776 research outputs found

    Resource provisioning and scheduling algorithms for hybrid workflows in edge cloud computing

    Get PDF
    In recent years, Internet of Things (IoT) technology has been involved in a wide range of application domains to provide real-time monitoring, tracking and analysis services. The worldwide number of IoT-connected devices is projected to increase to 43 billion by 2023, and IoT technologies are expected to engaged in 25% of business sector. Latency-sensitive applications in scope of intelligent video surveillance, smart home, autonomous vehicle, augmented reality, are all emergent research directions in industry and academia. These applications are required connecting large number of sensing devices to attain the desired level of service quality for decision accuracy in a sensitive timely manner. Moreover, continuous data stream imposes processing large amounts of data, which adds a huge overhead on computing and network resources. Thus, latency-sensitive and resource-intensive applications introduce new challenges for current computing models, i.e, batch and stream. In this thesis, we refer to the integrated application model of stream and batch applications as a hybrid work ow model. The main challenge of the hybrid model is achieving the quality of service (QoS) requirements of the two computation systems. This thesis provides a systemic and detailed modeling for hybrid workflows which describes the internal structure of each application type for purposes of resource estimation, model systems tuning, and cost modeling. For optimizing the execution of hybrid workflows, this thesis proposes algorithms, techniques and frameworks to serve resource provisioning and task scheduling on various computing systems including cloud, edge cloud and cooperative edge cloud. Overall, experimental results provided in this thesis demonstrated strong evidences on the responsibility of proposing different understanding and vision on the applications of integrating stream and batch applications, and how edge computing and other emergent technologies like 5G networks and IoT will contribute on more sophisticated and intelligent solutions in many life disciplines for more safe, secure, healthy, smart and sustainable society

    Evaluating and Enabling Scalable High Performance Computing Workloads on Commercial Clouds

    Get PDF
    Performance, usability, and accessibility are critical components of high performance computing (HPC). Usability and performance are especially important to academic researchers as they generally have little time to learn a new technology and demand a certain type of performance in order to ensure the quality and quantity of their research results. We have observed that while not all workloads run well in the cloud, some workloads perform well. We have also observed that although commercial cloud adoption by industry has been growing at a rapid pace, its use by academic researchers has not grown as quickly. We aim to help close this gap and enable researchers to utilize the commercial cloud more efficiently and effectively. We present our results on architecting and benchmarking an HPC environment on Amazon Web Services (AWS) where we observe that there are particular types of applications that are and are not suited for the commercial cloud. Then, we present our results on architecting and building a provisioning and workflow management tool (PAW), where we developed an application that enables a user to launch an HPC environment in the cloud, execute a customizable workflow, and after the workflow has completed delete the HPC environment automatically. We then present our results on the scalability of PAW and the commercial cloud for compute intensive workloads by deploying a 1.1 million vCPU cluster. We then discuss our research into the feasibility of utilizing commercial cloud infrastructure to help tackle the large spikes and data-intensive characteristics of Transportation Cyberphysical Systems (TCPS) workloads. Then, we present our research in utilizing the commercial cloud for urgent HPC applications by deploying a 1.5 million vCPU cluster to process 211TB of traffic video data to be utilized by first responders during an evacuation situation. Lastly, we present the contributions and conclusions drawn from this work

    High Energy Physics Forum for Computational Excellence: Working Group Reports (I. Applications Software II. Software Libraries and Tools III. Systems)

    Full text link
    Computing plays an essential role in all aspects of high energy physics. As computational technology evolves rapidly in new directions, and data throughput and volume continue to follow a steep trend-line, it is important for the HEP community to develop an effective response to a series of expected challenges. In order to help shape the desired response, the HEP Forum for Computational Excellence (HEP-FCE) initiated a roadmap planning activity with two key overlapping drivers -- 1) software effectiveness, and 2) infrastructure and expertise advancement. The HEP-FCE formed three working groups, 1) Applications Software, 2) Software Libraries and Tools, and 3) Systems (including systems software), to provide an overview of the current status of HEP computing and to present findings and opportunities for the desired HEP computational roadmap. The final versions of the reports are combined in this document, and are presented along with introductory material.Comment: 72 page

    BRAHMA : an intelligent framework for automated scaling of streaming and deadline-critical workflows

    Get PDF
    The prevalent use of multi-component, multi-tenant models for building novel Software-as-a-Service (SaaS) applications has resulted in wide-spread research on automatic scaling of the resultant complex application workflows. In this paper, we propose a holistic solution to Automatic Workflow Scaling under the combined presence of Streaming and Deadline-critical workflows, called AWS-SD. To solve the AWS-SD problem, we propose a framework BRAHMA, that learns workflow behavior to build a knowledge-base and leverages this info to perform intelligent automated scaling decisions. We propose and evaluate different resource provisioning algorithms through CloudSim. Our results on time-varying workloads show that the proposed algorithms are effective and produce good cost-quality trade-offs while preventing deadline violations. Empirically, the proposed hybrid algorithm combining learning and monitoring, is able to restrict deadline violations to a small fraction (3-5%), while only suffering a marginal increase in average cost per component of 1-2% over our baseline naive algorithm, which provides the least costly provisioning but suffers from a large number (35-45%) of deadline violations
    corecore