -form.at. VHDL vhdl /co� are_ver2 .vhd 

add fi le -library WORK -form.at. BD IF vhdl /ram64b_s6 4_s 64 . edn 

add_file -library WORK -form.at. BDIF vhdl /ram64b_s2 56_s256. edn 

add_file -library WORK -form.at. BDIF vhdl/div3 2 � e dn  

add_fi le -library WO RK  -form.at. VHD L  vhdl /controller.vhd 

add fi le -l ibrary WORK -form.at. VHDL vhdl/pc ore .  vhd 

add_file -library WORK -form.at. VHDL vhdl/pilchard. vhd 

analyze_file -pr ogress 

c reat.e_ chip -eli:minst. e -target $tar get -device $ devic e -spee d $ speed -mo dul e  --nam.e 

$ chip $t op 

current_chip $chip 

s et_ chip_ retiming -enable 

set opt_c:hip [ fo rm.at. "\ s-Opt:imized" $chip] 

optimize_chip -nam.e $ opt_c:hip 

1 ist _ m.es sage 

report_ timing 

$ export_ dir 

e xp ort_ chip - dir $ export_ dir -no_ timing_ constraint 

c lo se_pr oje ct  

quit 

Figure 6.16: Synthesis Script with Optimization Parameters 
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6.7.3 PLACE AND ROUTE 

A place and route program for Xil inx4.2i has been used to place and route the 

entire design. During the initial stages of development, a set of easy constraints 

was imposed on the par software just to be able to do a qu ick verification. The 

final stages of the design were set to tighter constraints and higher effort level to 

route the design. Additional optimization techniques such as pipelining, register 

retiming was done for better performance resu lts. Figure 6 . 1 7 shows the script 

involved in  the bit pattern generation. 

A brief explanation of the script in Figu re 6 .1 7 is given below. More information 

about each util ity can be found in the Xil inx User Guide [1 2] .  

Line1 performs an ngdbui ld on the input netlist. NG DBui ld performs the fol lowing · 

steps to convert a netlist to an NGD file. 

# ! /bin/c:sh -f 

ngdbuild -sd . -sd edif -uc: uc: f/pilc:hard.uc: f -p XU'l0O0BHQ240-6 pilc:har d. edf 

p ilcha.rd.ngd 

m.ap -p XV1000BHQ 24 0-6 -c:m speed -o map .nc:d pi lc:har d.ngd pi lc:hard. pc:f 

par --,-.y - ol S -d S map .nc:d pi lc:hard. ncd pilchard. pc: f 

trc: e  pilc:hard.ncd pil c:har�.pc:f -v 1 0  -o pilc:hard. twr 

bit gen -w -1 pilc:hard .nc:d pi lc:har d. bit pilchard. pc: f 

fpga_ editor p ilchard. ncd &. 

Figure 6.1 7: Place and Route Script with Highest Effort Levels 
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1 .  Reads the source EDIF netlist. 

2. Reduces all components in the design to NGO primitives 
3. Checks the design by running a Logical Design Rule Check (DRC) on the 

converted design. 

4. Writes an NGO file output. 

The output NGD file can be mapped to the desired device family. 

Line 2 runs a map program. MAP performs the following steps when mapping a 

design. 

1 .  Selects the target Xilinx device, package, and speed. If the part is not 

specified, MAP issues an error message and stops. If the speed is not 

specified, MAP supplies a default speed though. 

2. Reads the information in the input design file. 

3. Performs a Logical DRC (Design Rule Check) on the input design. If any 

DRC errors are detected, the MAP run is aborted. If any warnings are 

detected, it continues to run though. 

4. Removes unused logic. All unused components and nets are removed, 

unless the following Xilinx S (Save) constraint has been placed on the net 

or the -u option is used on the command line. 

5. Maps pads and their associated logic into IOBs. 

6. Maps the logic into Xilinx components ( IOBs, CLBs, etc). 

7. Update the information received from the input NGD file and write this 

updated information into an NGM file. 

8. Creates a physical constraints (PCF) file. 
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9.  Run a physical DRC on the mapped design. If successful writes a NCD file 

and a MAP report (MRP) fi le. 

Line 3 invokes the placement and router tool . Figure 6. 1 8  is a pictu re of the 

routed design generated by the PAR tool .  It routes the design depending on cost­

based or timed driven. Efforts level of 5 is set of the placer and the route that 

basical ly directs the router to search for a bigger search space for finding the 

optimum placement points . However, a gu ided PAR is a better technique for a 

better solution . 

Line 4 of the script, TRACE (Timing Reporter and Circuit Evaluator) provides 

static timing analysis of a design based on input timing constraints . The TWR fi le 

is the timing report fi le with a . twr extension. 

Line 5, BitGen produces a bitstream for Xil inx device configuration . After the 

design has been completely routed ,  it is necessary to configure the device so 

that it can execute the desired function. This is done using fi les generated by 

BitGen, the Xil inx bitstream generation program . It takes a ful ly routed NCD file 

as its input and produces a configuration bit pattern - a binary file with a .bit 

extension.  
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Figure 6.18: Layout of the K-means Core including Division Operators 
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6.8 RESULTS 

This section discusses the results obtained and the conclusions that are drawn 

from the obtained resu lts under certain specific constraints . A concluding speed 

up of hardware over software has been demonstrated for this appl ication . A 1 1 7-_ 

point pre-processed hyper-spectral dataset from the Jet Propulsion Laboratory 

Library has also been analyzed to re inforce the judgment. 

6.8. 1 FLOATING POINT KMEANS 

Different floating-point variations of k-means are tested in software. The code 

was then ported to fixed point C to analyze any performance benefits as is stated 

earl ier in chapter 5. In itially, floating point with two different measures, Euclidean 

and Manhattan are analyzed followed by fixed-point K-means analysis using the 

design flow methodology described in chapter 5 .  

6.8.1 .1 MATLAB AND C 

Basically floating point Matlab is used to test the accuracy of the classifier and 

floating point C is used to compare run times of hardware vs . software . The 

golden Matlab code is ported to floating point C using Euclidean measure and 

none of the points misclassified for both synthetic datasets and hyper-spectral 

dataset from JPL l ibrary. The floating point is then taken as the reference to 

check the validity of the floating point C code with Manhattan distance measu re.  

For a l l  the synthetic as wel l  as real dataset tested , the class ifier d id not 

misclassify but there was defin ite accu racy loss in the displaced cluster centers . 
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While there has been no misclassification for the lim ited datasets tested , it does 

not, however, infer that the use of Manhattan distance does not misclassify. The 

Manhattan C is then transformed to fixed point C for further optimization. 

6.8 .1 .2 CLASS CORRESPONDENCE 

Different runs on K-means on the same dataset for example produces different 

order of classes depending on the initialization of the random vector. For 

instance, consider a 1 1 7-pt data set supposed to be classified in 3 classes, 

minerals , salts and manmade materials. For one run ,  the classifier does a 

classification of 9 points in class 1 ,  77 points in class 2 ,  3 1  points in class 3 .  On a 

different run ,  it might produce 9 point in class 2, 77 points in class 3, and 31 

points in class 1 .  Hence, we can map class 1 of first run to class 2 of second run, 

class 2 of first run to class 3 of second run and so on. Therefore, the classes' 

minerals, sa lts and manmade materials can correspond to any of class1 , class2 

or class3. A class correspondence algorithm is developed to identify such a 

mapping proced ure. 

Table 6. 1 shows the matlab runs for the pre-processed real data set before and 

after normalization . All the 1 6  features extracted have been used at this time. 

The accuracy l isted in Table 6. 1 is the accuracy of the classifier developed in 

software with respect to the ground truth . The error percentage ripples down as 

the design tries to optim ize the speed from the floating-point software run to 

hardware implementation. 
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Table 6.1 : Clusters Classification of 1 1 7pt Hyper Spectral data 

Matlab Runs 
Points i n  Points i n  Points i n  

Accuracy 
Class 1 Class 2 Class 3 

Before 
9 77 31 43.589% 

Normalization 
After 

18 68 31 35.897% 
Normalization 

6.8.2 HARDWARE RUNS 

A number of bit stream configurations were downloaded to the pi lchard and 

tested for the validity of K-means. Methodical hardware debugging with the aid of 

R3 RAM is done to get the clustering algorithm working on the pilchard for a tiny 

dataset. Then, datasets with d ifferent numbers of observations were used to test 

the functionality and see if it consistently matched the results of the software. The 

hardware run times with and without the I/Os are observed. Table 6.2 shows the 

run time measurements of K-means clustering on different platforms. In addition 

to this, power measurements for 50% activity rate have been recorded. 

6.8.2. 1  POLLING FOR TIMING M EASUREMENTS 

The host interface is very simple and easy to use but lacks sophisticated APls 

that are available in hardware platforms l ike the Wildforce. Also, absence of 

handshake protocols necessitates the development of some pol l ing techniques to 

constantly check the hardware status through one of the available registers. 

Figure 6.19 is a poll ing algorithm for measuring run time on hardware. 
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MEM P+255*8 

STOP TIMER 

Figure 6.1 9: Flowchart for Recording Run Time Measurements 
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Table 6.2 Run Times of K-means Clustering A. Matlab 

Number Matlab on Matlab on 
of Points Pentium I l l  Sun Blade 

6 4.671 4 ms · 8.220 ms 
1 0  7.68 1 6 ms 1 9 .46 ms 
25 1 8 .330 ms 44.39 ms 
50 38.000 ms 90.02 ms 
1 1 7 349.70 ms 423.4 ms 
234 692.00 ms . 834.6 ms 
468 1 0 1 6.4 ms 1 659 .5 ms 
936 1 597.3 ms 3336.7 ms 

B. Floating Point/Fixed Point C Run Times of K-means Clustering 

Number Floating-C Fixed-C 
of Points Manhattan Manhattan 

6 201 us 3229 us 
1 0  383 us 4894 us 
25 826 us 6999 us 
50 1 626 us 1 1 537 us 
1 1 7 3926 us 49507 us 
234 6932 us 93669 us 
468 1 7503 us 1 822 1 4  us 
936 3551 0 us 358833 us 

C. Pi lchard Run Times of K-means Clustering 

Number Hardware Hardware 
of Points without 1/0 with 1/0 

6 2 .040 us 34.04 us 
1 0  5.040 us 45.04 us 
25 8.630 us 78.63 us 
50 1 4 .62 us 1 34.62 us 
1 1 7 1 5 .39 us 269.39 us 
234 30 .00 us 5 1 8.00 us 
468 61 .48 us 1 0 1 7 .48 us 
936 6 1 .55 us 1 953.55 us 
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For measuring execution time of the core, the timer starts after the write64() API 

and then reads the 255th address location constantly and keeps looping until the 

state of the hardware goes to DONE. Once the DONE state is reached the 

software quits out of the loop and records the end time. The difference of the 

start and end time provides the runtime of the core. 

Table 6.3 characterizes the K-means Algorithm on the Pilchard Prototype board. 

The gate count and the power estimates recorded seem to be consistent for all 

the test vectors. 

6.9 DISCUSSION 

The implementation looked at three basic elements, viz core, memory and 1/0. 

The Pilchard system has inadequate memory capabilities that require transferring 

data into the RAMs within the FPGA. A considerable amount of write cycles have 

to be spent in transferring data to the hardware units with the FPGA framework. 

Table 6.3 Area and Power Estimates of K-means clustering On Pilchard 

Number of Points Area [Gate Count] Power Estimate [mW] 
6 430,471 1395.60 

10 430 ,294 1398.12 
25 430,459 1438.00 
50 430 ,465 1435.00 

117 430,417 1439.00 
234 430,435 1435.00 
468 430,435 1440.00 
936 430,435 1440.00 
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However, in the software implementation, the data is already mapped to the main 

memory or even cache memory. Therefore, it is actually fair to compare the two 

software versions for core-to-core run times. In the case of other similar 

hardware assist platforms available at University Of Tennessee, the availability of 

on board RAMs facilitates OMA mapping of the local memories to the main 

memory of the host computer. The OMA mapping significantly reduce the 1/0 

overheads. It has been thus identified that 1/0 still remains to be a bottleneck of 

the Pilchard system. However, for the purpose of understanding of the system, 

run time measurements including the reads and writes is recorded and analyzed. 

Figure 6.20 shows the speed up numbers for different experimental observations 

excluding the 1/0 overheads. Figure 6.21 also shows the speed up figures but 

including the 1/0. As can be seen, without the 1/0, the speed up over a 

conventional software version explodes to a maximum of 25,000. 

However, the speedup factor with respect to f loating point and fixed point C 

versions are drastically different. The hardware beats the fixed point C by a factor 

of 3216 without the 1/0 included and 183 with the 1/0 overheads included. But the 

floating point C seems to be faster than fixed point C version of the k-means 

clustering algorithm. This is a quite intuitive because the Pentiums on the Linux 

boxes have dedicated floating-point silicon to run floating-point operations and 

hence faster. The hardware beats the floating point C by a factor of 255 without 

the 1/0 included and 14 with the 1/0 overheads included. 
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Speedup of Matlab over Hardware excluding VO 
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Figure 6.20: Speedup (1 ) 
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Figure 6.21 : Speedup (2) 
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Figure 6.22: Trade-Offs in Model i ng time vs. Runtime 

The speedup of hardware implementation over the software version scales down 

drastically to a maxim um of 1300 includ ing the tim es to reads and writes. 

However, the speed is still fairly impressive but could be im proved overall with 

efficient 1/0 and on board memories. F igure 6 .22 shows the trade-off in 

development tim e vs. run tim e for different coding m odels. 

Another interesting observation comes from the Table 6.4 . A gate count with a 

consistent average of 430 ,000 out of a m illion gate chips is about 43%. It has 

been com puted empirically that out of the 43%, the three dividers take up 34% of 

the area. Thus, the core logic occupies about 9% of the chip area. Conceivably, 

the core can be replicated about 6 times before the chip runs out of floor area. 

That means 6 times more speedup than the current reported speedup numbers. 
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However, the problems of speeds and feeds discussed in chapter 4 occur. This 

again could be improved if we had better memory and 1/0 capabilities. 

One of the most important features of the implementation is the compilation of a 

parameterized VHDL. The implementation has been parameterized for two items. 

1 .  Number of features 

2. Number of Observations 

However, there are limitations in the present work that can be eliminated quite 

easily as suggested in the chapter 7. 

The generic items have been set to limit the number of features to 1 6  and the 

number of observations to 21 5
. The number of features is parameterized and can 

be set to any desirable number less than or equal to 1 6. Similarly the number of 

observations is parameterized as well. For the case of 1 6  features and 21 5  

observations, only 18% of the blockRAMs have been utilized. Hence, we expect 

the design to support up to 217  observations. 

6.10 PILCHARD CHALLENGES 

The formulation of the problem started with the availability of the Pilchard system 

and a curiosity to implement conventional clustering algorithms for the purpose of 

rapid prototyping. First the algorithm and details were studied, followed by 

literature survey of related research. Tons of researchers had been identified to 

have done or doing similar research. An attempt to isolate points that haven't 

been addressed was done. A methodology was laid out before starting to 
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experiment with the hardware assist. The Pilchard system posed numerous 

design challenges and the process of identifying loopholes and fixing them 

serves a rewarding experience. Simple designs were composed and made to 

work on the pilchard system. Designs like an adder or an accumulator 

sandwiched between two dual-port RAMs were first implemented successfully. 

This example served as a tutorial to other research students in the group using 

the same system. 

Along the way, several better ways to implement logic was also identified and 

described below. These could be applied particularly to the Pilchard system as 

some of the hardware designs and optimization methods do work fairly well with 

some platforms but do not work at all with others. The reason for this is because 

different platforms might use different technologies, different synthesis programs 

within the FPGA framework. For example, two synthesis tools treat the same 

piece of code in a different way and synthesize it to the gate level in an entirely 

different way. 

6.1 1 CHAPTER SUMMARY 

This chapter described the implementation details, followed by the analysis of the 

results obtained. A discussion involving analysis and interpolation of the results 

for better hardware platforms has been included. The next chapter presents 

conclusions and offers future directions for the present work. 
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7. CONCLUSION AND FUTURE WORK 

The previous chapter described the details of the design and the results were 

presented. The objectives of the design were realized and the results shown are 

quite promising within the constraints specified. This chapter outlines the 

conclusion of the thesis and provides future directions of the research work. 

7.1 OBJECTIVES ACHIEVED 

Three important conclusions can be drawn from the results of the thesis work. 

1. Acceleration approaches of k-means clustering on hardware seem to be very 

promising. An average speed-up of 1 OK for a core-core comparison (without 1/0) 

and an average of 500 over Matlab with the 1/0 overheads included have been 

achieved with the current implementation. 

2. System is 1 /0 and memory limited. With some improvements to the 

architecture of the hardware assist, significant speed-up results can be achieved. 

This also necessitates more banks of memory or even on-board RAMs. 

3. The implementation is highly scalable with minor changes to the control logic 

of the design. Also, multiple copies of the hardware resources need to be used 

until the chip floor runs out of logic gates/blocks. 

4. Parallel kernels have been exploited to run concurrently on the hardware for -

significant speedup factors and therefore image processing algorithms such as k­

means clustering are a good fit for hardware platforms and hardware 

accelerators. 
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7.2 FUTURE DIRECTIONS 

There are enormous potential developments that can be done to take the current 

implementation to the higher levels. Some of these are pointed out as below. 

1 . As the chips sizes get denser and bigger in terms of logic gates, more stuff 

can be thrown into the FPGAs to build a comprehensive image-processing 

model. For example, raw data 7 filter 7 compressor (Principle Component 

Analysis) 7 classifier (K-means clustering) 7 processed data can all be burned 

in a single FPGA and deployed near the sensor. This way down linking and other 

transf_er overheads could almost be eliminated. This saves a lot of latency cycles 

and therefore a faster processing method. 

2. The division operations within the FPGA that consume large amounts of clock 

cycles per iteration can be replaced by shifts and subtracts and one final divider. 

The final divider could be implemented within the hardware or can be made 

available on the host. 

3. The chip floor takes up about 34% of the floor area with 3 dividers that could 

be replaced by a single divider by appropriate schedul ing and pipelin ing. 

4. The parameterized implementation can also be made scalable across classes. 

Section 7.2. 1 describes the steps required to implement a fully scalable design. 

5. Massive parallelism at the course grain level can be exploited by HPRC 

development of the algorithm where N general-purpose processors are each 

attached to the respective RC nodes. The latency issues could be a bottleneck 

and appropriate research could identify the strength or weakness of such 

implementations. 
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7.2.1 SCALABILITY ANALYSIS 

The following are the steps required to tweak the current design to make it fully 

scalable across classes. First, the three dividers need to be replaced with a 

single divider to create room for copies of hardware blocks for additional classes. 

The number of classes up to which scalability can be done depends on the size 

of the chip part and would need to be found out empirically. Figure 7.1 shows the 

block diagram of the scalable implementation. Proper scheduling can be done to 

pipeline the single division unit by appropriate latency delays per class. 

The three dividers in the current implementation utilizes about 34% of the floor 

area, which is roughly about 10% for each divider. Three copies can be replaced 

by just one copy of the divider, which saves about 20% of the floor area. This 

gives some flexibility to include hardware copies for more classes in the scalable 

k-means architecture. 

Second, the control unit needs to be tweaked to add logic to pick only the 

required outputs depending on the number of classes specified for the data set. 

Third, the memory model needs to be changed to pack and unpack bits 

accordingly. Include all the 96 block RAMS available and let the additional control 

logic in the FSM pick the number of RAMS required for the design. This logic is 

similar to picking up only the required outputs for the number of classes. The R3 

model needs no changes and the current model could still be used to store 

intermediate values for the purpose of hardware debugging. 
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Additional logic circuitry should be added in the NORMAL state of the state 

machine to decide on the fly the number of hardware copies to use. Generate 

statements can be used to parameterize the total number of copies replicated 

within the FPGA and the number of classes, the number of features and the 

number of observations could be written to the register file and the control logic 

within the finite state machine would read the registers and draw outputs from the 

requ_ired hardware copies on the fly. This design will also require one time 

configuration of the hardware design provided the bit width representation for the 

given datasets remains the same. 

7.3 CHAPTER SUMMARY 

This chapter concludes the objective of the thesis and points out contributions 

and limitations of the current work. Future directions of the work have been 

stated, in addition to _laying out steps that needs to be done to scale this 

architecture for N classes, N>3. 
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