1,151 research outputs found

    On stability of the Hamiltonian index under contractions and closures

    Get PDF
    The hamiltonian index of a graph GG is the smallest integer kk such that the kk-th iterated line graph of GG is hamiltonian. We first show that, with one exceptional case, adding an edge to a graph cannot increase its hamiltonian index. We use this result to prove that neither the contraction of an AG(F)A_G(F)-contractible subgraph FF of a graph GG nor the closure operation performed on GG (if GG is claw-free) affects the value of the hamiltonian index of a graph GG

    On some intriguing problems in Hamiltonian graph theory -- A survey

    Get PDF
    We survey results and open problems in Hamiltonian graph theory centred around three themes: regular graphs, tt-tough graphs, and claw-free graphs

    On factors of 4-connected claw-free graphs

    Get PDF
    We consider the existence of several different kinds of factors in 4-connected claw-free graphs. This is motivated by the following two conjectures which are in fact equivalent by a recent result of the third author. Conjecture 1 (Thomassen): Every 4-connected line graph is Hamiltonian, i.e. has a connected 2-factor. Conjecture 2 (Matthews and Sumner): Every 4-connected claw-free graph is hamiltonian. We first show that Conjecture 2 is true within the class of hourglass-free graphs, i.e. graphs that do not contain an induced subgraph isomorphic to two triangles meeting in exactly one vertex. Next we show that a weaker form of Conjecture 2 is true, in which the conclusion is replaced by the conclusion that there exists a connected spanning subgraph in which each vertex has degree two or four. Finally we show that Conjecture 1 and 2 are equivalent to seemingly weaker conjectures in which the conclusion is replaced by the conclusion that there exists a spanning subgraph consisting of a bounded number of paths. \u

    Hamilton cycles in 5-connected line graphs

    Get PDF
    A conjecture of Carsten Thomassen states that every 4-connected line graph is hamiltonian. It is known that the conjecture is true for 7-connected line graphs. We improve this by showing that any 5-connected line graph of minimum degree at least 6 is hamiltonian. The result extends to claw-free graphs and to Hamilton-connectedness

    Connectivity and Cycles

    Get PDF
    https://digitalcommons.memphis.edu/speccoll-faudreerj/1191/thumbnail.jp

    A closure concept in factor-critical graphs

    Get PDF
    AbstractA graph G is called n-factor-critical if the removal of every set of n vertices results in a~graph with a~1-factor. We prove the following theorem: Let G be a~graph and let x be a~locally n-connected vertex. Let {u,v} be a~pair of vertices in V(G)−{x} such that uv∉E(G), x∈NG(u)∩NG(v), and NG(x)⊂NG(u)∪NG(v)∪{u,v}. Then G is n-factor-critical if and only if G+uv is n-factor-critical

    On factors of 4-connected claw-free graphs

    Get PDF
    We consider the existence of several different kinds of factors in 4-connected claw-free graphs. This is motivated by the following two conjectures which are in fact equivalent by a recent result of the third author. Conjecture 1 (Thomassen): Every 4-connected line graph is hamiltonian, i.e., has a connected 2-factor. Conjecture 2 (Matthews and Sumner): Every 4-connected claw-free graph is hamiltonian. We first show that Conjecture 2 is true within the class of hourglass-free graphs, i.e., graphs that do not contain an induced subgraph isomorphic to two triangles meeting in exactly one vertex. Next we show that a weaker form of Conjecture 2 is true, in which the conclusion is replaced by the conclusion that there exists a connected spanning subgraph in which each vertex has degree two or four. Finally we show that Conjectures 1 and 2 are equivalent to seemingly weaker conjectures in which the conclusion is replaced by the conclusion that there exists a spanning subgraph consisting of a bounded number of paths

    Claw -free graphs and line graphs

    Get PDF
    The research of my dissertation is motivated by the conjecture of Thomassen that every 4-connected line graph is hamiltonian and by the conjecture of Tutte that every 4-edge-connected graph has a no-where-zero 3-flow. Towards the hamiltonian line graph problem, we proved that every 3-connected N2-locally connected claw-free graph is hamiltonian, which was conjectured by Ryjacek in 1990; that every 4-connected line graph of an almost claw free graph is hamiltonian connected, and that every triangularly connected claw-free graph G with |E( G)| ≥ 3 is vertex pancyclic. Towards the second conjecture, we proved that every line graph of a 4-edge-connected graph is Z 3-connected

    Degree Conditions for Hamiltonian Properties of Claw-free Graphs

    Get PDF
    This thesis contains many new contributions to the field of hamiltonian graph theory, a very active subfield of graph theory. In particular, we have obtained new sufficient minimum degree and degree sum conditions to guarantee that the graphs satisfying these conditions, or their line graphs, admit a Hamilton cycle (or a Hamilton path), unless they have a small order or they belong to well-defined classes of exceptional graphs. Here, a Hamilton cycle corresponds to traversing the vertices and edges of the graph in such a way that all their vertices are visited exactly once, and we return to our starting vertex (similarly, a Hamilton path reflects a similar way of traversing the graph, but without the last restriction, so we might terminate at a different vertex). In Chapter 1, we presented an introduction to the topics of this thesis together with Ryjáček’s closure for claw-free graphs, Catlin’s reduction method, and the reduction of the core of a graph. In Chapter 2, we found the best possible bounds for the minimum degree condition and the minimum degree sums condition of adjacent vertices for traceability of 2-connected claw-free graph, respectively. In addition, we decreased these lower bounds with one family of well characterized exceptional graphs. In Chapter 3, we extended recent results about the conjecture of Benhocine et al. and results about the conjecture of Z.-H Chen and H.-J Lai. In Chapters 4, 5 and 6, we have successfully tried to unify and extend several existing results involving the degree and neighborhood conditions for the hamiltonicity and traceability of 2-connected claw-free graphs. Throughout this thesis, we have investigated the existence of Hamilton cycles and Hamilton paths under different types of degree and neighborhood conditions, including minimum degree conditions, minimum degree sum conditions on adjacent pairs of vertices, minimum degree sum conditions over all independent sets of t vertices of a graph, minimum cardinality conditions on the neighborhood union over all independent sets of t vertices of a graph, as well minimum cardinality conditions on the neighborhood union over all t vertex sets of a graph. Despite our new contributions, many problems and conjectures remain unsolved

    Constructive degree bounds for group-based models

    Full text link
    Group-based models arise in algebraic statistics while studying evolution processes. They are represented by embedded toric algebraic varieties. Both from the theoretical and applied point of view one is interested in determining the ideals defining the varieties. Conjectural bounds on the degree in which these ideals are generated were given by Sturmfels and Sullivant. We prove that for the 3-Kimura model, corresponding to the group G=Z2xZ2, the projective scheme can be defined by an ideal generated in degree 4. In particular, it is enough to consider degree 4 phylogenetic invariants to test if a given point belongs to the variety. We also investigate G-models, a generalization of abelian group-based models. For any G-model, we prove that there exists a constant dd, such that for any tree, the associated projective scheme can be defined by an ideal generated in degree at most d.Comment: Boundedness results for equations defining the projective scheme were extended to G-models (including 2-Kimura and all JC
    corecore