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Connectivity and CyCles

R.J. FAUDREE

1. Introduction | =
2. Generalizations of classical results | k.
3. Relative lengths of paths and cvcles
4. Regular graphs - s

5. Bipartite graphs - - :

6. Claw-free graphs =

7. Planar graphs - s

8. The Chvatal-Erd6s condmon - =

9. Ordered graphs ;f,&_m == N

10. Numbers of cvcles ‘

References

Connectivity plays a critical role in the existe‘n:ce of paths and cycles in graphs.
We present recent extensions-of classical ije:vulrs on the relationship between
connectivity and properties of paths, cycles and 2-factors in graphs. We also
explore these.connectivity-cycle relationships for special classes of graphs,
such as regulanxpganar and claw-free graphs.

B

~ 1. Introduction

B

&

Connecnv1ty is a key graphlcal parameter in conditions that imply the existence of
- paths cycles and 2-factors in ‘graphs. Conditions in which connectivity plays a major
“role i in the existence of such subgraphs are discussed. In some cases, and for some
classes of graphs, connecuvuy conditions alone imply the existence of paths, cycles
=, and 2- factors For example, it is well known that every 2-connected graph with at
= :least three vertices has a cycle. In fact, by the classical result of Menger [86] (see
’Chapter 1), every pair of vertices of G lies on a common cycle. Using Menger’s

theorem and 1nduct10n Dirac [32] generalized this result.
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Theorem 1.1 If G is a k-connected graph with k > 2 and order n=>3, Ihen every set

of k vertices lies on a cycle.

This result is sharp, as the k£ connected graph Ky + (Kk+1 U K,— 2k~ 1) shows:
there is no cycle that contains the k£ + 1 independent vertlces in the K7 k+1 part of the
graph. Watkins and Mesner [107] characterized those k- connected graphs inywhich
there are k + 1 vertices that do not lie on a cycle — they,are those graphs with a cutset
of k vertices whose removal results in a graph with more than k components The
graph just described is one example of this class of exceptions. =

It is clear from the previous observations that 1arger»connectmty nnphes longer
cycles, and the nature of this relationship has been 1nvest1gated Dirac [31] gave a
lower bound on the length of the longest cy cle in'terms‘of the rmmmum degree.

Theorem 1.2 Every 2-connected graph af order n and minimum degree 8 contains
a cycle of length at least min{28, n}. = i |

An immediate consequence of this is that if k < 7n then any k- connected graph
result is sharp, since for n > 9k the k- connected graphu Ki+ K »k contalns no cycle
of length longer than 2k. [ - 4

Egawa, Glass and Locke [34] gave a comrnon generahzatlon of Theorems 1.1
and 1.2. -

Theorem 1.3 If G is a k-connected graph with k 22 minimum degree 8, and order
n, then every set of k 1‘en‘ices is on a cycle of length Zzt least min{28, n}.

l

The existence of drsjornt ey cles was considered by Corradi and Hajnal [29], who
proved the following result. =

S —

Theorem 1.4 For k> 2, if G'is.a graph with's minimum degree at least 2k and order
at least 3k, then G Contazns k vertex- d15]01m cycles.

This result is sharp n that the graph K_k 1+ K 2+1 has minimum degree 2k — 1
(in fact, 1ts connectlvrty is2k="1)yet it does not contain k disjoint cycles.

There are> many generahzatlons of these classical results on connectivity and
cycles in graphs In the next section, these are explored and expanded to include
paths, cycles with speCIaL properties and 2- factors. Surveys on cycles and paths in
graphs mclude Bondy [16], Gould [46] and Faudree [40].

=N
-1

| 2. Generalizations of classical results

A }é\enerahzation of Dirac was considered by Kaneko and Saito [67]. For r > s, a
graph sat1sﬁes  property P(r, s) if for any set R of r vertices, there is a Cycle C such
that |€ ﬂRI =5 Thus Dirac’s theorem implies that every k-connected graph satisfies
Pk, k). Kaneko 4nd Saito proved that every k-connected graph satisfies P(k + ¢, k)
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ifr <z ( 1 + +/8k +9). This was improved recently by K*lwarabayashl [71] in the
followmg result. 3

Theorem 2.1 Let G be a k-connected graph with k >3 Then for any set S of s
vertices with k <s < k G contains a cycle with preczsely k vertices ofS
F

A natural question arises: Can vertices be replaced by edges in, thza result? The k
edges would then have to form a union of disjoint paths, which we calla path system.
It is straightforward to verify that each pair of edges in a 2-connected graph. hes on
some cycle. However, this cannot be extended to_the 3-connected case, smce it is
possible for three edges to form an edoe cutina graph aid. thus there cannot be a
cycle containing all three. > "\ il

Lovdsz [79] conjectured that this structure —an odd number of edges forming a
path system that is also an edge-cut — is the only exception to the exfstence of a cycle.

This was shown to be the case for oraphs of low connectivity.

-
Theorem 2.2 For 2 <k <7 and any k- conneaed graph G, if S is a set of k edges
that form a path system, then there is a cycle thaz contains.the edges of S, unless k is
odd and the set S is an edge-cut ofG - ,2:"

The case k=3 was proved by Lowasz [80] the case k =4 by Erd6s and Gy6ri
[38], and the case k = 5 by Sanders [97]. The cases k=06 and 7 were established by
Kawarabayashi [70], who also outlined a proof ot Lovész’s conjecture and said that
details would be provxded in a series of three papers Additionally, he showed that if
the set of edges is not on a single cycle, then two cycles will do.

Theorem 2.3 If G isa k—c‘onggected graph wzgh k>2, and if S is a set of k edges
that form a path system, then S is contained either in a single cycle or in the union
of two cvcles unless k is odd and the setS is an edge-cut of G.

The followmg result of Hidggkvist and Thomassen [49] lends additional support to
Lovasz S conjecture and pI‘O\ esa con]ecture of Woodall [110].

Theorem 2.4 ]fG isak k- connecred graph with k >2 and if S is a set of k — 1 edges

that form apath sysrem m, then there is a cycle in G that contains the edges of S.

...very high connecthlty is nieeded to guarantee the existence of a 2-factor in a

- :graph smce the nearly reguhr complete bipartite graph K 1 L =), [ (=137 has no

~ 2-factor and is L (n — 1) -connected. However, 2k-connectedness in a sufficiently

large graph does 1mp1v the existence of k£ disjoint cycles. This was established by

= Corradi ‘and Hajnal [29], using only the additional assumption of minimum degree
v ‘_Zk“"(Thjeorem 1.4), a result that was extended by Egawa [33].

“TheoremZ R For each k>3, every graph with minimum degree at least 2k and

sufﬁczently many vertices, contains k disjoint cycles all of the same length.

-4
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A natural question that arises from Theorem 2.5 is: What connectivity is needed
to guarantee the existence of k disjoint cycles that ‘separate’ any speczﬁed set of k
vertices? More precisely, given any set X of k vertices in a/graph G, what is the
minimum connectivity that guarantees that there is a sez of k disjoint c)cles each
with precisely one vertex of X? -

At the other extreme is the intersection of longest cycles in a\graph It is easy to
see that any two longest cycles in a 2-connected graph ‘share at least two vertices.
For example, observe that if C and C’ are vertex-disjoint cycles, then 2- connectmty
implies the existence of vertex-disjoint paths P and P’ between C and C* The
union of these paths and cycles contains a longer cycle thaneither C or C’.The same
argument also applies if the cycles share precisely one vertex. Th1s is the 2- connected
case of a conjecture attributed by GrotScheI [47] to Scott Sm1th D

)
A

Conjecture A For k >2, any two Zonoest C\ cles in a k-connected graph intersect in
- |

at least k vertices. :

This conjecture cannot be sharpened, siice the longest cycle§ in the graph
Ky + K_i are of length 2k, and for n >3k some.. pairs of. longest cycles inter-
sect in just k vertices. The results in [47] imply that this con]ecture holds for k <5,
and a comment is made as to the.conjecture havmg been verified for k < 10. S. Burr
and T. Zamfirescu (unpublished) showed that every pair of longest cycles in a k-
connected graph meet in at Teast vk —1 vertlces This bound was improved by
Chen, Faudree and Gould' 23]. ; \a

3
- ,

Theorem 2.6 For k>2ly every pair of langest cycles in a k-connected graph

intersect in at least (k/(4x/4 + 3))3/3 vertices. |
7

If all of the longest cycles are ‘considered, then, it is possible for their intersections
to be empty. This question was explored by I endrol and Skupien [61], who proved

the followmg result. =

Theorem 2. 7 “For m > 7 there is a 2-connected graph with m longest cycles whose
mtersecnon is emprv buz in which ey ery 'set of m — 1 longest cycles has non-empty
zmersecnon

The relatlonshlp between connectiv ity and cycles and paths in graphs is much
richer than the class1ca1 results_and their extensions discussed here. Some of the
richness of this relatlonshlp is explored in the following sections, on special classes
of graphs The next section is dc\ oted to the relationships between cycle lengths and

3. Relative lengths of paths and cycles

It is reasonable to expect that if a 2-connected graph has long paths then it must have
a long cycle. To explcre this relationship, we let [x(p) be the smallest integer p for
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which every k-connected graph with a path of length | D contams a cycle of length at
least [ (p). In his classic paper [31], Dirac proved the followmg result, and provided
examples verifying the sharpness-(see Fw l) -

Theorem 3.1 [>(p) > 2./p, and this bound i&‘sfzarp.
5 . .

Bondy and Locke [18] proved corresponding results for 3-connected graphs, and
they also considered the special class of cubic gréphs We let I5(p) be the smallest
integer p for which every 3-connected cubic graph with a path of length p contains
a cycle of length at least l3 § p) 4

< 4

Theorem 3.2 With the above notation, ,

2 1 7
§p+2<l3(p)<—p+0(p D fmoz<l and3p+2<l~(p)< -p+3.

Graphs for which the lower bounds in both results are sharp involve the concept of
a ‘vine’. This i is a series of ov\_rlappma paths attached to a fixed path, and an example
is shown in F1g 17 The upper bound for /5 (p) is achieved by the graph Fs in Fig. 2,
which is derived from the Petersen crraph The general graph F, (the case m =35 is
Fig>2) has a Hamiltonian path of length 8m + 1, but has no cycle longer than 7m +2.
- Bondy and Locke [18] gave a general upper bound for /;(p) and conjectured the
nature of.‘lk(p) ask — o_c. The upper bound was later generalized by Locke [78], as
follows.
> 4
Theorem 3.3 Ix(p) < p(2k —4)/(3k — 4).
ConjectuféxB - Tizere exists a sequence of constants c3, c4, . .. converging to 1, for
which l(p) = ¢k p for all k and p.

7
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In graphs with many edges, the lengths of the longest cycle and the longest path
are essentially the same. We define a graph to be cycle-tight if the order of a longest
path is at most 1 more than the order of a longest cycle. The followmo result of Liu,
Lu and Tian [77] presents some of these graphs — here, 04(G) is the mlmmum sum
of the degrees of any four independent vertices. -

Theorem 3.4 Every 3-connected graph of order n wzth cr4(G’) >3 (4n + 5) is cycle-

tight, and this bound is sharp. v -
Corollary 3.5 Every graph G of order n with k(G) >7[%)}:|:i5 cycle—tivghi‘.» ’,_;"‘f
Ehes = \j’\“x 4
4. Regular graphs =

Regularity plays a strong role in forcing the circumference of a oraph to be large.
Jackson [58] gave a minimum-degree LOHdIthH in a regular graph G of order n that
guarantees Hamiltonicity (see part (a) oT the fol]owmc theorem) that is significantly
less than the degree condition §(G) > 7n of Dlrac [31] The extensmns (b) and (c)
of this result are due to Zhu, Liu and Yu [1 14]. :

—,‘,":\

Theorem 4.1 An r-regular2- connected graph G oj order n is Hamiltonian if any of
the following conditions hola' - ;.31

(a) n<3r; -
(b) n=3r+1,and G i is nm the Petersen Oraph :3
(b) n=3r+20r3r +3, andr>6. ,Jf’

We turn now to results on thé\?:ircumferencefc’j(G) of a graph G. There are also
stronger versions for regular graphs of Dirac’:s circumference result [31]. In the
following theorem Lh\, first part is- dueto Fan [39] and the second part is due to
Aung [4]

,»

Theorem 4 2 LetG be an-r=regular graph of order n.

o IfG IS 3 conneczed then e(G) >~m1n{3r n}.
° IfG is 4-c0nnected rhen c(G) > min{4(r — 1), 2(n +3r —2)}.

For claw free regular graphs there is a still stronger result, as proved by Li [76].

_,x""'Theorem43 IfGisa C(mnecfed claw-free r-regular graph of order n, then
L. c(G) = mm{ r—2,n}.

For posmve integers r > 3 and s <r—3, the graph K>+ (s—1) K, has a spanning

subgraphihat is 2-connected and r-regular, and has order n = (s — 1)(r + 1) + 2 and

circumference 2 + 4 (which equals 2(n + s — 3)/(s — 1)). This example was the
basis for a con]eg:ture of Bondy [15], and led to the following result of Wei [108].

/
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Theorem 4.4 If G is a 2-connected r-regular graph ofsuﬂiuentl} large order n <sr
withs >3, then c(G) >2(n+s —3)/(s — 1). =)

In general, for r > 3, the combination of being r- connécted and - -regular is not
enough to guarantee that a graph be Hamiltonian; Meredlth [87] was._ the first to
construct a family of such graphs. This family led Jackson»and Parsons [60] to the
following upper bound on the circumference. 4

5(7)

circumference less than n .

In fact, there is a wide gap between. the best-known upper bounds n°®” and the
lower bounds (linear in r) for the circumference of such gi‘aphsl‘ However, every
r-connected r-regular graph has a 2— factor, as the following results show. In many
cases these graphs are 2-factorable — that i s, their edge-sets can be partitioned into
2-factors. Petersen [93] investigated this class of graphs, and showed in particular
that while not all 3-connected cubic Cymphs are Hamﬂtoman all have a 2-factor.

Theorem 4.6 Every cubic graphwithout a cut-edge is- the edge disjoint union of a
1-factor and a 2-factor. =

S N

Rosenfeld [94] showed tha[ the number of components in 2-factors of 3-connected
cubic graphs is not bounded !

Theorem 4.7 There are arbz'na)z'l\ large 3- conhected cubic graphs G in which
every 2-factor has at Zeasr 10” components ‘where n is the order of G. For
3-connected cubic planar graphs the nmnber ofcompanents is at least 7—8n

The results of Petersen [93] app_ly,,m,general to k-connected k-regular graphs.

Theorem 4.8 Let G be a k'connected k-regular graph with k > 2.

o Ifk. ls even, then c is2= factorable
° Ifk is odd z‘hen G is the union n of a 1-factor and L 5 (k — 1) 2-factors.

B,

In ak- Connected griph any k vertices lie on a common cycle (by Theorem 1.1). It
s natural to investigate whether adding a regularity condition increases the number of
vertices that are alwaysina common cycle. With that in mind, we make the following

j - deﬁnmon For integers k and r with 2 <k<r, let g(k,r) be the largest integer [

for Wthh every collection of [ vertices in an r -regular k-connected graph lies on

. some cycle.

=The'case r = k =2 is trivial, since every such graph is a cycle. Holton and Plum-
- mer [57] gave examples showing that g(2, ») =2 for all r. The cases r =3 and 4 are
shown in ng3, and these give a clear pattern for the general case. Note that the
Petersen graph shows that g(3, 3) <9, and infinitely many examples can be obtained
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g2,3)=2

by inflating its vertices. Holton er al. [56] showed that equality holds ‘here. Much is
known about the cases when r > &, as a result of examples glven by Holton [52]

Theorem 4.9 S : -*"
g, ry=2forallr >2. )
£(3,3)=9.
gk, k+1)=kifkiseven. J
gk, ry=kifr=k+2. ‘(,;f

Ellingham, Holton and Little [35] proved an extenswn of the second part of
Theorem 4.9, showing that each set-of.ten vertices-in-a-3- Connected cubic graph
lies on a cycle unless the graph can be contracted to the Petersen graph. They also
showed that, for any set of five vertices and one edge in a 3-connected cubic graph,
there is a cycle that contams the vertices and avmds the edge. Aldred [1] proved
that in every 3- connected cubic graph each set of up to 13 vertices is contained in
some path.

For k > 4, Theorem 4. 9 lea\ es unsettled only the cases of g(k, k) for all k, and
g(k, k+1) for k odd. In the latter case, Holton [52] proved that g(k, k+1) > k+2, but
an upper bound was not given. } Much’; attcnnon,has been given to the difficult case of
g(k, k). Holton [52] and Kelmans and Lgr/non’ésov [73] proved that g (k, k) > k+4 for
k>3, but this bound\isk not exact for & =3, since g(3, 3) = 9. Meredith [87] proved
that g(k, k)< 10k — 11. However, for k even, McCuaig and Rosenfeld [85] gave
examples showing that g(k k) < 6k—4 fork=0 (mod 4), and that g(k, k) <8k —5
for k.= 2 (rnod 4). The results for r =k and r =k + 1 when k is odd are sum-
marized in the followmg theorem. There is a general cyclability survey by Bau and
Holton [7].

. Theorem4 10 Forr >k>3

e k+4<g(k k) <6k -4 ifk=0 (mod4);

ok+4<g(k k)<8A—J if k = 2 (mod 4);
ok+4<g(k k) <10k — 11 ifk>5isodd,
o k—l—2<g(k k+1) ifk is odd.
Saito [96] addresscd the issue of the lengths of cycles containing specified sets of
vertices, which was not considered in determining g(k, r).

4
7
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Theorem 4.11 Let G be a k-connected graph of order at least 2k and circumfer-

ence c. :

o For m <k, every set of m vertices is contained in a cycle of length at least 2m +

ctk —m)/k. a,f -
e IfGis k- regulm then every set of k vertices is conzamed m a cycle of length at
least 3c/k + 3 (k + 2). : e :,i

e If G is planar ana’ 3-connected, then every set of three vernces lS conmmed ina
cycle of length at least lc +3. : a\x .;”

5. Blpartlte graphs

Frequently the same minimum degree and connectivity guaranteeﬂ longer cycles in

bipartite graphs than in graphs in creneral and in some cases the guaranteed length

is doubled. The following result of Bauer et al. [10] illustrates thrs Acycle Cin a

graph is dominating if each edge of the graph has at least one of 1ts endpoints on C.
\\w,,w o ‘j;?

Theorem 5.1 [f G is a 2-connected triangle-free graph of order n, circumference

¢ and minimum degree §, then ezthezr_xcxz mm{n A48Y or every longest cycle is

dominating. =
— S z \

The following result on brpartrte ar aphs was proved by Jackson [59].

Theorem 5.2 Let G be a 2-connected r X s bzpartzte graph with r <s, let k and |
be the minimum degrees. in the partite sets of orders r and s, respectively, and let ¢
be the circumference ofG Then ,7"

e c>2min{s, k+1 — 1,2k—2}; == 4
e c22min{r, 2k -2} ifISka >
. c>2mjh{r 2k > l} ifr=sandl=k.

Note that the last part of Theorem 5.2"implies that a 2-connected balanced bipartite
graph wrth minimum degree %in each part is either Hamiltonian or has a cycle of
length at Ieast 4k — 2-Thisis an example of the cycle length in a bipartite graph
being approxrmately twice the length in the class of all graphs.
More generally, Wing [105] considered an Ore-type condition (on the minimum
sumiof degrees of non—adjecent vertices) in bipartite graphs. This resulted in the
.,followiﬁg corollary. ‘

]

Theorem 5.3 If G is a 2-connected r X s bipartite graph with minimum degree 8§,

[[wn its,éircumference is at least 2 min{r, s, 26 — 1}.

¥ 4

Further Wang [106] considered disjoint cycles in balanced bipartite graphs and
established & mmrmum degree condition for a balanced bipartite graph to have a
2-factor. He arso showed that the minimum-degree condition is sharp.
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Theorem 5.4 Every 2-connected r x r bipartite graph withr > 2k+ 1 and minimum
degree § > s > k > 2 has k disjoint cycles of total length at least m1n{2r 4s}.

L

6. Claw-free graphs \ -

In this section we consider the impact of connectivity on thé\éircg;nference of
claw-free graphs— that is, graphs without K 3 as an induced subgrapﬁf “Additional
information on these graphs appears in a survey by Faudree, Flandrin and Kj}jééék
[41]. Much of the research on connectivity and claw=free graphs was motlvated by

the following conjecture by Matthews and Sumner [84] . '-\};

Conjecture C Every 4-connected claw fzee Oiaph is Hamzltoman z

Related to this conjecture is a classical conjecture of Chvital [26] on toughness,
where the toughness t(G) is the rmmmum ratio of the order of a cutset and the
number of components left after the deletion of the cutset. ,,?’
i

Conjecture D There is a Ib such that every fy- tough graph 1s Hamlltoman

In general, 7(G) < lk(G) since.the deletion of a set.of cutvemces leaves at least
two components. However,-in claw-free oraphs the deletion of any minimal cut
results in precisely two cognponenb, soT(G) = é_{((G) for claw-free graphs. Thus,
for claw-free graphs, Conjecture D when 7g = 2 is equivalent to Conjecture C. Results
of Enomoto et al. [36] showed that 75> 2 would be needed to imply Hamiltonic-
ity, and more recently Bauer, Broersma and Veldm%in [9] exhibited an example of
non-Hamiltonian graphs vmh (G)=(9/4 —¢) for/any € > 0. Bauer, Broersma and
Schmeichel [8] have a survey on. toughness. /"

A special subclass of claw-free 0raphs is the class of line graphs, and Thomassen
[102] conJectured the following: .

Conjecture E Every 4 connectea’ line omph is Hamiltonian.

Since Ime graphs are claxx -free, Con]ecture implies conjecture E. However, we
now know that the two are equivalent. ‘This is a consequence of a closure concept for
claw-free graphs introduced by Ryjacek [95], an operation that is similar in form and
appllcatlon to the closure operation introduced by Bondy and Chvétal [17].

In a claw-free graph, the neighbourhood N (v) of a vertex has independence num-
ber at most 2. Thus, the mduced graph (N (v)) is either connected or the union
~of two complete components. If it is connected, then the ‘local closure’ at v is
the graph oi)tained by replacing N(v) by a complete graph with the same vertex

"k'"‘*set Domg 'this recursively until every vertex has a neighbourhood that is either
‘ ;complete’ or the union of two complete graphs yields a graph cl(G) called the

- Ryjacek closure Fig. 4 shows a graph G for which cl(G) is the complete graph;
it is the result of '[akm0 two local closures. Clearly, the graph cl(G) is always
claw-free md, ag Ry]ace}\ [95] showed, the operation is well defined. As before,
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G closure at u

.

Fig. 4.

¢(G) denotes the circumference of the Oraph G and p(G) 15 the order of a 1ongest
path (see [19]). ; - \

Theorem 6.1 Let G be a claw-free gra}qh. Then T«

e there is a triangle-free graph whose line.g graph is cl(G); 7
o ¢(G)=c(cl(G)) and p(G) = p(cl(G)).

The Ryjécek closure is a useful tool in the study of cycles in claw free graphs. For
example, the determination of the ercumference of a claw-free graph can be reduced
to considering an appropna[e line graph. Spec1ﬁca11y, this implies that Conjectures C
and E are equivalent. -

Cycles in line vraphs have been studied extenswely, with one of the useful tools
being a result of Haxan and Nash-Williams [50], which gives a necessary and
sufficient condition for the Hamiltonicity of the hne graph L(G) in terms of a dom-
inating Eulerian subcrraph of the graph G. An Eulerlan subgraph H in a graph G is
dominating if every edge of the- graph has at least one of its endpoints in H.

Theorem 6.2=The_line graph L(G)/Of a graph G with at least three edges is
Hamiltyoniq‘n‘ifand\bnly if G has a dominating Eulerian subgraph.

s
iy

Usiﬁg this theorerri, Zhan-f1 12]'profved the following result.

Theorem 6. 3 >Ey, en ' T-connected lzne graph is Hamiltonian.

AN immediate consequence 'of Theorem 6.3 and the Ryjagek closure is that every
7 connected claw-free graph is Hamiltonian. Thus, the gap is between 4 and 7 for

~ the connecuvny sufficient'to guarantee Hamiltonicity.

The latest result on cormectmt» and claw-free graphs is by Kaiser and Vrdna

e [66], Who show that 5-connectedness with a minimum-degree condition is sufficient

for belng Hamiltonian.
Theorem 6 4 Everv 5-connected claw-free graph with minimum degree at least 6 is
Hamllloman (and in fact Hamiltonian-connected).
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Generalizing Conjecture C, Jackson and Wormald [62] asked whegher, for r >4,
every r-connected K1 ,-free graph is Hamﬂtqnian. It is not even Kirlown whether
some assumption of sufficiently large connectivity.is enough. y '

If the Hamiltonian condition is relaxed to the existence™of a 2-factor, then an
assumption of being 4-connected and claw-free was shpg‘/‘gby’Choudum and Paulraj

[25] to be sufficient. = =

e S

Theorem 6.5 Every 4—aniz/écred claw-free graphk\h_as a 2-factor.

Yoshimoto [111] proxréd the following result on éhe number of components in a
2-factor in a claw-free graph. |

Theorem 6.6 Let G be a claw;ﬁee,gg‘gplz of ordei: n and minimum degree 4. If each
edge of G lies on a triangle, then G has a 2-factor with no more than Alf(n - 1)
components, and:this bound is sharp-== =

We note that if Conjeéture Cis true then, for 4-connected graphs, there is a 2-factor
with justfone component. The-question still remains as to the connectivity needed to
ensure thgf”'any k vertices of a claw-free graph can be separated by k disjoint cycles.
Connectivity ofatleast 2k is needed, since the k vertices could all be in the closed
neighbouthOd of on\é‘of‘»t_he vertices.

_There are infinite familie§ of non-Hamiltonian 3-connected claw-free graphs. One
'eXeimple:”due to Matthews and Sumner [84], is the graph in Fig. 5; it is the result of

2 ’subdividing\/the edges of a perfect matching in the Petersen graph and then taking the

~line graph. j '

J acksory’!and Wormald [62] found a lower bound on the circumference of
3_connected K 1.--free graphs in general, and claw-free graphs in particular.
Theorem 6.7‘\'Evefy{ 3-connected K ,-free graph of order n has a cycle of length at
least n® where & : (logy 6 + 21log, (2r — 1m~L
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By taking the inflations of appropriate 3 reoular graphs (replacmg VCI’[ICCS by trian-
gles), we deduce that this bound is of the correct order of magmtude Whether there
is a better value of the constant ¢ is not known 4

Although not every 3-connected claw- free graph is Hamﬂtonlan Jackson and
Yoshimoto [64] showed when the minimum degree is greater than 3, such a graph
does have a 2-factor. - - /

Theorem 6.8 Every connecred claw free graph G with 8(G) >4 has a 2-factor
with at most —n campone/zrs \

Inflations of certain LUblC graphs, such as the Petersen graph, are examples of
graphs with restrictions on the number of \emces that can be together on a cycle.
This topic was mvestlgated by G\ 6ri and Plummer [48], who proved the following

theorem. =

Theorem 6.9 Iszs a 3-connected claw-free graph, then every set of up to nine
vertices lieson a cyde inG.

4

1 e —— =

This. result is sharp as the graph in F10 6 shows. This is an inflation of the Petersen
ﬂraph and since the'Petersen 0raph is not Hamiltonian, there is no cycle that contains
any set of ten vertices ‘with one from each triangle.
_...lhe existence of dIS_]OmL cvcles in 3-connected claw-free graphs, and in particu-
lar 0 factors has been estabhshed However, little is known about the existence of
- disjoint cycles that separate specified vertices. For example, in the above graph there
are pzurs of vertices that are not separated by two cycles. Thus, no set of two or more
“:“\ Vertlces/ can always be separated by disjoint cycles in 3-connected claw-free graphs,
' unless some conditions are placed on the vertices.
The 01rcumference of 2-connected claw-free graphs was investigated by Broersma
etal, [21]. In provm0 their results, they used the relationship between toughness and
connectivity. 4
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Theorem 6.10 If G is a 2-connected claw-free graph of order n . (md circumference
¢, then there is a constant C for which =

4logn
c(G) > — —C.

og 2 ,;; 4 h\’

ence less rhan 8102 (n+6)— 8100 3-2.

This theorem is a special case of their more general result on KI r-free graphs /

Theorem 6.11 If G is a 2-connected K| ,~free gréph oforder n and czrcumference
¢, then there is a constant C, such that = 9 ,

B
A

adon o
G)>—_——C,. L
A= “logr—1)

They also gave a construction that shows that for given r > 4 and sufﬁcicntly large
n, there exists a 2-connected K ,-free graph of order n whose crrcumference is less
than 4logn/(log(r — 2) + 4). Hence, the order of maomtude of the lower bound in
Theorem 6.11 is correct. ‘ /

Jackson and Yoshimoto [63] proved-that every 2- co'nnecte'a claw-free graph with
a sufficiently high minimum deorbe has a2- factor even though not all such graphs
are Hamiltonian. T =

Theorem 6.12 Every 2- C()}mecred claw-free g;aph G with 8(G) >4 has a 2-factor
with at most 4(11 + 1) componems

We conclude this sectron with some results relatrng cycles and connectivity in
certain families of graphs. B

A graph is locally connected if the nerghbourhood of each vertex is connected.
Local connectivity=in claw-free graphs implies the existence of many cycles, a fact
first observed by Obeﬂy and Sumner [92].

}/

Theorem6 13 Every conneczed locall\ connected claw-free graph with at least
three vertlces zs Hamiltonian. 4

B e e

o
X graph is cycle—exzendable if each cycle can be extended to a cycle with one

more vertex, and is fullj"“cycrlve—exrendable if each vertex is also on a triangle. The
Oberly=Sumner result was extended by Hendry [51].

"’IThyeorem 6;;14 Every connected locally connected claw-free graph with at least

=, three ver"tic_és is fully cycle-extendable.

N grapﬂ G of order n is panconnected if, between each pair of vertices v and w
‘of G and for each l satisfying d(v, w) </ <n — 1, there is a v—w path of length
L Stronger local connectrvlty conditions were shown to imply panconnectedness by
Kanetkar and Rao [69].

4
a4
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Theorem 6.15 Every connected locally 2-connected claw-free graph is pancon-
nected. .

Chartrand, Gould and Polimeni [22] g
implies the existence of many long cycles.

Theorem 6.16 If G is a connected locally k-connected claw free graph then the
removal of any set of fewer than k vertices leaves'a Hamzltoman graph

An immediate consequence of this theorem is that every connected locally
(3r — 1)-connected claw-free graph has a 2-factor=with precrsely r components
However, there are many questions left unanswered on what cormecthlty and local
connectivity is required to guarantee the existence of cycles of prescrrbed lengths,

2-factors and disjoint cycles that >cparate specified vertices. : \

S

it

T+ Planz;r»graphs

Connectivity has an cspccm]h >1Unmcant 1mpact ofi'the orde s of cycles in planar

Theorem 7.1 Every 4- Connected planar graph is Hamiltonian.

This has led to consrderable investigations 1nto more general results. In our dis-
cussion, it is convenient to have some additional definitions. A graph G of order n
is pancyclic if it has cycles of all lengths from 3jto n, and is 4-almost pancyclic if
it has cycles of all these lengths except 4. For f<n G is r-ordered Hamiltonian
if, for any r vertices, there is. a Hamﬂtonlan cycle with those vertices in the given

order. = 7

Before moving on to the broader =5 connected case, we consider 4-connected
graphs. Bondy [14] conjectured that every such planar graph is either pancyclic or
nearly 0.~

Con_]ecture F Everv 4- connected p[(mar graph contains cycles of every length,
except posszbl y for one even length.

.,;

A related conJecture was made by Malkevitch [83], who exhibited a 4-connected
b graRh with cycles of all lengths, except 4 (see Fig. 7).

ConJecture G Every 4- comzeczedplanar graph with a 4-cycle is pancyclic.

In support of these conJectures it has been shown that every 4-connected planar

graph G of large order n has a cycle of each length from n — 7 to n — 1. For length
- 1o this follows from a result of Tutte. A series of authors extended the result, and

- a summary can be found in [30] by Cui, Hu and Wang.
In connectlon "with Malkevitch’s conjecture, Trenkler [103] found those val-
ues of n for }whrch there is a planar graph of order n that is 4-connected and
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4-almost pancyclic. It follows from his result tha‘t\“‘the;relis silghlga graph of each
order n > 48. -

Theorem 7.2 There exists a 4-connected 4~c;7mo\st pancyclic planar graph of order
n if and only if one afthefolléiving holds: >

e forn =0 (mod3), n : 30 or n > 36;
e forn =1 (mod 3), n>46; |
e forn =2 (mod3), n =4—J_;‘0r n > 50. 1

Sanders [98] showed that Vééch,pairv of edge; is on a Hamiltonian cycle, a
consequence of the following theorem. g

4-connected planar graph, there is a Hapmiltonian v—w path containing e.
{.»" ‘ : J- “.—‘"
This is a_generalization of the result of Thomassen [101] that in a 4-connected
planar graph,\’eac\_l_l pair-of-vertices'is joined by a Hamiltonian path. Goddard [44]
proved that more can.be said when the graph triangulates the plane.

Theorem 7.4 Ebery 4-connected maximal planar graph is 4-ordered Hamiltonian.

~"The ‘doﬁble pyramid’ graph H,=K»> + C,_> is 4-connected and planar but not
~ 5-ordered, §howing that Theorem 7.4 cannot be extended. Likewise, since H,, has
some path,’éystenls of three edges that do not lie on a Hamiltonian cycle, Sanders’

 restilt.cannot be extended. We also note that every 4-connected planar graph of order
atleast 6'has_;1~pair og disjoint cycles, since it has a cycle disjoint from any given trian-
gle. The graph Hy; also shows that there are 4-connected planar graphs of arbitrarily
large order that do not have three disjoint cycles.
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We now turn to 3-connected planar graphs. Although not all of them are Hamil-
tonian, Holton and McKay [55] showed that every 3-connectecl;e}ibic graph of order
36 or less is Hamiltonian, and found those of order 38 that"’éfe not. In fact, there is
no positive constant C for which every 3-connected planar graph G ol order n has
circumference ¢(G) > Chn. -

Moon and Moser [89] showed that if we start with a 3-connected planar graph
(such as K4) and successively insert a vertex of degree 3 m51de eachzface, we get a
3-connected planar graph whose circumference is at most 79832, The?‘copjectpred
this order of magnitude for the circumference of 3-connected planar graphsFénd this
was proved by Chen and Yu [24], not only for.the planiesbut also for the other three

surfaces of non-negative Euler charactensuc == =N 4

=N

Theorem 7.5 If G is a 3-connected gfaph of order n that is e;qbeddable in the
sphere, the projective plane, the torus or the Klein bottle, then c(Gi =Q(n'°82),

More is known about cycles of 3-c0nneeted cubic planar graph:s’:. Aldred et al. [2]
verified the existence of cycles containing arbitrary__sets with up;m 23 vertices.

/

Theorem 7.6 In every 3-connected cubzc planar graph, each set of up to 23 vertices
is contained in some cycle: >

The bound in Theo:_rem 7.6 is sharp, since HQlton [53] exhibited a 3-connected
cubic planar graph witll a set of 24 vertices that isinot contained in any cycle. With a
bipartite restriction adfled to the class of 3-connected cubic planar graphs, Barnette
[6] made the following 6‘opjecture. which is still §pen.

Conjecture H Every 3-connected. cubic bz’partfte planar graph is Hamiltonian.

This conjecture was shown to be true’ by Holton, Manvel and McKay [54] for
graphs with up to 64 vertices, and has also been verified for some infinite classes of
graphs: For example Goodey ([45]) showed that every 3-connected bipartite graph
Whlch’can be embedded in_the plane with every face either a quadrilateral or a
hexagon is Ham1ltoman 7

The complete blpamte graph K 2. 18 planar and 2-connected, and all cycles have
length 4,50 2- connectedness does not 1mply the existence of long cycles in planar
"“be sa1d about the c1rcumference Note [hat the toughness of Kg_n is 2/n and this
approaclles Oasn — oc.If abound is placed on the toughness, then more can be said
about the,:length of longeé[ cycles. The next result of Bohme, Broersma and Veldman

= [11] gives a lower bound for the circumference of 2-connected planar graphs in terms

of the}téughness.

Theorem 7.1 If\G is a 2-connected planar graph of toughness m, then there is a
constant d (depending on m) for which ¢(G) > d log n.
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8. The Chvatal-Erdés condition

A classical paper of Chvatal and Erdds [27] on Hamiltonian-properties explored
implications of the relationship between the connectivity K(G) and the independence
number «(G) of a graph G. Because of their results, w§ say that G»"‘satjisﬁes the
Chvdtal-Erd6s condition if k (G) > o/(G). N =

Theorem 8.1 Let G be a graph of order n > 3.

e Ifk(G)>a(G) — 1, then G has a Hamiltonian path.
e I[fk(G)>«a(G), then G has a Hamiltonian cycle.
e I[fk(G)>a(G) + 1, then G is Hamiltonian-connected.

This theorem has given rise to many Cyen‘:eralizations For examp'le’ \’using classical
results from Ramsey theory, Flandrin er al. [43] proved the followmg vananon of the
second part. f

i"l
Theorem 8.2 Every graph of sufficiently laige order (dependzng on the indepen-
dence number) that satisfies the Cln aml Em’os condmon tspancyclzc

Higgkvist and Thomassen [49] showed that an, approprlate Chvital-Erd@s condi-
tion implies the emstence of a Hamiltonian cycle contalmng predetermined disjoint
paths. !
1

Theorem 8.3 If G Sansﬁes r/ze Chvdtal-Erdds candmon then each set of disjoint
paths of length at most k(G) — a(G) is Conramed in a Hamiltonian cycle.

o - 7

— =

Wei and Zhu [109] showed that @anglg:fréé graphs satisfying the Chvatal-Erd&s
condition also satisfj}”a_‘strong version of panconnectedness.

Theorem 8 4 Let G be a triangle-free omph of order n other than Cs or Ky /2.n/2
that sansﬁes L‘he Chvatal Erdos Condzz‘zon Then,

° 1f4 <i <n each e(lge isina C\de of length i;
o if4 <i<n —1, each pair of vertices is connected by a path of length i.
e Many of, the degree conditions that guarantee that a graph is Hamiltonian also
: ~ guarantee thc existence ofva 2-factor with a specified number of cycles. It seems
> natural to conjecture that the Chvatal-Erd&s condition also guarantees this. The case
- of two cycles was proved by Kaneko and Yoshimoto [68].
Theorem 8 5 Everv 4-connected graph G other than Ks that satisfies the Chvatdl-
Erdés condition has a 2-factor with two cycles.
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9. Ordered graphs

In this section, we consider two other concepts and examme how they are related to
each other and to connectivity. 4

A graph G is k-ordered if every ordered set of k Vertlces lies ora. cycle in the
designated order. This concept, introduced by Ng and Schultz [91], s considerably
stronger than cyclability. (In Section 7 we considered the pamcular case in which
the cycle was specified to be Hamiltonian.) Recall “also that a graph Geis k-linked if,
given any collection of & pairs of vertices (x1, y1), (X2, ¥2), - . - (Xk» Yk ) there are
k internally disjoint paths P; for which P; is an x;=y;. path The following theorem

gives some elementary relationships between these two concepts

Theorem 9.1 Let k > 1. Then,

(a) every k-linked graph is k-ordered:
(b) every 2k-ordered graph is k-linked.

Proof (a) Let G be a k-linked graph, and let X (X1, X2, .0 ,xk) be an ordered set
of k of its vertices. Let ¥ = (y1. y2. .. .. yr) with y; =xl~+1'fpr”i: <k—1and y, =x;.
Then from the definition of k-linked=there exist internallj}/disjoint x;—y; paths, and
their union is a cycle containing the vertices‘of X in the given order.

(b) This follows from the fact that a cycle eontaining the vertices of the ordered
set (x1, Y1, X2, ¥2. \A yr) of 2k vertices contains the required k paths for a
k-linkage. u

It has been known for.some time that 5ufﬁ'cienty high connectivity implies
k-linkage, due to results of Jung [65] and Larman and Mani [75]. The much sharper
bound that every 22k-connected graph is> k-linked was proved by Bollobds and
Thomason [13}-and this was improved substantlally by Thomas and Wollan [100].

Theorgm 9.2 Ever_ytlOk—comzec‘rea’ graph is k-linked.
- g
It ismiikely that thelconnectivity needed to imply k-linkage is significantly less than
10k. On the other hand, itneedsto be at least 3k— 1, as is shown by the graph obtained
from K3r—1 by deletmcy k independent edges, which has connectivity 3k — 2 but is
not k-linked. In:[100] the stronger result was proved that every 2k-connected graph
of order n and at least 10kn’ €d0€§ is k-linked. The following was also conjectured,

~“and it wa§ noted that the eonJecture is true for k£ < 3.

~ Conjécttire 1 Every 2k—h0nnecled graph of order n with at least 2k — 1)n — %(3/{ +
»;h._l)\k +‘v‘1s"edges is k-linked.

Corresponding questions can also be posed for k-ordered graphs. The graph
Hy=Kp1 = C1\ has connectivity 2k — 4, but is not k-ordered, because if the k&
vertices on the” ‘missing’ cycle are chosen in the natural order, then there is no cycle
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meeting our requirement. Thus, for £ > 35, at Teast 2k — 3- connectedness is requlred
to imply k-ordered. 4 a,

Jung [65] found a bound on the LOHHGCH\ ity that guarantees that a graph is
2-linked. . ,

i
7

Theorem 9.3 Every 6-connected graph is 2- lmked ‘,7’7

This result is sharp. The graph Hz in Fig. 8isa 5-regu1ar = connected planar graph
that is not 2-linked, since there is nolinkage for the pairs.(er, )1) and (x2, y2). Also,
it is not 4-ordered, since there is no cycle cdﬁtaiming the ordered set (x1, yi, x3, ¥2).

The least connectivity thatimplies 4—0rderedﬁés}s is not known, but the following
is an interesting question:'/s every 6-connected gra};ﬁ 4-ordered?

No graph G with corfnectivity 2k — 2 can be k-linked, since if the collection
of k-pairs contains a minimum cutset S and the tv_;/o vertices of some pair are in
different components of G>— S, then there cannof exist the path system required
for k-linkage. Thus, every K-linked is (2k — 1,)'-"‘connected, but may not be 2k-
connected, as Ko, shows. LikeWisg,‘év'ery"kforaered graph is (k — 1)-connected,
and Mészdros [88] exhibited, for%krvgdd.»'-’eih infinite family of (k¢ — 1)-regular
graphs that are k- ordered Hamiltonian. Recall that the graph H; is (k — 1)-linked,
but not k ordered. Also, for n >2k and k even, the complete bipartite graph
Kin—k 1s k-ordered but is_not_ (7/\ —+ 1) linked. We summarize the known results
about the’ ‘relationship between linkage, ordered and connectivity in the following

theorem -
Theorem 9.4 Let k > 3 Then

o belng “k-linked implies bezno (2k — 1)-connected, but does not imply being
"2k connected 4
being k- ordered implies being (k — 1)-connected, but does not imply being

= connected

betng k-linked implies being k-ordered, but does not imply being (k + 1)-ordered;
bemg k- ordered zmplzes being k-linked, but does not imply being (k + 1)-linked;
being 10k- connected implies being k-linked, but being (3k — 3)-connected
does not:
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o being 10k-connected implies being k-ordered, but bezng (7k — 4)-connected

does not.

It would be of interest to know the sharpest relauonshlps between the pairs of these
parameters. With girth conditions placed on the graph, some sharp results between
connectivity and linkage have been established. Improvmg a result of Mader [82],
Kawarabayshi [72] showed the following: = N

Theorem 9.5 Let k > 1. Then, - N

o for k=4 or3, every 2k-connected graph of girth atleast 19 is k- lmked
o fork #4 or5, every 2k-connected oraph ofglrth at least 11 s k lmked

More is known about the relauonshlps between connectwlty apd linkage in the
case of chordal graphs (that is, those graphs with no induced cycle:‘)of length greater
than 3). In particular, Bohme, Gerlach and Stiebitz [12] proved the following result.

Theorem 9.6 A chordal graph of order at least 2k is k- Zznked zfand only if it is

(2k — 1)-connected. el
/,.

Connectivity conditions for-Kys=free graphs — in-parti‘gular, claw-free graphs —
were established by Faudree et al. [42]. -

Theorem 9.7 Forr >3 every (2r —2)(k = 1) ~+ 1)-connected K| ,-free graph is
k-linked. | f

Corollary 9.8 Every (‘41(_‘— 3)-connected Clawﬁée graph is k-linked.

10. Number’g of cycles

To conclude this chapter we look at how the number of different cycle lengths and
the total number of cycles vary w xth the connectivity.

Theorem 10.1 For k >1, the minimum number of different lengths of cycles in any
k connected graph isk—1.

Proof We first observe‘ that’the cycles in every k-connected graph have at least
~ k — ldifferent lengths. This follows from the fact that if P is a longest path in

T a k—,conrfected graph G, then the chords of P from the first vertex form cycles of
k — I different lengths. That this bound is sharp follows from the fact that the com-

: plete blparme graph Ky x is k-connected and has only cycles of the kK — 1 lengths

426, . |

It additional reéuirements are made, then there may be cycles of other lengths. An
example of this/is the following result of Erdés et al. [37].

4
7
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Theorem 10.2 Let kg (k) be the minimum number of different lengths of cycles in
any graph G of girth g and minimum degree §(G) > k (or K(G) = k) “Then,

/

e Xs(k) > 4(/(” —k—=2)
e there exists a positive constant C7 for which i7(k) > C7k5/2

e there exists a positive constant Cg for which ho(k) > Cgk o -]
e fort >3, there exists a positive constant Ca;_ 1f0r whlch Aar— 1(k) > C4t k72,

In fact, using only the average degree, Sudakov and Verstraete [99] strengthened
this result with information about the distribution of the cycle lengths.

\\ 4
Theorem 10.3 There is a constant C for which-every k-connecte. graph Ofgzrth g
has a set of at least Ck(8—1/2 Consecume even cycle lengths.

We now turn to the total number of cyeles. rather than the numberj of lengths of
cycles. Let ¢, (k) be the minimum number of different cycles in any k-connected
graph of order 7. By considering trees, cycles, wheels and regular complete bipartite
graphs, we see that ¥, (1) =0, ¥,(2) =1, and ¥, (3) <can’. G1ven a function f(n)
and a family of graphs F, we say that Un (k) is f(n)-bound” on F if there exist
constants A and B for which v, (k) lies between Af (i) and B f (n), for all graphs of
order n in F. Knor [74] proved the following fésuhs.

Theorem 10.4 Ler ¥, (k) be the minimum nzunbei of cycles in any k-connected
graph of order n. Then, ‘1-

e V,(2)=1, and is n? bozuzded on the famzlv of graphs of minimum degree
at least 3; =N

o ,(3) is n*-bounded, and is n3—bounded o Zhe family of graphs of minimum
degree at le(zsr 5

Knor alsokconjectured that ¥,(3) is n*-bounded on the family of graphs with

connectlvlty k, mmlmum degree § and maximum degree § for which k < § < A.
Clark and Entringer [28] ﬂeﬁemuned the minimum number of cycles in graphs

w1th small connecnvuy in terms of the cycle rank of the graph.

Theorem 10.5 Let pk(r) be rhe minimum number of cycles in any k-connected
graph wzth cycle rankr. Then, -

e for r> O p1(r)y=r;

e,
B,

° forr>17p2(r)_ 7r() + 1)

- o,‘forr 23, p3(r)—-r"—1 + 1.

For cublc graphs more is known. For example, Barefoot, Clark and Entringer [5]
dlscovered the. follomno results for the minimum number of cycles in cubic graphs
of low connectw;ty.
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Theorem 10.6 Let vi(n) be the minimum number of cycles in 1. any k-connected cubic
.

graph of order n. Then,

o forn>14,vi(n)=33n] +8;
o forn>8, vn)= F%n(n + 14)7.

Theorem 10.7 The minimum number v3(n) of cy cles ina 3- connected cublc glaph

of order n satisfies = =7

0.17 095
2V < L‘3 (n)""<' 2"

This implies that the minimum number of different cycle lengths in 3-connected
cubic graphs is not bounded, as it is for 3 3- connected graphs in general but that it is
a function of the order of the graph.
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