137 research outputs found

    Review : Deep learning in electron microscopy

    Get PDF
    Deep learning is transforming most areas of science and technology, including electron microscopy. This review paper offers a practical perspective aimed at developers with limited familiarity. For context, we review popular applications of deep learning in electron microscopy. Following, we discuss hardware and software needed to get started with deep learning and interface with electron microscopes. We then review neural network components, popular architectures, and their optimization. Finally, we discuss future directions of deep learning in electron microscopy

    A survey on the application of deep learning for code injection detection

    Get PDF
    Abstract Code injection is one of the top cyber security attack vectors in the modern world. To overcome the limitations of conventional signature-based detection techniques, and to complement them when appropriate, multiple machine learning approaches have been proposed. While analysing these approaches, the surveys focus predominantly on the general intrusion detection, which can be further applied to specific vulnerabilities. In addition, among the machine learning steps, data preprocessing, being highly critical in the data analysis process, appears to be the least researched in the context of Network Intrusion Detection, namely in code injection. The goal of this survey is to fill in the gap through analysing and classifying the existing machine learning techniques applied to the code injection attack detection, with special attention to Deep Learning. Our analysis reveals that the way the input data is preprocessed considerably impacts the performance and attack detection rate. The proposed full preprocessing cycle demonstrates how various machine-learning-based approaches for detection of code injection attacks take advantage of different input data preprocessing techniques. The most used machine learning methods and preprocessing stages have been also identified

    Service Abstractions for Scalable Deep Learning Inference at the Edge

    Get PDF
    Deep learning driven intelligent edge has already become a reality, where millions of mobile, wearable, and IoT devices analyze real-time data and transform those into actionable insights on-device. Typical approaches for optimizing deep learning inference mostly focus on accelerating the execution of individual inference tasks, without considering the contextual correlation unique to edge environments and the statistical nature of learning-based computation. Specifically, they treat inference workloads as individual black boxes and apply canonical system optimization techniques, developed over the last few decades, to handle them as yet another type of computation-intensive applications. As a result, deep learning inference on edge devices still face the ever increasing challenges of customization to edge device heterogeneity, fuzzy computation redundancy between inference tasks, and end-to-end deployment at scale. In this thesis, we propose the first framework that automates and scales the end-to-end process of deploying efficient deep learning inference from the cloud to heterogeneous edge devices. The framework consists of a series of service abstractions that handle DNN model tailoring, model indexing and query, and computation reuse for runtime inference respectively. Together, these services bridge the gap between deep learning training and inference, eliminate computation redundancy during inference execution, and further lower the barrier for deep learning algorithm and system co-optimization. To build efficient and scalable services, we take a unique algorithmic approach of harnessing the semantic correlation between the learning-based computation. Rather than viewing individual tasks as isolated black boxes, we optimize them collectively in a white box approach, proposing primitives to formulate the semantics of the deep learning workloads, algorithms to assess their hidden correlation (in terms of the input data, the neural network models, and the deployment trials) and merge common processing steps to minimize redundancy

    Symmetry-Adapted Machine Learning for Information Security

    Get PDF
    Symmetry-adapted machine learning has shown encouraging ability to mitigate the security risks in information and communication technology (ICT) systems. It is a subset of artificial intelligence (AI) that relies on the principles of processing future events by learning past events or historical data. The autonomous nature of symmetry-adapted machine learning supports effective data processing and analysis for security detection in ICT systems without the interference of human authorities. Many industries are developing machine-learning-adapted solutions to support security for smart hardware, distributed computing, and the cloud. In our Special Issue book, we focus on the deployment of symmetry-adapted machine learning for information security in various application areas. This security approach can support effective methods to handle the dynamic nature of security attacks by extraction and analysis of data to identify hidden patterns of data. The main topics of this Issue include malware classification, an intrusion detection system, image watermarking, color image watermarking, battlefield target aggregation behavior recognition model, IP camera, Internet of Things (IoT) security, service function chain, indoor positioning system, and crypto-analysis

    Acta Cybernetica : Volume 25. Number 2.

    Get PDF

    Machine learning algorithms for structured decision making

    Get PDF

    Uncertainty in Artificial Intelligence: Proceedings of the Thirty-Fourth Conference

    Get PDF

    16th SC@RUG 2019 proceedings 2018-2019

    Get PDF
    • …
    corecore