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Abstract

A graph G is called n-factor-critical if the removal of every set of n vertices results in a graph
with a I-factor. We prove the following theorem: Let G be a graph and let x be a locally
n-connected vertex. Let {u,v} be a pair of vertices in V(G) — {x} such that uv ¢ E(G),
X € Ng(u) N Ng(v), and Ng(x) C No(u) U Ng(v) U {u,v}. Then G is n-factor-critical if and only
if G 4 uv is n-factor-critical.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

We consider only finite simple graphs and follow Chartrand and Lesniak [5] for
general terminology and notation. Let G be a graph with vertex set V(G) and edge
set E(G). For a subset 4 of V(G), G[A] denotes the subgraph of G induced by 4 and
G — A is the subgraph of G induced by V(G) — 4. We often identify G[4] with 4.
Further, if F' is a subgraph of G, we may write simply G[F] instead of G[V(F)] and
G — F instead of G — V(F).

For a vertex v€ V(G), Ng(v) denotes the neighbourhood of v in G and let deg(v) =
|NG(v)| denote the degree of v. Further, let Ng[v] denote Ng(v)U{v}. If G[Ng(v)] is
k-connected, then v is called locally k-connected. A locally connected vertex v is said
to be eligible if Ng(v) induces a noncomplete graph. The local completion of G at v
is the operation of replacing the induced subgraph G[Ng(v)] by the complete graph
Kins(v)- A graph G is said to be claw-free if G contains no induced subgraph isomor-
phic to K 3. Ryjacek n-closure Cg(G) is a graph obtained from a claw-free graph G by
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iteratively performing local completion at eligible locally n-connected vertices until no
more edges can be added.

A graph G of order p is k-factor-critical (k- fc in brief), where k is an integer of
the same parity as p with 0<k<p, if G — X has a perfect matching for any set X
of k vertices of G. In particular, G is 0-factor-critical if and only if G has a perfect
matching.

Ryjacek 1-closure (or simply Ryjacek closure) was introduced in the study of the
existence of hamiltonian cycles in claw-free graphs.

Theorem A (Ryjacek [8]). Let G be a claw-free graph. Then G is hamiltonian if and
only if C(G) is hamiltonian.

The concept of Ryjacek closure is a condition on the neighbourhood structure of
a subgraph of G. Similarly, Broersma [2], and Broersma and Schiermeyer [3] (and [4],
etc.) gave other closure concepts in terms of neighbourhood conditions on four
vertices.

Theorem B (Broersma [2]). Let {u,v,x,y} be a subset of four vertices of a graph G
such that uww¢ E(G),xy €E(G), and {x, y} CNg(u)NNg(v). If Ng(x)UNg(y) C Ng[u]U
Ng[v], then G is hamiltonian if and only if G + uv is hamiltonian.

Theorem C (Broersma and Schiermeyer [3]). Let {u,v,x,y} be a subset of four
vertices of a graph G such that uww¢&E(G),x € Ng(u)NNg(v), and y€Ng(u). If
Ng(y) C No(v)U{u} and Ng(x)CNg[y1U{v}, then G is hamiltonian if and only if
G + uv is hamiltonian.

Graphs satisfying the conditions of Theorem B contain claw-free graphs. Because if
{u,v,x, y} satisfies uv¢ E(G),xy€E(G), and {x, y} CNg(u)NNg(v), and if there exists
a vertex w € Ng(x)UNg(y)— (Ng[u] UNg[v]), then either {x,u,v,w} or {y,u,v,w} must
induce a claw.

On the other hand, Plummer and Saito [7] proved the following theorems by using
local completion.

Theorem D. Let G be a claw-free graph and let x be a locally n-connected eligible
vertex. Let G' be the graph obtained from G by local completion at x in G. Then G
is n-factor-critical if and only if G' is n-factor-critical.

Corollary E. Let G be a claw-free graph. Then G is n-factor-critical if and only if
Cr(G) is n-factor-critical.

Our purpose in this note is to extend Theorem D by using a neighbourhood condition.
We will prove the following theorem.

Theorem 1. Let G be a graph and let x be a locally n-connected vertex. Let {u,v}
be a pair of vertices in V(G) — {x} such that uw¢E(G), x€Ng(u)NNg(v), and
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Ng(x) CNg[u]UNg[v]. Then G is n-factor-critical if and only if G 4+ uv is n-factor-
critical.

By the observation after Theorem C, the hypothesis of Theorem 1 is clearly weaker
than that of Theorem D. That is, if {u,v,x} satisfies uv¢ E(G) and x € Ng(u) N\ Ng(v),
and if there exists a vertex w € Ng(x) — (Ng[u]UNg[v]), then {x,u,v,w} induces a claw.
Further, let G be a claw-free graph and x an eligible vertex. Also suppose {u, v} C Ng(x)
with uv¢ E(G). Then the induced subgraph H =G[Ng[x]] is clearly claw free. There-
fore, by the observation as in the above, we have Ny(x)C Ny[u]UNy[v]. Even when
we add the edge uv to H, this procedure does not have an influence upon this inclusion
relation. This implies that the local completion G’ of G at a vertex x can be obtained
by iteratively joining a pair {u, v} CNg(x) satisfying the conditions of Theorem 1.

Based on Theorem 1, if a graph H can be obtained from a graph G by itera-
tively joining all pairs {u,v} satisfying the conditions uv¢ E(G), x € Ng(u)NNg(v),
and Ng(x) C Ng[u]UNg[v] for some vertex (resp. locally n-connected vertex) x, and
if H contains no such pair, then H is called a closure (resp. an n-closure) of G and
denoted by cl(G) (resp. cl,(G)). Note that cl(G) and cl,(G) can be different for each
positive integer n.

From Theorem 1, we have the following.

Corollary 2. Let G be a graph. Then G is n-factor-critical if and only if cl,(G) is
n-factor-critical.

Ryjacek [8] and Bollobas et al. [1] proved that if a graph G is claw-free, then
CK(G) is uniquely determined for each integer k. However, in general, our closure is
not determined uniquely. For our closure, there exist graphs G which have different
closures. We present such a graph here. Let Wy=K; & Cs be a wheel, where ‘@’
denotes the join, K; ={u} is a complete graph, and Cs=viv;...06 is a cycle. We set
G =(Ws — uvg) + v3vs. Then we can recursively join the pair {vv6}, {viv3}, {v1v5},
{vivs}, {vovs}, {v3v6}, {vau}, {vo2v4}, and {vsve}. Then we have cl;(G)=K;. On the
other hand, we can recursively join the pair {vjv3}, {vjvs}, {vivs}, {v2vs}, {v306},
and {vsu}. Now we cannot join further pairs. Then we have K7 — {vo06, U204, U406} as
a different closure cl;(G).

As some variations of Theorem 1, we have the following theorems that are similar
to Theorems B and C.

Theorem 3. Let {u,v,x,y} be a subset of four vertices of a graph G such that x is
locally n-connected, uv ¢ E(G), and {x, y} CNg(u)NNg(v). If Ng(x)C Ng[u] UNg[v] or
Ng(y)C Ng[ulUNg[v], then G is n-factor-critical if and only if G + uv is n-factor-
critical.

Theorem 4. Let {u,v,x,y} be a subset of four vertices of a graph G such that
x € Ng(u)NNg(v) is locally n-connected, uv¢ E(G), and y € Ng(u)UNg(v). If No(y)C
Ng[u]UNg[v] and Ng(x)CNg[ylU{u,v}, then G is n-factor-critical if and only if
G + uv is n-factor-critical.
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2. Proofs of theorems
We use the following two lemmas in the proofs of theorems.

Lemma F (Favaron [6]). A graph G is n-factor-critical if and only if o(G—B)<|B|—n
for every BCV(G) with |B| =n, where o(G) denotes the number of odd components
of G.

Lemma G (Plummer and Saito [7]). Let G be a graph and H, a spanning subgraph
of G. If H is n-factor-critical, then G is n-factor-critical.

Proof of Theorem 1. Let G, x, u, and v be as in the statement of the theorem. By
Lemma G, necessity is obvious. We prove sufficiency by contradiction.

Suppose G + uv is n-fc but G is not n-fc. Then, by Lemma F, there exists a subset
BCV(G) with |B|=n such that o(G — B)>|B| — n=0[(G + uv) — B]. Notice that
|V (G)|=n(mod?2) since G + uv is n-fc. Since o(G — B) + |B|=|V(G)| (mod2) and
o[(G + uv) — B]=0o(G — B) — 2, we have o(G — B) — 2=0[(G + uv) — B]=|B| — n.
Therefore, we may assume u€C; and ve C,, where C; and C, are odd components
of G — B. Now let Gj,...,Cjg—_,42 be the other odd components of G — B. These
components are also odd components of (G + uv) — B. Now since Eg(C;,C;)=0 and
X €Ng(u)NNg(v), we may assume x €B.

Case 1: |B|=n. In this case, two vertices u and v€ Ng(x) are separated by Ng(x)NB
in G[Ng(x)]. Since |Ng(x)NB|<n, this contradicts the assumption that x is locally
n-connected.

Case 2: |B| >n. We can take a vertex subset S CB — {x} with |S|=n. Since G+ uv
is n-fc, (G +uv) — S has a perfect matching so that every vertex of B — S is matched
with a vertex of distinct components Cs, ..., Cig/_,42. In particular, we may assume x
is matched with a vertex w of C;. However, since Ng(x) C Ng[u]UNg[v], w is adjacent
to u or v in G. This is impossible since Eg(C;UC,, C3)=(), which completes the
proof. [

The condition of being locally n-connected cannot be deleted from the hypotheses
of Theorem 1. As in [7], we let G=K,, ®(C,UC,), where ‘@’ denotes the join and
C1=C,=K3;4;. Then since G — K,, consists of two odd components C; and C,, G is
not n-fc. Suppose x€K,, uc Cy, and veC,. Then x is locally (n — 1)-connected and
{x,u,v} satisfies the conditions of Theorem 1; that is, uv¢ E(G), x € Ng(u)NNg(v),
and Ng(x) C Ng[u]UNg[v]. Now it is easy to check that G + uv is n-fc.

Since our proofs of Theorems 3 and 4 are the almost same as that of Theorem 1,
we only present an outline.

Proof of Theorems 3 and 4. Let x, y,u,v be vertices satisfying the conditions of
Theorem 3 (or 4). By Lemma G, it suffices to prove that if G + uv is n-fc, then G is
n-fc. Suppose that G+uv is n-fc, but G is not n-fc. Then, there exists a vertex subset B
with |B|>n such that o(G —B)=0((G +uv) —B)+2=|B| —n+2. Let Cy,...,Ciz—ns2
be the odd components of G —B. Without loss of generality, u € C, and ve C,. Further,
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since x € Ng(u)NNg(v), we may assume x € B. Note that Cj, ..., Cjp_,4, are also odd
components of (G 4 uv) — B. By the same argument as in the proof of Theorem 1, we
may assume that |B|>n.

In Theorem 3, if Ng(x)C Ng[u]UNg[v], then we are done by Theorem 1. Therefore,
we may assume that Ng(y)C Ng[u]UNg[v] and Ng(x)Z Ng[u]UNg[v]. Since y € Ng(u)
NNg(v), y is in B. Since |B|>n, we can take a subset SCB — {y} with |S|=n. Then
y must be matched with a vertex of Ul@;"ﬂ C;. Because (G +uv)— S has a 1-factor.
This contradicts the assumption Ng(y)C Ng[u]UNg[v].

In Theorem 4, since y € Ng(u)UNg(v), v is in B or C;UC,. If y is in B, then by
the argument similar to that in last half of the previous proof, we have a contradiction.
Therefore, y is in C;UC,. However, since |B|>n, we can take a subset SCB — {x}
with |S|=n. Then since (G +uv)— S has a 1-factor, x must be matched with a vertex

of Ulli‘;m'z C;, which contradicts the assumption Ng(x) CNg[y]U{u,v}. O

One might conjecture that the result like Theorem 1 holds for the factor-extend-
ability, that is, the following statement holds.

Let G be a graph and let {u,v,x} be a subset of V(G) such that x € Ng(u)NNg(v)
is locally 2n-connected, uv ¢ E(G), and Ng(x) C Ng[u]UNg[v]. Then G is n-extendable
if and only if G 4 uv is n-extendable.

Here, G is said to be k-extendable (k-ext in brief) if every matching of size & in
G can be extended to a perfect matching.

The factor-criticality and the extendability actually have many similar results. For
example, in [7], Plummer and Saito also proved the following theorem on extendability
that is similar to Theorem D.

Theorem H. Let G be a claw-free graph and let x be a locally 2n-connected eligible
vertex. Let G' be the graph obtained from G by local completion at x. If G’ is
n-extendable, then G is n-extendable.

As a concluding remark, we show that there exists a non-n-ext graph G such that
G satisfies the conditions of the statement, but G + uv is n-ext.

Example. Let w,x, y,z be four vertices. We set X =(n—1)K,U{y,z} and Y =K, UK,
U{w}, where p,q are odd integers greater than n. And let G=({x} (X DY)) —
xw. Further, let u (resp. v) be a vertex of K, (resp. K,;). Then G satisfies that
X ENg(u)NNg(v) is locally 2n-connected, uv¢ E(G), and Ng(x) C Ng[u]UNg[v]. And
we can check that G + uv is n-ext. On the other hand, if we can take a matching
M={xz}UE((n — 1)K;), then we have o((G — V(M)) — {y})=3>1=|{»}|, where
V(M) denotes the set of endvertices of edges in M. Therefore, G is not n-ext.
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