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Abstract

In data stream applications, data arrive con-
tinuously and can only be scanned once as the
query processor has very limited memory (rel-
ative to the size of the stream) to work with.
Hence, queries on data streams do not have ac-
cess to the entire data set and query answers
are typically approximate. While there have
been many studies on the k Nearest Neigh-
bors (kNN) problem in conventional multi-
dimensional databases, the solutions cannot be
directly applied to data streams for the above
reasons. In this paper, we investigate the kNN
problem over data streams. We first intro-
duce the e-approximate kNN (ekNN) problem
that finds the approximate kNN answers of a
query point Q such that the absolute error of
the k-th nearest neighbor distance is bounded
by e. To support ekNN queries over streams,
we propose a technique called DISC (aDaptive
Indexing on Streams by space-filling Curves).
DISC can adapt to different data distributions
to either (a) optimize memory utilization to
answer ekNN queries under certain accuracy
requirements or (b) achieve the best accuracy
under a given memory constraint. At the same
time, DISC provide efficient updates and query
processing which are important requirements
in data stream applications. Extensive exper-
iments were conducted using both synthetic
and real data sets and the results confirm the
effectiveness and efficiency of DISC.
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1 Introduction

In many applications, including geographic informa-
tion systems, content-based retrieval and data min-
ing, finding the k Nearest Neighbors (kNN) to a query
object is one of the most frequent operations. The
database research community has in recent years pro-
vided several novel solutions to efficient kNN process-
ing [22, 6, 21]. The kNN problem can be defined as
follows: Given a set of points S = {P0, P1, ..., Pn} in
a d-dimensional space V , and a query point Q ∈ V ,
find a set kNN which contains k points in S such
that, for any P ∈ kNN and for any P ′ ∈ S − kNN ,
dist(Q, P ) ≤ dist(Q,P ′).

To further improve performance, the (1 + ε)-
approximate nearest neighbors problem [1, 17] has
been introduced which is defined as follows: Find a
point P ∈ V that is an (1 + ε)-approximate nearest
neighbor of the query point Q, so that for any point
P ′ ∈ S, dist(P, Q) ≤ (1 + ε)dist(P ′, Q). The k (1 + ε)-
approximate nearest neighbors problem can be simi-
larly defined [2]. Here ε is in fact a bound for the rela-
tive error of the k-th nearest neighbor distance, which
is specified by the users before the query.

KNN queries over multi-dimensional data streams is
a pressing concern when mining streams for unknown
patterns. For example, in computer aided manufactur-
ing (CAM) systems, sensors are used to monitor the po-
sition, shape1, size, surface characterization, material
properties, etc, of parts passing through on a produc-
tion line. The data are collected and sent to a control
system. The control system analyzes the feedback in-
formation and then adjusts the parameters of the pro-
duction line so as to control the quality of the parts.
Often, we tend to identify parts with similar shape to
a given part in order to discover patterns of other fea-
tures. In highway traffic monitoring, sensors are em-
bedded on highways to observe the passing vehicles.
Estimates of vehicle speed and length can be obtained
and utilized to provide useful traffic related informa-
tion. Similarly in network traffic monitoring, network

1Even parts on a same production line have slightly different
shapes and sizes due to manufacturing errors.
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traffic streams (IP traffic) are usually logged using spe-
cial programs, such as CISCO’s netflow. The network
management system will monitor the network packet
header information to obtain information on traffic flow
patterns [3], which involves finding packets similar to
a given packet.

In addition, data stream applications typically op-
erate in an environment where memory is limited (rel-
ative to the size of the stream) so that it is not feasi-
ble to work with the entire data set in memory. For
this reason, one has to resort to approximate kNN an-
swers in the case of continuously evolving data streams.
All previous proposals for approximate kNN queries
require the user to specify a relative error bound (ε)
beforehand. However, in certain applications, absolute
error bounds are more critical and preferable. In the
CAM example, a query typically specifies absolute er-
rors: “Identify 10 parts that are most similar in size
to a given part A. The query specifies that as long as
a part’s resultant error ( that is, the root-sum-square
of the errors in width and length ) to those of the 10
most similar parts is not more than 0.1mm the answer
is acceptable.” In the highway traffic monitoring ex-
ample, it may also be more intuitive to specify errors
by absolute bounds: “Find the 20 vehicles that are
close to position A. An answer is acceptable as long
as its distance to A is not larger than say 10 meters
than that of the 20 closest vehicles.” Similar exam-
ples can be drawn from the field of network monitoring
and other engineering applications, in which users have
good knowledge of the absolute errors acceptable.

Motivated by such applications, we introduce a
new type of approximate nearest neighbors problem,
called the e-approximate kNN (ekNN) problem,
in which the answers are bounded by absolute value
instead of relative one. Formally, we define it as fol-
lowing:
Definition 1 (ekNN) Given a data set S and a
query point Q, find a set ekNN which contains k
points in S such that for any P ∈ ekNN and for any
P ′ ∈ kNN (the actual kNN set of Q), dist(Q, P ) ≤
dist(Q,P ′) + e, where e is a bound for the absolute
error of the k-th nearest neighbor distance.
Subsequently, we define the e-approximate kNN
problem over Data Streams as follows:
Definition 2 (ekNN over data streams) Let X be
a sequence of points (P0, P1, P2, ...) (in this paper, we
view data records with multiple attributes as multi-
dimensional points). X can be either finite or infinite.
Each element Pi(i = 0, 1, 2, ...) of X is a point in d-
dimensional space and is allowed to be read for at most
once in the order of the sequence. Let St be the set of
points of X that have been read at time t. At any time
t and for any query point Q, find the ekNN of Q from
the elements of St.
In particular, we identify and provide solutions to the
following ekNN problems on data streams:

1. memory optimization for a given error
bound: given an error bound e, use as little mem-
ory as possible to answer ekNN queries.

2. error minimization for a given memory size:
given a fixed amount of memory, achieve the best
accuracy for ekNN queries.

We propose a general scheme which aims to reduce
the amount of information to be stored while guaran-
teeing a provable error bound. Specifically, we par-
tition the underlying space into equal square-shaped
cells, and then we prove that in each cell we only need
to store at most K (for a user specified value K) points
to guarantee some error bound. We will prove that the
error bound is guaranteed for any ekNN query where
k ≤ K. Next, to facilitate efficient maintenance of
K points in each cell, we propose a technique called
DISC (aDaptive Indexing on Streams by space-filling
Curves), in which points are stored in the leaf nodes of
the B∗-tree with the Z-values [19] of their cells as keys.
DISC has two important properties: first, it only al-
locates memory for those points that are necessary to
guarantee the error bound; second, by merging cells,
DISC can adjust the structure to meet the memory
constraint. These two properties make it adaptive to
different data distributions. In addition, being a B∗-
tree based indexing structure, DISC provides fast ac-
cess to a given cell. This facilitates efficient updates
and query processing. Overall, DISC can achieve our
goals of minimizing memory usage for a given error
bound or obtaining best accuracy for a given mem-
ory constraint while retaining efficient updates and
query processing. We present the ekNN search algo-
rithm based on DISC and also show how to modify
DISC to support sliding window ekNN queries. Exten-
sive performance studies using synthetic and real data
sets were conducted, and the results demonstrate that
DISC is both query and memory efficient. Note that
since DISC is essentially a B∗-tree based technique, it
can also be used as a disk-based structure.

The rest of the paper is organized as follows: Section
2 reviews related work. In Section 3, we propose a gen-
eral scheme to reduce information while still answering
the ekNN problem with some error bound. A brute-
force method based on this framework is also presented
in this section. Then we present DISC and the algo-
rithms in Section 4. Section 5 reports the results of our
experimental studies. Section 6 concludes the paper.

2 Related Work

Various multi-dimensional indexing structures [5, 14,
7, 23] and kNN query processing strategies have been
proposed in the literature [12, 21, 22]. These meth-
ods assume that the data are disk-resident and can be
scanned multiple times. As such, they are not suit-
able for processing data streams that typically require
one-pass algorithms as the data are not stored on disk
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and are too large to fit into memory. Moreover, it is
unclear how these schemes can provide any guarantee
on approximate answers to kNN queries.

A structure based on quadtrees for answering kNN
queries approximately was proposed in [8]. The rela-
tive error is dependent on the dimensionality d so that
the larger the value of d, the greater the relative error
will be. Then the (1 + ε)-approximate nearest neigh-
bors problem was studied [1, 2, 17], in which the rel-
ative error ε is a constant specified by the user. An
algorithm requiring exponential time in d and linear
space was proposed in [1] and follow-up studies im-
proved its time/space requirements [13, 17, 18]. These
studies share the common feature of a relative error
bound. The ND P-sphere tree [11] also accelerates kNN
search by providing non-exact answers. The algorithm
guarantees that for a user specified percentage of time,
the returned answers are correct, but it cannot distin-
guish between the correct and incorrect answers. To
our knowledge, there have been no studies on approxi-
mate kNN search specifying absolute error bounds. In
addition, none of the above studies address the approx-
imate kNN problem in the data stream model, where
data can only be scanned once.

The management and processing of data streams has
attracted lots of research interest recently. A survey
can be found in [3]. In [10] the authors use the Fast
Fourier Transform to solve the problem of pattern simi-
larity search. The paper also studies the nearest neigh-
bors problem over streams, but uses values from the in-
coming stream (time series) as queries to identify the
nearest neighbors from an existing pattern database.
In our setting, queries are specified by users on de-
mand and we seek to locate nearest neighbors in the
streaming data. [10] uses prediction to take advantage
of batch processing. When the actual time series ar-
rives, prediction error lower bounds and upper bounds
are calculated and used together with the predicted
distances to filter candidate patterns. In [9], hamming
norms are used to measure the similarity between two
streams, and in [20], a regression-based algorithm is
proposed to mine frequent temporal patterns for data
streams. Reverse nearest neighbor aggregate queries
over streams have also been investigated in [16].

3 Analysis of the problem

In this section, we propose a scheme towards solving
the ekNN problem with a guaranteed error bound. As
we shall see, this scheme provides possibility to reduce
the information to be stored, however, the scheme in
itself does not guarantee achieving the goal of memory
optimization or error minimization. The data struc-
ture used to implement it is also critical to achieve
these two optimizations. Therefore we will first present
the scheme, followed by analysis on adopting the most
suitable structure to realize it.

Our overall approach consists of segmenting the un-

derlying space into a number of cells and identifying
dynamically a number of points to be stored in each
cell (called the footprints of the data) as data stream
by. We observe that, in order to guarantee the er-
ror bound e, which is the largest distance between two
points in a cell, for kNN queries, we only need to main-
tain at most k points in each cell. In the case of data
streams, the number of data is very large so that usu-
ally exceeds k in many cells. Therefore, by maintaining
only k points, we can reduce the data to be stored. In
the following, our scheme based on this observation is
formally presented.

3.1 Capturing the Footprints

We consider the problem in a d-dimensional metric
space V , which is a set of points with an associated
distance function dist. The distance function dist has
the following properties:
1. dist(P1,P2)=dist(P2,P1)

2. dist(P1,P2)>0 (P1 6=P2) and dist(P1,P2)=0 (P1=P2)

3. dist(P1,P2)≤ dist(P1,P3)+dist(P2,P3)

We divide the data space into a number of square-
shaped cells and maintain at most K (K is a user
specified constant) points in each cell. Specifically, as
data stream by, each data point is placed in the cell it
belongs to. If a cell already contains K points, there
would be K + 1 points including the new one. Then,
we discard a point according to some discarding policy.
The discarding policy is clearly application dependent.
For example, if the most recent information is of inter-
est we will always delete the oldest point. When pro-
cessing ekNN queries, we invoke an exact kNN query
on the set of points maintained, that is, the footprints
of the stream data. Contrasting the kNN answers ob-
tained from the footprints of the data set and on the
original data set, we prove that the difference of their
k-th nearest neighbor distance is within e, which equals
the largest distance between two points in a cell. So
the kNN on the footprints is an approximate answer
for the kNN query on the original data set with error
bound e. We start by defining some functions neces-
sary for the derivations that follow and formalize the
scheme for capturing the footprints. Some commonly
used symbols in this paper are summarized in Table 1.

We assume that the data space is normalized to a
unit hypercube. Each of the d dimensions of X is di-
vided equally into u segments (therefore X is divided
into ud cells). Let S be a set of points in X and c a
cell in X. Define S(c) as {P ∈ S|P ∈ c}, that is, the
subset of S that is in the cell c.

Let T be a mapping on S which is defined as follows:
for each cell c of X, if |S(c)| > K, image of S(c) is the
set of any K points in S(c); if |S(c)| ≤ K, image of
S(c) is S(c).

Let S′ be the image set of S under mapping T . For
any query point Q ∈ X, kNN is the set of k nearest
neighbors of Q in S and kNN ′ is the set of k nearest
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Table 1: Symbols
Symbol Meaning
c A cell
d Dimensionality
dist(P1, P2) Function that returns the distance

between the two points P1 and P2

e The error bound of the k-th nearest
neighbor distance

far(S, P ) Function that returns the farthest
point in set S to point P

kNN The set of the k nearest neighbors
ekNN The set of the e-approximate k

nearest neighbors
m The order of the Z-curve
P A data record, which is viewed as a

multi-dimensional point
pi The i-th coordinate of point P
Q A query point
S A set of points
t Current time
T Some period of time
u The number of segments a dimension

is divided to
V A metric data space
W A query window
Ws The smallest query window that

contains ekNN

neighbors of Q in S′. Let far(S,Q) be the function
returning the point in S, which is of largest distance to
Q among all the points of S.

u
1

hs
2

c1

c0

hs1

p
1

q

Figure 1: Diagram to explain Theorem 1

Theorem 1
For any positive integer k ≤ K,
dist(far(kNN ′, Q), Q) ≤ dist(far(kNN, Q), Q)+dM ,
where dM is the maximum distance of two points within
a cell.

Proof Suppose query point Q is in cell c0 as Figure 1
shows. We have two cases to consider:
Case 1. |S′(c0)| ≥ k.
In this case, far(kNN ′, Q) is within cell c0. |S(c0)| ≥
|S′(c0)|, so |S(c0)| ≥ k and far(kNN, Q) is also within
cell c0. The largest distance between two points within
a cell is dM . So

dist(far(kNN ′, Q), Q) ≤ dM

and therefore,

dist(far(kNN ′, Q), Q) ≤ dist(far(kNN, Q), Q)+dM .

Case 2. |S′(c0)| < k.
Suppose hs1 is the smallest hyper-square centered at c0

and contains at least k points of S′, hs2 is the largest
hyper-square centered at c0 and contains at most k −
1 points of S′. Then side length of hs1 minus side
length of hs2 must be 2/u. Otherwise, either hs1 can
be smaller or hs2 can be larger. Suppose there are
k1 points of S′ in hs2, there must be also k1 points
of S in hs2 according to the definition of S′. Denote
these k1 points as S(hs2). Then kNN − S(hs2) and
kNN ′ − S(hs2) are both in hs1 − hs2.

If all points in kNN − S(hs2) are in S′, then
kNN ′ − S(hs2)=kNN − S(hs2), so far(kNN ′, Q) =
far(kNN, Q) and

dist(far(kNN ′, Q), Q) ≤ dist(far(kNN, Q), Q) + dM

holds.
If any point in kNN − S(hs2) is not in S′, say

P1 ∈ kNN − S(hs2) and P1 /∈ S′. Suppose P1 ∈ c1.
P1 /∈ S′ means |S(c1)| > K, and then S′ must have K
points in c1. Let P2 = far(S′(c1), Q). Then

dist(far(kNN ′, Q), Q) < dist(P2, Q) (1)

According to the triangle inequality

dist(P2, Q) < dist(P1, Q) + dist(P1, P2) (2)

P2 and P1 are in the same cell, so

dist(P1, P2) < dM (3)

P1 ∈ kNN − S(hs2), so P1 ∈ kNN , therefore

dist(P1, Q) < dist(far(kNN, Q), Q) (4)

And from inequalities 1, 2, 3 and 4, we hence get
dist(far(kNN ′, Q), Q) ≤ dist(far(kNN, Q), Q) + dM

2

According to the theorem, if we divide the data
space into ud equal cells and use the above scheme
to process the ekNN problem, e = dM . In addition, if
the maximum number of points maintained in a cell is
K, for any ekNN query where k ≤ K, the above error
bound is guaranteed. For example, if we maintain at
most 5 points in a cell, then we can also search for 2NN
with an error bounded by e = dM . Note that dM is
determined by the distance function. Without loss of
generality, we use the Euclidean distance function in
the following discussions and our experimental studies.
For the Euclidean metric, dM =

√
d/u, and therefore

the error bound is e =
√

d/u.

3.2 An Array-Based Method

A first method to implement this general scheme
would be to organize the data in memory as a big
d-dimensional array. Each element of the array rep-
resents a cell in the space. We may store at most K
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points in each cell, so each array element is a structure
consisting of K d-dimensional points. Stream data el-
ements are placed in cells on demand as data stream
by. If there are already K points, we discard one of
them based on the discarding policy. Processing of
ekNN queries using the array is straightforward. We
just need to calculate the borders of the square which
encloses the ekNN query sphere and check all the ele-
ments within the borders. In what follows, we refer to
this method as the array-based method.

For the array-based method, we can calculate the
memory size needed by the following equation:

Memarray = ud ·K · d · sizeof(attribute) (5)

The array-based method is straightforward, and its
processing is simple and fast in terms of memory ac-
cesses (reads/writes) and processor time, but the mem-
ory required is exponential to u. This static memory
allocation strategy can cause excessive memory usage,
especially for small error bounds, which implies a large
value of u. Real data are often skewed and may be
sparse; most cells contain much fewer than K points
or even none at all, resulting in poor utilization of the
statically allocated memory space. It is obvious that a
structure capable of adapting to different data distri-
butions is more desirable.

4 The DISC Method

To better utilize memory, cells that do not contain data
points should not be explicitly maintained as opposed
to the array-based method. Even within one cell, the
number of points may be different, so space usage is
different. This calls for a smart strategy to allocate
space to each cell.

Besides the central objective of minimizing memory
usage, the method should also provide fast updates and
query processing. For the error minimization problem,
the method may need some self-adjusting mechanism
to achieve smallest error.

As discussed in the previous section, the array-based
method needs too much memory despite its fast up-
dates and query processing. Or we can organize the
cells by a linked list and dynamically allocate only nec-
essary space for each cell. The memory size problem
is solved largely (we still have some extra cost due to
the links), but the number of node accesses for update
and query processing is linear to the number of points.
Averagely, half the size of the linked list is accessed
to locate a point. This is prohibiting for data stream
applications.

A third way is to use a dynamic indexing structure
such as an R-tree or a B-tree. On one hand, it dynam-
ically allocates space in the unit of a leaf node so as
to avoid excessive memory overheads as in the array-
based method. On the other hand, the index provides
fast access to the entries in the nodes. It is not as fast
as the array-based method, but typically several node

accesses are enough, which is much more efficient than
linked lists in terms of updates and query processing.
A dynamic index is in fact a compromise of the above
two, and therefore it avoids the deficiency of either one.

A straightforward structure for multi-dimensional
data is the R-tree or some of its variants. A point is
stored as a leaf node entry. Since we need to differen-
tiate between points from different cells, an identifier,
id, is stored along with each point.

An alternative approach, which we adopt in this pa-
per, is to employ a B∗-tree2 [15] together with a space-
filling curve mechanism. Space-filling curves have been
used to linearize multi-dimensional data spaces. Vari-
ous types of space-filling curves exist in the literature;
without loss of generality we adopt the Z-curve [19].
Efficient algorithms to compute Z-values can be found
in [19]. Each cell corresponds to a Z-value. Foot-
prints of the data stream are stored in the leaf nodes
of a B∗-tree using their corresponding cell Z-values as
keys. Such an approach is expected to be more effi-
cient than the R-tree scheme for the following reasons.
Although a point is the unit of storage, a cell is the
unit most of our operations deal with as we will see
later in the algorithms. To locate a cell by the Z-value
in a B∗-tree, for each level of the tree, we only need to
compare the search key with one value, since there is no
overlap in the Z-values. In an R-tree, we need to com-
pare the coordinates of the cell with 2d values (lower
bound and upper bound for each dimension) for each
level of the tree and there is overlap between the MBRs
of the R-tree, which translates to more node accesses
to update and search the R-tree. In addition, since the
R-tree stores more information as keys, the fan-out of
the R-tree nodes becomes lower and the height larger.

Another advantage of organizing the footprints in
the Z-order is that cells can be arranged in a total or-
der while maintaining cell proximity. The R-tree also
keeps the points belonging to the same cell spatially
close, but it still happens that they scatter in nearby
MBRs. In DISC, points in the same cell are always
consecutively stored in the leaf nodes. This property
facilitates accesses on the cell level and make possible
a very fast merge-cells operation, which is required for
the error minimization problem and described in Sec-
tion 4.2. We will also compare DISC to the R-tree in
our experimental study. Since several points may be-
long to the same cell and have the same key in DISC,
our B∗-tree is designed to accommodate entries with
equal keys. For the R-tree method, we have used the
R*-tree [5] variant, which has a higher node utilization
(about 73%). Moreover, we have also used the Z-values
as the id’s of cells for the R*-tree method.

Since we are utilizing space-filling curves, each di-
mension of the data space is partitioned into a number
of intervals equal to an integral power of 2, the same for

2We employ the B∗-tree for indexing (instead of B+-tree) as
its node utilization is about 85% or higher.
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all dimensions. Let m denote the order of the Z-curve,
then u = 2m.

4.1 Index Creation

We begin by considering the first problem, namely the
memory optimization problem for a given error bound
e. To guarantee that this error bound is met by our
query answers, we calculate the order of the Z-curve
me according to Theorem 1 as follows.

√
d/2me ≤ e

Then
me ≥ log2(

√
d/e) (6)

The larger the value of me, the more memory is re-
quired; we let me be the smallest integer that can sat-
isfy inequality 6.

me = dlog2(
√

d/e)e (7)

Algorithm Build Index, shown in Figure 3, describes
how the index is constructed. In the algorithm, we
initialize the value of m to me.

Before we discuss the algorithm, let us consider the
second optimization problem, namely error minimiza-
tion given a specific memory size constraint. The basic
idea of the algorithm is to adjust the order of the Z-
curve, m, to achieve the best accuracy while satisfying
the constraint. Our aim is to minimize the error bound
e in the ekNN search. Since the larger the value of m,
the smaller the error bound e, and the data distribu-
tion is not known apriori, we start with a sufficiently
large value for m; the exact value depending on the
arithmetic precision we are working with. A value of
16 should suffice for most applications. As data arrive,
it may turn out that m is too large and hence mem-
ory is exhausted; in this case, we merge small cells
into a larger one, discard some points and still main-
tain at most K points in the larger cell. As a result
some memory is freed, and processing of the stream
continues. The Z-curve properties enable us to merge
cells efficiently. In particular, a Z-value for a cell can
be mapped efficiently (using simple bitwise operations)
to Z-values corresponding to a curve of different or-
der. For brevity, we omit the details which can be
found in [19]. Related properties hold for other curves
as well. Each time we need to perform cell merging,
we will combine 2d adjacent small cells into a larger
cell as shown in Figure 2, in which cells c0, c1, c2, c3

are combined to form cell c
′
0. The larger cell is still

square-shaped. After merging the cells, the order of
the Z-curve becomes m−1. The index construction al-
gorithm for this case is similar to that for the memory
minimization problem; the difference lies in the merg-
ing phase. For brevity, we include this phase in the
description of algorithm Build Index.

We are now ready to look at algorithm Build In-
dex (see Figure 3). In line 1, we let m = me for the

c10 c

c

c14 c15
c’2 c’3

c’0 c’1

11

0 c1

c2 c3

c4

c6

c5

c7

c8 c9 c12 c13

Figure 2: Cell Merging

Algorithm Build Index
1 Initialize m
2 Read data from the stream, denote the point read in as P ,

calculate the Z-value of P , and we know which cell it
belongs to, denote it as c

3 Search the B∗-tree and obtain the number of points that
also belong to cell c, denote the number as Nc

4 If Nc < K
Insert P to the B∗-tree

5 Else
Among P and the K points in c, discard 1 and keep
the other K points in the B∗-tree

6 If memory runs out /*This only happens for the error
minimization problem*/
Merge cells and let m = m− 1.
/* The merge cells algorithm is presented
in the next subsection. */

7 Go to 2
End Build Index

Figure 3: Algorithm Build Index

memory optimization problem and let m be a large
enough integer for the error minimization problem. In
line 5, we should determine which point to discard ac-
cording to the discarding policy. In our realization of
the algorithm, we simply discard the new point P .

In the analysis of Section 3.1 we have assumed the
data space is normalized to a unit hypercube. This
may have difficulty when the maximum and minimum
of the data are unknown. In DISC, we would set the
maximum/minimum to safely large/small values. For
example, we can use 10 times (suppose the data are
positive) the observed maximum value in the history
as the maximum value of the data space. This may
result in most of the data gathered at the center of
the data space. It will not cause a problem for DISC,
because no memory would be wasted for the empty
space. And this just shows the advantage of DISC’s
adaptation to the data distribution.

4.2 Algorithms to Merge Cells

For the error minimization problem, we adopted an
adaptive approach that consists of merging 2d adja-
cent cells to form a larger one in order to meet the
memory constraint. Figure 2 shows a 2-dimensional
example where the order of the Z-curve m equals 2
before merging. c0 to c15 are the cells before merg-
ing. c′0 to c′3 are the cells after merging. The sub-
scripts are the Z-values of the cells. Let us denote the
larger cell as M(c) if it contains c before merging, then
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Algorithm General Merge-Cells (GMC)
1 For i from 0 to 2m−1 − 1
2 Search the index and obtain the number of points

in the new cell c′i, denote the number as Nc′
i

3 If Nc′
i

> K

Discard Nc′
i
−K points according to the

discarding policy
End General Merge-Cells

Figure 4: Algorithm GMC

M(c0) = M(c1) = M(c2) = M(c3) = c′0. In general,

M(czv) = c′bzv/2dc (8)

where zv is the Z-value of the cell. Let S be a point set.
We refer to the cells before merging as old cells and to
the larger cells after merging as new cells. We present
two algorithms to merge cells. The first cell merging al-
gorithm applies to any index structure (including DISC
and R-tree) that adopts our general scheme, that is, to
maintain at most K points in each cell. The second
cell merging algorithm is specially designed to exploit
DISC’s special property that the points are ordered ac-
cording to the value of the Z-curve (versus the R-tree
where points have no ordering). The latter scheme, re-
ferred to as the bulk cell merging scheme, scans all the
leaf nodes once, and hence is expected to be more effi-
cient than the former general cell merging algorithm.

In the first algorithm General Merge-Cells
(GMC), we examine each new cell in the order of the
Z-curve. For each new cell, we search the index and
find all points belonging to this cell. If there are at
most K points in the cell, we will leave them in the
index; otherwise, we delete some of them according to
the discarding policy and retain only K points. Algo-
rithm GMC is presented in Figure 4. While the GMC
algorithm is straightforward and applies to any struc-
ture, it is quite expensive since it searches the index
2m−1 times.

The second algorithm Bulk Merge-Cells (BMC),
utilizes the property that the points in the leaf nodes
of the B∗-tree are ordered according to the Z-values.
The 2d adjacent points which will form a larger cell
are adjacent in the leaf nodes, so we only need to scan
all the leaf nodes once and merge the points in adjacent
2d old cells into a new cell. In difference to an R-tree,
the entries with close keys in the B∗-tree are adjacent
to each other, therefore in addition to deleting extra
points in a new cell, we also need to move the remaining
K points into the same cell. We use a write cursor
pointing to the place where we would store the next
points. Algorithm BMC is presented in Figure 5.

In line 16 of BMC (Figure 5), rebuilding internal
nodes based on existing leaf nodes is very similar to
bulk loading of a B+-tree. We do not discuss the details
here for brevity.

Comparing the two merging algorithms, we note
that BMC scans the leaf nodes only once, while GMC

Algorithm Bulk Merge-Cells (BMC)
1 Free all the internal nodes
2 Let ln be the first leaf node. Set write cursor at

the beginning of ln. Let point set S be empty.
3 While (ln) //when ln is not NULL
4 For each point P in ln
5 If this is the first point in the first leaf node
6 c′ = M(c), where c is the cell P belongs to

S = S ∪ P
7 Else if P ∈ c′

S = S ∪ P
8 Else if P /∈ c′ //We entered the next cell
9 If |S| > K

Discard |S| −K points from S
10 Write the points in S to the position of

write cursor and move the write cursor
forward accordingly

11 Let S = ∅
12 S = S ∪ P
13 c′ = M(c), where c is the cell P belongs to
14 ln = right neighbor of ln
15 Free all the leaf nodes after the write cursor
16 Rebuild internal nodes of the B∗-tree based on the

leaf nodes
End Bulk Merge-Cells

Figure 5: Algorithm BMC

entails many searches and updates for each new cell.
So BMC is expected to be faster than GMC. We will
compare them in the experiments.

We note that the merge-cells operation is expen-
sive compared to other operations, especially when the
memory is large. As it may take a while to reduce
the order of the curve by 1, stream processing may
be disrupted. Fortunately, it is not necessary to finish
merging all cells at once. Cell merging can be per-
formed incrementally. When the system load is heavy,
say, there is a burst of incoming data or many queries,
we stop the merge operation at the current new cell
we are working on and record this stop position. If
the update or the query accesses the points before that
stop position, we process them assuming the order of
the Z-curve to be m−1; if data belonging to cells after
the stop position are required, we process them assum-
ing the order of the Z-curve to be m. If the search
involves more than one cell, some of which may be old
and some are new, query processing is performed as-
suming the order of the Z-curve in the new cells , m−1.
Old cells that are accessed in the search are temporar-
ily combined to form larger new cells, but they are in
fact merged later as cell merging resumes. The error
bound returned with the query results in this case, is
the one associated with the order m−1. Both GMC
and BMC can be performed incrementally. However,
it is important to complete the operation fast.

4.3 Query Processing

As analyzed in Section 3.1, an ekNN query in the orig-
inal data set, is a kNN query in footprints of the data.
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Algorithm KNN Search
1 S = ∅
2 For i from 1 to d

wli = q′i − 1
2u

; whi = q′i + 1
2u

3 WindowQuery(W ). From the points in W , get the k
nearest points to Q and put them in S; if there are
less than k points in W , put all of them in S.

4 if |S| < k or near(W, Q) < far(S, Q)
5 for i from 1 to d

wli = wli − 1
u
; whi = whi + 1

u
6 Go to 3
7 return S
End KNN Search

Figure 6: Algorithm KNN Search

Let Q be the query point and cQ be the cell Q be-
longs to. Denote as Q′ the center point of cQ and as
W a query window which is a d-dimensional interval
[wl1, wh1], [wl2, wh2], ..., [wld, whd]. First, we initiate
a square-shaped window query centered at Q′ with an
initial side length of 1/u and then increase it gradually.
We maintain a k candidate answer set which always
contains the nearest k points to Q within the current
query window. The function near(W,Q) returns the
distance between Q and W ’s nearest side to Q. The
algorithm terminates when near(W,Q) is larger than
or equal to the k-th farthest point in the candidate an-
swer set. All the points outside the query window are
farther from Q than near(W,Q). So when the algo-
rithm terminates, the farthest point in the candidate
set is the k-th nearest point to Q among all the points
inside and outside the query window. To avoid search-
ing cells which are already visited in the previous itera-
tion, we maintain a list of addresses of the B∗-tree leaf
nodes visited. WindowQuery(W ) is a function to re-
trieve all the points in window query W . In DISC, each
leaf nodes of the B∗-tree corresponds to a continuous
segment of the Z-curve. An efficient window query al-
gorithm proposed in [4] accesses only those nodes with
their corresponding Z-curve segments intersecting the
query window. We use this algorithm for our Win-
dowQuery() function. Figure 6 shows the algorithmic
description of the KNN search.

For continuous ekNN queries, we maintain the
ekNN set as follows. Let Ws be the smallest window
centered at Q′ that contains all the points in ekNN .
When a new data point P comes and P ∈ Ws, we may
need to discard some points according to the discard-
ing policy (for example, in the sliding window query
discussed in the next subsection, points older than Tsw

are discarded). If a point in ekNN is discarded, the
ekNN set would have fewer than k points at the mo-
ment. After discarding, there are 3 cases to consider:
1)There are still k points in ekNN . If P is nearer
to Q than the farthest point in ekNN , then P will
replace the farthest point; otherwise ekNN is kept un-
changed. 2)There are fewer than k points in ekNN
and P is nearer to Q than the farthest point in ekNN

before discarding. We add P to ekNN and start kNN
search as in the one-time search algorithm, but we set
the initial search window as Ws. 3)There are fewer
than k points in ekNN and P is not nearer to Q than
the farthest point in ekNN before discarding. We just
start kNN search as in the one-time search algorithm
with the initial search window Ws. The proof of the
above algorithm is straightforward and we omit it here
due to the limitation of space.

4.4 Sliding Window ekNN Queries

In certain applications, recent stream data are of
greater interest as opposed to data associated with the
entire stream. This gives rise to the sliding window
data stream model [3]. The ekNN problem can be ex-
pressed in this model as well. Formally, we wish to
identify the ekNN of a query point Q among all data
stream elements arriving in the last Tsw time units.

DISC is capable of supporting such sliding window
ekNN queries by simply employing a time-based dis-
carding policy. Let t be the current time. Assume that
each arriving stream element is tagged with a times-
tamp signifying its arrival time. Algorithm Build In-
dex can be modified for the sliding window model as
follows: When inserting a point P to a cell c, we first
check the timestamp of existing points in c. We then
delete the stale points, that is, the points that arrived
earlier than t−Tsw. Finally, we insert P . For algorithm
KNN Search, we only place points arriving later than
t − Tsw to the candidate answer set S. At any time,
if we encounter stale points (during index building or
kNN searching), we delete them immediately. Such
modifications enable DISC to answer sliding window
ekNN queries correctly. However, if there are data in
the index that are older than t − Tsw, but no incom-
ing stream data is added to the cells they belong to,
such stale data will remain in the index, occupy space
and affect space utilization. To avoid this, we need an
operation to eliminate such stale data. This can be
accomplished by scanning all the points and deleting
stale data from the index. However, such an opera-
tion is expected to be time consuming. Again, like the
cell merging process, this stale data elimination pro-
cess can be done incrementally. There exists a tradeoff
between memory utilization and processing capability.
To achieve best accuracy when addressing the error
minimization optimization problem in the sliding win-
dow model, we eliminate stale data before each call
to the Merge-Cell operations. This way, some addi-
tional space becomes available and it may be possible
to avoid cell merging.

We should take care when processing continuous
ekNN queries over sliding windows. Even no new
points come in Ws, there still could be stale data due to
time. Therefore, in this case we need to check whether
the set contains stale data in each time unit to guaran-
tee the correctness of the ekNN set. Or if the ekNN
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answers are not requested all the time, we can check
for stale data when we retrieve answers from the main-
tained ekNN set. If there were stale data, we discard
them and invoke the kNN search on the footprints with
the initial search window Ws. This is still much faster
than invoking the search from scratch.

5 Experiments

In this section, we present the results of an exten-
sive experimental study using DISC. While we have
implemented and worked with an in-memory version
of DISC, DISC is also applicable for secondary stor-
age. The experiments are performed on a desktop com-
puter with Pentium IV, 2.6G CPU and 1G RAM. In
our study we employed both synthetic and real data
sets. We generated exponentially and normally dis-
tributed data sets of varying dimensionality. Figure 7
shows 2-dimensional images of the two data distribu-
tions. The real data set contains 2-dimensional records
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Figure 7: Data distributions

extracted from netflow IP data logs. Such logs were
aggregated temporally and ekNN queries were issued
using the total number of bytes and associated packet
rate attributes. All the data are normalized in the
range of [0,1]. By default, we let K equal 20 and we
set the order of the Z-curve as 10, which implies an
error bound of 0.00138 in a 2-dimensional space. For
the in-memory B∗-tree, we used a default node size
of 1024 bytes. First, we focus our experiments on a
2-dimensional space examining DISC’s memory usage
and accuracy and compare the two cell merging algo-
rithms. Then we examine the behavior of DISC on
higher dimensions.

5.1 Memory Usage of DISC

In a first series of experiments, we study the memory
usage of DISC as data stream by. No existing struc-
tures or algorithms were proposed to process (approx-
imate) kNN queries over streams as discussed in the
related work. Therefore we would compare DISC with
the R*-tree [5] indexing under our general scheme to
see which one is more efficient. Figures 8(a), (b) and (c)
present the memory used by DISC and the R*-tree as
a function of the observed data stream size (in number
of points) on 2-dimensional exponentially distributed
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Figure 9: Effect of node size and K

and normally distributed data sets and the real data
set.

As the data continually arrive and their cumulative
size increases, the memory usage of DISC increases also
at first, but the increase slows down soon as more data
arrive. At first, all the cells are empty and therefore
all of the data are stored as footprints. But as more
data come in, more and more cells become full (hav-
ing contains K points) so that memory usage almost
keeps constant. When 600K data points have arrived,
the memory used by DISC is 10∼25% of the size of
the data. Using Equation 5, we calculate, for this set-
ting that the amount of memory needed for the array
based method is 41943040 bytes, which is more than
8 times the data size. These results show that DISC
does adapt to different data distributions because it
only stores necessary cells and in each cell, necessary
points to guarantee the error bound, while the array-
based method suffer from the static memory allocation
greatly. The huge space cost of the array-based method
make it not applicable in stream applications. In all the
following experiments, the array-based method always
needs at least several times the space of the original
data to operate, therefore we will not compare DISC
with it again. We also observe that the memory usage
of the R*-tree is always a little higher than DISC. This
is because while the R*-tree also allocates space only
to the points requiring explicit storage, the leaf node
utilization rate of the R*-tree ( about 73% ) is lower
than that of the B∗-tree ( about 85% ).

To see how how some parameters such as the node
size and K affect the memory usage of DISC, we var-
ied the node size and K respectively while keep other
parameters constant. The memory usage for different
node sizes when 600K netflow data points have arrived
is presented in Figure 9 (a). The memory usage de-
creases as the node size increases. This is because
for larger nodes, higher node utilization rate can be
achieved. However, the effect of node size is small com-
pared to the total data size. In other experiments, we
used 1024 as the default node size.

Figure 9 (b) presents memory usage as a function
of K for netflow data. Memory usage increases as K
increases in an almost linear fashion, according to ex-
pectation. This demonstrates that DISC handles the
allocation of the available memory in a space efficient
fashion. Experiments over the synthetic data sets show
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Figure 10: Accuracy of DISC

similar behavior. It is expected that the memory usage
of DISC would reach the size of the stream data if K
is too large, but it will not be too much beyond the
stream size. In the worst case that K is infinite, all
the stream data are maintained. The memory usage of
DISC would be a little more than the stream size con-
sidering the space utilization of the B∗-tree, but it will
not grow excessively as the array-based method, which
may use many times the size of the stream. In many
applications, tens of nearest neighbors are enough and
K can be determined from domain knowledge or query
history. In these cases, DISC is still quite useful. In
other experiments, we have used 20 as the default value
of K, which is a reasonable number used in data mining
applications.

5.2 Accuracy of DISC

While DISC can guarantee a theoretical error bound
of e, we run experiments to assess the actual errors.
We generated 200 queries following the same distribu-
tion as the data. We scan the original data to find the
exact kNN to each query and also employ DISC to
identify the ekNN . We then compare the exact kNN
distance and the ekNN distance to obtain the actual
error. The results are presented as averages over the
200 queries in Figure 10 (a). The figure shows the
comparison between the error bound e and the actual
error for the (exponentially distributed, normally dis-
tributed and netflow) data streams as the data arrive.
We observe that the average actual errors are less than
one third of the theoretical error bound. These results
demonstrate the accuracy of DISC. In all our experi-
ments, we have also observed that the maximum actual

errors are smaller than the theoretical error bounds,
which further confirms the effectiveness of DISC.

In our next experiment we evaluate the impact of
the order of the space-filling curve on our scheme. We
vary the order of the Z-curve from 8 to 11 and see how
it affects the actual errors. The error bound and actual
errors for different orders of the Z-curve are shown in
Figure 10 (b). As the Z-curve order increases, the error
bound e and the actual errors also decrease, while the
actual errors are always much smaller than e.

To see the relationship between the memory usage
and the accuracy, we present for different error bounds,
their corresponding memory usage versus the corre-
sponding actual errors when 600K data points have
arrived in Figure 10 (c). The memory usage increases
as actual errors decrease. This shows that DISC can
easily trade error for memory space by suitably setting
the order of the Z-curve.
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To show that the above absolute errors are reason-
ably small, we also present the relative kNN distance
errors they correspond to in Figure 11. For the net-
flow data, ekNN has a relative error of 5% when the
memory usage is about 1MB, which is less than 1/4 of
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the original data size. Even when the memory usage is
only 200KB, which is less than 5% of the original data
size, ekNN has a relative error of 1.6. For the exponen-
tially and normally distributed data sets, ekNN also
has small relative errors while use much less memory
size than the data size.

5.3 GMC vs. BMC

In this experiment, we evaluate the two merge-cell al-
gorithms. We have implemented the GMC algorithm
for both DISC and the R*-tree. We also implemented
the BMC algorithm, which only applies to DISC. We
trigger the Merge-cell operation when 200K, 400K and
600K data points have arrived. (In fact, the merge-
cell operation should be invoked in the case of the er-
ror minimization problem only when available mem-
ory runs out. Here we call it explicitly to observe its
behavior under varying data size.) We calculate the
number of node accesses and response time as mea-
sures of their performance. The results for the real
data set are shown in Figure 12. We can see that un-
der the DISC scheme, GMC needs much more node
accesses than BMC (about 300 to 600 times). This is
because in GMC, we need to traverse the tree for each
new cell. To support a reasonably small error bound,
usually the order of the Z-curve is large, which is 10
in our experiments. So we have to traverse the tree
29×2 = 262144 times, and each traversal incurs several
node accesses (descend the tree and locate the points to
the new cell). While in BMC, we only scan all the leaf
nodes once (which ranges from hundreds to a few thou-
sand in our experiments). GMC for the R*-tree turns
out to be marginally better than its DISC counterpart.
This is because in the R*-tree, when some points are
discarded from a cell, we are not required to move the
remaining points together while in the B∗-tree this is
necessary. The response time has similar trend. In the
experiments, the GMC algorithm takes several minutes
to finish while the BMC algorithm takes only 1 or 2 sec-
onds. So clearly, only the BMC algorithm is applicable
in practice. This is an additional reason that makes
DISC preferable over other approaches. Despite its ef-
ficiency, we can still perform incremental cell merging
with BMC as described in Section 4.2 in case the mem-
ory is very large and the system load is heavy.
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5.4 Updates and Query Processing

To evaluate the update and query processing perfor-
mance of DISC, we measured the number of node ac-
cesses of updates, one-time ekNN query and continu-
ous ekNN query processing for DISC and the R*-tree.
The cost of a continuous ekNN query consists of the
cost of the initial one-time ekNN query and the cost
of maintaining the ekNN set continuously. The main-
tenance cost is the possible search cost when a point
in Ws arrives as described in the continuous ekNN al-
gorithm. Specifically, maintaining the ekNN set in-
volves possible kNN search during the insertion of new
points. Therefore, the update cost with continuous
ekNN queries running is expected to be higher than
the usual update cost.

In our experiments, the query costs of the one-time
ekNN queries are averaged from 200 queries which fol-
low the same distribution as the real data set. For
continuous ekNN queries, we use the same queries but
run 10 continuous queries simultaneously each time.
The update costs are averaged from the 600K points
inserted. K is still set as 20. The results on the netflow
data set are shown in Figure 13. First we observe that
for all the operations, DISC has much lower node ac-
cess cost than the R*-tree. The reason is that in DISC
we only store the Z-value as the key, but in the R*-tree
we need to store 2d values as keys so the fan-out of the
tree is lower and hence the height of the tree larger.
In addition, there are overlaps between the MBRs of
the R*-tree, which also incurs more node accesses. We
also notice that the query processing cost is not large
in terms of node accesses. This is largely due to the Z-
order keeping the proximity of the spatial points and
the efficient WindowQuery() algorithm. In addition,
in two-dimensional space, the points are dense. For
skewed data, most points are clustered at a relatively
small region and so do the queries. So for most queries,
after locating the cell the query belongs to, we need
only a few number of node accesses to retrieve near
points. The cost of the continuous ekNN is mainly ex-
pressed in the additional part of the update cost. We
can see that, update with continuous ekNN queries run-
ning costs a little more than the usual update, but the
increase is not great. Therefore, the continuous ekNN
query processing is still quite efficient.
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5.5 DISC on Data Sets of Other Dimensions

We study the behavior of DISC when the number of un-
derlying streams increases (and as a result the dimen-
sionality of stream elements increases as well). Due to
the limitation of space, we only present the results on
3-dimensional synthetic data sets. Figure 14 (a) shows
the memory usage of DISC as 3-dimensional synthetic
data stream by. We still set K as 20 and the order of
the Z-curve as 10, which corresponds to an error bound
of 0.00169 in 3-dimensional space. The results are sim-
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Figure 14: DISC on 3D data sets

ilar to those of 2-dimensional data (compare with Fig-
ures 8 (a) and 8 (b)). DISC uses much less memory
compared to the original data size and its memory us-
age does not increase significantly as the number of
arriving data elements increases. As dimensionality
increases, DISC tends to occupy more memory than
in the 2-dimensional case; this is expected as in higher
dimensions, points become relatively sparse and there-
fore distributed in more cells, which have to be main-
tained. Similar to the experiments on 2-dimensional
data, the average actual errors are much lower than
the error bounds as shown in Figure 14 (b).

6 Conclusion

We investigated the k nearest neighbors problem in the
data stream model. We introduced the e-approximate
k nearest neighbors (ekNN) problem and presented a
structure called DISC to address it over data streams.
DISC achieves the goals of memory optimization given
an error bound or adjusts itself to achieve the best
accuracy to answer ekNN queries when a memory con-
straint is given. At the same time, DISC retains effi-
cient update and query processing which is a common
requirement for data stream applications. Extensive
studies on both synthetic and real data showed that
the memory usage of DISC is small and the actual er-
rors are much lower than the theoretical error bounds
that the structure guarantees.
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