
HAL Id: inria-00175330
https://hal.inria.fr/inria-00175330

Submitted on 27 Sep 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Quality vs. Time Trade-off for Approximate Image
Descriptor Search

Rut Sigurdardottir, Hlynur Hauksson, Björn Þór Jónsson, Laurent Amsaleg

To cite this version:
Rut Sigurdardottir, Hlynur Hauksson, Björn Þór Jónsson, Laurent Amsaleg. The Quality vs. Time
Trade-off for Approximate Image Descriptor Search. 21st International Conference on Data Engi-
neering Workshops (ICDEW’05), EMMA - International Workshop on Managing Data for Emerging
Multimedia Applications, Apr 2005, Tokyo, Japan. �10.1109/ICDE.2005.294�. �inria-00175330�

https://hal.inria.fr/inria-00175330
https://hal.archives-ouvertes.fr


The Quality vs. Time Trade-off
for Approximate Image Descriptor Search

�

Rut Sigurðardóttir
Reykjavík University

Ofanleiti 2, IS-103 Reykjavík, Iceland
rut01@ru.is

Hlynur Hauksson
Reykjavík University

Ofanleiti 2, IS-103 Reykjavík, Iceland
hlynur01@ru.is

Björn Þór Jónsson
Reykjavík University

Ofanleiti 2, IS-103 Reykjavík, Iceland
bjorn@ru.is

Laurent Amsaleg
IRISA–CNRS

Campus de Beaulieu, 35042 Rennes, France
laurent.amsaleg@irisa.fr

Abstract

In recent years, content-based image retrieval has be-
come more and more important in many application areas.
Similarity retrieval is inherently a very demanding process,
in particular when performing exact searches. Therefore,
there is an increasing interest in performing approximate
searches, where result quality guarantees are traded for re-
duced query execution time.

The goal of approximate retrieval systems should be
to obtain the best possible result quality in the minimum
amount of time. As a result, typical indexing strategies di-
vide the data set into many data chunks. Minimizing the
search time suggests to generate uniformly sized chunks to
best overlap I/O costs with CPU costs. Maximizing quality,
on the other hand, suggests to strongly limit the intra-chunk
dissimilarity of data.

The paper addresses the question to what extent guar-
anteeing the query processing time, using uniform chunk
sizes, compromises the quality of the results, and vice ver-
sa. Using a large collection of 5 million 24-dimensions lo-
cal descriptors computed over more than 50 thousand real
life images, we show that minimizing the query processing
time may in fact lead to better quality of the intermediate
results.

�

This project is part of the Eff
�

project on Efficient and Effective Image
Retrieval (see http://datalab.ru.is/eff2). The Eff

�

project is a cooperation
between researchers at the IRISA laboratory in Rennes, France, and Reyk-
javík University, Iceland, and is partially supported by Rannís Technical
Research Grant 030290004 and ÉGIDE Jules Verne Travel Grant 4-2003.

1. Introduction

In recent years, content-based image retrieval has be-
come more and more important in many fields, such
as medicine, geography, weather forecasting and securi-
ty. Content-based image retrieval is typically implement-
ed by mapping the images to multi-dimensional descrip-
tors, which are then used in similarity searches to determine
which images in the collection are most similar to a query
image.

Query processing in content-based similarity retrieval is
inherently a very demanding application. While many ad-
vanced multi-dimensional indexing methods exist, they in-
variably run into the infamous curse of dimensionality when
faced with large collections of high-dimensional descrip-
tors [19, 5]. In the best case, their performance degrades
gracefully to that of a sequential scan of the collection.

In many cases, it has been observed that most of the
eventual top results are found in the early stages of the query
processing and that most of the search time is in fact spent
on guaranteeing that the result of the query is indeed the
best result that can be obtained. Because of the inherent
difficulty of obtaining such a guarantee, there has recent-
ly been a surge of interest in approximate query processing
algorithms, which trade the guarantee of a best result for
reduced query processing time [18, 12, 11, 6, 3].

One example of such a search scheme is the “cluster-
ing for indexing” paradigm, which was originally proposed
in [15]. In this approach some mechanism is used to divide
the descriptor collection into chunks of similar data. An
approximate search algorithm is then used that 1) globally
ranks the data chunks based on the distance from the query
point, 2) reads and processes the data chunks in the order of



the global ranking, and 3) applies an aggressive stop-rule to
determine when enough time has been spent on the query
processing. A simple and natural stop rule is to process on-
ly the � nearest chunks, and then return the result that has
been obtained at that time as the final result of the query.
Typically, by processing only a few of the data chunks, a
close approximation of the eventual result is obtained.

1.1. Quality vs. Time

Given the stop rule described above, the goal of the
approximate retrieval system should be to obtain the best
possible result quality (typically measured using precision
and/or recall) in the minimum amount of time. A variety of
methods to form the chunks of data may be (and have been)
used, but this tradeoff between the quality and response time
has not been studied in detail.

Since the number of chunks to read is fixed, the response
time of the search is primarily determined by the CPU cost
of processing the descriptors of the chunks. While this cost
is typically quite significant, e.g. when using the common
Euclidean similarity measure, it can potentially be over-
lapped with I/O cost. As a result, the way to guarantee min-
imal query processing cost is to produce uniformly sized
chunks, to balance the I/O and CPU cost of the search.

Uniformly sized chunks, however, may span arbitrarily
large portions of the multi-dimensional space, depending
on the density distribution of the data collection. Therefore,
some of the query processing time may be spent on pro-
cessing descriptors that are quite different from the query
descriptor. The best way to guarantee result quality is there-
fore to limit the intra-chunk dissimilarity between descrip-
tors, so that once a data chunk has been determined to be
near the query descriptor, all of its contents are likely to be
close as well.

Clearly, both quality and response time need to be
considered, when dividing the descriptor collection into
chunks. For example, by distributing descriptors to chunks
in a round-robin manner, chunks of uniform size are ob-
tained, but the quality will suffer. On the other hand, pair-
ing each descriptor with one or a few of its closest neighbors
will give very low intra-chunk dissimilarity, but the time to
globally rank such small chunks will be excessive.

1.2. Contributions of the Paper

The main research question that this paper addresses is
the following: To what extent does guaranteeing the query
processing time, using uniform chunk size, compromise the
quality of the result, and vice versa? In order to answer this
question, we compare two different approaches to forming
the data chunks that focus on guaranteeing response time
and result quality, respectively.

For uniform chunk size, we have instrumented an SR-
tree index [14] to generate chunks of uniform size, by vary-
ing the size of the leaves of the tree and generating one
chunk from each leaf. The SR-tree makes some effort
to keep similar descriptors together, but the emphasis is
squarely on the chunk size.

To minimize intra-chunk dissimilarity, we have used the
clustering algorithm of [3]. This algorithm focuses on guar-
anteeing the maximum diameter of the generated clusters,
while making a best effort on the chunk size by allowing
the user of the algorithm to control the number of clusters.

The main contribution of this paper is a detailed experi-
mental study of the tradeoff between quality and query pro-
cessing time of these two different approaches to forming
chunks. We use a large dataset of 5 million 24-dimensional
descriptors, created using one of the most advanced known
image description schemes [1]. The results show that 1) the
difference between the query processing time and quality
of results using these two approaches is less than expected,
and 2) focusing on the query processing time may actually
give better early results than focusing on quality. Obtain-
ing uniform chunk size is also far easier than guaranteeing
intra-chunk dissimilarity.

These results indicate that for approximate similarity
search, uniform chunk sizes should be the first priority,
while making an effort to achieve good groupings within
the chunks. Given the extremely long time required to gen-
erate high quality chunks for our collection, this is a very
fortunate result, as performing such clustering for very large
descriptor collections would simply be impossible.

1.3. Overview of the Paper

The remainder of the paper is organized as follows.
Sections 2 and 3 review the two extreme chunk form-
ing approaches employed in our performance study. Sec-
tion 4 presents our experimental environment and Section 5
presents the experimental results. Finally, Section 6 dis-
cusses related work and Section 7 gives our conclusions.

2. Forming Chunks with the SR-tree

In order to build chunks of uniform size, we adapted
the SR-tree of [14] to yield chunks, by making two minor
changes to the code. First, we added a parameter to con-
trol the size of the leaves, and second, we added a method
to generate chunks from the leaves, thus throwing away the
upper levels of the tree. We used the static build method, as
it was much faster and guaranteed uniform leaf size. Unfor-
tunately, it requires the collection to fit in memory, which
limited the data collection we could use.

The SR-tree produces roundish chunks of uniform physi-
cal size, and can be made quite scalable via standard sorting



and bulk-loading techniques. The chunks are not of high
quality, however, as they tend to overlap significantly. Ad-
ditionally, this approach does not handle outliers naturally
(see Section 5 for a discussion on outlier handling in our
experiments).

3. Forming Chunks with BAG

The second chunk forming strategy is a clustering algo-
rithm called BAG1 which is presented in [3]. BAG tries
to create clusters of minimal volume in order to maximize
the intra-cluster similarity of descriptors. It is derived from
the first phase of Birch [20], and outputs hyper-spherical
clusters, each being identified by its centroid and minimum
bounding radius.

To produce clusters, the algorithm uses one key value,
called MPI in the following, that represents the Maximum
Possible Increment for radii. It starts by creating a cluster
from each descriptor. Since the radius of each cluster is
always maintained, they all have, at this stage, a radius of
zero. Then, the algorithm scans the current set of clusters to
see whether some clusters might be merged.

Two clusters can be merged if and only if the radius of
the resulting cluster is smaller than the radius of the larger
cluster plus the MPI value mentioned above. When two
clusters are merged, the new centroid is computed as well
as the new minimum bounding radius. Clusters that do not
merge have their radius incremented by MPI (making their
radius non-minimal).

Once all clusters have been analyzed (therefore either
merged into larger clusters or having had their radius incre-
mented), the algorithm reconsiders again the list of current
clusters for potential new merges. Note that at each step,
it is possible that no merge occurs (all clusters are too s-
mall and too far away) or that many merges take place. At
the end of each step, the average number of descriptors per
cluster is computed. Then, all clusters that hold less than
some percentage of this average number (20% in the case
of our experiments) are destroyed. All the descriptors held
in destroyed clusters create again one-point clusters with a
zero radius. These points might subsequently be merged
into some neighboring clusters.

As time goes by, the algorithm reduces the number of
clusters as their radius expands. Eventually, the number of
clusters falls below a user-defined threshold and the algo-
rithm terminates. At that time, the average population of
clusters is computed. Clusters with too few descriptors are
destroyed and the descriptors they were holding are consid-
ered to be outliers.

BAG does not use any indexing scheme to facilitate the
merge process. Instead, it examines all existing clusters ev-

1This algorithm was not named in the original paper, so we refer to it
using the first letter of the last names of the authors.

ery time a cluster is checked for potential merges. As a
result, the CPU time required for processing is very high
and clustering descriptors takes a long time.

4. Experimental Environment

This section presents the experimental environment we
used to investigate the tradeoffs between the two chunk-
forming strategies mentioned previously. We first present
the image description scheme we used to create our data set-
s. Then we detail the architecture used to index the chunks
and the search algorithm.

4.1. Describing Images

The descriptors we used to describe our images rely on
the fine-grained recognition scheme for grey-level images
originally proposed by [9], extensively used and evaluat-
ed by [16] and extended to cope with color images in [1].
These descriptors are often called local descriptors because
one descriptor encodes information that is local to a (small)
area of an image. A descriptor is a 24-dimensional vector of
floats and, in general, there are few hundreds of descriptors
computed on each image. Images belonging to the collec-
tion are described off-line and typically stored sequentially
in a single file. With this description scheme, similarity be-
tween images is implemented as a nearest-neighbors search
in a Euclidean space [13].

These descriptors are very robust to image transforma-
tions and are able to detect similar elements in images de-
spite orientation changes, translations, various illumination
changes, partial occlusions, etc. [1]. They are particularly
well suited to enforce robust content-based image searches
for copyright protection [4].

4.2. Chunk Index Architecture

The chunk index consists of two files, a chunk file and
an index file. The chunk file holds the descriptors comput-
ed over the whole image collection but these descriptors are
grouped according to the specific chunk-forming strategy.
All the descriptors belonging to one chunk are stored to-
gether on disk and the chunks are stored sequentially. The
chunks are padded to occupy full disk pages.

The second file stores a simple index built over the chunk
file. Each entry of the index stores the coordinates of the
centroid of each chunk and the radius of the chunk, as well
as its location in the chunk file. The order of the entries in
the index is identical to the order of the chunks in the chunk
file.



4.3. The Search Algorithm

For a given query descriptor, the search algorithm pro-
ceeds as follows. It first computes the distance between this
query descriptor and the centroids of all existing chunks,
and then ranks chunks according to their increasing dis-
tances. Based on this ranking, chunks are then accessed
one after the other.

When a chunk is accessed, all the descriptors it contain-
s are fetched into memory. The search then computes the
distances between all the descriptors in the chunk and the
query descriptor. This might in turn update the current set
of neighbors.

Once all the descriptors of a chunk have been analyzed,
the algorithm checks whether a new chunk must be read.
The search might simply stop once � chunks have been pro-
cessed or when a time threshold has been passed. If the
search is asked to go to completion, however, it stops when
�

neighbors have been found and when the minimum dis-
tance to the next chunk is greater than the current distance
to the

�����
neighbor. This ensures that all nearest-neighbors

have been found. Computing this minimum distance is the
rationale for storing the radii of chunks together with their
centroids.

5. Experimental Results

This section first describes our experimental setup, and
then the two experiments we performed. The first experi-
ment compared the response time and result quality of the
two chunk forming strategies, while the second experiment
was performed to determine the optimal chunk size to bal-
ance I/O and CPU cost. The section concludes with a dis-
cussion of the results.

5.1. Experimental Setup

We used the architecture described in Section 4 and the
algorithms described in Sections 2 and 3. In the follow-
ing we describe the descriptor collection used in our exper-
iments, the query workloads studied, and the metrics gath-
ered.

5.2. Descriptor Collection

We used a collection of 5,017,298 descriptors, derived
from 52,273 real life images. Of these, 610 images come
from a collection of still images2, while the other images
have been accumulated from various television broadcast-
s. As each descriptor has 24 dimensions, plus an identifier,

2See http://www.irisa.fr/texmex/base_images/index.html.

each descriptor consumes 100 bytes, and the collection re-
quires around 500MB of disk storage.

Table 1 shows information about the chunk indexes used
in our study. The process to obtain these chunk indexes
was as follows. The collection was first clustered using the
BAG algorithm, yielding three different chunk indexes with
varying sizes of clusters (SMALL, MEDIUM and LARGE).
Because of the way the algorithm works, each clustering
was generated from the other in succession. Outliers were
then removed, as discussed in Section 3. The SR-tree was
then used to form chunks of uniform size roughly equal to
the average size of the BAG clusters. Table 1 shows how
many outliers were identified for each chunk index, as well
as the resulting number of chunks and their average size for
both approaches.

Three things are worth noting about this process. Firstly,
the SR-tree was used after removing outliers, as it has no
mechanism for outlier removal. While this may seem unfair
towards the BAG algorithm, we note that 1) outlier removal
effectiveness is not under study here, and 2) we tested an-
other simpler outlier removal scheme for the SR-tree, name-
ly removing all descriptors with total length greater than a
constant, and that method gave almost identical results. Ad-
ditionally, knowing that no outliers are in the dataset would
not change anything in the implementation of the BAG al-
gorithm.

Secondly, the size given in Table 1 is uniform for al-
l chunk-formations using the SR-tree. For the BAG algo-
rithm, on the other hand, it is an average size. Due to the
uneven distribution of the descriptors in the 24-dimensional
space, there are a few chunks that are very large, and then
there are many very small chunks. Figure 1 shows the size
of the 30 largest chunks for each of the six chunk indexes
of Table 1. The figure shows that the largest chunks are in-
deed very large (containing more than 500 thousand, 600
thousand and 1 million descriptors for the respective BAG
chunk indexes of Table 1). As we will see later, this may
have a serious effect on performance.

Thirdly, we note that the time it took to form the chunks
was very different for the two approaches. The BAG algo-
rithm took almost 12 days to generate the fewest clusters (as
explained above, the other clusterings were generated along
the way). The SR-tree, on the other hand, took about three
hours to generate the chunk index with the most chunks, but
less than two hours for the others. Surprisingly, the actual
tree generation took at most 10 minutes, while the rest of
the time was spent on calculating the centroid and radius of
each chunk, as well as writing out the chunks.

5.3. Workloads

Queries to an image retrieval system will either have a
good match in the collection or not. We have created two



Table 1. Properties of the BAG and SR-tree chunk indexes

Descriptors and Outliers BAG SR-tree
Retained Discarded Percentage of Number of Descriptors Number of Descriptors

Chunk sizes Descriptors Outliers Outliers Chunks per Chunk Chunks per Chunk
SMALL 4,471,532 545,766 12.2% 4,720 947 4,747 942
MEDIUM 4,595,312 421,986 9.2% 2,685 1,711 2,672 1,719
LARGE 4,652,022 365,276 8.0% 1,871 2,486 1,863 2,497

1

10

100

1000

0 5 10 15 20 25 30C
hu

nk
 S

iz
e 

(t
ho

us
an

d 
de

sc
rip

to
rs

)

Chunk Rank

BAG / SMALL
BAG / MEDIUM

BAG / LARGE
SR / SMALL

SR / MEDIUM
SR / LARGE

Figure 1. Size of the largest chunks

different workloads to simulate that. The first workload,
called “DQ” (or “dataset queries”), consisted of 1,000 ran-
domly selected descriptors from the descriptor collection.
This workload simulated the cases when a match is found
in the collection.

The second workload, called “SQ” (or “space-queries”),
consisted of 1,000 queries, that were generated randomly
from the 24-dimensional space as follows. For each dimen-
sion of the descriptors we analyzed the range of values in
the descriptor collection. After discarding the top and bot-
tom 5%, we stored the remaining value range of each di-
mension. The descriptors were then generated by selecting
uniformly distributed values from these ranges. This work-
load simulated the cases when no match is found in the col-
lection.

5.4. Measurements

The experiments were run on a Dell workstation with a
2.8GHz Pentium 4 CPU, 1GB of main memory, and a 40GB
ATA disk. Each query in the workload was run once to each
chunk-index in a round-robin fashion (to eliminate buffer-
ing effects) and the results of the thousand queries were av-
eraged for each workload.

Metrics were gathered for response time and quality. The
primary response time metrics were number of chunks read

and elapsed time (or wall clock time), while other metrics
were examined to understand the results. The primary qual-
ity metric was the precision within the top 30 images (when
the number of returned images is fixed, recall and precision
are the same metric). These metrics were logged after the
processing of every chunk. As we always ran queries to
conclusion, we were able to measure the quality of interme-
diate results.

To measure precision, we first ran a sequential scan of
the collection, and stored the identifiers of the returned de-
scriptors in a file. We then read this file for each measure-
ment and used the descriptor list to calculate the precision
of the intermediate result.

5.5. Experiment 1: Chunk Formation Strategies

The purpose of this experiment was to measure the ef-
fect of emphasizing uniform chunk size or uniform intra-
chunk dissimilarity. Therefore, we examined the number of
chunks and elapsed time required to find nearest neighbors
with each chunk index.

Figure 2 shows how many chunks were required, on av-
erage, to find any number of nearest neighbors, with all six
combinations of chunk sizes and chunk-forming approach-
es. Overall, the figure shows that much fewer chunks must
be read to find the nearest neighbors for chunk indexes cre-
ated using the BAG algorithm. For example, reading 5
chunks will on average yield 25-28 nearest neighbors for
the BAG chunk indexes, but only 16-20 neighbors for the
SR-tree chunk indexes. This is not surprising, as with the
BAG indexes most queries will search their own chunk first
and find there a high number of nearest neighbors. Figure 2
also shows that the average size of the chunks has only a s-
mall effect on the number of chunks required to find nearest
neighbors.

Figure 3 shows the same information, but in this case for
the SQ workload. While the overall shapes of the curves
is similar, the important difference is that searching the SR-
tree chunk indexes now gives slightly better results—mostly
because with the BAG chunk indexes many more chunks
must be read to obtain the same number of descriptors. This
is explained by the fact that several small chunks may be
read, instead of a few larger ones.



0

5

10

15

20

25

30

0 5 10 15 20 25 30

C
hu

nk
s 

R
ea

d

Neighbors Found

BAG / LARGE
BAG / MEDIUM

BAG / SMALL
SR / LARGE

SR / MEDIUM
SR / SMALL

Figure 2. Number of chunks required to find
nearest neighbors (DQ workload)

0

5

10

15

20

25

30

0 5 10 15 20 25 30

C
hu

nk
s 

R
ea

d

Neighbors Found

BAG / LARGE
BAG / MEDIUM

BAG / SMALL
SR / LARGE

SR / MEDIUM
SR / SMALL

Figure 3. Number of chunks required to find
nearest neighbors (SQ workload)

0

0.5

1

1.5

2

0 5 10 15 20 25 30

W
al

l T
im

e 
(s

ec
)

Neighbors Found

BAG / LARGE
BAG / MEDIUM

BAG / SMALL
SR / LARGE

SR / MEDIUM
SR / SMALL

Figure 4. Elapsed time required to find near-
est neighbors (DQ workload)

Turning to the elapsed time, shown in Figure 4 for the
DQ workload, the story is quite different. As that figure
shows, finding the first neighbors takes a much longer time
with the BAG chunk indexes, than with the SR-tree chunk
indexes. The reason is that while reading a large chunk is
very beneficial for yielding many neighbors, it takes a great
deal of CPU time to process such a large chunk. Since a
single chunk is the natural granule of the search algorithm,
results can only be returned once the required chunks have
been processed. With the SR-tree chunk indexes, reading
and processing each chunk takes only about 10 millisecond-
s, while processing the largest chunk of the BAG algorithm
took as much as 1.8 seconds. Therefore many more chunks
can be processed from the SR-tree indexes and more neigh-
bors found within the first second.

Figure 5 shows the same information for the SQ work-
load. In this case, all approaches perform very similarly, as
the BAG indexes are able to avoid reading the large chunks.

Figures 4 and 5 show that reading the chunk index takes
about 50 milliseconds on average.3 The figures also show,
however, that the BAG indexes catch up after about two sec-
onds. In fact the search is completed faster with the BAG
indexes as shown in Table 2.

5.6. Experiment 2: Optimal Chunk Size

Having determined in the previous experiment that us-
ing uniformly sized chunks, created using the SR-tree, is
preferable in terms of quickly obtaining reasonable approx-
imate results, we wanted to know what chunk sizes gave the
best performance tradeoff. We therefore used the SR-tree to

3Reading the chunk index of the BAG / SMALL configuration consis-
tently took 150 milliseconds, compared to the 50 milliseconds for the other
configurations. No explanation was found for this, but we suspect the disk
layout of the index.



0

0.5

1

1.5

2

0 5 10 15 20 25 30

W
al

l T
im

e 
(s

ec
)

Neighbors Found

BAG / LARGE
BAG / MEDIUM

BAG / SMALL
SR / LARGE

SR / MEDIUM
SR / SMALL

Figure 5. Elapsed time required to find near-
est neighbors (SQ workload)

Table 2. Time to completion (seconds)

BAG SR-tree
Chunk sizes DQ SQ DQ SQ
SMALL 39.5 44.6 45.0 45.0
MEDIUM 23.4 26.7 31.3 31.2
LARGE 16.7 20.3 25.2 25.5

create 16 chunk indexes with variable chunk sizes from the
collection of 4,471,532 descriptors, and ran the same two
workloads against each of these chunk indexes.

Figures 6 and 7 show the time required to find an increas-
ing number of nearest neighbors for each of these chunk
sizes, for the two workloads. As the figures show, the per-
formance is quite similar for a wide range of cluster sizes,
in particular when it is acceptable to expect not to find all
neighbors. Chunks that are in the range of 1,000 to 10,000
descriptors all result in similar performance. This result is
corroborated by the fact that the chunks of the previous ex-
periment ranged from 942 to 4,747 descriptors.

5.7. Discussion

At least four important lessons may be learned from the
results of these experiments. The first lesson is that relaxing
the requirements for precise answers may yield significant
improvements in response time. In our experiments, most of
the 30 nearest neighbors were found in the first 1-2 seconds,
while guaranteeing a correct result took between 16 and 45
seconds.

The second lesson is that the elapsed time is a more nat-
ural stop rule than the number of chunks read, as with the
latter variably sized chunks may lead to variable query exe-
cution time.

0

0.5

1

1.5

2

2.5

3

100 1000 10000 100000

W
al

l T
im

e 
(s

ec
)

Chunk Size ()

1 neighbor
10 neighbors
20 neighbors
25 neighbors
28 neighbors
30 neighbors

Figure 6. Effect of different chunk sizes
(DQ workload)

0

1

2

3

4

5

6

100 1000 10000 100000

W
al

l T
im

e 
(s

ec
)

Chunk Size ()

1 neighbor
10 neighbors
20 neighbors
25 neighbors
28 neighbors
30 neighbors

Figure 7. Effect of different chunk sizes
(SQ workload)



The third lesson is that the query processing has similar
performance and result quality for a range of chunk sizes. It
is therefore not necessary to make all chunks the exact same
size, but rather to avoid very small and very large chunks.

Finally, by comparing the results for elapsed time and re-
calling the excessive time taken to generate the BAG index-
es, it is clear that the energy spent on creating dense chunks
is largely wasted, and that an algorithm to form chunks for
very large collections must indeed focus first on chunk size,
and second on the intra-dissimilarity.

6. Related Work

Using clustering for indexing was originally proposed
in [15]. They proposed to use the Cluster Forming (CF)
algorithm to generate the clusters, and compared it to us-
ing the TSVQ algorithm [10]. Given a collection of about
450 thousand 48-dimensional histograms, CF outperformed
TSVQ. The CF algorithm, however, may generate arbitrar-
ily shaped clusters for two reasons. First, it is designed to
detect clusters of arbitrary shape, and it has a very loose no-
tion of adjacency of data. Second, the implementation had
a hidden parameter to control the maximum size of cluster-
s [17]. Given that segments of the multidimensional space
are processed in the order of how many data points are con-
tained within that segment, natural clusters may be broken
up arbitrarily using this parameter. Thus, while it yields
clusters of uniform physical size, they may have complete-
ly arbitrary shapes. Therefore we chose not to use CF for
our study. We can point out, however, that CF is reasonably
efficient—in [17] we have reported that building an index
for a collection of 500 thousand 24-dimensional descriptors
took 2–6 hours, depending on parameters.

Many approaches to approximate NN-searches have
been proposed. Weber and Böhm with their approxi-
mate version of the VA-File [18] and Li et al. with Clin-
dex [15] perform approximate NN-searches by interrupting
the search after having accessed an arbitrary, predetermined
and fixed number of chunks. Ferhatosmanoglu et al., in [8],
combine this with a dimensionality reduction technique.
With this technique, it is possible to improve the quality
of an approximate result by either reading more chunks or
by increasing the number of dimensions for distance calcu-
lations.

Other works use geometrical approximations of chunks
for their NN-searches. They typically account for an ad-
ditional � value when computing the distances to chunks,
making chunks somehow “smaller”. In [18], Weber and
Böhm present the VA-BND in which � is empirically es-
timated by sampling database vectors. The AC-NN scheme
for M-Trees presented in [6] relies on a single value � set by
the user.

Finally, some works enforce approximate NN-searches

thru probabilistic approaches. DBIN [2], for example, ex-
ploits the statistical properties of data and clusters data us-
ing the EM (Expectation Maximization) algorithm. It abort-
s the NN-search when the estimated probability for a re-
maining database vector to be a better neighbor than the
ones currently known falls below a predetermined thresh-
old. P-Sphere Trees [12] investigate trading off (disk) space
for time when searching for the approximate NN of query
points. In this scheme, vectors belonging to overlapping hy-
perspheres are replicated. Hyperspheres are built such that
the probability of finding the true NN of the query point can
be enforced at run time by simply having the search identi-
fying the nearest center and solely scanning the correspond-
ing hypersphere. Both approaches are unable, however, to
place any guarantees beyond the first nearest neighbor.

Recently, a very different approach to approximate
searches has been published. With the Medrank algorith-
m [7], all descriptors are projected onto a set of random
lines. Then, the database elements are ranked based on the
proximity of the projections to the projection of the query.
A rank aggregation rule picks the database element that has
the best median rank as being, with a high probability, the
true nearest neighbor of the query point. The next best me-
dian rank gives the second nearest neighbor of the query
point and so on. One of the very nice properties of this al-
gorithm is that it is I/O bound (and I/O optimal, as proven
in [7]) because the algorithm is based on the aggregation of
ranking rather than distance calculations.

7. Conclusions

In recent years, content-based image retrieval has be-
come more and more important in many application ar-
eas. Similarity retrieval is inherently a very demanding pro-
cess, in particular for exact searches. Therefore, there is
an increasing interest in performing approximate searches,
where result quality guarantees are traded for reduced query
execution time.

The goal of approximate retrieval systems should be
to obtain the best possible result quality in the minimum
amount of time. As a result, typical indexing strategies di-
vide the data set into many data chunks. Minimizing the
search time suggests to generate uniformly sized chunks to
best overlap I/O costs with CPU costs. Maximizing quality,
on the other hand, suggests to strongly limit the intra-chunk
dissimilarity of data.

The paper addresses the question to what extent guar-
anteeing the query processing time, using uniform chunk
sizes, compromises the quality of the results, and vice ver-
sa. Using a large collection of 5 million 24-dimensions local
descriptors computed over more than 50 thousand real life
images, we have shown that minimizing the query process-
ing time may in fact lead to better quality of the intermediate



results.
We have already described a collection of over 192 t-

housand images, resulting in over 220 million descriptors
(over 22GB of data). We are planning to implement a multi-
descriptor search algorithm for local descriptors and run a-
gainst this collection. Our results indicate that we should
use a clustering algorithm which keeps uniform chunk size
as the first priority, but attempts to achieve the smallest pos-
sible intra-chunk dissimilarity. Given the extreme size of
the collection, this is a very fortunate result, as focusing on
the intra-chunk dissimilarity would be simply impossible.

References

[1] L. Amsaleg and P. Gros. Content-based retrieval using local
descriptors: Problems and issues from a database perspec-
tive. Pattern Analysis and Applications, 4:108–124, 2001.

[2] K. Bennett, U. Fayyad, and D. Geiger. Density-based index-
ing for approximate nearest-neighbor queries. In Proceed-
ings of the 5th ACM International Conference on Knowledge
Discovery and Data Mining, San Diego, CA USA, 1999.

[3] S.-A. Berrani, L. Amsaleg, and P. Gros. Approximate
searches:

�
-neighbors + precision. In Proceedings of

the Twelfth International Conference on Information and
Knowledge Management, New Orleans, LA, USA, 2003.

[4] S.-A. Berrani, L. Amsaleg, and P. Gros. Robust content-
based image searches for copyright protection. In Proceed-
ings of the First ACM International Workshop on Multime-
dia Databases, New Orleans, LA, USA, 2003.

[5] C. Böhm, S. Berchtold, and D. A. Keim. Searching in high-
dimensional spaces—index structures for improving the per-
formance of multimedia databases. ACM Computing Sur-
veys, 33(3):322–373, 2001.

[6] P. Ciaccia and M. Patella. PAC nearest neighbor queries:
Approximate and controlled search in high-dimensional and
metric spaces. In Proceedings of the IEEE Conference on
Data Engineering, San Diego, CA, USA, 2000.

[7] R. Fagin, R. Kumar, and D. Sivakumar. Efficient similarity
search and classification via rank aggregation. In Proceed-
ings of the ACM SIGMOD Conference on Management of
Data, San Diego, CA, USA, 2003.

[8] H. Ferhatosmanoglu, E. Tuncel, D. Agrawal, and A. E. Ab-
badi. Approximate nearest neighbor searching in multime-
dia databases. In Proceedings of the IEEE Conference on
Data Engineering, Heidelberg, Germany, 2001.

[9] L. M. J. Florack, B. M. ter Haar Romeny, J. J. Koenderink,
and M. A. Viergever. General intensity transformations and
differential invariants. Journal of Mathematical Imaging
and Vision, 4(2):171–187, 1994.

[10] A. Gersho and R. Gray. Vector Quantization and Signal
Compression. Kluwer Academic, 1991.

[11] A. Gionis, P. Indyk, and R. Motwani. Similarity search in
high dimensions via hashing. In Proceedings of the Confer-
ence on Very Large Data Bases (VLDB), Edinburgh, Scot-
land, 1999.

[12] J. Goldstein and R. Ramakrishnan. Contrast plots and P-
Sphere trees: Space vs. time in nearest neighbor searches.

In Proceedings of the Conference on Very Large Data Bases
(VLDB), Cairo, Egypt, 2000.

[13] R. Ý. Grétarsdóttir, S. H. Einarsson, B. Þ. Jónsson, and
L. Amsaleg. The Eff

�

image retrieval system prototype.
In Proceedings of the IASTED International Conference
on Databases and Applications (DBA), Innsbruck, Austria,
2005.

[14] N. Katayama and S. Satoh. The SR-tree: An index structure
for high-dimensional nearest neighbor queries. In Proceed-
ings of the ACM SIGMOD Conference on Management of
Data, Tucson, AZ, 1997.

[15] C. Li, E. Y. Chang, H. Garcia-Molina, and G. Wieder-
hold. Clustering for approximate similarity search in high-
dimensional spaces. IEEE Transactions on Knowledge and
Data Engineering, 14(4):792–808, 2002.

[16] C. Schmid and R. Mohr. Local grayvalue invariants for im-
age retrieval. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 19(5):530–534, 1997.

[17] Á. G. Valgeirsson, B. Erlingsson, Í. S. Einarsson, B. Þ.
Jónsson, and L. Amsaleg. Using clustering to index image
descriptors: A performance evaluation. Technical report,
Reykjavík University, 2003.

[18] R. Weber and K. Böhm. Trading quality for time with n-
earest neighbor search. In Proceedings of the Internation-
al Conference on Extending Database Technology (EDBT),
Konstanz, Germany, 2000.

[19] R. Weber, H.-J. Schek, and S. Blott. A quantitative analy-
sis and performance study for similarity-search methods in
high-dimensional spaces. In Proceedings of the Conference
on Very Large Data Bases (VLDB), New York, New York,
USA, 1998.

[20] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An ef-
ficient data clustering method for very large databases. In
Proceedings of the ACM SIGMOD Conference on Manage-
ment of Data, Montreal, Canada, 1996.


