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Connectivity pl of paths and cycles in graphs.

We present recent ts on the relationship between

connectivity and s and 2-factors in graphs. We also

for special classes of graphs,

anar and claw-free graphs.

1. Introduction

parameter in conditions that imply the existence of
graphs. Conditions in which connectivity plays a major

subgraphs are discussed. In some cases, and for some

graphs, vity conditions alone imply the existence of paths, cycles

For exampie, it is well known that every 2-connected graph with at

vertices has a cycle. In fact, by the classical result of Menger [86] (see

pair of vertices of G lies on a common cycle. Using Menger's

lion, Dirac l32l gercralized this result.

andZ:1,

.istenceex
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5 Connectivity and cycles

Theorem L.l If G is a k-connected graph with k > 2 and order n > 3, then every set

of k vertices lies on a cycle.

This result is sharp, as the ft connected graph Kp f \t U K"-zr<-t) shows:

there is no cycle that contains the k * I independent in the of the

graph. Watkins and Mesner [107] characterized those hich

there are k * 1 vertices that do not 1ie on a cycle - ith a cutset

of ft vertices whose removal results in a graph wi
graph just described is one example of this class of exceptions.

It is clear from the previous observations that

cycles, and the nature ol this relationship

lower bound on the length of the longest

Theorem 1.2 Every 2-connected 3 contains

a cycle of length at least min{25, nl.

ll5

An immediate consequence of this is
of order n has a cycle of length at least

result is sharp, since for n > 2k, the k

of length longer than 2ft.

Egawa, Glass and Locke

and 1.2.

Theorem 1.3 If G is
n, then every set ofk

This
(in

paths, cyc

graph

! |n. AIso, this

contains no cycle

generalization of Theorems 1.1

minimum degree 6, and order

least rnn{26, n}.

The existence of Corradi and Hajnal [29], who

proved the following

Theorem 1.4 For k > 2, if degree at least 2k and order

t cycles.

the graph K2g.t * Kn-2k-rr has minimum degree2k - 1

does not contain k disjoint cycles.

these classical results on connectivity and

next section, these are explored and expanded to include

ies and 2-factors. Surveys on cycles and paths in

[46] and Faudree [40].

2. Generalizations of classical results

zation of Dirac was considered by Kaneko and Saito [67]. For r > s, a

P(r, s) if for any set R of r vertices, there is a cycle C such

Dirac's theorem implies that every t-connected graph satisfies

Saito proved that every k-connected graph satisfies P (k + t, k)

*l
O

---e
Io

is on a cycle af

les was consi
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if , < 
+ 
(- I + 

"/Ar 
+ S) This was improved recently by

following result.

T

A

Theorem 2.-L Let G be a k-connected graph with k Then any set S of s
vertices with k < s 

= ]t, 
C contains a cycle with kve

A natural question arises: Can vertices be resuh? The k
edges would then have to form a union ofdisjoint
It is straightforward to veriff that each pair of edges in a
some cycle. However, this caffIot be extended it is

beapossible for three edges to form an

cycle containing all three.

there

Lovdrs,z [79] conjectured that ttris

path system that is also an edge<ut -
edges forming a

of a cycle.

This was shown to be the case for gr

Theorem 2.2 For 2 < k <7 and any s a set of k edges

that form a path system, then there is a

odd and the set S is an edge-cut of G.

s of S, unless k is

The case ft:3 was the case k:4 by Erd6s and GySri

[38], and the case k: k:6 and 7 were established by
Kawarabayashi [70] Lov6sz's conjecture and said that

details would be Additionally, he showed that if
the set of edges is ycles will do.

Theorem 2.3 If G k > 2, and if S is a set of k edges

that form a path in a sing,le cycle or in the union

of two cycles, unless k is an edge-cut of G.

of Hiiggkvist and Thomassen [49] lends additional support to

proves a

graph with k > 2 and if S is a set of k - I edges

then there is a cycle in G that contains the edges of S.

high to guarantee the existence of a 2-factot in a
nce the complete bipartite graph K1]iu_r).l,lr(r_l)l has no

is t-](r -S-co*""ted. However,2k-connectedness in a sufficiently
does imply the existence of k disjoint cycles. This was established by
Hajnal 1291, using only the additional assumption of minimum degree

1.4), a result that was extended by Egawa [33].

each k>3, every graph with minimum degree at least 2k and

vertices, contains k dkjoint cycles all ofthe same length.

The

[71] in the

-e

o-
J

also outlined a

in a series of three

a single cycle, then t
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5 Connectivity and cycles
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A natural question that arises from Theorem 2.5 is: What

to guarantee the eistence of k disjoint cycles that 'separate,

vertices? More precisely, given any set X of /c vertices i
minimum connectivity that guarantees that there is a seffif k

with precisely one vertex of X?
At the other extreme is the intersection of longest

see that any two longest cycles in a 2-connected

For example, observe that if C and C/ are vertex-disjoint cyc

implies the existence of vertex-disjoint paths P xtd Pt between

union of these paths and cycles contains a longe

argument also applies if the cycles share preqi

case of a conjecture attributed by

Conjecture A For k > 2, any two

at least k vertices.

This conjecture cannot be

Kr *Vn-r are of length 2k, alid for n
sect in just k vertices. The results n 147) i
and a comment is made as to

tt7

tivity is needed

set of k
what is the

cycles each

is the 2

intersect in

in the graph

cycles inter-

re holds for ft < 5,

for t < 10. S. Burr
pair of longest cycles in a ft-

This bound was improved by

in a k-connected graph

is possible for their intersections

and T. Zamfirescu

connected graph meet

Chen, Faudree and

'Iheorem2.6 For k

intersect in at least (k

If all of the longest

to be empty. This questiori

richer than

It is
a long

and Skupief [61], who proved

there is a 2-connected graph with m longest cycles whose

in whlch euet$set of m - I longest cycles has non-empty

connectivity and cycles and paths in graphs is much

and their extensions discussed here. Some of the

in the following sections, on special classes

to the relationships between cycle lengths and

3. Relative lengths of paths and cycles

that if a 2-connected graph has long paths then it must have

plore this relationship, we let 16@) be the smallest integer p for

J

every pair of longe

+ 3))3/5 vertices.

o-
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thev also consi

integer p for which

a cycle of length at

Theorem 3.2 With the

1
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which is
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for 3-connected graphs, and

We let li@) be the smallest

with a path of length p contains

2_D
)

o(po), for u < t, onaz1t + 2 
= 

ti@) 
=f,n 

+ z.

in both results are sharp involve the concept of
ng paths attached to a fixed path, and an example

upper bound for /j(r) is achieved by the graph F5 in Fig. 2,

graph. The general graph F* (the case m:5 is

hasaH of length 8m * 1, but has no cycle longer th an 7 m * 2.

and Locke a general upper bound for h@) and conjectured the

ilp) as k --> . The upper bound was later generalized by Locke [78], as

3.3 tp(p) < p(zk - 4) lQk - 4).

exists a sequence of constants c3, c4, . converging to l, for
pfor allk and p.

*l
o

which every ft-connected graph with a cycle of length at

Teastlp(p). In his classic paper [31], result, and provided

examples verifying the
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5 Connectivity and cycles

In graphs with many edges, the lengths of the longest cycle the longest path

are essendally the same. We def,ne a graph tobe cycle-tight i of a longest
path is at most 1 more than the order of a longest cycle. result of Liu,
Lu and Tian l77l presents some of these graphs - here, o mum sum
of the degrees of any four independent vertices.

Theorem 3.4 Every 3-connected graph of order n

tight, and this bound is sharp.
5) is cycle-

Corollary 3.5 Every graph G of order n with r (G ts cyc

Regularity plays a strong role in to be large.

order n thatJackson [58] gave a minimum-degree
guarantees Hamiltonicity (see part (a) of is significantly
less than the degree condition S(G)> )n (b) and (c)
of this result are due to Zhu, Liu and Yu I I 14

Theorem 4-l Anr- of order n is Hamiltonian if any of
t he fo ll ow in g c o nditiorn

(a) n <3r;
(b) n:3r * l, and
(b) n:3r *2or3r

We tum now to G) of a graph G. There are also
stronger versions for s circumference result [31]. In the
following first pari Fan [39] and the second part is due to
Aung [4

of order n.

n).

-D,t@-t3r -2)|.

-free is a still stronger result, as proved by Li [76].

IfGisa tonnected claw-free r-regular graph of order n, then

4r -2,n\
tiveintegers r > 3 ands <r-3,the graph K2l(s-l)K,11 has aspanning

is2 and r-regular, and has order n : (s - 1) (r + 1) + 2 and
4 (which equals 2(n * s - 3)/(s - 1)). This example was the

basis for of Bondy [15], and 1ed to the following resulr of Wei [108].

119

----o

4.

J

circumference of a

in a regular graph

ing theorem)

the Petersen graph;

o- ---o
J



o

*_l
o

I

*9780521802314c05" 
- 201216/28 - 15:21 - page 120 - #7

120 R. J. Faudree

Theorem 4.4 If G is aZ-connected r -regular graph of
with s > 3, then c(G) > 2(n * s - 3)/(s - 1).

tly large order n < sr

---o

Theorem 4.5 For r >3, there

if n is sfficiently large, there

circurnference less than n'(').

exists a number e(r)
$ an r-connec

In general, for r > 3, the combination of being r
enough to guarantee that a graph be Hamiltonian;

construct a family of such graphs. This family 1ed

following upper bound on the circumference.

r-regular is not

the f,rst to
to the

nds n"(t) and the

However, every

show. In many

partitioned into
in particular

a2-factor.

edge-disjoint union of a

in 2-factors of 3-connected

cttbic graphs

In fact, there is a wide gap betwee

lower bounds 0inear in r) for the ci

r-connected r-regular graph has a

cases these graphs are 2-factorable

2-factors. Petersen [93] investigated

that while not all 3-connected cubic

Theorem 4.6 Every cubic g

l-factor and a 2-factor.

Rosenfeld [94]
cubic graphs is not

Theorem 4.7

every 2-factor has

3-connected cubic

The resu

where n is the order
components is at least

G in which

of G. For

*".
I to ft-connected k-regular graphs.

a k-connected k-regular graph with k > 2.

a l-factor and * <t - U z-factors.

any t vertices lie on a common cycle (by Theorem 1.1). It
adding a regularity condition increases the number of

cycle. With that in mind, we make the following
r with 2 <k<r,let g(k,r) be the largest integer I

of I vertices in an r-regular ft-connected graph lies on

r : k :2 is trivial, since every such graph is a cycle. Holton and Plum-

ples showing that g(2, r) :2 for all r. The cases r : 3 and 4 are

and these give a clear pattern for the general case. Note that the

that g(3, 3) < 9, and infinitely many examples can be obtained

l*o

e-
J

, as the following
, their edge-sets

of graphs, and

arbitraily large

are al

For integers

every collect
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5 Connectivity and cycles

Fig. 3.

by inflating its vertices. Holton et al. [56] showed that equality
known about the cases when r > &, as a result

Theorem 4.9

t g(2, r):Zfor all r > 2.

o g(3,3):9.
c g(k, k * 1) :7s if k is even.

o g(k,r):k if r >k +2.

Ellingham, Holton and Little [35] second part of
Theorem 4.9, showing that cubic graph

lies on a cycle unless the to the Petersen graph. They also

showed that, for any set in a 3-connected cubic graph,

the edge. Aldred [1] proved

to 13 vertices is contained in
there is a cycle that

that in every

some path.

121

Ho

Forft>4,Theorem
g(k, k+l) for ft odd. In
an upper bound was not

ft>3,but
that 8(k

for ft

k,k)<6k-
k,k) <8k - 5

(k, k) 
= 

10,t - 11

s&,k+t)

vertices,

cases of S@,k) fot all k, and

vedthatg(k, ft+1) z k+z,bvt
been given to the difficult case of

[73] proved that S&, k) > k+4for
not exact for k:3, since g(3, 3) :9. Meredith [87] proved

However, for { even, McCuaig and Rosenfeld [85] gave

t : 0 (mod 4), and that g(k, k) < 8k - 5

is a general cyclability survey by Bau and

,f k:0 (mod 4);

if k:2 (mod 4);

ifk>5isodd;
if k is odd.

the issue of the lengths of cycles containing specified sets of
not considered in determining S(k, r).

G_
Io

I

d

s(2,s) =2

cubic graph each set

unsettled onlv

----0
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Theorem 4.ll Let G be a k-connected graph of order at 2k and circumfer-

ence c,

o For m < k, every set of m vertices is contained in a of length at least 2m I
c(k-m)/k.

c If G is k-regula4 then every set of k
teast \clk + ZG +2).

o If G is planar and 3-connected, then every

cycle of length at least lc + 3.

Frequently the same minimum longer cycles in
bipartite graphs than in graphs in length

is doubled. The following result of
graph is dominating if each edge of

A cycle C in a

endpoints on C.

Theorem 5.1 If G is a Z-connected n, circumference

c and minimum degree 6, 5r every longest cycle is
dominating.

The following by Jackson [59].

Theorem 5,2 lrt te graph

be the minimum rs r and s,

be the circumfe

k+l-
-2)Ut:

llifr:sandl:k.

of Theorerq,tpimplies that a 2-connected balanced bipartite

h part is either Hamiltonian or has a cycle of
xample of the cycle length in a bipartite graph

twice the length in the class of a1l graphs.

lQ! considered an Ore-type condition (on the minimum

degrees vertices) in bipartite graphs. This resulted in the

coro11ary.

5.3 If G is a Z-connected r x s bipartite graph with minimum degree 3,

is at least 2mtn{r, s, 26 - I }.

1061 considered disjoint cycles in balanced bipartite graphs and

degree condition for a balanced bipartite graph to have a

showed that the minimum-degree condition is sharp.

o
l___*

vertices is tnac

with r < s, let k and I
respectively, and let c

5.

l*
o

a_
I

O

connectivity

, and in some cases

al. ll0l illustrates

a2-connected r x s

in the partite sets of

o c>2min{s,
t c>Zmin{r_
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5 Connectivity and cycles

Theorem 5.4 Every 2-connected r x r bipartite graph with r 7 *l andminimum

degree 6 > s > k > 2 has k disjoint cycles of total length at I ,4s).

6. Claw-free graphs

In this section we consider the impact of
claw-free graphs- that is, graphs without K1,3 as an

information on these graphs appears in a survey by Faudree,

[41]. Much of the research on connectivity and

the following conjecture by Matthews and S

Conjecture C Every 4-connected claw-.

Related to this conjecture is a toughness,

where the toughness r(G) is the tset and the

number of components left after the de

Conjecture D There is a tosuch that

In general, r (G) < )t<1C1, ices leaves at least

two components. However the deletion of any minimal cut

results in precisely two (G) for claw-free graphs. Thus,

for claw-free graphs, nt to Coniecture C. Results

of Enomoto et al. 136 needed to imply Hamiltonic-

[9] exhibited an example ofity, and more

non-Hamiltonian e > 0. Bauer, Broersma and

Schmeichel f8l have a

A special subclass of of line graphs, and Thomassen

[102] coni lollow

line graph is Hamiltonian.

re implies conjecture E. However, we

is a consequence of a closure concept for

[95], an operation that is similar in form and

operation introduced by Bondy and Chv6tal [7].
rhood N(u) of a vertex has independence num-

gmph (N(u)) is either connected or the union

If it is connected, then the 'local closure' at u is

ng N(u) by a complete graph with the same vertex

this recursively until every vertex has a neighbourhood that is either

or the union of two complete graphs yields a graph cl(G) called the

Fig. 4 shows a graph G for which cl(G) is the complete graph;

ir id two local closures. Clearly, the graph cl(G) is always

claw-freei yj6dek [95] showed, the operation is well defined. As before,

----o

t23

o-
A

jecture of Chvdtal
ratio of the order of

thatrg>2wori
, Broersma and

t(G):(9/ - e)

claw-free

--€

J
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claw-free graphs. For

ffiflw-free graph can be reduced

ty, this implies that Conjectures C

y, with one of the useful tools

l, which gives a necessary and

graph I(G) in terms of a dom-

lerian subgraph 11 in a graph G is
one of its endpoints in 11.

---s

A

$$
closure at u

Fig.4.

c(G) denotes the circumference of the

path (see [l9]).

Theorem 6.1 Let G be a claw-free

o there is a tiangle-free graph

o c(G) : c(cl(G)) and p(G): p(cl(

The Ryjddek closure is a useful tool in

example, the

to considering an

and E are equivalent.

Cvcles in line
being a result of
sufficient condition

inating Eulerian su

dominating if every

Theorem three edges is

if G has a dominating Eulerian subgraph.

the following result

-connec line graph is Hamiltonian.

ofTheorem 6.3 and the Ryj66ek closure is that every

is Hamiltonian. Thus, the gap is between 4 and 7 for
itv suffic guarantee Hamiltonicity

show that 5-connectedness with a minimum-degree condition is sufficient

Hamiltonian.

5-connected clatt-free graphwith minimum degree at least 6 is

in fact H amilt o nian - c o nn e c t e d ).

raph is c7(G);

have been studied

and Nash-Wi

Hamiltoniciry of
the graph G. An
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5 Connectivity and cycles t25

Generalizing Conjecture C, Jackson

every r-connected K1,.-free graph is

We

with i
ensu

,forr>4,
n whether

some assumption of sufficiently large

If the Hamiltonian condition is rel 2-factor, then an

assumption of being 4-connected m and Paulraj

[25] to be suffrcient.

Theorem 6.5 Every 4 a 2-factor.

Yoshimoto [111] number of components in a

2-factor in a claw-free

n and minimum degree 4. If each

with no more than ]t, - ti

re C is true thgr, for 4-connected graphs, there is a 2-factor

remains as to the connectivity needed to

graph can be separated by ft disjoint cycles.

since the k vertices could all be in the closed

vertices.

are infin'i -Hamiltonian 3-connected claw-free graphs. One

to Sumner [84], is the graph in Fig. 5; it is the result of
he edges of a matching in the Petersen graph and then taking the

and Wormald [62] found a lower bound on the circumference of
K1.r-free graphs in general, and claw-free graphs in particular

3-connected Kt,r-f'ree graph of order n has a cycle of length at

least nu (1og2 6 * 21og2(2r - 1))-'

---o

J

pormald [62] asked

ian. It is not e

the following result

Theorem 6.6 Let G be

edge of G lies on a

neighbou

*l
O
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By iaking the inflations of
gles), we deduce that this bound is

is a better value of the constant e is

Although not every 3-connected

Yoshimoto [64] showed when the

does have aZ-factor.

Theorem 6.8 Every

withatmost ftn

Inflations of
graphs with
This topic v/as

theorem.

- 2A1216128 - 1.5'.21. - page 126 - #13
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ol*
126

by trian-

Whether there

n, Jackson and

3, such a graph

G with 6(G) > 4 has a 2-factor

Petersen graph, are examples of
that can be together on a cycle.

[48], who proved the following

cl^aw-{ree graph, then every set of up to nine

. 6 shows. This is an inflation ofthe Petersen

is not Hamiltonian, there is no cycle that contains

with one from each triangle.

les in 3-connected claw-free graphs, and in particu-

, has However, little is known about the existence of
les that specified vertices. For example, in the above graph there

always be separated by disjoint cycles in 3-connected claw-free graphs,

conditions are placed on the vertices.

of 2-connected claw-free graphs was investigated by Broersma

g their results, they used the relationship between toughness and

A J

-regular graphs (

correct order of magni

cubic graphs, such as

the number of vert

Gy6ri and PI

o- ---s
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Theorem 6.70 If G is a 2-connected claw-free graph of ordera and circumference

c, then there is a constant C for which

T__*

ence less than 81og(n + 6) - 8 log 3 - 2.

This theorem is a special case of their more general result on

Theorem 6.Ll If G is a 2-connected K1,
c, then there is a constant C" snch that

c(G) >

They also gave a construction that

n, there exists a 2-connected K1.r-free
than 4logn / (1og(r - 2) * 4). Hence, the

Theorem 6.11 is correct.

Jackson and Yoshimoto [63]
a sufficiently high minimu

4losnc(6)>Gg -c.
Furthermore, there eists a Z-connected claw-free g

are Hamiltonian.

Theorem 6.12 Every

with at most i@ + 1)

and circ

iently large

rence is less

lower bound in

claw-free graph with
r, even though not all such graphs

with 6 (G) > 4 has a Z-factor

Local

first

more vertex,

We conclude this ing cycles and connectivity in
certain families of

A graph is locally of each vertex is connected.

the existence of many cycles, a fact
and Sumner [921

connected claw-free graph with at least

if each cycle can be extended to a cycle with one

if each vertex is also on a triangle. The

by Hendry [51].

Every locally connected claw-free graph with at least

is fully cycle-extendable.

G of order n is panconnected if,between each pair of vertices u and w

eachr[ satisfying d(u, w) < I < n - 1, there is a u-r.u path of length

ivity conditions were shown to imply panconnectedness by

o-
J A

ith some results

----e



G-
e

I

| "9780521802314c05" 
- 201216128 - 15:21 

- 
page 128 

- 
#15

128 R. J. Faudree

T__*

Theorem 6.L5 Every connected locally Z'connected

nected.

However, there are many questions left

connectivity is required to guarantee

2-factors and disjoint cycies that

Connectivity has an especially signi

graphs. One ofthe earliest results

Theorem 7.1 Every 4

This has led to
cussion, it is
is pancyclic lf it
it has cycles of all

if, for any r vertices,

with

of these

claw

Chartrand, Gould and Polimeni l22l gave a local

implies the existence of many long cycles.

Theorem 6.16 If G is a connected locally k
removal of any set offewer than k vertices leaves

An immediate consequence of this theorem is every

(3r - l)-connected claw-free graph has a 2;

hich there is a planar graph of order n

then the

recisely r
tv

of cycles in planar

ofTuue [104].

[103] found those va1-

that is 4-connected and

movt

'is Hamiltonian.

more general results. In our dis-

nitions. A graph G of order n

n, and is 4-almost pancyclic rf
<n, G is r-ordered Hamiltonian

with those vertices in the given

consider 4-connected

is either pancyclic or

graph contains cycles of every length,

was made by Malkevitch [83], who exhibited a 4-connected

except 4 (see Fig. 7).

planar graph with a A-cycle is pancyclic.

it has been shown that every 4-connected planar

of large order rz has a cycle of each length from n - 7 to n - l. For length

lollows from a result ofTutte. A series of authors extended the result, and

can bg found in [30] by Cui, Hu and Wang.

fupflwith Malkevitch's conjecture, Trenkler

@-

J J

specified vertices.

to have some addi

of all lengths

order.

Before

graphs.

---0
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t29

4-almost pancyclic. It follows from
order n > 48.

Theorem 7.2 There exists

n if and only if one of

o for n :0 (mod 3),
o for n: | (mod 3),

o .for n:2 (mod 3),

Sanders [98]
consequence of the follow

Theorem
4-

a graph of each

pancyclic planar graph of order

is on a Hamiltonian cycle,

pair of vertices u and w and any edge efuw in a

there is a D*w path containing e.

of Thomassen [101l that in a 4-connected
joined by a Hamiltonian path. Goddard [44]

said when the graph triangulates the plane.

maximal planar graph is 4-ordered Hamiltonian.

pyrarnid' Hn : Kz * Cr-z is 4-connected and planar but not

ing that 7.4 cannot be extended. Likewise, since Il, has

stems of three edges that do not lie on a Hamiltonian cycle, Sanders'

be extended. We also note that every 4-connected planar graph of order

pair gf disjoint cycles, since it has a cycle disjoint from any given trian-

shows that there are 4-connected planar graphs of arbitrarily
not have three disjoint cycles.

/-l\------t

I0

3Oorn>36:
46:
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We now tum to 3-connected planar graphs. Although
tonian, Holton and McKay [55] showed that every 3

36 or less is Hamiltonian, and found those of order 38

no positive constant C for which every 3-connected

circumlerence c(G) > Cn.

Moon and Moser [89] showed &at if we start

---s

(such as K+) and successively insert a vertex of
3-connected planar graph whose circumference is at most

this order of magnitude for the circumference of 3-connected

was proved by Chen and Yu [24], not only also for t three

surfaces of non-negative Euler

TheoremT.s If G is a 3-cowtected

sphere, the projective plane, the : a@locaz).

More is known about cycles of Aldred et al. [27

verified the existence of cycles containi 23 vertices

Theorem 7.6 In every 3 set of up to 23 vertices

is contained in some

The bound in

graph

face, we get a

this

[53] exhibited a 3-connected

contained in any cycle. With a

cubic planar graphs, Barnette
cubic planar graph

bipartite restriction

This con
graphs w

[6] made the follow

ConjectureIJ Every te planar graph is Hamiltonian.

Holton, Manvel and McKay [54] for
vertices, and has also been verified for some infinite classes of
Goodey ([45]) showed that every 3-connected bipartite graph

with every face either a quadrilateral or a

)., is planar and 2-connected. and all cycles have

does not imply the existence of long cycles in planar

considered, such as the toughness, then more can

. Note that the toughness of K2,, is 2/n and this

a bound is placed on the toughness, then more can be said

cycles. The next result of Bohme, Broersma and Veldman

a lower bound for the circumference of 2-connected planar graphs in terms

is a Z-connected planar graph of toughness m, then there is a
on m)for which c(G) > dlogn.

- --o
I

IAwA

of them are Hamil-

ic graph of order

not. In fact, there is
graph Sof order n has

the Klein bottle, then

cubic planar

7.6 is sharp,

a set ol 24 vertices t
to the class of
iecture. which is sti

o--
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8. The Chvdtal-Erd6s

A classical paper of Chv6tal and Erd6s [27] on Hami ies explored

implications of the relationship between the connectivity r and the independence

number a(G) of a graph G. Because of their results, say that

Chvdtal-Erdds condition if r(G) > d(G).

Theorem 8.1- lxt G be a graph of order n >3.

t If rc(G) > cy(G) - 1, then G has a llamiltonian
t If rc(G) > a(G), then G has a Haniltanian
c If rc(G) > d(G) * 1, then G is

This theorem has given rise to many

results from Ramsey theory Flandrin er

second pad.

Theorem 8.2 Every graph of suficiently on the indepen-

dence number) that satisfies thE Chvtital-

H[ggkvist and ppropriate Chviital-Erd6s condi-

tion implies the

paths.

ing predetermined disj oint

Theorem 8.3 If G ition, then each set of disjoint
paths of length at most a Hamiltonian cycle

Wei and Zhu graphs satisfying the Chvat6l-Erd6s

condition s8ong version of panconnectedness.

of order n other than C5 or K,,p.a12

. Then,

is in a cycle of length i;
ofgzrtices is connected by a path of length i.

the degree that guarantee that a graph is Hamiltonian also

lecture that the Chvdtal-Erd6s condition also guarantees this. The case

was proved by Kaneko and Yoshimoto [68].

4-connected graph G other than K5 that satisfies the Chvatdl-
a 2-factor with two cycles.

t3r

J

zations. For ex

431 proved the followi

a Hamiltoniad

Chvdtal-Erdds

/'n--_-\]7
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9. Ordered graphs

In this section, we consider two other concepts and

each other and to connectiviry.

are related to

A graph G is k-ordered if every ordered set of ft

designated order. This concept, introduced by Ng

stronger than cyclability. (In Section 7 we consi

the cycle was specified to be Hamiltonian.)
given any collection of t pairs of vertices (;rr, yr), @2, y),
ft intemally disjoint paths P; for which P; is
gives some elementary relationships

Theorem 9.1 Let k>

(a) every k-linked graphis k-
(b) every 2k-ordered graph is k-

Proof (a)Let G be a&-linked graph,

ofk ofits vertices. LetY :(yr, yz, ..., yi
Then from the definition of
their union is a cycle X in the given order.

(b) This.follows
set (xt, y1,, x2, yz, .

t-linkage.

in the

ably

case in which

. The fol

) be an ordered set

<k- l and yk:xt.
disjoint "r;-y; paths, and

ining the vertices of the ordered

the required k paths for a

ciently high connectivity implies

and Mani [75]. The much sharper

linked was proved by Bollob6s and

ially by Thomas and Wollan [00].

0k-connected is kJinked.

to imply kJinkage is significantly less than

at least 3k- l, as is shown by the graph obtained

t independent edges, which has connectivity 3k - 2 but is

result was proved that every 2ft-connected graph

It has been

kJinkage, due to

bound that every

klinked.
n and at 'edges is &-hnked. The following was also conjectured,

noted that is true for k < 3.

I Every Zk-connected graph of order n with at least (2k - l)n - l<Ste +
edges is kJinked.

questions can also be posed for k-ordered graphs. The graph

i. has connectivity 2k - 4, but is not ft-ordered, because if the k

missing' cycle are chosen in the natural order, then there is no cycle
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meeting our requirement. Thus, for k > 5,

----e

133

to imply ft-ordered.

Jung [65] found a bound on

2Jinked-

Theorem 9.3 Every6-connected graph

This result is sharp. The graph I13 in Fig.

that is not 2-linked, since there

it is not 4-ordered, since

The least connectivity

is an interesting

No graph G with
of ft-pairs contains a

different components

for k-linkage. Thus, e

connected, as K2p shows.

and M6sz6ros

graphs

Kt,n-

is required

a graph is

planar graph

iyr) and (xz, yz). Also,
the ordered set (x1, yt, xz, y).
is nol. known. but the lollowing

4-ordered?

, since if the collection
vertices of some pair are in

exist the path system required

inflnite family of (k - l)-regular
Hamiltonian. Recall that the graph H2 is (k - l)-linked,
for n>2k and * even, the complete bipartite graph

l*^6-U*ea. We summarize the known results

ordered and connectivity in the following

but does not imply being

being (k - l)-connected, but does not imply being

r'--'
-linked implies being k-ordered, but does not imply being (k * \)-ordered;

s being k-linked, but does not imply being (k -l 1)-linked;

implies being k-linked, but being (3k - 3)-connected

J
e- ---s
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o being l1k-connected implies being k-ordered, but

does not.

(2k - 4)-connected

It would be of interest to know the sharpest relat pairs ofthese

T__*

134

parameters. With girth conditions placed on the

connectivity and linkage have been established.

Kawarabayshi [72] showed the following:

Theorem 9.5 lct k > l. Then,

o for k:4 or 5, every 2k-connected graph

t for k l4 or 5, every 2k-connected

More is known about the relati

case ofchordal graphs (that is, those

than 3). In particular, Brihme,

Theorem 9.6 A chordal graph of
(2k - l)-connected.

Connectivity conditions

were established by F

Theorem 9.7 For r
k-linked.

Corollary 9.8

at,

19 is t-
ls k-

between

r [82],

linkage in the

length greater

llowing result.

and only if it is

I l)-connected Ky,r-free graph is

graph is kJinked.

of cycles

r we look at how the number of different cycle lengths and

vary with.lbe connectivity

number of dffirent lengths of cycles in any

cycles in every ft-connected graph have at least

graph G

follows from the fact that if P is a longest path in
the chords of P from the flrst vertex form cvcles of

rent lengths. this bound is sharp follows from the fact that the com-

ite graph Kp.1 is k-connected and has only cycles of the k - 1 lengths

lar, claw-free graphs -

irements are made, then there may be cycles of other lengths. An

is the following result of Erd6s et al. 1371.

---€

JJ

every ((2r -

- 3)-connected cla

o-
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Theorem 10.2 Let ),glk) be the minimum number of dffirent-lengths of cycles in

any graph G af girth g and minimum degree 3(G) > k (or rc

o there exists a positive constant C7 for which h@) >
o there exists a positive constant C9 for which f s (k) >
o .for t > 3, there exists a positive constant C41-1for, +-tkt/2

ln fact, using only the average degree, Sudakov and

this result with information about the distribution of

Theorem 703 There is a constant C for
has a set of at least CkG-r)/2

We now tum to the total number of of lengths of
k-connectedcycles. Let rltn&) be the minimum

graph of order n. By considering trees, bipartite
graphs, we see that {r(1) :4, t\n(Z) :1, a function /(n)
and a family of graphs Jr, we say that {" bn F if there exist

constants A arld B for which Bf (n), for all graphs of
order n in -F. Knor [74]

Theorem 10.4 l^et of cycles in any k-connected

graph of order n.

. {/"(2):1, and is
at least 3;

graphs of minimum degree

. l/,(3) is nz-bounded,

degree at least 5.

the family of graphs of mtnimum

Knor a that 1y',(3) is nr-bounded on the family of graphs with
degree 5 and;ryaximum degree 6 for which ft < 6 < A.

the minimum number of cycles in graphs

cycle rank of the graph.

Theorem 1 minimum number of cycles in any k-connected

cycle

p1(r) : r;

more is known. For example, Barefoot, Clark and Entringer [5]
di ng results for the minimum number of cycles in cubic graphs

of low

---s

135
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A
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rather than the nu

different cycles in
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Theorem L0.6 ltt v*(n) be the minimumnumber of cycles k-connected cubic

graph of order n. Then,

c for n > 14, w@):3linl * 8;

t fornzS, vz@):lin(n + l4)1.

They also conjectured that, for greater connectiv

nomial in n, which follows from the next result

Theorem 10.7 The minimwn ntmtber 4(n) of cycles in a 3

of order n saisfies
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