24,305 research outputs found

    Efficient similarity search in high-dimensional data spaces

    Get PDF
    Similarity search in high-dimensional data spaces is a popular paradigm for many modern database applications, such as content based image retrieval, time series analysis in financial and marketing databases, and data mining. Objects are represented as high-dimensional points or vectors based on their important features. Object similarity is then measured by the distance between feature vectors and similarity search is implemented via range queries or k-Nearest Neighbor (k-NN) queries. Implementing k-NN queries via a sequential scan of large tables of feature vectors is computationally expensive. Building multi-dimensional indexes on the feature vectors for k-NN search also tends to be unsatisfactory when the dimensionality is high. This is due to the poor index performance caused by the dimensionality curse. Dimensionality reduction using the Singular Value Decomposition method is the approach adopted in this study to deal with high-dimensional data. Noting that for many real-world datasets, data distribution tends to be heterogeneous, dimensionality reduction on the entire dataset may cause a significant loss of information. More efficient representation is sought by clustering the data into homogeneous subsets of points, and applying dimensionality reduction to each cluster respectively, i.e., utilizing local rather than global dimensionality reduction. The thesis deals with the improvement of the efficiency of query processing associated with local dimensionality reduction methods, such as the Clustering and Singular Value Decomposition (CSVD) and the Local Dimensionality Reduction (LDR) methods. Variations in the implementation of CSVD are considered and the two methods are compared from the viewpoint of the compression ratio, CPU time, and retrieval efficiency. An exact k-NN algorithm is presented for local dimensionality reduction methods by extending an existing multi-step k-NN search algorithm, which is designed for global dimensionality reduction. Experimental results show that the new method requires less CPU time than the approximate method proposed original for CSVD at a comparable level of accuracy. Optimal subspace dimensionality reduction has the intent of minimizing total query cost. The problem is complicated in that each cluster can retain a different number of dimensions. A hybrid method is presented, combining the best features of the CSVD and LDR methods, to find optimal subspace dimensionalities for clusters generated by local dimensionality reduction methods. The experiments show that the proposed method works well for both real-world datasets and synthetic datasets

    A Learned Index for Exact Similarity Search in Metric Spaces

    Full text link
    Indexing is an effective way to support efficient query processing in large databases. Recently the concept of learned index has been explored actively to replace or supplement traditional index structures with machine learning models to reduce storage and search costs. However, accurate and efficient similarity query processing in high-dimensional metric spaces remains to be an open challenge. In this paper, a novel indexing approach called LIMS is proposed to use data clustering and pivot-based data transformation techniques to build learned indexes for efficient similarity query processing in metric spaces. The underlying data is partitioned into clusters such that each cluster follows a relatively uniform data distribution. Data redistribution is achieved by utilizing a small number of pivots for each cluster. Similar data are mapped into compact regions and the mapped values are totally ordinal. Machine learning models are developed to approximate the position of each data record on the disk. Efficient algorithms are designed for processing range queries and nearest neighbor queries based on LIMS, and for index maintenance with dynamic updates. Extensive experiments on real-world and synthetic datasets demonstrate the superiority of LIMS compared with traditional indexes and state-of-the-art learned indexes.Comment: 14 pages, 14 figures, submitted to Transactions on Knowledge and Data Engineerin

    High-dimensional indexing methods utilizing clustering and dimensionality reduction

    Get PDF
    The emergence of novel database applications has resulted in the prevalence of a new paradigm for similarity search. These applications include multimedia databases, medical imaging databases, time series databases, DNA and protein sequence databases, and many others. Features of data objects are extracted and transformed into high-dimensional data points. Searching for objects becomes a search on points in the high-dimensional feature space. The dissimilarity between two objects is determined by the distance between two feature vectors. Similarity search is usually implemented as nearest neighbor search in feature vector spaces. The cost of processing k-nearest neighbor (k-NN) queries via a sequential scan increases as the number of objects and the number of features increase. A variety of multi-dimensional index structures have been proposed to improve the efficiency of k-NN query processing, which work well in low-dimensional space but lose their efficiency in high-dimensional space due to the curse of dimensionality. This inefficiency is dealt in this study by Clustering and Singular Value Decomposition - CSVD with indexing, Persistent Main Memory - PMM index, and Stepwise Dimensionality Increasing - SDI-tree index. CSVD is an approximate nearest neighbor search method. The performance of CSVD with indexing is studied and the approximation to the distance in original space is investigated. For a given Normalized Mean Square Error - NMSE, the higher the degree of clustering, the higher the recall. However, more clusters require more disk page accesses. Certain number of clusters can be obtained to achieve a higher recall while maintaining a relatively lower query processing cost. Clustering and Indexing using Persistent Main Memory - CIPMM framework is motivated by the following consideration: (a) a significant fraction of index pages are accessed randomly, incurring a high positioning time for each access; (b) disk transfer rate is improving 40% annually, while the improvement in positioning time is only 8%; (c) query processing incurs less CPU time for main memory resident than disk resident indices. CIPMM aims at reducing the elapsed time for query processing by utilizing sequential, rather than random disk accesses. A specific instance of the CIPMM framework CIPOP, indexing using Persistent Ordered Partition - OP-tree, is elaborated and compared with clustering and indexing using the SR-tree, CISR. The results show that CIPOP outperforms CISR, and the higher the dimensionality, the higher the performance gains. The SDI-tree index is motivated by fanouts decrease with dimensionality increasing and shorter vectors reduce cache misses. The index is built by using feature vectors transformed via principal component analysis, resulting in a structure with fewer dimensions at higher levels and increasing the number of dimensions from one level to the other. Dimensions are retained in nonincreasing order of their variance according to a parameter p, which specifies the incremental fraction of variance at each level of the index. Experiments on three datasets have shown that SDL-trees with carefully tuned parameters access fewer disk accesses than SR-trees and VAMSR-trees and incur less CPU time than VA-Files in addition

    A taxonomy framework for unsupervised outlier detection techniques for multi-type data sets

    Get PDF
    The term "outlier" can generally be defined as an observation that is significantly different from the other values in a data set. The outliers may be instances of error or indicate events. The task of outlier detection aims at identifying such outliers in order to improve the analysis of data and further discover interesting and useful knowledge about unusual events within numerous applications domains. In this paper, we report on contemporary unsupervised outlier detection techniques for multiple types of data sets and provide a comprehensive taxonomy framework and two decision trees to select the most suitable technique based on data set. Furthermore, we highlight the advantages, disadvantages and performance issues of each class of outlier detection techniques under this taxonomy framework
    corecore