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Preface

This thesis contains a selection of the research results the author obtained
within the field of hamiltonian graph theory since September 2015. After an
introductory chapter, the reader will find five chapters that contain more or
less independent, but highly interrelated topics within this research field.

The first chapter contains a brief introduction and discussion, with some
background and motivation for the research in this field, as well as an ac-
count of some of the main research methods in this research area. In this
chapter, we also list some general and specific terminology and notation that
will be used in the succeeding chapters. Several more specific terms and
particular notations that are not defined in the introductory chapter can be
found in the chapters where they are first needed and introduced.

The second chapter deals with conditions on degree sums of adjacent
vertices that guarantee the traceability of claw-free graphs. This chapter is
mainly based on the research that the author has completed while he was
working as a PhD student in the Beijing Institute of Technology, China.

The other chapters are mainly based on research results that the author
obtained during his stay as a visiting scholar at the University of Twente,
sponsored by the China Scholarship Council.

The third chapter deals with the hamiltonicity of the line graph of a given
graph under sufficient degree sum conditions of adjacent vertices. This re-
search was motivated by recent similar results about traceability which were
already obtained by the author in Beijing.

The fourth to sixth chapter are all concerned with the hamiltonicity and
traceability of claw-free graphs, involving both degree conditions as well as

vii
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neighborhood conditions. The results presented there are motivated by and
are based on other recent results for hamiltonicity.

Chapters 2 to 6 all have the structure of a journal paper. However, in
order to avoid too much repetition, some frequently used theorems and lem-
mas are stated in Chapter 1, and all references are presented at the end of
this thesis. The whole work is based on the following joint papers, which
have been submitted to journals.

Papers underlying this thesis

[1]Degree sums of adjacent vertices for traceability of claw-free graphs, submit-
ted (with L. Xiong, Z.-H Chen and S. Wang). (Chapter 2)

[2] Hamiltonicity of line graphs, submitted (with H.J. Broersma and L. Xiong).
(Chapter 3)

[3] 2-connected hamiltonian claw-free graphs involving degree and neighbor-
hood conditions, submitted (with H.J. Broersma and L. Xiong). (Chapter 4)

[4] Sufficient degree and neighborhood conditions for traceability of claw-free
graphs, submitted (with H.J. Broersma and L. Xiong). (Chapter 5)

[5] A note on sufficient degree conditions for traceability of claw-free graphs,
submitted (with H.J. Broersma and L. Xiong). (Chapter 5)

[6] Generalized Dirac conditions for traceability of claw-free graphs, submitted
(with H.J. Broersma and L. Xiong). (Chapter 6)

Some other recent joint papers by the author

[1] Some physical and chemical indices of the Union Jack lattice, Journal of Sta-
tistical Mechanics: Theory and Experiment, 2 (2015), P02014 (with S. Li and
W. Yan).

[2]On the minimal energy of trees with a given number of vertices of odd de-
gree, MATCH Communications in Mathematical and in Computer Chemistry,
73 (2015), 3–10 (with W. Yan and S. Li).

[3] The spectrum and Laplacian spectrum of the dice lattice, Journal of Statistical
Physics, 164 (2016), 449–462 (with S. Li and W. Yan).
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[4] Traceability on 2-connected line graphs, Applied Mathematics and Computa-
tion, 321 (2018), 463–471 (with L. Xiong).

[5] 2-connected hamiltonian claw-free graphs involving degree sum of adjacent
vertices, Discuss. Math. Graph Theory. doi:10.7151/dmgt.2125 (with L.
Xiong).

[6]On the maximal energy of trees with at most two vertices of even degree,
Acta Mathematica Sinica, English Series, preprint (with W. Yan and S. Li).

[7] Number of vertices of degree three in spanning 3-trees in square graphs,
submitted (with W. Aye and L. Xiong).





Notation

Let G be a (simple) graph with vertex set V (G), edge set E(G), and let v ∈
V (G) and U , V ⊆ V (G).

|E(G)|
|V (G)|
NG(v)
NG(U)
NG[U]
dG(v) (or d(v))
δ(G)
α(G)
α′(G)
κ(G)
κ′(G)
g(G)
c(G)
E[U , V ]
e(U , V )
G[U]

the number of edges of G
the number of vertices of G
the set of neighbors of v
∪x∈U NG(x)
NG(U)∪ U
the degree of v (the number of neighbors of v)
the minimum degree of G
the independence number of G
the matching number of G
the (vertex) connectivity of G
the edge connectivity of G
the length of a shortest cycle in G
the length of a longest cycle in G
{uv ∈ E(G) | u ∈ U , v ∈ V}
|E[U , V ]|
the subgraph induced by vertex set U in G

xi





Contents

Preface vii

1 Introduction 1

1.1 General introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Hamiltonian and traceable graphs . . . . . . . . . . . . . 2

1.1.2 Degree conditions for hamiltonian properties . . . . . . 3

1.1.3 Basic terminology and notation . . . . . . . . . . . . . . . 4

1.1.4 Key concepts and auxiliary results . . . . . . . . . . . . . 6
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Chapter 1

Introduction

In this introductory chapter, we will describe our main contributions to the
field of hamiltonian graph theory, and we will also present some common
results that are repeatedly used in the succeeding chapters. But we start this
introduction with some general background and terminology. We assume
that the reader is familiar with the basics of mathematics, in particular with
the basic definitions of graph theory. Most of the terminology we use in this
thesis is standard and can be found in any textbook on graph theory. We use
the most recent version of the textbook of Bondy and Murty [8] as our main
source for terminology and notation.

1.1 General introduction

The graphs we consider in this thesis are finite and undirected, i.e., they
consist of a finite set of vertices and a finite set of (undirected) edges, where
each edge joins an unordered pair of distinct vertices (so we do not allow
loops). Sometimes we allow multiple edges, i.e., edges that join the same
pair of vertices. We will specify these concepts later, but for the moment we
can do without any formal definitions or notation.

1



2 Chapter 1. Introduction

1.1.1 Hamiltonian and traceable graphs

Two of the central concepts in this thesis are the hamiltonicity of graphs and
the traceability of graphs. Intuitively, these concepts deal with the way one
can traverse the vertices and edges of a graph in such a way that one passes
through all of its vertices exactly once.

To make this more precise, let G be a graph without multiple edges con-
sisting of a vertex set V (G) and an edge set E(G). Then this graph G is called
hamiltonian if G contains a Hamilton cycle, sometimes also referred to as a
spanning cycle. This means there exists a sequence v1e1v2e2 . . . vn−1en−1vnenv1

such that V (G) = {v1, v2, . . . , vn}, |V (G)| = n, each ei is an edge of G joining
the pair of vertices {vi , vi+1}, for i = 1,2, . . . , n− 1, and en is an edge of G
joining the pair {vn, v1} (so, in particular all ei ∈ E(G) for i = 1, 2, . . . , n).
Similarly, this graph G is called traceable if G contains a Hamilton path, i.e.,
a sequence v1e1v2e2 . . . vn−1en−1vn in the above sense.

The hamiltonian problem, i.e., the problem of deciding whether a given
graph is hamiltonian or not, is a long-standing and well-studied problem
within graph theory and computational complexity. Named after Sir William
Rowan Hamilton, this problem finds its origins in the 1850s as a two-person
game, in which a player has to produce a Hamilton cycle in a graph (repre-
senting a dodecahedron) after another player has prescribed five consecutive
vertices of it. The existence of Hamilton cycles is also related to early at-
tempts of Peter Guthrie Tait to prove the well-known Four Colour Conjecture
(now Four Colour Theorem), and it is also a special case of the well-known
Travelling Salesman Problem. We omit the details here, because the research
reported in this thesis bears no close relationship to the above problem areas.
Nevertheless, these problem areas have spurred the interest in hamiltonian
graph theory in general, leading to a wealth of publications.

Today, hamiltonian graph theory is a very active research field within
graph theory, resulting in a lot of papers, dealing with many variations on
this subject, and with many related problems. These developments have
supplied the graph theory community with many new results, as well as with
many new open problems and questions involving cycles and paths in graphs.
This is also the motivation for our research. We will come back to this later.
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Within computational complexity, the hamiltonian problem of deciding
whether a given graph is hamiltonian (or traceable) is generally NP-complete,
implying that to date there does not exist an easily verifiable necessary and
sufficient condition for the existence of a Hamilton cycle (or Hamilton path).
This is one of the main reasons why people have focussed on either suffi-
cient conditions or necessary conditions for hamiltonicity or traceability of
graphs. This enables the identification of YES-instances and NO-instances of
the hamiltonian problem. Without going into detail, we note here that the
far majority of published results is on sufficient conditions for hamiltonicity.

1.1.2 Degree conditions for hamiltonian properties

Intuitively, it is obvious that a graph is more likely to contain a Hamilton
cycle or path if each of its vertices has many neighbors, i.e., is joined to many
other vertices by edges; this number of neighbors is usually called the degree
of a vertex.

Degree conditions are by now known as the classic approach to hamilto-
nian problems. In [41], Dirac proved that if the degree of each vertex of a
graph is at least half of the order, i.e., the number of vertices, of the graph
(Dirac-type condition), then it contains a Hamilton cycle. As a generalization
of Dirac’s Theorem, Ore in [68] proved that if the degree sum of any two in-
dependent vertices (not joined by an edge) is at least the order of the graph
(Ore-type condition), then it contains a Hamilton cycle. Both results are best
possible, in the sense that the conclusion is no longer valid if we lower the
bound on the minimum degree or minimum degree sum in the above state-
ments. Obviously, Ore’s Theorem implies Dirac’s Theorem, and can in fact
be shown to be more generally applicable. It inspired others to introduce
other sufficient conditions for hamiltonian properties based on the degrees
and neighborhoods of the vertices of a graph.

Motivated by Dirac’s Theorem and Ore’s Theorem, the related concept
of the minimum degree sum over all independent sets of t vertices of a
graph was introduced (See, e.g., [10, 35, 49, 50, 52, 58, 65, 85]), as well as
the minimum cardinality of the neighborhood union over all independent
sets of t vertices of a graph (See, e.g., [1, 45, 47, 64]), and the minimum
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cardinality of the neighborhood union over all sets of t vertices of a graph
(See, e.g., [36, 46, 48]). Apart from the above concepts, other variations
involve the maximum degree of pairs of vertices with distance two (indepen-
dent pairs that have a common neighbor; Fan’s condition; see, e.g., [43]),
the minimum degree sum of any pairs of adjacent vertices (joined by an
edge; see, e.g., [14, 34, 79]), and the maximum degree of pairs of adja-
cent vertices (Lai’s condition; see, e.g., [59]). There exist several survey
papers on hamiltonian graph theory in which the interested reader can find
more details on the above concepts and conditions (See, e.g., the surveys
in [3,5,7,11,44,53–55,57,62]).

As we mentioned earlier, the results of Dirac and Ore are best possible, in
the sense that the degree conditions cannot be relaxed without violating the
conclusion that the graphs are hamiltonian. One way to extend such results
is to try to characterize the exceptional graphs, i.e., to find a nice descrip-
tion that identifies the structure of the nonhamiltonian graphs that meet the
relaxed degree condition. We will encounter many examples of such results
in this thesis. Another way to extend known results on the hamiltonicity of
general graphs is to focus on restricted graph classes, i.e., to impose some
limitation on the structure of the graphs. As we will see, degree conditions
for hamiltonicity of general graphs can be relaxed considerably if we consider
a certain subclass of graphs.

In this thesis, we mainly concentrate on sufficient degree conditions for
the existence of Hamilton cycles and Hamilton paths in claw-free graphs, to
be defined in the next section. Intuitively, a graph is claw-free if among any
three neighbors of each vertex of the graph, there is at least one pair that is
joined by an edge.

1.1.3 Basic terminology and notation

In the remainder of this introduction, we will describe our results and present
some common approaches, techniques and results that we will repeatedly use
in the succeeding chapters. We recall that most of the terminology we use
in this thesis is standard and can be found in any textbook on graph theory,
and that we use [8] as our main source for terminology and notation. We
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continue with some basic definitions and conventions that we use throughout
the thesis.

As we noted before, we consider finite, undirected and loopless graphs
only, but we sometimes allow multiple edges. To distinguish the situations,
a graph without multiple edges will be called a simple graph or simply a
graph. A graph is called a multigraph if it may contain multiple edges. Some
of the concepts that we define next pertain to simple graphs as well as to
multigraphs, whereas others have clear counterparts for multigraphs, but we
only define them for (simple) graphs here.

In the next paragraphs, we let G denote a graph with vertex set V (G)
and edge set E(G). Let X and Y be nonempty sets of vertices (not necessarily
disjoint) of G. Then E[X , Y ] denotes the set of edges of G with one end in X
and the other end in Y , and e(X , Y ) = |E[X , Y ]|. For a vertex x of G, we de-
note by NG(x) the neighborhood of x in G, i.e., the set of vertices adjacent to
x in G, and by dG(x) = |NG(x)| (or simply d(x) if no confusion can arise) the
degree of x in G. For a vertex set S ⊆ V (G), we define NG(S) = ∪x∈SNG(x)
and NG[S] = NG(S)∪S. To distinguish vertex sets with different degrees, we
use Di(G) = {v ∈ V (G) | d(v) = i}, and we let D(G) = D1(G) ∪ D2(G). An
edge e = uv ∈ E(G) is called a pendant edge of G if min{d(u), d(v)} = 1.
The circumference of G, denoted by c(G), is the length of a longest cycle of
G. The girth of G, denoted by g(G), is the length of a shortest cycle of G.

Given a nonempty subset S ⊆ V (G), the induced subgraph G[S] of G
is the subgraph with vertex set S and edge set {uv ∈ E(G) | {u, v} ⊆ S}.
We say that H is an induced subgraph of G if H is isomorphic to G[S] for
some nonempty subset S ⊆ V (G). A graph is claw-free if it has no induced
subgraph isomorphic to K1,3. A graph is triangle-free if it contains no cycle
with exactly three vertices.

If G is a connected graph, then the distance between two vertices u and
v of G is the length (i.e., the number of edges) of a shortest path between
u and v, and is denoted by dist(u, v). As in [8], the independence number,
the matching number, the connectivity and the edge-connectivity of G are
denoted by α(G), α′(G), κ(G) and κ′(G), respectively.

A subset X ⊆ E(G) is called an edge-cut of G if G − X has at least two
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components. An edge-cut X of G is called essential if G − X has at least two
non-trivial components, i.e., components that contain at least one edge. For
an integer k ≥ 1, the graph G is said to be essentially k-edge-connected if G is
connected and does not admit an essential edge-cut X with |X |< k.

The line graph of G, denoted by L(G), has E(G) as its vertex set, while
two vertices in L(G) are adjacent if and only if the corresponding edges in G
have a vertex in common. It is well-known and easy to check that line graphs
are claw-free graphs. We also note without proof that a graph G is essentially
k-edge-connected if and only if L(G) is k-connected (or complete).

1.1.4 Key concepts and auxiliary results

Next, we are going to shortly review some key concepts that we use through-
out the thesis. The first concept yields a way to shift attention and consid-
erations from a claw-free graph H to a closely related line graph L(G) of
a triangle-free graph G. This will enable us to show the validity of state-
ments about the hamiltonicity and traceability of H by proving equivalent
statements about G. Since we will mainly deal with the latter, we find it con-
venient to use H for the original claw-free graph for which we will establish
hamiltonicity and traceability results, and G for the graph we will deal with
in our proofs. We apologize for any confusion this may cause.

Let H be a graph and let t be a positive integer. Below, we use t-set
as shorthand for a subset with t vertices. Formally, the degree concepts we
informally introduced earlier are defined as follows.

• δ(H) =min{d(v) | v ∈ V (H)} (Dirac-type);

• σ2(H) =min{d(u) + d(v) | uv /∈ E(H)} (Ore-type);

• σt(H) =min{
∑t

i=1 dH(vi) | {v1, v2, . . . , vt} is an independent t-set of H}
(if t > α(H), we set σt(H) =∞);

• Ut(H) =min{|
⋃t

i=1 NH(vi)| | {v1, v2, . . . , vt} is an independent t-set of H}
(if t > α(H), we set Ut(H) =∞);

• δt(H) =min{|
⋃t

i=1 NH(vi)| | {v1, v2, . . . , vt} is a t-set in H};
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• δF (H) = min{max{d(u), d(v)} | u, v ∈ V (H) with dist(u, v) = 2} (Fan-
type);

• σ2(H) =min{d(u) + d(v) | uv ∈ E(H)} (Brualdi and Shanny-type);

• δL(H) =min{max{d(u), d(v)} | uv ∈ E(H)} (Lai-type).

Obviously, δ(H) = σ1(H) = U1(H) = δ1(H), and σt(H) ≥ Ut(H) ≥ δt(H).
We let Ω(H, t) = {δ(H),σ2(H), σt(H), Ut(H),σt(H),δF (H),σ2(H),δL(H)}.

A connected subgraph Ψ of a graph G is called a closed trail of G if the
degree of each vertex of Ψ is even (in Ψ); it is called an open trail (or just
trail) if Ψ+ e is a closed trail for an edge e not belonging to Ψ but joining
two vertices of Ψ (In case we consider multigraphs, e may join two vertices
that are already adjacent in Ψ). A (closed) trail Ψ of G is called a spanning
(closed) trail (ST and SCT for short) of G if V (G) = V (Ψ), and it is called a
dominating (closed) trail (DT and DCT for short) of G if E(G − V (Ψ)) = ;.
So, every edge of G has at least one end vertex on a DT or DCT of G, and
every ST (SCT) is also a DT (DCT), but not the other way around. A graph
is eulerian if it is connected and each vertex has even degree. A graph is
supereulerian if it contains an SCT. The family of supereulerian graphs is
denoted by S L .

The supereulerian graph problem, raised by Boesch, Suffel, and Tin-
dell [4], is similar to the hamiltonian problem we mentioned before. It
reflects the quest to find an easily verifiable characterization of supereule-
rian graphs. It is also partly motivated by the hamiltonian problem. Pul-
leyblank [69] showed that determining whether a graph is supereulerian is
NP-complete, even when restricted to planar graphs (We refrain from giv-
ing the definition because we will not encounter planar graphs in the se-
quel). Degree conditions have also been considered in the context of study-
ing supereulerian graphs. Numerous sufficient conditions for G ∈ S L in
terms of lower bounds on degrees in G have been established (See, e.g.,
[2,15,16,18–21,27,29–32,37,39,80]). For more literature on supereulerian
graphs, we refer the interested reader to the surveys [22, 38, 60]. Sufficient
conditions for guaranteeing that a graph has a spanning trail also attracted
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several authors’ attention (See, e.g., [18, 24, 25, 40, 42, 67, 77, 80, 82]). Su-
pereulerian graphs, spanning (closed) trails, eulerian subgraphs, and domi-
nating (closed) trails with certain properties have many applications to other
areas, but in the sequel we will focus our attention to applications related to
hamiltonian properties of line graphs and claw-free graphs.

Most of the results on hamiltonicity of line graphs are based on the fol-
lowing well-known result of Harary and Nash-Williams [56]. It shows a nice
equivalence between the existence of a DCT in a graph G and a Hamilton
cycle in its line graph L(G).

Theorem 1.1. (Harary and Nash-Willians [56]). The line graph L(G) of a
graph G with at least three edges is hamiltonian if and only if G has a DCT.

We also need the following counterpart, showing the equivalence be-
tween the existence of a DT in a graph G and a Hamilton path in its line
graph L(G).

Theorem 1.2. (Li, Lai and Zhan [61]). Let G be a graph with |E(G)| ≥ 1.
Then the line graph L(G) of G is traceable if and only if G has a DT.

As we mentioned before, the class of line graphs forms a subclass of the
class of claw-free graphs. In the next section, we will see that studying hamil-
tonian properties of claw-free graphs and line graphs is in fact equivalent, in
a particular sense determined by a closure operation due to Ryjáček [71].

1.2 Ryjáček’s closure for claw-free graphs

In the context of investigating the hamiltonicity or traceability of claw-free
graphs, Ryjáček [71] introduced the following very useful closure operation.
A vertex v of a graph H is called locally connected if NH(v) induces a con-
nected subgraph in H. The closure of a claw-free graph H is the graph ob-
tained from H by joining all pairs of nonadjacent vertices in the neighbor-
hood of a locally connected vertex by edges, and repeating this procedure in
the newly obtained (claw-free) graph as long as this is possible. The (unique)
closure of the claw-free graph H that is obtained this way is denoted by cl(H).
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Obviously, κ(cl(H)) ≥ κ(H), a fact that we will use implicitly without speci-
fying it. A claw-free graph H is said to be closed if H = cl(H). The following
theorem summarizes the basic properties of cl(H).

Theorem 1.3. (Ryjáček [71]). Let H be a claw-free graph. Then

(i) cl(H) is well-defined;

(ii) there is a triangle-free graph G such that cl(H) = L(G);

(iii) H and cl(H) have the same circumference.

It is known that a connected line graph H 6= K3 can be determined by a
unique graph G with H = L(G). In this case, we call G the preimage graph
of the graph H. For a claw-free graph H, the closure cl(H) of H can be
obtained in polynomial time [71], and the preimage graph of a line graph
can be obtained in linear time [70]. So, we can compute G efficiently for
cl(H) = L(G).

Later, the above theorem was extended to an analogous statement for
traceability of claw-free graphs.

Theorem 1.4. (Brandt, Favaron and Ryjáček [9]). Let H be a claw-free graph.
Then H is traceable if and only if cl(H) is traceable.

By combining Theorem 1.1 with Theorem 1.3, investigating the hamil-
tonicity of a claw-free graph H is equivalent to investigating the existence
of a DCT in a graph G for which L(G) = cl(H). Similarly, by combining
Theorem 1.2 with Theorem 1.4, investigating the traceability of a claw-free
graph H is equivalent to investigating the existence of a DT in a graph G for
which L(G) = cl(H). These equivalences enable the application of powerful
reduction methods based on the seminal work due to Catlin [20] and later
refinements. Originally, these methods and tools developed by Catlin were
invented to study the existence of SCTs and DCTs. For more information
about closure concepts in claw-free graphs, the interested reader is referred
to [6,9,12,13,72–74,83].



10 Chapter 1. Introduction

1.3 Catlin’s reduction method

Let G be a connected multigraph. For X ⊆ E(G), the contraction G/X is
the graph obtained from G by successively identifying the two end vertices
of each edge e ∈ X and deleting the resulting loops. Note that, in general
G/X is a multigraph, also in case G is a simple graph. If Γ is a connected
sub(multi)graph of G, then we write G/Γ for G/E(Γ); in this case, we use vΓ
to denote the only remaining vertex of Γ in G/Γ, i.e., the vertex in G/Γ to
which Γ is contracted, and we call this vertex vΓ a contracted vertex if Γ 6= K1

in order to distinguish it from the remaining vertices of G.

Let O(G) be the set of vertices of odd degree in G. A graph in which each
vertex has even degree is called an even graph. Adopting the terminology
of [20], a multigraph G is called collapsible if for every even subset R⊆ V (G),
there is a spanning connected sub(multi)graph ΓR of G with O(ΓR) = R. The
graph K1 is regarded as a collapsible and supereulerian graph.

In [20], Catlin showed that every multigraph G can be partitioned into
a unique collection of vertex-disjoint maximal collapsible sub(multi)graphs
Γ1,Γ2, . . . ,Γc . Based on this, he defined the reduction of G as G′ = G/(∪c

i=1Γi),
i.e., the graph obtained from G by successively contracting each Γi into a sin-
gle vertex vi (1 ≤ i ≤ c). So for each vertex v ∈ V (G′), there is a unique
maximal collapsible sub(multi)graph (possibly consisting of only v itself),
denoted by Γ0(v), such that v is the contraction image of Γ0(v); we call
this Γ0(v) the preimage of v. Recall that we call v a contracted vertex if
Γ0(v) 6= K1. A multigraph G is called reduced if G′ = G. In fact, in that case
G is simple (as stated in Theorem 1.5(c) below). We have gathered some of
the main results of Catlin et al. in the following theorem and lemma.

Theorem 1.5. (Catlin et al. [20, 23]). Let G be a connected multigraph and
let G′ be the reduction of G.

(a) G is collapsible if and only if G′ = K1, and G has an SCT if and only if G′

has an SCT.

(b) G has a DCT if and only if G′ has a DCT containing all the contracted
vertices of G′.
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(c) If G is a reduced graph, then G is simple and triangle-free, and δ(G) ≤
3. Moreover, then any subgraph Ψ of G is reduced, and either Ψ ∈
{K1, K2, K2,t (t ≥ 2)} or |E(Ψ)| ≤ 2|V (Ψ)| − 5.

Lemma 1.6. (Catlin [17,20]). The graphs K3 and K3,3− e are collapsible.

Here, K3,3 − e denotes K3,3 minus an arbitrary edge. Later, the above
Theorem 1.5(a) was extended to an analogous statement for spanning trail
of a graph.

Theorem 1.7. (Xiong and Zong [84]). Let G be a connected graph of order n,
and let G′ be the reduction of G. Then G has an ST if and only if G′ has an ST.

1.4 The reduction of the core of a graph

Let H be a k-connected claw-free graph with δ(H) ≥ 3 (k ∈ {2,3}). By
Theorem 1.3, there is a triangle-free graph G such that cl(H) = L(G). By
the definition of cl(H), V (cl(H)) = V (H) and dcl(H)(v) ≥ dH(v) for any v ∈
V (cl(H)), and so dcl(H)(v)≥ dH(v)≥ 3. For an edge e = x y in G, let ve be the
vertex in cl(H) corresponding to e in G. Then dcl(H)(ve) = dG(x)+dG(y)−2.
Thus, if cl(H) = L(G) is a k-connected graph with δ(cl(H)) ≥ 3, then G is
an essentially k-edge-connected graph with σ2(G)≥ 5.

Now let G be an essentially 2-edge-connected graph with σ2(G) ≥ 5.
Then, obviously X = D1(G)∪D2(G) is an independent set in G. Let E1 denote
the set of pendant edges in G. For each x ∈ D2(G), there are two edges e1

x

and e2
x incident with x . Let X2(G) = {e1

x | x ∈ D2(G)}. Then, adopting the
terminology of [75], the core of G, denoted by G0, is defined by

G0 = G/(E1 ∪ X2(G)).

In fact, this concept was already defined in an earlier paper [81], where the
notation IX (G) was used instead of G0. In our situation, G0 is simply the
multigraph obtained from G by deleting the vertices of D1(G) and replacing
each path of length 2 whose internal vertex has degree 2 in G by an edge.
Hence, we can regard the vertex set V (G0) as a subset of V (G). A vertex in G0
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is called nontrivial if it is obtained by contracting some edge(s) in E1∪X2(G)
or if it is adjacent to a vertex in D2(G) in G. For instance, if v ∈ D2(G) and
NG(v) = {x , y}, and if xv is the vertex in G0 obtained by contracting the edge
x v, then both xv and y are nontrivial in G0 (although xv is a contracted
vertex and y is not a contracted vertex of G0). Since σ2(G) ≥ 5, all vertices
in D2(G0) are nontrivial.

FIGURE 1.1: The reduction G′0 of the core G0 of a graph G.

Let G′0 be the reduction of G0. For a vertex v ∈ V (G′0), let Γ0(v) be
the maximal collapsible preimage of v in G0, and let Γ(v) be the preim-
age of v in G. Note that Γ(v) is the graph induced by edge(s) composed
of E(Γ0(v)) and possibly some edge(s) of E1 ∪ X2(G) (For an example, see
Figure 1.1). A vertex v in G′0 is a nontrivial vertex if v is a contracted vertex
(i.e., if |E(Γ(v))| ≥ 1 or |V (Γ(v))|> 1) or if v is adjacent to a vertex in D2(G).

Using Theorem 1.5, Veldman [81] and Shao [75] proved the following.

Theorem 1.8. Let G be a connected and essentially k-edge-connected graph
such that σ2(G) ≥ 5, k ∈ {2,3}, and L(G) is not complete. Let G′0 be the
reduction of the core G0 of G. Then each of the following holds:

(a) G0 is well-defined, nontrivial, δ(G0)≥ κ′(G0)≥ k, and κ′(G′0)≥ κ
′(G0).

(b) (Lemma 5 in [81]) G has a DCT if and only if G′0 has a DCT containing
all the nontrivial vertices.

We have the following similar result.

Theorem 1.9. Let G be a connected and essentially k-edge-connected graph
such that σ2(G) ≥ 5, k ∈ {2,3}, and L(G) is not complete. Let G′0 be the
reduction of the core G0 of G. Then the following holds:

(c) G has a DT if and only if G′0 has a DT containing all the nontrivial vertices.
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Proof of Theorem 1.9. Clearly, if G has a dominating trail, then G′0 has
a dominating trail containing all the nontrivial vertices of G′0. Conversely,
we assume that G′0 has a dominating trail T ′ containing all the nontrivial
vertices of G′0. Set G′s = G′0[V (T

′)] and U = V (G′0)− V (T ′). Then U is an
independent subset of both V (G′0) and V (G), U ∩ NG[D1(G) ∪ D2(G)] = ;
and T ′ is a spanning trail of G′s. Set Gs = G0 − U and Gt = G − (U ∪ D1(G)).
By our definitions, Gt is a subdivision of Gs and G′s is the reduction of Gs.
Since G′s has a spanning trail, by Theorem 1.7, Gs has a spanning trail. Since
Gt is a subdivision of Gs with each edge of Gs subdivided at most once, it
follows that Gt has a dominating trail T such that V (Gt)− V (T ) ⊆ D2(G).
Then V (G) − V (T ) ⊆ U ∪ D1(G) ∪ D2(G). Since U ∪ D1(G) ∪ D2(G) is an
independent subset of V (G), T is a dominating trail of G. This completes the
proof.

1.5 Main results of this thesis

In Chapter 2, we consider the traceability of a 2-connected claw-free graph H
of order n with a given degree sum condition on adjacent vertices. We obtain
that if σ2(H) ¾

2n−5
7

and δ(H) ≥ 3, and n is sufficiently large, then either
H is traceable or H belongs to one class of well-characterized exceptional
graphs. We also show that if σ2(H)>

n−6
3

and δ(H)≥ 3, and n is sufficiently
large, then H is traceable, and that the lower bound n−6

3
is sharp.

In Chapter 3, it is conjectured (by Chen et al. [39]) that a 3-edge-connec-
ted simple graph G with sufficiently large order n and with σ2(G) >

n
9
− 2

is either supereulerian or contractible to the Petersen graph. We show that
the conjecture is true for σ2(G)≥

2n
15
−2. Furthermore, we show that, for an

essentially k-edge-connected simple graph G with sufficiently large order n
(k ∈ {2,3}), each of the following holds: (i) if k = 2 and σ2(G)≥ 2(bn/8c −
1), then either L(G) is hamiltonian or G can be contracted to one of a set of
six graphs that are not supereulerian; (ii) if k = 3 andσ2(G)≥ 2(bn/15c−1),
then either L(G) is hamiltonian or G can be contracted to the Petersen graph.

In Chapter 4, we consider sufficient minimum degree and degree sum
conditions that imply that graphs admit a Hamilton cycle, unless they have
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a small order or they belong to well-defined classes of exceptional graphs.
Our main result implies that a 2-connected claw-free graph H of sufficiently
large order n with minimum degree δ(H) ≥ 3 (δ(H) ≥ 18, respectively) is
hamiltonian if the degree sum of any set of t independent vertices of G is
at least t(n+5)

5
( tn

6
, respectively), where t ∈ {1, 2, . . . , 5} (t ∈ {1,2, . . . , 6},

respectively), unless G belongs to one of a number of well-defined classes
of exceptional graphs depending on t. Our results unify and extend several
known earlier results.

In Chapter 5, we consider sufficient minimum degree and degree sum
conditions that imply that graphs admit a Hamilton path, unless they have
a small order or they belong to well-defined classes of exceptional graphs.
Firstly, one of our results implies that a 2-connected claw-free graph H of
sufficiently large order n with minimum degree δ(H) ≥ 3 is traceable if the
degree sum of any set of t independent vertices of H is at least t(n+6)

6
, where

t ∈ {1, 2, . . . , 6}. Secondly, one of our results implies that a 2-connected claw-
free graph H of sufficiently large order n with minimum degree δ(H) ≥ 22
is traceable if the degree sum of any set of t independent vertices of H is at
least t(2n−5)

14
, where t ∈ {1,2, . . . , 7}, unless H belongs to one of a number of

well-defined classes of exceptional graphs depending on t. Our third result
implies that a 2-connected claw-free graph H of sufficiently large order n
with δ(H) ≥ 18 is traceable if the degree sum of any set of 6 independent
vertices is larger than n−6, and we show that this lower bound on the degree
sums is sharp. Our results unify and extend several known earlier results.

In Chapter 6, we consider sufficient generalized Dirac-type conditions
that imply that graphs admit a Hamilton path. Our result implies that a
2-connected claw-free graph H of sufficiently large order n with minimum
degree δ(H) ≥ 3 is traceable if δ2(H) ≥

2(n+8)
12

(or δ3(H) ≥
3(n+6)

15
, or

δ4(H)≥
4(n+4)

16
, or δ5(H)≥

5(n−1)
15

).



Chapter 2

Degree sums of adjacent
vertices for traceability

In this chapter, we first recall some known results on hamiltonicity and trace-
ability for general graphs and claw-free graphs. This culminates in results of
Brualdi and Shanny [14] and Chen [34] that form the main motivation for
our results that we present and prove in this chapter. In fact, we establish
traceability analogues of the hamiltonicity results obtained in [34], based on
degree conditions that originate from [14].

2.1 Introduction

We start this introductory section with a short overview of known results
that constitute the main motivation for the research that is reported in the
remainder of this chapter.

2.1.1 Motivation

In the study of hamiltonicity of graphs, the following theorem due to Dirac
[41] is well-known and the starting point of a development that has resulted
in a vast amount of publications.

15
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Theorem 2.1. (Dirac, [41]) Every graph of order n≥ 3 with minimum degree
δ(G)≥ n

2
is hamiltonian.

Theorem 2.1 has the following easy corollary for traceability.

Theorem 2.2. Every graph of order n with minimum degree δ(G) ≥ n−1
2

is
traceable.

The above results are best possible in the sense that the lower bounds
on the minimum degree cannot be relaxed without violating the conclusion.
This can be seen, e.g., from the complete bipartite graph K n−1

2
, n+1

2
in case of

Theorem 2.1 and K n−2
2

, n+2
2

in case of Theorem 2.2. However, if we impose
additional restrictions on the structure of the graphs, these lower bounds can
be improved considerably, as demonstrated by the following result in [66].

Theorem 2.3. (Matthews and Sumner [66]). Let G be a connected claw-free
graph of order n with δ(G)≥ n−2

3
. Then G is hamiltonian.

As we have seen in Chapter 1, in addition to Dirac’s minimum degree
condition, various degree and neighborhood conditions have been used in
subsequent studies on hamiltonicity and traceability of graphs. Here, we look
at one particular type of conditions, inspired by the early work of Brualdi and
Shanny from the 1980s. In [14], they considered a degree sum condition on
adjacent pairs of vertices of graphs guaranteeing that their line graphs are
hamiltonian. Here we look at such degree sum conditions imposed on claw-
free graphs. But we first note that for general graphs, a sufficient degree sum
condition on adjacent pairs for hamiltonicity and traceability can easily be
deduced from Theorems 2.1 and 2.2.

Corollary 2.1. Every connected graph G of order n ≥ 3 with σ2(G) ≥
3n−2

2
is hamiltonian.

Proof. Let G be a connected graph of order n ≥ 3 with σ2(G) ≥
3n−2

2
.

Then, for any vertex x of G, we can choose a neighbor y of x , since G is
assumed to be connected. Hence, d(x)+ d(y)≥ σ2(G)≥

3n−2
2

. This implies
that d(x) ≥ n

2
, since d(y) ≤ n − 1. Therefore, Corollary 2.1 is implied by

Theorem 2.1.
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Similarly, it easy to check that the following traceability result is implied
by Theorem 2.2.

Corollary 2.2. Every connected graph G of order n with σ2(G) ≥
3n−3

2
is

traceable.

We already mentioned that Theorems 2.1 and 2.2 are sharp, in the sense
that we cannot lower the degree bound without violating the conclusion.
Unfortunately, the same holds for Corollaries 2.1 and 2.2. For Corollary 2.1,
this can be seen from the graphs Gm = (m + 1)K1 ∨ Km, the join of m + 1
disjoint copies of a K1 (so a set of m+1 independent vertices) with a disjoint
complete graph Km on m vertices (m ≥ 1). One easily checks that with
n = |V (Gm)| = 2m+ 1, δ(Gm) =

n−1
2

, and σ2(Gm) =
3n−3

2
, while Gm is not

hamiltonian since the number of the components of Gm − V (Km) is m+ 1.
Similarly, the nontraceable graphs G1

m = (m+ 2)K1 ∨ Km with n= |V (G1
m)|=

2m+ 2, δ(G1
m) =

n−2
2

, and σ2(G1
m) =

3n−4
2

show that Corollary 2.2 is sharp.

The above discussion reveals that considering degree sum conditions on
adjacent pairs of vertices for general graphs does not provide anything rele-
vant, in the sense of essentially new and more general results. However, if
we consider claw-free graphs, this picture changes. This was first observed
by Chen [34] who considered the Brualdi-Shanny condition for guarantee-
ing hamiltonicity of claw-free graphs (as reflected in Theorems 2.4 and 2.5 of
this section). To formulate Chen’s results, we need some additional notation.

We let Q0(r, k) denote the class of k-edge-connected graphs of order at
most r that do not admit an SCT. It is known thatQ0(5, 2) = {K2,3}, and that
for k ≥ 4 these classes are empty, but for other appropriate values of k and r
these classes are usually not easy to describe explicitly. In [34], Chen proved
the following general result.

Theorem 2.4. (Chen [34]). Let p > 0 be a given integer, let ε be a given
real number, and let k ∈ {2,3}. Suppose H is a k-connected claw-free graph of
order n with δ(H) ≥ 3. If σ2(H) ≥

2n+ε
p

and n is sufficiently large, then either
H is hamiltonian or cl(H) = L(G), where G is an essentially k-edge-connected
triangle-free graph that can be contracted to a graph inQ0(5p−10, k) for some
p ≥ 3.
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In order to present a more concrete application of the above general re-
sult, we need some additional notation.

For a K2,3, suppose D2(K2,3) = {v1, v2, v3} and D3(K2,3) = {u1, u2}. Let
K2,3(s1, s2, s3, r) denote the family of essentially 2-edge-connected graphs of
size n (so, with n edges) obtained from a K2,3 by replacing each vi ∈ D2(K2,3)
by a connected triangle-free subgraph of size si ≥ 1 and replacing one vertex
in D3(K2,3) by a connected triangle-free subgraph of size r ≥ 0 such that
∑3

i=1 si+r+6= n. Note that each graph inK2,3(s1, s2, s3, r) can be contracted
to a K2,3, and that the line graph of each of these graphs has order n. These
line graphs will be used in the formulation of the next result.

Let Q2,3(s1, s2, s3, r) be the set of 2-connected claw-free graphs H whose
Ryjáček closure cl(H) is the line graph L(G) of a graph G inK2,3(s1, s2, s3, r).

As a special case of Theorem 2.4 with fixed given values for p and ε, the
following was obtained in [34], and independently in [79].

Theorem 2.5. (Chen [34]). Let H be a 2-connected claw-free graph of order
n with δ(H) ≥ 3. If σ2(H) ≥

2n−4
4

and n is sufficiently large, then one of the
following holds:

(a) H is hamiltonian;

(b) H ∈Q2,3(s1, s2, s3, r) and 2n−4
4
≤ σ2(H)≤

2n−2
4

, where min{s1, s2, s3} ≥
n−6

4
, r ≥ n−10

4
; or

(c) H ∈Q2,3(s1, s2, s3, 0) and 2n−4
4
≤ σ2(H)≤

2n−6
3

, where min{s1, s2, s3} ≥
n−6

4
.

Motivated by the above results, in this chapter we give best possible de-
gree sum conditions on adjacent pairs of vertices for claw-free graphs G with
δ(G)≥ 3 to be traceable.

2.2 Our results

Let F1 and F2 be the graphs depicted in Figure 2.1, and let G1, G2, . . . , G6 be
the graphs that are depicted in Figure 2.2. Denote by R0(r, k) the family of
k-edge-connected graphs of order at most r that do not admit a spanning
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1
F

2
F

FIGURE 2.1: Two graphs of order 10 without a spanning trail.

trail. Since some graphs in Q0(r, k) contain a spanning trail, like K2,3 for
k = 2 and the Petersen graph for k = 3, R0(r, k)⊆Q0(r, k). By Theorem 2.9
below, we know that R0(11,2) = {F1, F2, G1, G2, . . . , G6}. These graphs will
play a key role in the results that we are going to present and prove in the
remainder of this chapter.

Our first main result is the following analogue of Theorem 2.4 for trace-
ability.

Theorem 2.6. Let p > 0 be a given integer, let ε be a given real number,
and let k ∈ {2,3}. Suppose H is a k-connected claw-free graph of order n with
δ(H)≥ 3. If σ2(H)≥

2n+ε
p

and n is sufficiently large, then either H is traceable
or cl(H) = L(G), where G is an essentially k-edge-connected triangle-free graph
that can be contracted to a graph in R0(5p− 10, k) for some p ≥ 4.

We postpone all the proofs to later sections of this chapter in order to
increase the readability. As an application of Theorem 2.6, we obtain the
following result.

Theorem 2.7. Let H be a 2-connected claw-free graph of order n with δ(H)≥
3. If σ2(H) ≥

2n−5
7

and n is sufficiently large, then either H is traceable or
cl(H) = L(G), where G is an essentially 2-edge-connected triangle-free graph
that can be contracted to either F1 or F2 such that all vertices of degree two are
nontrivial.

For a graph F ∈ {F1, F2}, let D2(F) = {v1, v2, . . . , v6}. Let F (n, s) be
the family of essentially 2-edge-connected graphs in which each graph is
obtained from such a graph F by replacing each vi ∈ D2(F) by a triangle-free
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FIGURE 2.2: Six graphs of order 11 without a spanning trail.

subgraph Φi of size si ≥ s such that n= 12+
∑6

i=1 si . In particular, if s = n−12
6

,
then we let F (n, n−12

6
) be the family of essentially 2-edge-connected graphs

in which each graph is obtained from F by adding n−12
6

pendant edges to
each vertex of degree two of F .

LetRF (n, s) be the set of 2-connected claw-free graphs H whose Ryjáček
closure cl(H) is the line graph L(G) of a graph G in F (n, s).

Theorem 2.7 in fact can be deduced from the following result.

Theorem 2.8. Let H be a 2-connected claw-free graph of order n with δ(H)≥
3. If σ2(H) ≥

2n−5
7

and n is sufficiently large, then either H is traceable or
σ2(H)≤

n−6
3

and H ∈ RF (n, 2n−19
14
).

Remark 2.1. Let G∗ be a graph obtained from the graph G1 of Figure 2.2 by
adding n−14

7
≥ 2 pendant edges at each vertex of degree two of G1. Then

σ2(L(G∗)) =
2n−14

7
< 2n−5

7
. Clearly, L(G∗) /∈ RF (n, 2n−19

14
). Note that G∗

cannot be contracted to a graph in {F1, F2}. This example shows that the
bound 2n−5

7
in Theorems 2.7 and 2.8 is asymptotically sharp.

To prove our main results, we need the following key ingredient which is
a useful result by itself.

Theorem 2.9. If G is a 2-edge-connected graph of order at most 11, then either
G has a spanning trail or G ∈ {F1, F2, G1, G2, . . . , G6}.

Since all the graphs depicted in Figures 2.1 and 2.2 are not 3-edge-
connected, Theorem 2.9 implies the following result.

Corollary 2.3. If G is a 3-edge-connected graph of order at most 11, then G
has a spanning trail.
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Theorem 2.8 implies the following result immediately.

Corollary 2.4. Let H be a 2-connected claw-free graph of order n. If δ(H)≥
2n−5

14
and n is sufficiently large, then either H is traceable or δ(H)≤ n−6

6
and

H ∈ RF (n, 2n−19
14
).

From our proof of Theorem 2.8 (which will be given in Section 2.6), we
also obtain the following results.

Theorem 2.10. Let H be a 2-connected claw-free graph of order n with δ(H)≥
3. If σ2(H) ≥

n−6
3

and n is sufficiently large, then either H is traceable or
σ2(H) =

n−6
3

and H ∈ RF (n, n−12
6
).

From Theorem 2.10, we immediately get the following corollary.

Corollary 2.5. Let H be a 2-connected claw-free graph of order n. If δ(H)≥
n−6

6
and n is sufficiently large, then either H is traceable or δ(H) = n−6

6
and

H ∈ RF (n, n−12
6
).

Define F = {H | H = L(G), where G is obtained from F1 or F2 by adding
at least one pendant edge to each vertex of degree two of F1 or F2}.

In [82], Wang and Xiong proved the following result.

Theorem 2.11. (Wang and Xiong [82]). Let H be a 2-connected claw-free
graph of order n≥ 137 such that δ(H)> n

7
+4. Then H is traceable or H ∈ F .

Corollary 2.4 is an improvement of Theorem 2.11, and a substantial im-
provement of the following result for 2-connected claw-free graphs of order
n, when n is sufficiently large.

Theorem 2.12. (Matthews and Sumner [66]). Let H be a connected claw-free
graph of order n with δ(H)≥ n−2

3
. Then H is traceable.

The remainder of this chapter is organized as follows. In Section 2.3,
we present some useful auxiliary results. In Section 2.4, the proof of The-
orem 2.9 is given. In Section 2.6, our proofs of Theorems 2.6 and 2.8 are
given.
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2.3 Preliminaries and auxiliary results

Niu, Xiong and Zhang in [67] defined the smallest graph in a collection of
graphs as a graph that has the least order and subject to that has the least
size amongst all graphs of that order in the collection. In particular, they
considered the smallest order and size of 2-edge-connected graphs without
spanning trails. They proved the following result, in which both F1 and F2

(of Figure 2.1) are graphs with order 10 and size 12 that do not admit a
spanning trail.

Theorem 2.13. (Niu, Xiong and Zhang [67]). If G is a 2-edge-connected
graph of order at most 10, then either G has a spanning trail or G ∈ {F1, F2}.

In [82], Wang and Xiong proved the following two useful results.

Theorem 2.14. (Wang and Xiong [82]). Let G be a 2-connected graph with
circumference c(G).

(a) If c(G)≤ 5, then G has a spanning trail that starts from any given vertex.

(b) If c(G)≤ 7, then G has a spanning trail.

The following result will be needed in our proof of Theorem 2.8.

Theorem 2.15. (Wang and Xiong [82]). Let G be a 2-edge-connected graph.
Then for any subset S ⊆ V (G) with |S| ≤ 6 and E(G − S) = ;, either G has a
trail passing through all vertices of S or G ∈ {F1, F2}.

In the next section, we continue with our proof of Theorem 2.9.

2.4 Proof of Theorem 2.9

Before we present the proof, we need some conventions. In a connected
graph G, let C = v0v1v2 · · · vc(G)−1v0 denote a longest cycle containing the
vertices v0, v1, . . . , vc(G)−1 of G. For convenience, in the following, the sub-
scripts are taken modulo c(G). For any vi , v j ∈ V (C) (with vi 6= v j), without

loss of generality, we assume that i < j. We use vi
−→
C v j to denote the segment
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vi vi+1 · · · v j−1v j of C , i.e., vi
−→
C v j is a trail (path) along the edges of C starting

from the vertex vi and terminating at the vertex v j . Note that vi
−→
C v j contains

the vertices vi and v j exactly once.

Proof of Theorem 2.9. Let G be a 2-edge-connected simple graph of order
at most 11. If G has a spanning trail, then we are done. In the following, we
assume that G has no spanning trail.

Assume first that G has a triangle. Then we let G′ be the reduction of
G. By Theorem 1.5(c), G′ is triangle-free. Then, since |V (G)| ≤ 11, we
obtain that |V (G′)| ≤ 9. Now, since G is 2-edge-connected, G′ is also 2-edge-
connected. By Theorem 2.13, G′ has a spanning trail. Then by Theorem 1.7,
G has a spanning trail, a contradiction.

Therefore, we next assume that G is triangle-free. If |V (G)| ≤ 10, then
by Theorem 2.13, G is isomorphic to one of the graphs F1 and F2 depicted in
Figure 2.1. Hence, in the remainder of the proof, we only need to consider
the case that |V (G)|= 11. We distinguish two cases based on the connectivity
κ(G) of G.

Case 1. κ(G)≥ 2.

Since G has no spanning trail then by Theorem 2.14, c(G) ≥ 8. Therefore,
8 ≤ c(G) ≤ 9; otherwise, G − V (C) has at most one vertex, and we can find
a spanning trail of G, a contradiction. Here, C = v0v1v2 · · · vc(G)−1v0 denotes
a longest cycle of G (and c(G) = 8 or 9). By deleting all the chords of C , the
resulting 2-connected graph G0 is a spanning subgraph of G. Thus, G0 has
no spanning trail; otherwise, G has a spanning trial, a contradiction. We first
prove the following claim.

Claim 1. G0− V (C) is an independent set.

Proof. It suffices to prove that |V (D)|= 1 for each component D of G0−V (C).

First assume that c(G0) = 8. Then |V (D)| < 3; otherwise, since G0 is
a 2-connected triangle-free graph, there exists a path x yz of D with vi ∈
NG0
(x)∩V (C). Since |V (G0)|= 11, V (G0) = V (D)∪V (C) and so z y x vi

−→
C vi−1

is a spanning trail of G0, a contradiction. If |V (D)|= 2, then D = K2. Since G0

is 2-connected, we assume that x y is an edge of D with vi ∈ NG0
(x)∩ V (C),



24 Chapter 2. Degree sums of adjacent vertices for traceability

v j ∈ NG0
(y) ∩ V (C) (and vi 6= v j). Let G∗ be the spanning subgraph of G0

with edge set E(G0 − {x , y}) ∪ {x vi , x y, yv j}. Then G∗ is 2-connected, and
vi x yv j is an induced path of length 3 in G∗. Let eG = G∗/{x y}. Then, by
Theorem 2.13, either eG has a spanning trail or eG ∈ {F1, F2}. In the first case,
G∗ has a spanning trail thus G0 has a spanning trail as well, a contradiction.
In the second case, so if eG ∈ {F1, F2}, then by the construction of eG, G∗ has a
cycle of length 9, a contradiction. Hence, |V (D)|= 1, as required.

Next assume that c(G0) = 9. Then |V (D)| = 1; otherwise, there exists an
edge x y in D with vi ∈ NG0

(x)∩ V (C). Then y x vi
−→
C vi−1 is a spanning trail

of G0, a contradiction.

Using Claim 1, let V (G0) \ V (C) = {u1, u2, . . . , ut}. Then, since |V (G0)| = 11
and by 8≤ c(G0)≤ 9, 2≤ t ≤ 3. We prove another claim.

Claim 2. For any two vertices x , y ∈ V (G0) \ V (C), |NG0
(x)∩ NG0

(y)| ≤ 1.

Proof. By contradiction, we assume that vi , v j ∈ NG(x)∩NG(y) (with vi 6= v j).
Then the spanning subgraph Gτ of G0[V (C) ∪ {x , y}] with edge set E(C) ∪
{x vi , x v j , yvi , yv j} is an even subgraph. Since 8 ≤ |V (C)| ≤ 9, G0 − (V (C)∪
{x , y}) has at most one vertex. Then G0 has a spanning trail containing all
edges of Gτ, a contradiction.

Since κ(G) ≥ 2, for any x ∈ V (G0) \ V (C), |NG0
(x) ∩ V (C)| ≥ 2, and we

consider exactly two edges ex , e′x that are incident with x . Let E1 = {ex , e′x |
x ∈ V (G0) \ V (C)}, and let G? be the spanning subgraph of G0 with edge set
E(G0−∪t

i=1ui)∪ E1. Then G? is 2-connected. Let V1 be the set of all vertices
of odd degree in G?. Then V1 ⊆ V (C). Since |V1| ≤ 6, |V1| ∈ {0,2, 4,6}, and
it suffices to consider the cases when |V1| = 4 or 6 (since, if |V1| = 0 or 2, it
is immediate that G? has a spanning trail, a contradiction).

We distinguish the two remaining subcases for Case 1.

Subcase 1.1. |V1|= 6.

Then c(G?) = 8 and |V (G?) \ V (C)| = 3. Then NG?(x)∩ NG?(y) = ;, for any
x , y ∈ V (G?) \ V (C) with x 6= y . Since |V (C)| = 8 and |V1| = 6, there exist
at least three consecutive vertices of V1 on C . Without loss of generality, we
assume that vi , vi+1, . . . , vi+l ∈ V1 ∩ V (C), with 2≤ l ≤ 5.



2.4. Proof of Theorem 2.9 25

First suppose that V1 has exactly three consecutive vertices on C . Then
l = 2 and V1 = {vi , vi+1, vi+2, vi+4, vi+5, vi+6}. Then, since G? − {vi vi+1, vi+4

vi+5} is connected and has exactly two vertices of odd degree, G? has a span-
ning trail, a contradiction.

Next suppose that V1 has at least four consecutive vertices on C . Then
3 ≤ l ≤ 5. Since G? is triangle-free, G? − {vi vi+1, vi+2vi+3} is connected
and has exactly two vertices of odd degree. Then G? has a spanning trail, a
contradiction.

Subcase 1.2. |V1|= 4.

We prove another claim.

Claim 3. For any pair of vertices vi , v j ∈ V1, vi , v j are nonadjacent on C .

Proof. By contradiction, we assume that vi , vi+1 ∈ V1. Then G? − {vi vi+1}
has exactly two vertices of odd degree. Then G? has a spanning trail, a
contradiction.

Using Claim 3, and by 8 ≤ c(G?) ≤ 9, without loss of generality, we assume
that V1 = {vi , vi+2, vi+4, vi+6}. Note that |V (G?) \ V (C)| ≤ 3 and |NG?(x) ∩
V (C)| = 2 for any x ∈ V (G?) \ V (C). Then by Claim 2, and using that
V1 = {vi , vi+2, vi+4, vi+6}, it is easy to check that G? is isomorphic to one of
the graphs in {G1, G2, G3, G4} as depicted in Figure 2.2. Since joining any
two nonadjacent vertices of a graph in {G1, G2, G3, G4} by an edge will result
in a triangle or a spanning trail in the new graph, G = G0 = G?. Hence, in
this situation, G ∈ {G1, G2, G3, G4}. This completes the proof for Case 1.

Case 2. κ(G) = 1.

Let B1, B2, . . . , Bt (t ≥ 2) be the blocks of G. Since G is triangle-free, |V (Bi)| ≥
4 for 1≤ i ≤ t. We first prove two claims.

Claim 4. Each end-block of G has at least 5 vertices.

Proof. If there exists an end-block Bi of G with 4 vertices, then G[V (Bi)]
is a cycle of length 4. Obviously, G/Bi is a 2-edge-connected triangle-free
(simple) graph of order 8. By Theorem 2.13, G/Bi has a spanning trail.
Since Bi and G/Bi have a vertex in common, the spanning trail of G/Bi can
be extended to a spanning trail of G, a contradiction.
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Claim 5. t = 2.

Proof. By contradiction, without loss of generality, we assume that B1 and
Bt are two end-blocks of G and Bk is a third distinct block of G. By Claim
4, |V (B1)| ≥ 5 and |V (Bt)| ≥ 5. Since B1 and Bt have at most one vertex in
common with Bk, respectively, 11= |V (G)| ≥ |V (B1)|+|V (Bt)|+|V (Bk)|−2≥
5+ 5+ 4− 2= 12, a contradiction.

Since |V (G)|= 11 and t = 2, either |V (B1)|= |V (B2)|= 6 or |V (B1)|= 5 and
|V (B2)| = 7. Then Bi /∈ S L ; otherwise, the spanning trail of G/Bi can be
extended to be a spanning trail of G, a contradiction.

First suppose that |V (B1)| = |V (B2)| = 6. Since Bi /∈ S L , c(Bi) ≤ 5.
By Theorem 2.14(a), both B1 and B2 have a spanning trail that starts from
any given vertex. Since B1 and B2 have a vertex in common, there exists a
spanning trail of G, a contradiction.

Next suppose that |V (B1)| = 5 and |V (B2)| = 7. Since B1 is 2-connected,
triangle-free and B1 /∈ S L , B1 = K2,3. Since B2 /∈ S L , c(B2) = 6; other-
wise, by Theorem 2.14(a), both B1 and B2 have a spanning trail that starts
from any given vertex, and there exists a spanning trail of G, a contradiction.
We assume that C = v0v1v2v3v4v5v0 is a longest cycle of B2.

Then V (B1)∩V (C) 6= ;; otherwise, there exists a vertex u ∈ V (B2)\V (C)
such that V (B1)∩ V (B2) = {u}. Since B2 is 2-connected, there exists a vertex
vi ∈ NG(u) ∩ V (C). Then T2 = uvi

−→
C vi+5 is a spanning trail of B2. Since B1

has a spanning trail T1 starting from vertex u, by combining T1 and T2, we
can get a spanning trail of G, a contradiction.

Without loss of generality, we assume that V (B1) ∩ V (C) = {v0} and
V (B2) \ V (C) = {u}. Then v0, v1, v5 /∈ NG(u); otherwise, let T1 be a span-
ning trail of B1 starting from vertex v0, and T2 = v0

−→
C v5v0u or v0v5v4v3v2v1u

or v0
−→
C v5u be a spanning trail of B2 starting from vertex v0. By combining

T1 with T2, we can get a spanning trail of G, a contradiction. Since G is
2-edge-connected and triangle-free, NG(u) = {v2, v4}.

Then G has a spanning subgraph isomorphic to the graph G5 or G6, as
depicted in Figure 2.2. Furthermore, by joining any two nonadjacent vertices
of G5 or G6 by an edge, the new graph will contain a triangle or a spanning
trail. Hence, G ∈ {G5, G6}. This completes the proof.
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2.5 More notation and a lemma due to Chen [34]

Before we can state the technical lemma of Chen [34] that is essential for
the other proofs in this chapter, we need some additional terminology and
notation.

In the following, let H = L(G) and assume that H is not complete. Then
|V (H)| = |E(G)| and σ2(G) = δ(H) + 2. If H = L(G) is k-connected with
δ(H) ≥ 3, then G is essentially k-edge-connected with σ2(G) ≥ 5. For each
v ∈ V (H), there is an edge x y in G corresponding to v with dH(v) = dG(x)+
dG(y) − 2. We call a path of length k a k-path. For each edge uv in H,
there is a 2-path, P2 = x yz in G such that the edge x y is corresponding to
the vertex u, and the edge yz is corresponding to the vertex v in H. Then
dH(u) + dH(v) = dG(x) + 2dG(y) + dG(z)− 4.

For any 2-path P2 = x yz in G, we define dG(P2) = dG(x)+2dG(y)+dG(z).
We also define

δ2(G) =min{dG(P2)} taken over all 2-paths P2 of G.

Thus, for a graph H = L(G),

δ2(G) = σ2(H) + 4. (2.1)

For given integer p > 0 and real number ε, if σ2(H)≥
2n+ε

p
, then the preim-

age G of H = L(G) has

δ2(G)≥
2n+ ε

p
+ 4. (2.2)

Let G, G0 and G′0 be the graphs defined in Section 1.4. For v ∈ V (G′0), let
Γ0(v) be the collapsible preimage of v in G0, and let Γ(v) be the preimage of
v in G. For convenience, we use the following notation:

� V ∗ = {v ∈ V (G′0) | |V (Γ(v))| ≥ 3};

� V1 = {v ∈ V (G′0) | |V (Γ(v))|= 1 and v is not adjacent to any vertices in
D1(G)∪ D2(G)};
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FIGURE 2.3: Decompositions of V (G′0).

� V2 = {v ∈ V (G′0)| | V (Γ(v))|= 2 or |V (Γ(v))|= 1 and v is adjacent to a
vertex in D2(G)};

(Note that V ∗ ∪ V2 is the set of all nontrivial vertices in G′0).

� Φ = G′0[V1], the subgraph induced by V1 in G′0 if V1 6= ;;

� EΦ = E(Φ), which is a matching under the conditions of Lemma 2.16
(See below);

� VΦ = {v ∈ V1 | v is incident with an edge in EΦ};

� V 0
Φ = V1 \ VΦ;

� NΦ,2 =
⋃

v∈VΦ∪V2

(NG′0
(v)∩ V ∗) if VΦ ∪ V2 6= ; (otherwise, NΦ,2 = ;).

In the following, for given integer p > 0 and real number ε, we use “n� p”
to reflect that “n is sufficiently large relative to p and ε”. We are going to rely
heavily on the next result due to Chen [34].

Lemma 2.16. (Chen [34]). Let G be an essentially 2-edge-connected triangle-
free graph, and suppose G 6= K1,t , G has size n� p, σ2(G)≥ 5, and G satisfies
(2.2). Assume that G′0 /∈ S L . For V ∗, NΦ,2, V1, V2,Φ, EΦ, VΦ, and V 0

Φ as defined
above, we have the following:

(a) For each v ∈ V ∗, |V (Γ(v))| ≥ δ2(G)
2
− dG′0

(v) and |E(Γ(v))| ≥ δ2(G)
2
−

dG′0
(v)− 1.
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(b) D2(G′0)⊆ V ∗ and so dG′0
(v)≥ 3 for v ∈ V1 ∪ V2.

(c) If EΦ 6= ;, for each x y ∈ EΦ, (NG′0
(x) \ {y})∪ (NG′0

(y) \ {x})⊆ NΦ,2, and
so EΦ is a matching.

(d) For each vertex v in V 0
Φ∪V2, NG′0

(v)⊆ V ∗, and so V 0
Φ∪V2 is an independent

set.

(e) If |V1 ∪ V2| ≥ 3, then |V 0
Φ ∪ V2|+

|VΦ|
2
≤ 2|V ∗| − 5. If |V2| ≥ 3 or VΦ 6= ;,

then |V2|+
|VΦ|

2
≤ 2|NΦ,2| − 5.

(f) |V ∗| ≤ p. Furthermore, if |V ∗| = p and G′0 6= K2,t for t ≥ 2, then
|V (G′0)| ≤ 2p− 5− ε

2
.

(g) For v ∈ NΦ,2, |E(Γ(v))| ≥ δ2(G)− 5p− 3 and |V ∗|+ |NΦ,2| ≤ p.

(h) If V2 6= ;, then |NΦ,2| ≥ 3. If VΦ 6= ;, then |NΦ,2| ≥ 4. Thus, |NΦ,2| ≥ 3 if
|V2 ∪ VΦ| 6= 0.

2.6 Proofs of Theorems 2.6 and 2.8

In this section, we will present the proofs of Theorems 2.6 and 2.8.

Proof of Theorem 2.6. If H is traceable, then we are done. Thus, in the
following, we assume that H is not traceable, and so H is not hamiltonian and
H is not complete. By Theorem 1.3, cl(H) is not complete and there exists
an essentially k-edge-connected triangle-free graph G such that cl(H) = L(G)
and |E(G)|= |V (H)|. Let G′0 be the reduction of the core G0 of G. By Theorem
1.8, κ′(G′0) ≥ κ

′(G0) ≥ k. Since H is not traceable, by Theorem 1.2, G has
no dominating trail. By Theorem 1.9, G′0 has no dominating trail containing
all the nontrivial vertices. Then G′0 has no dominating closed trail containing
all the nontrivial vertices. Then by Theorem 2.4, G′0 ∈ Q0(5p− 10, k). Note
that R0(r, k) ⊆ Q0(r, k). Since G′0 has no spanning trail, and by Theorem
2.9, G′0 ∈ R0(5p−10, k) and |V (G′0)| ≥ 10. Then 5p−10≥ 10. We conclude
that p ≥ 4. This completes the proof.
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Proof of Theorem 2.8. This is a special case of Theorem 2.6 with p =
7, ε = −5 and k = 2. By Theorem 1.3, there is an essentially 2-edge-
connected triangle-free graph G such that the closure cl(H) = L(G) and
|E(G)| = |V (H)| = n. Since δ(H) ≥ 3 and σ2(H) ≥

2n−5
7

, σ2(G) ≥ 5 and
δ2(G)≥

2n−5
7
+ 4= 2n+23

7
by (2.2).

Suppose that H is not traceable. Then G 6= K1,t ; otherwise, by Theo-
rems 1.2 and 1.4, H is traceable, a contradiction. By Theorems 2.6 and 2.9,
G′0 has no spanning trail and |V (G′0)| ≥ 10. Therefore, G′0 /∈ S L .

Let V ∗, V2, VΦ, V 0
Φ and NΦ,2 be the sets relating to G′0 as defined in Section

2.5. If VΦ ∪ V2 6= ;, then by the definition, NΦ,2 6= ;. By Lemma 2.16(h),
|NΦ,2| ≥ 3. Since NΦ,2 ⊆ V ∗, by Lemma 2.16(g), |NΦ,2| ≤ 3. So, |NΦ,2| = 3.
Then VΦ = ;; otherwise, by Lemma 2.16(h), |NΦ,2| ≥ 4, a contradiction. Since
NΦ,2 ⊆ V ∗, by Lemma 2.16(g), 3 ≤ |V ∗| ≤ 4. Then |V 0

Φ ∪ V2| ≤ 3; otherwise,
by Lemma 2.16(e), |V ∗| ≥ 5, a contradiction. Therefore, |V (G′0)|= |V

0
Φ∪V2|+

|V ∗| ≤ 3+ 4 = 7, a contradiction. Hence, VΦ = V2 = ; and V (G′0) = V 0
Φ ∪ V ∗.

Then V ∗ is the set of all nontrivial vertices of G′0. By Lemma 2.16(f), |V ∗| ≤ 7.

Claim 1. |V ∗| ≤ 6.

Proof. By contradiction, suppose that |V ∗| = 7. Then G′0 can not be isomor-
phic to a K2,t for any t ≥ 2; otherwise, G′0 has a spanning trail, a contradic-
tion. By Lemma 2.16(f), |V (G′0)| ≤ 2p−5− ε

2
= 2×7−5− (−5)

2
= 11.5. Then

|V (G′0)| ≤ 11. Then by Theorem 2.9, G′0 ∈ {F1, F2, G1, G2, . . . , G6}. By Lemma
2.16(b), D2(G′0)⊆ V ∗.

Suppose first that G′0 ∈ {F1, F2}. Let V ∗ = D2(G′0)∪{v}= {v1, v2, . . . , v6, v},
where v ∈ D3(G′0). Then dG′0

(vi) = 2 and dG′0
(v) = 3. By Lemma 2.16(a),

and since δ2(G)≥
2n+23

7
, si = |E(Γ(vi))| ≥

δ2(G)
2
−3≥ 2n−19

14
, s = |E(Γ(v))| ≥

δ2(G)
2
−4≥ 2n−33

14
. Furthermore, since n= 12+s+

∑6
i=1 si ≥ 12+(δ2(G)

2
−4)+

6(δ2(G)
2
− 3) = 7

2
δ2(G)− 10, δ2(G)≤

2n+20
7

, contradicting δ2(G)≥
2n+23

7
.

Next suppose that G′0 ∈ {G1, G2, . . . , G5}. Then V ∗ = D2(G′0). Let V ∗ =
D2(G′0) = {v1, v2, . . . , v7}. Then dG′0

(vi) = 2. By Lemma 2.16(a), and since

δ2(G) ≥
2n+23

7
, si = |E(Γ(vi))| ≥

δ2(G)
2
− 3 ≥ 2n−19

14
. Furthermore, since n ≥

13+
∑7

i=1 si ≥ 13+7(δ2(G)
2
−3) = 7

2
δ2(G)−8, δ2(G)≤

2n+16
7

, contradicting
δ2(G)≥

2n+23
7

.
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Finally suppose that G′0 = G6. Since |D2(G′0)| = 6 and |V ∗| = 7, there
exists one vertex v ∈ V (G′0) \ D2(G′0) such that v ∈ V ∗. By Lemma 2.16(d),
V 0
Φ is an independent set. Then v ∈ D4(G′0). Let V ∗ = D2(G′0) ∪ {v} =
{v1, v2, . . . , v6, v}. Then dG′0

(vi) = 2 and dG′0
(v) = 4. By Lemma 2.16(a),

and since δ2(G)≥
2n+23

7
, si = |E(Γ(vi))| ≥

δ2(G)
2
−3≥ 2n−19

14
, s = |E(Γ(v))| ≥

δ2(G)
2
−5≥ 2n−47

14
. Furthermore, since n= 14+s+

∑6
i=1 si ≥ 14+(δ2(G)

2
−5)+

6(δ2(G)
2
− 3) = 7

2
δ2(G)− 9, δ2(G)≤

2n+18
7

, contradicting δ2(G)≥
2n+23

7
.

Using Claim 1, and by Lemma 2.16(d), E(G′0 − V ∗) = ;. Note that G′0 is 2-
edge-connected. Then by Theorem 2.15, either G′0 has a trail passing through
all vertices of V ∗ or G′0 ∈ {F1, F2}. For the first case, G′0 has a dominating
trail containing all vertices of V ∗. Then by Theorems 1.2, 1.4 and 1.9, H is
traceable, a contradiction.

Hence, G′0 ∈ {F1, F2}. By Lemma 2.16(b), D2(G′0) ⊆ V ∗. Then, since
|D2(G′0)| = 6, |V ∗| = 6. Let V ∗ = D2(G′0) = {v1, v2, . . . , v6}. Then dG′0

(vi) =

2. By Lemma 2.16(a), and since δ2(G) ≥
2n+23

7
, si = |E(Γ(vi))| ≥

δ2(G)
2
−

dG′0
(vi)− 1= δ2(G)

2
− 3≥ 2n−19

14
. Since n= |E(G)|= |E(G′0)|+

∑6
i=1 si ≥ 12+

6(δ2(G)
2
−3) = 3δ2(G)−6, δ2(G)≤

n+6
3

. Then by (2.1), σ2(H) = δ2(G)−4≤
n−6

3
. Thus, G ∈ F (n, 2n−19

14
), and so σ2(H)≤

n−6
3

and H ∈ RF (n, 2n−19
14
).

In particular, if σ2(H) =
n−6

3
, then by (2.1), δ2(G) = σ2(H) + 4 = n+6

3
.

By Lemma 2.16(a), and since δ2(G)≥
n+6

3
, si = |E(Γ(vi))| ≥

δ2(G)
2
−dG′0

(vi)−

1 = δ2(G)
2
− 3 ≥ n−12

6
. Since n = |E(G)| = |E(G′0)|+

∑6
i=1 si , si =

n−12
6

, for

vi ∈ V ∗. By Lemma 2.16(a), |V (Γ(vi))| ≥
δ2(G)

2
− dG′0

(vi) = |E(Γ(vi))|+ 1.
Thus, |V (Γ(vi))|= |E(Γ(vi))|+ 1 and so Γ(vi) is a tree. Since G is essentially
2-edge-connected, Γ(vi) = K1,s, where s = n−12

6
. Because G ∈ F (n, n−12

6
),

H ∈ RF (n, n−12
6
). This completes the proof.

2.7 Concluding remarks

In this chapter, we have been mainly concerned with the traceability of 2-
connected claw-free graphs. In order to prove our main results, one of
the essential elements we needed was a characterization of all the 2-edge-
connected graphs of order at most 11 that have no spanning trail. This has
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FIGURE 2.4: A 3-edge-connected cubic graph without an ST.

resulted in a more or less explicit description of the obstructions that prevent
graphs satisfying the degree conditions from being traceable for given values
of p ≤ 7. For given values of p ≥ 8, it is much harder to obtain (and write
down) such an explicit description, but our main result still implies that there
are only a finite number of these obstructions. In principle, for given p, this
finite set of obstructions can be found with the help of a computer, but the
numbers grow fast with increasing values of p.

As far as we know, the smallest 3-edge-connected graph without a span-
ning trail is still unknown, but a likely candidate is the cubic (i.e., 3-regular)
graph on 28 vertices that is shown in Figure 2.4. In [76], the author proved
that this graph has no spanning path. Since the graph is 3-regular, it is easy
to prove that it has no spanning trail either. If one would be able to char-
acterize the smallest 3-edge-connected graphs without spanning trails, then,
using a similar approach, one can deduce a best possible adjacent degree
sum condition for the traceability of 3-connected claw-free graphs.



Chapter 3

Hamiltonicity of line graphs

In this chapter, we continue with degree sum conditions on pairs of adjacent
vertices, but here we are mainly concerned with hamiltonicity instead of
traceability. Moreover, instead of considering claw-free graphs, we consider
line graphs, a proper subclass of the class of claw-free graphs. The work
reported here is motivated by results that we recently published in [78] and
in [79], but that are not part of this thesis. It is based on earlier results for
supereulerian graphs in [28], and inspired by an old conjecture by Benhocine
et al. in [2], that was proved by Veldman in the 1990s [81].

3.1 Introduction

We refer to the previous chapters for relevant definitions and notation, and
for general background on degree conditions for hamiltonian properties of
general graphs and claw-free graphs. In this introductory section, we start
by listing the earlier work that inspired many more recent developments in
the area of degree conditions for hamiltonian properties of line graphs.

We start with the following result that was conjectured by Benhocine et
al. in [2], and proved by Veldman in [81].

33
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FIGURE 3.1: The graphs K2,3, K2,5, W ∗
3 , θ(1,1, 2), θ(1,1, 3),

and θ(1, 2,2).

Theorem 3.1. (Veldman [81]). Let G be an essentially 2-edge-connected graph
of order n such that σ2(G) >

2n
5
− 2. If n is sufficiently large, then L(G) is

hamiltonian.

In the same paper, Veldman also obtained the following related result,
showing that the lower bound in the above result can be improved, but only
by allowing a class of exceptional graphs.

Theorem 3.2. (Veldman [81]). Let G be an essentially 2-edge-connected graph
of order n such that σ2(G) > 2(b n

7
c − 1). If n is sufficiently large, then either

L(G) is hamiltonian or G is contractible to a K2,3 such that all vertices of degree
two in K2,3 are nontrivial.

We use θ(i, j, k) to denote the graph that is obtained from the multigraph
consisting of two vertices and three multiple (parallel) edges by subdividing
the three edges i, j, and k times, respectively. For example, θ(1,1, 1)∼= K2,3.
We also define the following two classes of graphs, referring to Figures 3.1
and 3.2:

• G1 = {K2,3, K2,5, W ∗
3 , θ(1, 1,2),θ(1, 1,3),θ(1,2, 2)} and

• G2 = {J(2,2), J(2, 3), K∗2,5, K∗∗2,5, C(6,2), C(6,2)′, C(6, 4), C(6, 4)′,
θ(1, 1,4),θ(1, 1,4)′,θ(1,1, 4)′′,θ(1, 1,4)′′′,
θ(2, 2,2),θ(1, 2,3),θ(1, 2,3)′, W ∗∗

3 }.



3.1. Introduction 35

FIGURE 3.2: The sixteen graphs in G2 that have no SCT.

The graphs in G1 and G2 are depicted in Figures 3.1 and 3.2, respectively.

As already mentioned in [81], Theorem 3.2 is best possible in the sense
that there exist infinitely many essentially 2-edge-connected graphs G with
σ2(G) = 2(b n

7
c − 1) such that L(G) is nonhamiltonian and G is not con-

tractible to K2,3. Examples of such graphs can be found among the graphs
contractible to K2,5 or the 3-cube minus a vertex (W ∗

3 ). The following result
confirms this, and shows that we can lower the bound slightly by excluding
these two classes of exceptional graphs.

Theorem 3.3. (Tian and Xiong [79]) Let G be an essentially 2-edge-connected
graph of order n such that σ2(G) ≥ 2(b n

7
c − 1). If n is sufficiently large, then

either L(G) is hamiltonian or G is contractible to a K2,3, a K2,5, or a W ∗
3 such

that all vertices of degree two in K2,3, K2,5, and W ∗
3 are nontrivial.

The next result shows that for 3-edge-connected graphs, the lower bound
in Theorem 3.3 can be improved considerably, even with a stronger conclu-
sion. Here, the Petersen graph is the graph P(10) depicted in Figure 3.3.
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FIGURE 3.3: The Petersen graph P(10), and P(14).

Theorem 3.4. (Chen and Lai [37]) Let G be a 3-edge-connected graph of order
n such that

σ2(G)≥
n

5
− 2. (3.1)

If n is sufficiently large, then either G is supereulerian or G can be contracted to
the Petersen graph.

In [39], Chen and Lai improved the lower bound in Theorem 3.4 even
further, and obtained the following result.

Theorem 3.5. (Chen and Lai [39]) Let G be a 3-edge-connected graph of order
n such that

σ2(G)≥
n

6
− 2. (3.2)

If n is sufficiently large, then either G is supereulerian or G can be contracted to
the Petersen graph.

A natural question in this context is: what is the best possible lower
bound for the degree sum condition on pairs of adjacent vertices for which
all the exceptional graphs can be contracted to the Petersen graph? Due to a
construction based on the so-called Blanuša snarks in [39], there are infinite
families of graphs showing that in the following conjecture, if true, the lower
bound of (3.3) will be best possible.

Conjecture 3.1. (Chen and Lai [39]) Let G be a 3-edge-connected graph of
order n such that

σ2(G)>
n

9
− 2. (3.3)
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If n is sufficiently large, then either G is supereulerian or G can be contracted to
the Petersen graph.

We define G3 = {P(10), P(14)}, where P(10) and P(14) are the graphs
depicted in Figure 3.3. In [27] and [28], Chen et al. improved the result of
Theorem 3.5, respectively, and obtained the following two results.

Theorem 3.6. (Chen et al. [27]) Let G be a 3-edge-connected graph of order
n with any given ε < 16

13
such that

δL(G)≥
n

13
− ε. (3.4)

If n is sufficiently large, then L(G) is hamiltonian if and only if G does not have
the Petersen graph as a nontrivial contraction.

Theorem 3.7. (Chen et al. [28]) Let G be a 3-edge-connected graph of order
n such that

σ2(G)> 2(
n

15
− 1). (3.5)

If n is sufficiently large, then either G ∈ S L or G′ ∈ G3. Furthermore, if
σ2(G) ≥ 2( n

14
− 1) and G′ = P(14), then n = 14s and each vertex in P(14) is

obtained by contracting a Ks or Ks − e for some e ∈ E(Ks).

3.2 Our results

In the following, for given integer p > 0, we use “n� p” to reflect that “n is
sufficiently large relative to p”. Our main result reads as follows.

Theorem 3.8. Let G be an essentially k-edge-connected graph of order n (with
k ∈ {2,3}), and let p ≥ 2 be an integer such that

σ2(G)≥ 2(bn/pc − 1). (3.6)

If n� p, then either L(G) is hamiltonian or G has no DCT and is contractible
to a graph in Q0(max{p, 3

2
p− 4}, k).
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Note that “G is contractible to a graph inQ0(r, k)” in Theorem 3.8 means
that “the reduction of the core G0 is in Q0(r, k)”. We continue with stat-
ing some consequences of our main result, and postpone all proofs to later
sections. As applications of Theorem 3.8, we obtain the following results.

Theorem 3.9. Let G be an essentially 2-edge-connected graph of order n such
that

σ2(G)≥ 2(bn/8c − 1). (3.7)

If n is sufficiently large, then either L(G) is hamiltonian or G is contractible to
a graph in {K2,3, K2,5, W ∗

3 , C(6, 2)′, C(6,4)′,θ(1,1, 4)′′′}.

Theorem 3.10. Let G be an essentially 3-edge-connected graph of order n such
that

σ2(G)≥ 2(bn/15c − 1). (3.8)

If n is sufficiently large, then either L(G) is hamiltonian or G can be contracted
to the Petersen graph.

Theorem 3.11. Let G be a 3-edge-connected graph of order n such that

σ2(G)≥ 2(bn/15c − 1). (3.9)

If n is sufficiently large, then either G is supereulerian or G can be contracted to
the Petersen graph.

For our proof of Theorem 3.9, we also need the following result.

Theorem 3.12. Let G be a 2-edge-connected triangle-free graph of order at
most 8. Then either G is supereulerian or G ∈ G1 ∪G2.

Theorems 3.1, 3.2, 3.3, 3.4, 3.5, and 3.7 are all special cases of Theo-
rem 3.8, with (p, k) ∈ {(5,2), (7,2), (10, 3), (12,3), (15,3)}. Moreover, with
Theorem 3.8, we implicitly provide improvements of Theorem 3.3 and The-
orem 3.7, since they are special cases of Theorem 3.8 with p = 8 and k = 2,
and p = 15 and k = 3, respectively. Even though Theorem 3.6 implies The-
orem 3.5, it does not imply our Theorems 3.10 and 3.11. Furthermore, we
note that Theorem 3.11 improves Theorem 3.7, and Theorem 3.11 is a spe-
cial case of Theorem 3.10.
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The remainder of this chapter is organized as follows. In Section 3.3,
we will present some useful auxiliary results, together with a description
of Veldman’s reduction method, as well as our proof of Theorem 3.12. In
Section 3.4, we present our proofs of Theorems 3.8, 3.9, 3.10, and 3.11.

3.3 Preliminaries

We start this section with some facts we need on reduced graphs, as sum-
marized in the following theorem, where the first fact is folklore and easy to
prove.

Theorem 3.13. Let G be a connected reduced graph of order n. Then each of
the following holds:

(a) If G /∈ S L and κ′(G)≥ 2, then n≥ 5, and n= 5 only if G = K2,3.

(b) (Corollary 4.11 in [40]) If n≤ 15 and δ(G)≥ 3, then G is supereulerian
if and only if G /∈ G3.

(c) (Lemma 4.8 in [40]) If n ≥ 15, κ′(G) ≥ 3 and α′(G) ≤ 7, then G is
supereulerian.

In [79], Tian and Xiong characterized some small graphs which have no
SCT, as follows.

Theorem 3.14. (Tian and Xiong [79]) Let G be a 2-edge-connected triangle-
free graph of order at most 7. Then either G is supereulerian or G ∈ G1.

3.3.1 Proof of Theorem 3.12

Let G be a 2-connected graph, and let C = v0v1v2 . . . vc(G)−1v0 be a longest
cycle of G, where the subscripts are taken modulo c(G) throughout. Then any
component of G−V (C) has at least two different neighbors on C . Denote by
dC(vi , v j) the distance between vi , v j ∈ V (C) (with vi 6= v j) on C . Obviously,

1≤ dC(vi , v j)≤
j

|C |
2

k

.
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Proof of Theorem 3.12. Let G be a 2-edge-connected triangle-free graph of
order at most 8. If G has an SCT, then we are done. So, in the following, we
assume that G has no SCT. If |V (G)| ≤ 7, then by Theorem 3.14, G ∈ G1. So,
in the following, we only need to consider the case |V (G)|= 8.

Suppose first that κ(G) = 1. Let B1, B2, . . . , Bt (t ≥ 2) be the blocks of G.
Since G is triangle-free, |V (Bi)| ≥ 4. Note that Bi and B j (i 6= j) have at most
one vertex in common. Then t = 2; otherwise, 8 = |V (G)| ≥ 3× 4− 2 = 10,
a contradiction. Without loss of generality, we may assume that |V (B1)| = 4
and |V (B2)|= 5. Since G is triangle-free, B1 = C4. Then B2 /∈ S L ; otherwise
G has an SCT, a contradiction. Now, by Theorem 3.13(a), B2 = K2,3. Note
that |V (B1) ∩ V (B2)| = 1. This implies that G is isomorphic to the graph
J(2,2) or J(2,3).

In the following, we suppose that G is 2-connected. Since G is triangle-
free and since G /∈ S L , 4≤ c(G)≤ 7.

Observation 1. By deleting all chords of C from G, the resulting 2-connected
graph G0 is a spanning subgraph of G. Obviously, C is also a longest cycle of
G0. Then G0 has no SCT; otherwise, G has an SCT, a contradiction.

Note that by adding the deleted chords of C to G0 one by one, by our as-
sumptions, at each step we obtain a spanning subgraph of G which has no
SCT, or we derive at a contradiction. Obviously, if 4 ≤ c(G) ≤ 5, then C has
no chord. We distinguish the cases that c(G) = 4, 5, 6, and 7.

Case 1. c(G) = 4.

Then G − V (C) = 4K1, or K2 ∪ 2K1, or P3 ∪ K1, or 2K2, or P4, or K1,3, or
C4. Suppose that G − V (C) = K2 ∪ 2K1, or P3 ∪ K1, or 2K2, or P4, or K1,3,
or C4. Since G is 2-connected and triangle-free, there exists a path x1 . . . xk

(k = 2 or 3 or 4) in G−V (C) with vi ∈ NG(x1)∩V (C) and v j ∈ NG(xk)∩V (C)
(vi 6= v j). But now we can find a cycle containing the vertices x1, . . . , xk with
length more than 4, a contradiction. Thus, G − V (C) = 4K1. Since G is 2-
connected and triangle-free, and since c(G) = 4, G = K2,6. Obviously, K2,6

has an SCT, a contradiction.

Case 2. c(G) = 5.
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Then G−V (C) = 3K1, or K2∪K1, or P3. Suppose that G−V (C) = K2∪K1 or
P3. Since G is 2-connected and triangle-free, there exists a path x1 . . . xk (k =
2 or 3) in G−V (C) with vi ∈ NG(x1)∩V (C) and v j ∈ NG(xk)∩V (C) (vi 6= v j).
But now we can find a cycle containing the vertices x1, . . . , xk with length
more than 5, a contradiction. Thus, G − V (C) = 3K1. Let V (G) \ V (C) =
{x1, x2, x3}. Since G is 2-connected and triangle-free, dG(x i) = 2 (i = 1,2, 3).
Without loss of generality, we may assume that NG(x1) = {vi , vi+2}. Then, by
symmetry, and since c(G) = 5, we can assume that either NG(x j) = {vi , vi+2}
or NG(x j) = {vi , vi+3} ( j = 2,3). Then G is isomorphic to the graph K∗2,5 or
K∗∗2,5.

Case 3. c(G) = 6.

By Observation 1, without loss of generality, we first assume that C is an
induced cycle of G, namely G = G0. Then G − V (C) = 2K1 or K2. Let
V (G) \ V (C) = {x1, x2}.

Subcase 3.1. G− V (C) = 2K1.

Since G is 2-connected and triangle-free, 2 ≤ dG(x i) ≤ 3 (i = 1,2). Suppose
that dG(x1) = 3 (it is similar for dG(x2) = 3). Without loss of generality, we
may assume that NG(x1) = {vi , vi+2, vi+4}. By 2≤ dG(x2)≤ 3, 2≤ |NG(x2)∩
V (C)| ≤ 3. Then, it is easy to check that G has an SCT, a contradiction.
Therefore, dG(x1) = dG(x2) = 2. Without loss of generality, we may assume
that either NG(x1) = {vi , vi+2} or NG(x1) = {vi , vi+3}.

Suppose first that NG(x1) = {vi , vi+2}. If vi ∈ NG(x2) (by symmetry, it
is similar for vi+2 ∈ NG(x2)), then vi+1, vi+2, vi+3, vi+5 /∈ NG(x2); otherwise,
either G has a triangle or G has an SCT, a contradiction. Then by dG(x2) = 2,
NG(x2) = {vi , vi+4}. Then G has a spanning subgraph isomorphic to the
graph C(6, 2).

If vi+1 ∈ NG(x2), then vi , vi+2, vi+3, vi+4, vi+5 /∈ NG(x2); otherwise, either
G has a triangle or G has a cycle of length more than 6, a contradiction. Then
dG(x2) = 1, contrary to dG(x2) = 2. Therefore, in the following, we may
assume that vi , vi+1, vi+2 /∈ NG(x2). Since G is 2-connected and triangle-free,
and by dG(x2) = 2, NG(x2) = {vi+3, vi+5}. Then G has a spanning subgraph
isomorphic to the graph C(6, 4).
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Now suppose that NG(x1) = {vi , vi+3}. By dG(x2) = 2, |NG(x2)∩ V (C)|=
2. Then, it is easy to check that either G has an SCT, or G has a triangle, or
G has a cycle of length more than 6, a contradiction.

Subcase 3.2. G− V (C) = K2.

Without loss of generality, we may assume that NG(x1)∩V (C) = {vi}. Since G
is 2-connected and triangle-free, and since c(G) = 6, NG(x2)∩V (C) = {vi+3}.
Then G has a spanning subgraph isomorphic to θ(2, 2,2).

In both subcases, by Observation 1, joining any two nonadjacent vertices
of C(6,2) or C(6,4) or θ(2,2, 2) by an edge (step by step) will result in a
triangle, or a C(6, 2)′, or a C(6, 4)′, or an SCT in the new graph. Hence,
G ∈ {C(6, 2), C(6, 2)′, C(6,4), C(6,4)′,θ(2, 2,2)}.

Case 4. c(G) = 7.

By Observation 1, without loss of generality, we first assume that C is an
induced cycle of G, namely G = G0. Then G−V (C) = K1. Let V (G)\V (C) =
{x}. Since G is 2-connected and triangle-free, 2≤ dG(x)≤ 3.

Suppose that dG(x) = 2. We may assume that NG(x) = {vi , v j} (vi 6=
v j). Obviously, 2 ≤ dC(vi , v j) ≤ 3. If dC(vi , v j) = 2, then, without loss of
generality, we may assume that NG(x) = {vi , vi+2}. Then G has a spanning
subgraph isomorphic to θ(1,1, 4). If dC(vi , v j) = 3, then, without loss of
generality, we may assume that NG(x) = {vi , vi+3}. Then G has a spanning
subgraph isomorphic to θ(1,2, 3).

Suppose that dG(x) = 3. Without loss of generality, we may assume that
NG(x) = {vi , vi+2, vi+4}. Then G has a spanning subgraph isomorphic to W ∗∗

3 .

By Observation 1, joining any two nonadjacent vertices of θ(1,1, 4) or
θ(1, 2,3) or W ∗∗

3 by an edge (step by step) will result in a triangle, or a graph
in {θ(1,1, 4)′,θ(1, 1,4)′′,θ(1,1, 4)′′′,θ(1, 2,3)′, W ∗∗

3 }, or an SCT of the new
graph. Hence, G is one of the graphs in {θ(1,1, 4),θ(1,1, 4)′,θ(1,1, 4)′′,
θ(1, 1,4)′′′, W ∗∗

3 ,θ(1,2, 3),θ(1, 2,3)′}. This completes the proof.
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3.3.2 Veldman’s reduction method

Recall that D(G) = D1(G) ∪ D2(G) is the set of vertices with degree 1 or 2
in G. For an independent subset X of D(G), define IX (G) as the graph ob-
tained from G by deleting the vertices in X of degree 1 and replacing each
path of length 2 whose internal vertex is a vertex in X of degree 2 by an
edge. Note that IX (G) may not be simple. We call G X -collapsible if IX (G)
is collapsible. A subgraph H of G is an X -subgraph of G if dH(x) = dG(x)
for all x ∈ X ∩ V (H). An X -subgraph H of G is called X -collapsible if H
is (X ∩ V (H))-collapsible. Let R(X ) be the set of vertices in X that are not
contained in an X -collapsible X -subgraph of G. Since IX (G) has a unique col-
lection of pairwise vertex-disjoint maximal collapsible subgraphs L1, . . . , Lk

such that
k
⋃

i=1
V (Li) = V (IX (G)), the graph G has a unique collection of pair-

wise vertex-disjoint maximal X -collapsible X -subgraph H1, . . . , Hk such that

(
k
⋃

i=1
V (Hi)) ∪ R(X ) = V (G). The X -reduction of G is the graph obtained

from G by contracting H1, . . . , Hk. Letting G′′ be the X -reduction of G and
v ∈ V (G′′), the preimage of v is denoted by θ−1(v). A vertex v of G′′ is called
nontrivial if θ−1(v) 6= K1 and trivial otherwise. The graph G is X -reduced if
there exists a graph G∗ and an independent subset X ∗ of D(G∗) such that
X = R(X ∗) and G is the X ∗-reduction of G∗. An X -subgraph H of G is called
X -reduced if H is (X ∩ V (H))-reduced.

Remark 3.1. If X = ;, then the refinement method (;-reduction) is just the
reduction method of Catlin. Let G be an essentially 2-edge-connected graph
with σ2(G)≥ 5. Then D(G) is an independent set. For the D(G)-reduction of
G, if R(D(G)) = ;, then the refinement method of the reduction of the core
of the graph G is just the D(G)-reduction method of Veldman.

In [81], Veldman obtained the following result.

Theorem 3.15. (Veldman [81]) Let G be a connected graph of order n, and
let p ≥ 2 be an integer such that

σ2(G)≥ 2(bn/pc − 1). (3.10)
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If n� p, then

|V (G′′)| ≤max{p,
3

2
p− 4}, (3.11)

where G′′ is the D(G)-reduction of G. Moreover, for p ≤ 7, (3.11) holds with
equality only if (3.10) holds with equality.

Using Theorem 3.15, we can easily deduce the following result.

Theorem 3.16. Let G be an essentially k-edge-connected graph of order n (with
k ∈ {2, 3}), and let p ≥ 2 be an integer such that

σ2(G)≥ 2(bn/pc − 1). (3.12)

If n� p, then exactly one of the following holds.

(a) G0 ∈ S L ;

(b) G′0 /∈ S L with |V (G′0)| ≤max{p, 3
2

p− 4} and κ′(G′0)≥ k.

Proof of Theorem 3.16. By Theorem 1.5(a), (a) and (b) of Theorem 3.16
are mutually exclusive. Suppose that G0 /∈ S L . Then L(G) is not complete;
otherwise, G = K1,n−1 or Kn, and so G0 ∈ S L , a contradiction. By Theorem
1.5(a), and since G0 /∈ S L , G′0 /∈ S L . Since σ2(G) ≥ 2(bn/pc − 1), if
n ≥ 4p, then σ2(G) ≥ 6, and consequently D(G) is an independent set. Let
G′′ be the D(G)-reduction of G. By Theorem 3.15, |V (G′′)| ≤max{p, 3

2
p−4}.

Since G′0 is a refinement of the D(G)-reduction of G, |V (G′0)| ≤ |V (G
′′)| ≤

max{p, 3
2

p−4}. By Theorem 1.8(a), κ′(G′0)≥ k. This completes the proof. �

3.4 Supereulerian graphs and hamiltonian line graphs

Before we continue with the remaining proofs of our results, we mention one
other result of Chen [30] and an application of our Theorem 3.12 in order to
obtain an Ore-type analogue of the results in this chapter.

Let G be a graph, and let k ≥ 0 be an integer. If there is a graph G∗ such
that G can be obtained from G∗ by removing at most k edges, then G is said
to be at most k edges short of being G∗.
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Theorem 3.17. (Chen [30]) Let G be a 2-edge-connected graph with girth
g ∈ {3, 4}, and let p ≥ 2 be an integer. If

σ2(G)≥
2

g − 2
(
n

p
+ g − 4),

and if
n≥ 4(g − 2)p2,

then exactly one of the following holds:

(a) G ∈ S L ;

(b) G′ /∈ S L and |V (G′)| ≤ p, where G′ is the reduction of G. Further,
if |V (G′)| = p, then n = (g − 2)ps, for some integer s, and δ(G) =

1
g−2
( n

p
+ g − 4), and either

(i) g = 3, and the preimage Hi of each vertex vi of G′ is at most
1
2
dG′(vi) edges short of being Ks, or

(ii) g = 4, and the preimage Hi of each vertex vi of G′ is at most
1
2
dG′(vi) edges short of being Ks,s.

As an application of Theorems 3.12 and 3.17, we obtain the following
result.

Theorem 3.18. Let G be a 2-edge-connected graph with girth g ∈ {3, 4}. If

σ2(G)≥
2

g − 2
(
n

8
+ g − 4),

and if
n≥ 256(g − 2),

then exactly one of the following holds:

(a) G ∈ S L ;

(b) G′ ∈ G1∪G2, where G′ is the reduction of G. In particular, if |V (G′)|= 8,
then n= 8(g − 2)s, for some integer s, and either
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(i) g = 3, and the preimage Hi of each vertex vi of G′ is at most 2 edges
short of being Ks, or

(ii) g = 4, and the preimage Hi of each vertex vi of G′ is at most 2 edges
short of being Ks,s.

Proof of Theorem 3.18. If G has an SCT, then we are done. In the following,
we assume that G has no SCT. By Theorem 3.17(b), G′ /∈ S L and |V (G′)| ≤
8. By the definition of contraction, κ′(G′) ≥ κ′(G) ≥ 2. By Theorem 1.5(c),
G′ is simple and triangle-free. Then by Theorem 3.12, G′ ∈ G1 ∪ G2. So,
dG′(v) ≤ 5 for any v ∈ V (G′). By Theorem 3.17(b), Theorem 3.18(b) holds.
This completes the proof. �

Next, we continue with the remaining proofs of our results.

3.4.1 Proof of Theorem 3.8 and a useful proposition

Proof of Theorem 3.8. If L(G) is hamiltonian, then we are done. In the
following, we assume that L(G) is not hamiltonian, and so L(G) is not com-
plete. Then by Theorem 1.1, G has no DCT. Since σ2(G) ≥ 2(bn/pc − 1), if
n ≥ 4p, then σ2(G) ≥ 6, and consequently D(G) is an independent set. Let
G′′ be the D(G)-reduction of G. By Theorem 3.15, |V (G′′)| ≤max{p, 3

2
p−4}.

Let G′0 be the reduction of the core G0 of G. By Theorem 1.5(c), G′0 is simple
and triangle-free. By Theorem 1.8, G′0 /∈ S L and κ′(G′0) ≥ k. Since G′0 is a
refinement of the D(G)-reduction of G, |V (G′0)| ≤ |V (G

′′)| ≤max{p, 3
2

p−4}.
This completes the proof. �

Let G′0 be the reduction of the core of G. For v ∈ V (G′0), let Γ(v) be the
preimage of v in G. For convenience, we define the following sets, and we
prove a useful proposition that we use in some of the later proofs.

• S0 = {v ∈ V (G′0) | v is a nontrivial vertex in G′0};

• S1 = {v ∈ S0 | |V (Γ(v))|> 1};

• S2 = S0 \ S1, the set of vertices v with Γ(v) = K1 and adjacent to some
vertices in D2(G);
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• V0 = V (G′0) \ S0.

Proposition 3.1. Let G be an essentially k-edge-connected graph of order n
(k ∈ {2, 3}) with σ2(G)≥ 2(bn/pc − 1), where p ≥ 2 is an integer. Let G′0 be
the reduction of the core of G, and suppose G′0 /∈ S L . Let S0, S1 and V0 be
the sets defined above. If n� p, then each of the following holds:

(a) If v ∈ S1, then |V (Γ(v))| ≥
� n

p

�

− l + 1, where l =max{p, 3p
2
− 4}.

(b) S1 = S0.

(c) V0 is an independent set, and NG′0
(v)⊆ S1 for any v ∈ V0.

(d) |S0| ≤ p. Furthermore, if |S0|= p, then V (G′0) = S0.

Proof. As the assumptions of Proposition 3.1 imply the assumptions of The-
orem 3.16, it follows from Theorem 3.16 that |V (G′0)| ≤max{p, 3p

2
− 4} and

κ′(G′0) ≥ k ≥ 2. For convenience, in the following, let l = max{p, 3p
2
− 4}.

For v ∈ V (G′0), let Γ(v) be the preimage of v in G. By Theorem 1.5(c), G′0 is
simple and triangle-free. Then

dG′0
(v)≤ |V (G′0)| − 2≤ l − 2, for any v ∈ V (G′0). (3.13)

(a) For each v ∈ S1, by (3.12) and since n � p, there exists a vertex u ∈
V (Γ(v)) with dG(u)≥ b

n
p
c − 1. Then by (3.13),

|V (Γ(v))| ≥ |NG(u)∩ V (Γ(v))| ≥ dG(u)− dG′0
(v)≥

jn

p

k

− l + 1.

(b) By contradiction, suppose that S1 6= S0. Let v ∈ S2 = S0 \ S1. Thus,
dG(v) = dG′0

(v), and v is adjacent to a vertex u ∈ D2(G). By (3.12) and
(3.13),

2(bn/pc − 1)≤ σ2(G)≤ dG(v) + dG(u) = dG′0
(v) + 2≤ l,

contrary to the fact that n� p, and so (b) is proved.
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(c) By contradiction, suppose that there are two vertices v1, v2 ∈ V0 such that
v1v2 ∈ E(G′0). Since vi ∈ V0 (i = 1,2), dG(vi) = dG′0

(vi). By (3.12) and (3.13),

2(bn/pc − 1)≤ σ2(G)≤ dG(v1) + dG(v2)≤ 2l − 4,

contrary to the fact that n� p, and so (c) is proved.

(d) By contradiction, suppose that s = |S0| > p. By (b) above, S1 = S0. Let
S1 = {v1, v2, . . . , vs}. Then by (a),

s(
jn

p

k

− l + 1)≤
�

�

�

�

s
⋃

i=1

V (Γ(vi))

�

�

�

�

≤ n,

a contradiction if n� p.

Now suppose that |S1|= p and V (G′0)\S1 6= ;. Let v ∈ V0 = V (G′0)\S1. By
(c), we can assume that NG′0

(v) = {v1, v2, . . . , vt} and NG(v) = {w1, w2, . . . , wt}
such that wi ∈ Γ(vi) (1 ≤ i ≤ t). Note that D2(G′0) ⊆ S1. Then dG′0

(v) ≥ 3
and so t ≥ 3. By (3.13), dG(v) = dG′0

(v)≤ l − 2. Then

dG(wi)≥ 2(
jn

p

k

− 1)− dG(v)≥ 2
jn

p

k

− l. (3.14)

Since G′0 is 2-edge-connected and triangle-free, and since t ≥ 3, dG′0
(vi)≤

l − 3. Then by (3.14),

|V (Γ(vi))| ≥ |NG(wi)∩V (Γ(vi))| ≥ dG(wi)−dG′0
(vi)≥ 2

jn

p

k

−2l+3. (3.15)

By (a) and (3.15),

|V0|+ t(2
jn

p

k

− 2l + 3) + (p− t)(
jn

p

k

− l + 1)≤
�

�

�

�

⋃

u∈V (G′0)

V (Γ(u))

�

�

�

�

= n.

Then
|V0|+ t + (p+ t)(

jn

p

k

− l + 1)≤ n,

a contradiction if n� p, and so (d) is proved.
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3.4.2 Proof of Theorem 3.9

Proof of Theorem 3.9. This is the special case of Theorem 3.8 with p =
8 and k = 2. Suppose that L(G) is not hamiltonian. Because σ2(G) ≥
2(bn/8c − 1), if n ≥ 32, then σ2(G) ≥ 6, and consequently D(G) is an in-
dependent set. Let G′0 be the reduction of the core G0 of G. By Theorem
1.5(c), G′0 is simple and triangle-free. Then by Theorems 3.8 and 3.12, G
has no DCT and G′0 ∈ G1 ∪ G2. Note that each of the graphs in the set
{J(2, 2), J(2,3), C(6,2), C(6,4),θ(1,1, 2),θ(1,1, 3),θ(1, 2,2),θ(1, 1,4),
θ(1, 1,4)′,θ(1,1, 4)′′,θ(2, 2,2),θ(1, 2,3),θ(1,2, 3)′} can be contracted to a
K2,3, each graph in {K∗2,5, K∗∗2,5} can be contracted to a K2,5, and W ∗∗

3 can be
contracted to a W ∗

3 . We conclude that G′0 can be contracted to a graph in
{K2,3, K2,5, W ∗

3 , C(6,2)′, C(6, 4)′,θ(1, 1,4)′′′}. This completes the proof.

3.4.3 Proof of Theorem 3.10

Proof of Theorem 3.10. This is the special case of Theorem 3.8 with p =
15 and k = 3. Suppose that L(G) is not hamiltonian. Because σ2(G) ≥
2(bn/15c − 1), if n ≥ 60, then σ2(G) ≥ 6, and consequently D(G) is an
independent set. Let G′0 be the reduction of the core G0 of G. By Theorem
3.8, G′0 /∈ S L with |V (G′0)| ≤ 18 and κ′(G′0)≥ 3.

By Proposition 3.1(b), S1 = S0 and so V (G′0) = V0 ∪ S1. If |V (G′0)| ≤ 15,
then, by Theorem 3.13(b), G′0 ∈ {P(10), P(14)}. Obviously, in this case, G
can be contracted to the Petersen graph. In the following, we only need to
consider the case that 16≤ |V (G′0)| ≤ 18.

Let V0 = {v1, v2, . . . , vt} and S1 = {vt+1, vt+2, . . . , v|V (G′0)|}. Without loss of
generality, we can assume that

|V (Γ(vt+1))| ≤ |V (Γ(vt+2))| ≤ · · · ≤ |V (Γ(v|V (G′0)|))|.

Note that
∑|V (G′0)|

i=t+1 |V (Γ(vi))| ≤ n. Hence |V (Γ(vt+1))| ≤
n

|V (G′0)|−t
.

By Proposition 3.1(d), |S1| ≤ 15. Then, since |V (G′0)| ≥ 16, t ≥ 1. By

Proposition 3.1(c), V0 is an independent set and
t
⋃

i=1
NG′0
(vi)⊆ S1. Since G′0 is
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3-edge-connected,
dG′0
(vi)≥ 3, for vi ∈ V (G′0). (3.16)

Let {w1, w2, . . . , ws} be a maximal subset of
t
⋃

i=1
NG(vi) which satisfies the fol-

lowing two conditions:

(i) for any pair of vertices {wi , w j} ⊂ {w1, w2, . . . , ws} (wi 6= w j), there

exists a pair of vertices {zi , z j} ⊂
t
⋃

i=1
NG′0
(vi) (zi 6= z j) such that wi ∈

Γ(zi), w j ∈ Γ(z j), and Γ(zi)∩Γ(z j) = ;;

(ii) for each wi ∈ {w1, w2, . . . , ws}, there is a vertex v j ( j ≤ t) that is adja-
cent to wi in G.

Note that in this case

�

�

�

�

t
⋃

i=1
NG′0
(vi)

�

�

�

�

= s. Then, since t ≥ 1 and (3.16),

s ≥ 3.

Claim 1. dG′0
(vi)≤ 15, for vi ∈ V (G′0).

Proof. By Theorem 1.5(c), G′0 is simple and triangle-free. Then, since
κ′(G′0)≥ 3 and |V (G′0)| ≤ 18, the claim holds immediately.

By Claim 1,

dG(wi)≥ 2(
j n

15

k

− 1)− dG(v j)≥ 2(
n− 14

15
− 1)− 15=

2n− 283

15
, (3.17)

where v j ( j ≤ t) is adjacent to wi in G.

By (i), for each wi , there is a vertex zi ∈
t
⋃

i=1
NG′0
(vi) such that wi ∈

V (Γ(zi)). Hence by (3.17) and Claim 1,

|V (Γ(zi))| ≥ |NG(wi)∩ V (Γ(zi))| ≥ dG(wi)− dG′0
(zi)

≥
2n− 283

15
− 15

=
2n− 508

15
.

(3.18)
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Hence,
�

�

�

�

s
⋃

i=1

V (Γ(zi))

�

�

�

�

=
s
∑

i=1

|V (Γ(zi))| ≥
s(2n− 508)

15
.

Since

�

�

�

�

s
⋃

i=1
V (Γ(zi))

�

�

�

�

≤ n and n is sufficiently large,

s ≤ 7.

Therefore, 3≤ s ≤ 7.

For x ∈ S1, by Proposition 3.1(a),

|V (Γ(x))| ≥
j n

15

k

− 18+ 1≥
n− 14

15
− 17≥

n− 269

15
. (3.19)

In particular, if x ∈
t
⋃

i=1
NG′0
(vi), then |V (Γ(x))| = |V (Γ(zi))| for some zi ∈

t
⋃

i=1
NG′0
(vi). By (3.18), |V (Γ(x))| ≥ 2n−508

15
.

Without loss of generality, we let V (G′0) = {v1, . . . , vt , vt+1, . . . , vt+s, vt+s+1,
. . . , vt+s+r}, where

t
⋃

i=1

NG′0
(vi) = {vt+1, . . . , vt+s},

S1 = {vt+1, . . . , vt+s, vt+s+1, . . . , vt+s+r} and t + s+ r = |V (G′0)|.
By (3.18) and (3.19),

t +
s(2n− 508)

15
+

r(n− 269)
15

≤
�

�

�

�

⋃

vi∈V (G′0)

V (Γ(vi))

�

�

�

�

= n.

Since n is sufficiently large,

2s+ r ≤ 15. (3.20)

Since s ≥ 3, and by (3.20), s+ r ≤ 12. Then, since |V (G′0)| ≥ 16, t ≥ 4.
Let G∗ = G′0[{v1, . . . , vt , vt+1, . . . , vt+s}]. By (3.16), dG∗(vi) ≥ 3, for i ≤ t. By
Theorem 1.5(c), and since t ≥ 4, G∗ /∈ {K1, K2, K2,l (l ≥ 2)}. Then 3t ≤
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|E(G∗)| ≤ 2(t + s)− 5. So,
t ≤ 2s− 5. (3.21)

Using t ≥ 4, (3.20) and (3.21), we obtain 5≤ s ≤ 7.

If s = 5 (s = 6 or s = 7), then, by (3.20), r ≤ 5 (r ≤ 3 or r ≤ 1, respec-

tively). Note that
t
⋃

i=1
NG′0
(vi) = {vt+1, . . . , vt+s} and V0 is an independent set.

Then α′(G′0) ≤ 7. Using Theorem 3.13(c), we conclude that G′0 has an SCT,
a contradiction. This completes the proof. �

3.4.4 Proof of Theorem 3.11

Proof of Theorem 3.11. Since G is a 3-edge-connected graph, G is also an
essentially 3-edge-connected graph. If G is supereulerian, then we are done.
In the following, we assume that G /∈ S L . Since G is 3-edge-connected,
D(G) = ;. Let G′0 be the reduction of the core G0 of G. Then G = G0 and so
G0 /∈ S L . By Theorem 3.16, G′0 /∈ S L , and |V (G′0)| ≤ 18 and κ′(G′0) ≥ 3.
Then, similarly as in the proof of Theorem 3.10, we conclude that G can be
contracted to the Petersen graph. This completes the proof. �



Chapter 4

Neighborhood and degree
conditions for hamiltonicity

In this chapter, we are mainly interested in degree and neighborhood condi-
tions for hamiltonicity of 2-connected claw-free graphs, motivated by recent
results in [35], and in an attempt to unify and extend several existing results.

4.1 Introduction

We start by listing a number of existing hamiltonicity results for claw-free
graphs, the first one involving a Dirac-type condition.

In [66], Matthews and Sumner proved the following.

Theorem 4.1. (Matthews and Sumner [66]). If H is a 2-connected claw-free
graph of order n with δ(H)≥ n−2

3
, then H is hamiltonian.

The Ore-type counterpart of Theorem 4.1 is the following result due to
Flandrin et al. [50].

Theorem 4.2. (Flandrin et al. [50]). If H is a 2-connected claw-free graph of
order n with σ2(H)≥

2n−5
3

, then H is hamiltonian.

With U2(H) instead of σ2(H), Bauer et al. proved the following more
general result in [1].

53
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Theorem 4.3. (Bauer, Fan and Veldman [1]). If H is a 2-connected claw-free
graph of order n with U2(H)≥

2n−5
3

, then H is hamiltonian.

Another generalization of Theorem 4.1 involving σ3(H), was obtained
independently by Liu et al. [65], Zhang [85], and Broersma [10].

Theorem 4.4. (Liu et al. [65], Zhang [85] and Broersma [10]). If H is a
2-connected claw-free graph of order n with σ3(H)≥ n− 2, then H is hamilto-
nian.

In an attempt to further generalize the above results to a condition in-
volving σ4(H), Frydrych proved the following result in [52].

Theorem 4.5. (Frydrych [52]). If H is a 2-connected claw-free graph of order
n withσ4(H)≥ n+3, then either H is hamiltonian or cl(H) ∈Q2,3(s1, s2, s3, 0).

The final result in the above list indicates that one has to exclude cer-
tain graph classes if one is trying to extend and generalize these results, a
phenomenon that we have encountered before in the earlier chapters.

1

5
G

2

5
G

3

5
G

4

5
G

5

5
G

6

5
G

7

5
G

1

3
G

1

4
G

2

4
G

FIGURE 4.1: Ten classes of nonhamiltonian graphs.

The graphs G1
3 , G1

4 , G2
4 , and G1

5 , G2
5 , . . . , G7

5 are shown in Figure 4.1 (where
the circular and elliptical parts represent cliques of arbitrary positive order,
but at least the number of black dots indicated in these parts). Let eG3, eG4, and
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eG5 be the sets of all spanning subgraphs of G1
3 , G1

4 and G2
4 , and G1

5 , G2
5 , . . . , G7

5 ,
respectively.

In [63], Li et al. improved Theorem 4.1 by obtaining the following result.

Theorem 4.6. (Li et al. [63]). If H is a 2-connected claw-free graph of order
n with δ(H)≥ n+5

5
, then either H is hamiltonian or H ∈ eG3 ∪ eG4.

In [49], Favaron et al. got the following two closely related results.

Theorem 4.7. (Favaron et al. [49]). If H is a 2-connected claw-free graph
of order n ≥ 77 such that δ(H) ≥ 14 and σ6(H) > n+ 19, then either H is
hamiltonian or H ∈ eG3 ∪ eG4 ∪ eG5.

Theorem 4.8. (Favaron et al. [49]). If H is a 2-connected claw-free graph of
connectivity κ(H) = 2 and order n ≥ 78 with δ(H) > n+16

6
, then either H is

hamiltonian or H ∈ eG3 ∪ eG4 ∪ eG5.

Degree conditions for hamiltonicity in claw-free graphs were studied fur-
ther in [58], where the authors gave a general algorithm that allows one to
generate all classes of exceptions, roughly speaking, for a degree condition
of the form σp(H)≥ n+ c(p) (or, as a corollary, δ(H)≥ n+c(p)

p
), for arbitrary

positive integer p and a constant c(p) only depending on p. In [58], with the
help of a computer, the computation was performed for p = 8, and Kovářík
et al. obtained a result for σ8(H) > n + 39 with an exceptional family of
graphs consisting of 318 infinite classes.

For the formulation of the next results, we also need a lower bound on
the order of the graphs we consider, depending on the specific degree or
neighborhood union condition we apply, as follows.

For dt(H) ∈ {σt(H), Ut(H)}, we consider claw-free graphs H that satisfy
the following condition:

dt(H)≥
t(n+ ε)

p
. (4.1)

Here t ≥ 1 and p ≥ t are positive integers, and ε is a given real number.
Depending on the values of p and ε, we define N(p,ε) =max{36p2− 34p−
ε(p+1), 20p2−10p−ε(p+1), (3p+1)(−ε−4p)}. In the following result, we
let H be a k-connected claw-free graph of order n> N(p,ε) with k ∈ {2,3}.
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In [35], Chen proved the following hamiltonicity result.

Theorem 4.9. (Chen [35]). If δ(H) ≥ 3 and dt(H) ≥
t(n+ε)

p
, then either H

is hamiltonian or cl(H) = L(G), where G is an essentially k-edge-connected
triangle-free graph without a DCT, and G satisfies one of the following:

(a) k = 2 and G is contractible to a graph in Q0(c, 2), where c ≤ max{4p−
5,2p+ 1};

(b) k = 3 and G is contractible to a graph in Q0(c, 3), where c ≤ max{3p−
5,2p+ 1}.

Here “G is contractible to a graph in Q0(c, k)" means that “the reduction
of the core of G is in Q0(c, k)".

As a special case of Theorem 4.9 with given values of p and ε, Chen
obtained the following result in [35].

Theorem 4.10. (Chen [35]). Let H be a 2-connected claw-free graph of suf-
ficiently large order n with δ(H) ≥ 3. If dt(H) ≥

tn
4

for t ∈ {1, 2,3, 4}, then
either H is hamiltonian or cl(H) ∈Q2,3(s1, s2, s3, 0).

The next section contains analogous results we obtained in our attempts
to further generalize some of the above results.

4.2 Our results

For a W ∗
3 , let D2(W ∗

3 ) = {v1, v2, v3} and D3(W ∗
3 ) = {u1, u2, u3, u4}, where the

vertices of W ∗
3 are labeled as in Figure 3.1. Let W ∗3 (s1, s2, s3, r) be the family

of essentially 2-edge-connected graphs of size n (Recall that size is used for
the number of edges) obtained from a W ∗

3 by replacing each vi ∈ D2(W ∗
3 )

by a connected triangle-free subgraph of size si ≥ 1 and replacing u4 by a
connected triangle-free subgraph of size r ≥ 0 such that

∑3
i=1 si + r + 9= n.

Note that each graph in W ∗3 (s1, s2, s3, r) is contractible to a W ∗
3 .

Let Q3(s1, s2, s3, r) = {H = L(G) | G ∈W ∗3 (s1, s2, s3, r)}.
As another application of Theorem 4.9, we obtain the following result.
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Theorem 4.11. Let H be a 2-connected claw-free graph of sufficiently large
order n with δ(H) ≥ 3. If dt(H) ≥

t(n+5)
5

with t ∈ {1, 2,3,4, 5}, then either H
is hamiltonian or cl(H) ∈Q2,3(s1, s2, s3, r)∪Q3(s1, s2, s3, r).

We postpone the proof of the above result, and continue with our next
application of Theorem 4.9. In the following description, we need the graphs
T1, T2, T3, T4, and T5 that are depicted in Figure 4.2. In order to present
our next result, we define six families of nonhamiltonian claw-free graphs as
follows.

FIGURE 4.2: The graphs T1, T2, T3, T4 and T5.

For a K2,3, let D2(K2,3) = {v1, v2, v3} and D3(K2,3) = {u1, u2}. Let C1 be
the family of essentially 2-edge-connected graphs of size n obtained from a
K2,3 by replacing each vi ∈ D2(K2,3) by a connected triangle-free subgraph
of size si ≥ 1 and replacing each ui ∈ D3(K2,3) by a connected triangle-free
subgraph of size ri ≥ 0, respectively, such that

∑3
i=1 si+

∑2
i=1 ri+6= n. Note

that each graph in C1 is contractible to a K2,3.

For a K2,5, let D2(K2,5) = {v1, v2, v3, v4, v5}. Let C2 be the family of es-
sentially 2-edge-connected graphs of size n obtained from a K2,5 by replacing
each vi ∈ D2(K2,5) by a connected triangle-free subgraph of size si ≥ 1 such
that

∑5
i=1 si + 10= n. Note that each graph in C2 is contractible to a K2,5.

For a W ∗
3 , let D2(W ∗

3 ) = {v1, v2, v3} and D3(W ∗
3 ) = {u1, u2, u3, u4}. Let C3

be the family of essentially 2-edge-connected graphs of size n obtained from
a W ∗

3 by replacing each vi ∈ D2(W ∗
3 ) by a connected triangle-free subgraph

of size si ≥ 1 and replacing each ui ∈ D3(W ∗
3 ) by a connected triangle-free
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subgraph of size ri ≥ 0, respectively, such that
∑3

i=1 si+
∑4

i=1 ri+9= n. Note
that each graph in C3 is contractible to a W ∗

3 .

For a C(6, 2)′, let D2(C(6,2)′) = {v1, v2, v3, v4}. Let C4 be the family
of essentially 2-edge-connected graphs of size n obtained from a C(6, 2)′ by
replacing each vi ∈ D2(C(6, 2)′) by a connected triangle-free subgraph of size
si ≥ 1 and replacing w by a connected triangle-free subgraph of size r ≥ 1,
respectively, such that

∑4
i=1 si + r + 11 = n. Note that each graph in C4 is

contractible to a C(6, 2)′.

For a θ(1,1, 4)′′′, let D2(θ(1,1, 4)′′′) = {v1, v2, v3}. Let C5 be the family
of essentially 2-edge-connected graphs of size n obtained from a θ(1, 1,4)′′′

by replacing each vi ∈ D2(θ(1,1, 4)′′′) by a connected triangle-free subgraph
of size si ≥ 1 and replacing each wi (i = 1, 2) by a connected triangle-free
subgraph of size ri ≥ 1, respectively, such that

∑3
i=1 si +

∑2
i=1 ri + 11 = n.

Note that each graph in C5 is contractible to a θ(1, 1,4)′′′.

For a T2 or T3, letC6 be the family of essentially 2-edge-connected graphs
of size n obtained from a T2 or T3 by replacing each ui by a connected
triangle-free subgraph of size si ≥ 1 such that

∑5
i=1 si + 12 = n. Note that

each graph in C6 is contractible to a T2 or T3.

Let Li = {H = L(G) | G ∈ Ci} (i = 1,2, . . . , 6). Since K2,3(s1, s2, s3, r) ⊂
C1 and W ∗3 (s1, s2, s3, r) ⊂ C3, Q2,3(s1, s2, s3, r) ⊂ L1 and Q3(s1, s2, s3, r) ⊂
L3.

As another application of Theorem 4.9, we obtain the following result.
It shows that, by increasing the (constant) lower bound on δ(H), in the
following sense the degree condition on pairs can be relaxed to a degree
condition on larger sets of (independent) vertices.

Theorem 4.12. Let H be a 2-connected claw-free graph of sufficiently large
order n with δ(H) ≥ 18. If dt(H) ≥

tn
6

with t ∈ {1,2, . . . , 6}, then either H is
hamiltonian or cl(H) ∈ ∪6

i=1Li .

The following two results can be deduced from Theorems 4.11 and 4.12
immediately, respectively.

Theorem 4.13. Let H be a 2-connected claw-free graph of sufficiently large
order n with δ(H) ≥ 3. If dt(H) ≥

t(n+5)
5

with t ∈ {1,2, 3,4, 5}, then either
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H is hamiltonian or cl(H) = L(G), where G is an essentially 2-edge-connected
triangle-free graph that can be contracted to a K2,3 or W ∗

3 .

Theorem 4.14. Let H be a 2-connected claw-free graph of sufficiently large
order n with δ(H) ≥ 18. If dt(H) ≥

tn
6

with t ∈ {1,2, . . . , 6}, then either
H is hamiltonian or cl(H) = L(G), where G is an essentially 2-edge-connected
triangle-free graph that can be contracted to a graph in {K2,3, K2,5, W ∗

3 , C(6,2)′,
θ(1, 1,4)′′′, T2, T3}.

FIGURE 4.3: The graph G∗ with dt(L(G∗)) =
t(n−5)

5
.

Remark 4.1. (a) Let G∗ be the graph obtained from a K2,5 by adding l ≥ 2
pendant edges at each vertex of degree two in K2,5, that is depicted in
Figure 4.3. Similarly, let G∗∗ be the graph that is depicted in Figure 4.4.
Since G∗ and G∗∗ have no DCT, by Theorem 1.1, L(G∗) and L(G∗∗) are non-
hamiltonian. The line graph L(G∗) of order n = 5l + 10 (n ≥ 20) is 2-
connected with dt(L(G∗)) = t(l + 1) = t(n−5)

5
<

t(n+5)
5

, δ(L(G∗)) ≥ 3 and
L(G∗) /∈ Q2,3(s1, s2, s3, r) ∪ Q3(s1, s2, s3, r). The line graph L(G∗∗) of order
n = 6l + 13 (n ≥ 25) is 2-connected with t(n−7)

6
≤ dt(L(G∗∗)) <

t(n−1)
6

,
δ(L(G∗∗)) ≥ 3 and L(G∗∗) /∈ ∪6

i=1Li . These examples show that the bounds
in Theorems 4.11 and 4.12 are asymptotically sharp, respectively.

(b) The case with dt(H) = σ6(H) ≥ n of Theorem 4.12 is an improve-
ment of the aforementioned “σ6(H) > n + 19” theorem due to Favaron et
al. in [49]; the case with dt(H) = σ4(H) ≥

4n+20
5

(dt(H) = σ4(H) ≥
2n
3

)
of Theorem 4.11 (Theorem 4.12) is an improvement of the aforementioned
“σ4(H)≥ n+3” theorem obtained by Frydrych in [52]; the case with dt(H) =
σ3(H) ≥

3n+15
5

(dt(H) = σ3(H) ≥
n
2
) of Theorem 4.11 (Theorem 4.12) is

an improvement of the aforementioned “σ3(H) ≥ n− 2” theorem obtained
by Liu et al. in [65], Zhang in [85], and Broersma in [10]; the case with
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FIGURE 4.4: The graph G∗∗ with t(n−7)
6
≤ dt(L(G∗∗)) <

t(n−1)
6

.

dt(H) = σ2(H) ≥
2n+10

5
(dt(H) = σ2(H) ≥

n
3
) of Theorem 4.11 (Theorem

4.12) is an improvement of the aforementioned “σ2(H) ≥
2n−5

3
” theorem

due to Flandrin et al. in [50]; the case with dt(H) = σ1(H) = δ(H) ≥
n+5

5
(dt(H) = σ1(H) = δ(H) ≥

n
6
) of Theorem 4.11 (Theorem 4.12) is an im-

provement of Theorem 4.6 (Theorems 4.6 and 4.8); the case with dt(H) for
1 ≤ t ≤ 5 (1 ≤ t ≤ 6) of Theorem 4.11 (Theorem 4.12) is an improvement
of Theorems 4.3 and 4.10; furthermore, Theorem 4.12 is an improvement of
Theorem 4.11, and Theorem 4.14 is an improvement of Theorem 4.13.

(c) Our results also extend earlier results that are based on the notion
of the generalized t-degree, δt(H) (the definition was given in Chapter 1),
as introduced by Faudree et al. in [48]. Since obviously σt(H) ≥ Ut(H) ≥
δt(H), the statements in Theorems 4.11, 4.12, 4.13 and 4.14 are also valid
if we replace dt(H) by δt(H).

The remainder of this chapter is organized as follows. In Section 4.3, we
present some useful results. In Section 4.4, we present two technical lemmas.
In Section 4.5, our proofs of Theorems 4.11 and 4.12 are given.

4.3 Preliminaries and auxiliary results

Some known facts that we need on reduced graphs are summarized in the
following theorem.
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Theorem 4.15. Let G be a connected reduced graph of order n. Then each of
the following holds:

(a) [26] For 1< n≤ 9, if κ′(G)≥ 2, then |D2(G)| ≥ 3.

(b) [33] Let M be a maximum matching of G, and let D2(G) = l. If δ(G)≥ 2
and G 6= K2,a (a ≥ 2), then |M | ≥ min{ n−1

2
, n−l+5

3
}.

The following lemma will be needed for our proof of the auxiliary result
in this section.

Lemma 4.16. (Chen and Chen [26]) Let G be a 2-edge-connected graph of
order n. If n≤ 10 and |D2(G)| ≤ 1, then either G is collapsible or G ∼= P(10).

The following three lemmas will be needed for our proof of Theorem 4.12
in Section 4.5.

Lemma 4.17. Let G be a 2-edge-connected reduced graph of order 8. Let
V (G) = V1 ∪ V2, where V1 = {v1, v2, v3}, V2 = {u1, u2, u3, u4, u5}, V1 is an inde-

pendent set,
3
⋃

i=1
NG(vi) ⊆ V2, and dG(vi) ≥ 3 (1 ≤ i ≤ 3). Then, either G has a

DCT containing V2 or G ∈ {C(6, 2), C(6, 2)′,θ(1, 1,4)′′′,θ(1,2, 3)′, W ∗∗
3 }.

Proof of Lemma 4.17. If G has a DCT containing V2, then we are done. In
the following, we assume that G has no DCT containing V2. Then G has no
SCT. Since G is reduced, by Theorem 1.5(c), G is simple and triangle-free.
Then by Theorem 3.12, and since |V (G)| = 8, G ∈ G2. By the assumption of
this lemma, D2(G) ⊆ V2. Then, since |V2| = 5, |V1| = 3 and V1 is an inde-
pendent set, we conclude that G ∈ {C(6, 2), C(6,2)′,θ(1,1, 4)′′′,θ(1, 2,3)′,
W ∗∗

3 }. This completes the proof.

Lemma 4.18. Let G be a 2-edge-connected reduced graph of order 9. Let
V (G) = V1 ∪ V2, where V1 = {v1, v2, v3, v4}, V2 = {u1, u2, u3, u4, u5}, V1 is

an independent set,
4
⋃

i=1
NG(vi) ⊆ V2, and dG(vi) ≥ 3 (1 ≤ i ≤ 4). Then, either

G has a DCT containing V2 or G ∈ {T1, T2, T3, T4, T5}.

Proof of Lemma 4.18. If G has a DCT containing V2, then we are done.
In the following, we assume that G has no DCT containing V2. Since G is
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reduced, by Theorem 1.5(c) and Lemma 1.6, G is simple, triangle-free, K3,3-

free and (K3,3 − e)-free. Since V1 is an independent set,
4
⋃

i=1
NG(vi) ⊆ V2 and

dG(vi) ≥ 3 (1 ≤ i ≤ 4), |E(G)| ≥ 4× 3 = 12. Since D2(G) ⊆ V2, and since
|V2| = 5, G 6= K2,7. Since G is reduced and G 6= K2,7, by Theorem 1.5(c),
|E(G)| ≤ 2|V (G)| − 5= 13. So, 12≤ |E(G)| ≤ 13. Obviously, for any graph,

∑

v∈V (G)

dG(v) = 2|E(G)|. (4.2)

We first prove the following claim and then distinguish the cases that
|E(G)|= 12 and |E(G)|= 13.

Claim 1. |D2(G)| ≥ 3.

Proof. Since |V (G)| = 9 and κ′(G) ≥ 2, by Theorem 4.15(a), |D2(G)| ≥ 3.

Case 1. |E(G)|= 12.

Then G is a bipartite graph and dG(vi) = 3 (1 ≤ i ≤ 4). By Claim 1, without
loss of generality, we may assume that dG(u1) ≥ dG(u2) ≥ 2 and dG(ui) = 2
(i = 3, 4,5). Then, using (4.2), either dG(u1) = 4 and dG(u2) = 2 or dG(u1) =
dG(u2) = 3.

Suppose first that dG(u1) = 4 and dG(u2) = 2. Since dG(u1) = 4, NG(u1) =
V1. Since dG(u2) = 2, without loss of generality, we may assume that NG(u2) =
{v1, v2}. Then, using dG(v1) = dG(v2) = 3, we get |NG(v1) ∩ {u3, u4, u5}| =
|NG(v2) ∩ {u3, u4, u5}| = 1. Without loss of generality, we may assume that
either NG(u3) = {v1, v2} or NG(u3) = {v1, v3}. If NG(u3) = {v1, v2}, then
NG(u4) = NG(u5) = {v3, v4}, and G ∼= T1. If NG(u3) = {v1, v3}, then, since G
is a reduced graph, without loss of generality, we may assume that NG(u4) =
{v2, v4}. Then NG(u5) = {v3, v4}, and G ∼= T2.

Now suppose that dG(u1) = dG(u2) = 3. Then 2 ≤ |NG(u1) ∩ NG(u2) ∩
V1| ≤ 3. Without loss of generality, we may assume that either NG(u1) =
{v1, v2, v3} and NG(u2) = {v1, v2, v4}, or NG(u1) = NG(u2) = {v1, v2, v3}. We
distinguish these two subcases.

Subcase 1.1. NG(u1) = {v1, v2, v3} and NG(u2) = {v1, v2, v4}.
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Then, since dG(v1) = dG(v2) = 3, there exists a vertex ui ∈ {u3, u4, u5} such
that 1≤ |NG(ui)∩ {v1, v2}| ≤ 2.

If |NG(ui)∩{v1, v2}|= 1, then, without loss of generality, we may assume
that NG(u3) = {v1, v3}. Note that G is a 2-edge-connected reduced bipar-
tite graph. Then, without loss of generality, we may assume that NG(u4) =
{v2, v4} and NG(u5) = {v3, v4}, so that G ∼= T3.

If |NG(ui)∩{v1, v2}|= 2, then, without loss of generality, we may assume
that NG(u3) = {v1, v2}. Note that again G is a 2-edge-connected reduced
bipartite graph. Then NG(u4) = NG(u5) = {v3, v4}, and G ∼= T4.

Subcase 1.2. NG(u1) = NG(u2) = {v1, v2, v3}.
Since G is a 2-edge-connected reduced bipartite graph, |NG(ui)∩{v1, v2, v3}|=
1 (i = 3, 4,5); otherwise, G has a subgraph isomorphic to K3,3 − e, a contra-
diction. Without loss of generality, we may assume that NG(u3) = {v1, v4},
NG(u4) = {v2, v4} and NG(u5) = {v3, v4}. Then G ∼= T5. It is easy to check
that T1, T2, T3, T4 and T5 have no DCT containing V2.

Case 2. |E(G)|= 13.

Since V1 is an independent set, and using |E(G)| = 13, either dG(vi) = 3
(1 ≤ i ≤ 4), or there exists exactly one vertex v ∈ V1 with dG(v) = 4. We
distinguish these two subcases.

Subcase 2.1. dG(vi) = 3 (1≤ i ≤ 4).

Then |E(G[V2])| = 1. By Claim 1, without loss of generality, we assume that
dG(u1) ≥ dG(u2) ≥ 2 and dG(u j) = 2 ( j = 3,4, 5). Then, using |E(G[V2])| =
1 and (4.2), dG(u1) = dG(u2) = 4. Then u1u2 /∈ E(G); otherwise, using
dG(u1) = dG(u2) = 4, |E(G[V2])| = 1, and |V1| = 4, we obtain that G has a
triangle, a contradiction.

Suppose there exists a vertex u ∈ {u1, u2} such that NG(u)∩{u3, u4, u5} 6=
;. Using dG(u1) = dG(u2) = 4, without loss of generality, we may assume that
NG(u1) = {v1, v2, v3, u3} and NG(u2) = V1. Since G is triangle-free, and since
dG(u3) = 2 and |E(G[V2])| = 1, NG(u3) = {u1, v4}. Since dG(v4) = 3, there
exists some vertex w ∈ {u4, u5} such that |NG(w) ∩ {v1, v2, v3}| = 2. Then
G[{v1, v2, v3, u1, u2, w}] ∼= K3,3 − e, a contradiction. Hence, NG(u) ∩ V2 = ;
(u ∈ {u1, u2}) and so NG(u1) = NG(u2) = V1. Using |E(G[V2])| = 1 and
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since dG(u j) = 2 ( j = 3,4, 5), there exists exactly one vertex w ∈ {u3, u4, u5}
such that |NG(w) ∩ V1| = 2. Without loss of generality, we may assume that
NG(u3) = {v1, v2}. Then G[{v1, v2, v3, u1, u2, u3}]∼= K3,3− e, a contradiction.

Subcase 2.2.There exists exactly one vertex v ∈ V1 with dG(v) = 4.

Then G is a 2-edge-connected reduced bipartite graph. Without loss of gener-
ality, we may assume that dG(v1) = 4. By Claim 1, without loss of generality,
we assume that dG(u1) ≥ dG(u2) ≥ 2 and dG(ui) = 2 (i = 3,4, 5). Using
|E(G)| = 13 and (4.2), we deduce that dG(u1) = 4 and dG(u2) = 3. Then
NG(u1) = V1. Since dG(v1) = 4 and dG(u2) = 3, without loss of generality, we
may assume that either NG(u2) = {v1, v2, v3} or NG(u2) = {v2, v3, v4}.

Suppose first that NG(u2) = {v1, v2, v3}. Since dG(v1) = 4, without loss
of generality, we may assume that NG(v1) = V2 \ {u5}. Then v2, v3 /∈ NG(ui)
(i = 3, 4); otherwise, G has a subgraph isomorphic to K3,3 − e, a contradic-
tion. Now NG(u3) = NG(u4) = {v1, v4}, and so NG(u5) = {v2, v3}. Hence
G[{v1, v2, v3, u1, u2, u5}]∼= K3,3− e, a contradiction.

Next suppose that NG(u2) = {v2, v3, v4}. Then, since dG(v1) = 4, NG(v1) =
V2\{u2}. Since dG(ui) = 2 (i = 3, 4,5), by symmetry and without loss of gen-
erality, we may assume that v2u3, v3u4, v4u5 ∈ E(G). Then v1u1v2u3v1u4v3u2

v4u5v1 is an SCT of G, a contradiction. This completes the proof.

Lemma 4.19. Let G be a 2-edge-connected reduced graph of order 10. Let
V (G) = V1 ∪ V2, where V1 = {v1, v2, v3, v4, v5}, V2 = {u1, u2, u3, u4, u5}, V1 is

an independent set,
5
⋃

i=1
NG(vi) ⊆ V2 and dG(vi) ≥ 3 (1 ≤ i ≤ 5). Then G has

an SCT.

Proof of Lemma 4.19. If G has an SCT, then we are done. In the following,
we assume that G has no SCT. Since V1 is an independent set, and since

5
⋃

i=1
NG(vi) ⊆ V2 and dG(vi) ≥ 3 (1 ≤ i ≤ 5), |E(G)| ≥ 5 × 3 = 15. Since

D2(G) ⊆ V2 and since |V2| = 5, G 6= K2,8. Then by Theorem 1.5(c), |E(G)| ≤
2|V (G)|−5= 15. Hence |E(G)|= 15, and the equalities hold only if dG(vi) =
3 (1≤ i ≤ 5). So G is a 2-edge-connected reduced bipartite graph. By Lemma
1.6, G is K3,3-free and (K3,3 − e)-free. Since G is a reduced bipartite graph,
and using |E(G)|= 15 and (4.2), we deduce that |D2(G)| ≤ 3. If |D2(G)| ≤ 1,
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then, by Lemma 4.16, G ∼= P(10) since G is reduced. Noting that P(10) has
a cycle of length 5, we obtain a contradiction to the fact that G is bipartite.
So, 2≤ |D2(G)| ≤ 3. We distinguish these two cases.

Case 1. |D2(G)|= 2.

Without loss of generality, we may assume that dG(u1) ≥ dG(u2) ≥ dG(u3) ≥
3 and dG(ui) = 2 (i = 4,5). Then, using |E(G)| = 15 and (4.2), either
dG(u1) = 5 and dG(u2) = dG(u3) = 3, or dG(u1) = dG(u2) = 4 and dG(u3) =
3. We distinguish these two subcases.

Subcase 1.1. dG(u1) = 5 and dG(u2) = dG(u3) = 3.

Then NG(u1) = V1. Without loss of generality, we may assume that NG(u2) =
{v1, v2, v3}. Then, since dG(u3) = 3, |NG(u3) ∩ {v1, v2, v3}| = 1; otherwise,
G[{v1, v2, v3, u1, u2, u3}] ∼= K3,3 − e or K3,3, a contradiction. Without loss of
generality, we may assume that NG(u3) = {v1, v4, v5} and v2 ∈ NG(u4). Then
v3 /∈ NG(u4); otherwise, G[{v1, v2, v3, u1, u2, u4}] ∼= K3,3 − e, a contradiction.
Without loss of generality, we may assume that NG(u4) = {v2, v4}. Then
NG(u5) = {v3, v5}. We deduce that v1u1v3u5v5u3v4u4v2u2v1 is an SCT of G, a
contradiction.

Subcase 1.2. dG(u1) = dG(u2) = 4 and dG(u3) = 3.

Then 3≤ |NG(u1)∩NG(u2)≤ 4. Suppose that |NG(u1)∩NG(u2)|= 4. Without
loss of generality, we may assume that NG(u1) = NG(u2) = V1 \ {v5}. Since
dG(u3) = 3, |NG(u3)∩ (V1 \ {v5})| ≥ 2. Then G has a subgraph isomorphic to
K3,3− e or K3,3, a contraction.

Thus, |NG(u1) ∩ NG(u2)| = 3. Without loss of generality, we may as-
sume that NG(u1) = V1 \ {v5} and NG(u2) = V1 \ {v4}. Since dG(u3) = 3,
|NG(u3) ∩ {v1, v2, v3}| = 1; otherwise, G[{v1, v2, v3, u1, u2, u3}] ∼= K3,3 − e
or K3,3, a contraction. Now, without loss of generality, we may assume
that NG(u3) = {v1, v4, v5} and v2 ∈ NG(u4). Then v3 /∈ NG(u4); otherwise,
G[{v1, v2, v3, u1, u2, u4}] ∼= K3,3 − e, a contraction. Now, either NG(u4) =
{v2, v4} and so NG(u5) = {v3, v5}, or NG(u4) = {v2, v5} and so NG(u5) =
{v3, v4}. For the first case, v1u2v3u5v5u3v4u4v2u1v1 is an SCT of G, a con-
tradiction. For the second case, v1u2v3u5v4u3v5u4v2u1v1 is an SCT of G, a
contradiction.
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Case 2. |D2(G)|= 3.

Without loss of generality, we may assume that dG(u1) ≥ dG(u2) ≥ 3 and
dG(ui) = 2 (i = 3,4, 5). Note that G is a 2-edge-connected reduced bipartite
graph. Then, using |E(G)| = 15 and (4.2), we get that dG(u1) = 5 and
dG(u2) = 4. Then NG(u1) = V1. Without loss of generality, we may assume
that NG(u2) = V1\{v5}. Since dG(v5) = 3, |NG(v5)∩{u3, u4, u5}|= 2. Without
loss of generality, we assume that NG(v5)∩ V2 = {u1, u3, u4}. Since dG(u5) =
2, without loss of generality, we may assume that NG(u5) = {v1, v2}. Now
G[{v1, v2, v3, u1, u2, u5}]∼= K3,3−e, a contradiction. This completes the proof.

Before we present our proofs of Theorems 4.11 and 4.12 in the final sec-
tion, we first introduce some additional notation and two technical lemmas
due to Chen [35].

4.4 Notation and two technical lemmas

In this section, let H be a k-connected claw-free graph of order n > N(p,ε)
with k ∈ {2, 3}, where t ≥ 1 and p ≥ t are positive integers, and ε is a
given real number, and N(p,ε) =max{36p2− 34p− ε(p+ 1), 20p2− 10p−
ε(p + 1), (3p + 1)(−ε − 4p)}. Moreover, we assume that δ(H) ≥ 3 and
dt(H) ≥

t(n+ε)
p

, and that cl(H) = L(G), and we let G, G0 and G′0 be the
graphs defined in Section 1.4. For v ∈ V (G′0), we let Γ0(v) be the collapsible
preimage of v in G0, and we let Γ(v) be the preimage of v in G. We also use
the following notation.

� S0 = {v ∈ V (G′0) | v is a nontrivial vertex in G′0};

� S1 = {v ∈ V (S0) | |E(Γ(v))| ≥ 1};

� S2 = S0 \ S1, the set of vertices v with Γ(v) = K1 and adjacent to some
vertices in D2(G);

� V0 = V (G′0) \ S1, the set of vertices v with Γ(v) = K1 in G, which
includes S2;
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� Φ0 = G′0[V0];

� M0 is a maximum matching in Φ0, and VM0
is the vertex set of M0;

� U0 = V0 \ VM0
, and so V (G′0) = S1 ∪ VM0

∪ U0.

We also note the following before presenting the two technical lemmas. Since
σ2(G) ≥ 5, and by the definition of G′0, we deduce that D2(G′0) ⊆ S1. Since
σt(H) ≥ Ut(H), we note that Ut(H) ≥

t(n+ε)
p

implies σt(H) ≥
t(n+ε)

p
. This

shows that it suffices to prove Theorems 4.11 and 4.12 for σt(H).

In [35], Chen proved the following two technical lemmas which will be
needed in our main proofs in Section 4.5.

Lemma 4.20. (Chen [35]). With the above assumptions, the following three
statements hold.

(a) If M is a matching in G with |M | ≥ t, then |M |σt (H)+2t
t

≤
∑

x y∈M
(dG(x)+

dG(y)).

(b) Let Vr ⊆ S1 with |Vr | = r, and let M ′b be a matching in G′0 with |M ′b| =
b. If Vr ∩ V (M ′b) = ; and r + b ≥ t, then

∑

v∈Vr

(|V (Γ(v))|+ dG′0
(v)) +

∑

x y∈M ′b

(|V (Γ(x))|+ |V (Γ(y))|+ dG′0
(x)+ dG′0

(y))≥ (r+b)(σt (H)+2t)
t

+2b.

(c) If n>−ε(p+ 1), then |D2(G′0)| ≤ p.

Lemma 4.21. (Chen [35]). With the above assumptions, and the additional
assumptions that p ≥ 3(k − 1), H is nonhamiltonian, and G′0 6= K2,a, the
following four statements hold.

(a) |S1|+ |M0| ≤ p.

(b) If |S1|+ |M0|= p, then |E(G′0)| ≥ 2p+ ε− |S1|+
∑

v∈U0
dG(v). Further-

more, if |M0|= 0, then V (G′0) = S1∪U0, |E(G′0)| ≥ ε+ p+
∑

v∈U0
dG(v)

and |V (G′0)| ≤ 2p− ε− 5.

(c) |U0| ≤ 2|S1|+ 3|M0| − 5 and |V (G′0)| ≤ 3|S1|+ 5|M0| − 5.

(d) If δ(H) ≥ 3p − 6 when k = 3, or if δ(H) ≥ 4p − 6 when k = 2, then
M0 = ; and S2 = ;.
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4.5 Proofs of Theorems 4.11 and 4.12

In this section, we shall present our proofs of Theorems 4.11 and 4.12.

Proof of Theorem 4.11. This is the special case of Theorem 4.9 with k = 2,
p = 5, 1 ≤ t ≤ 5 and ε = 5. Suppose that H is not hamiltonian. By Theorem
1.3, cl(H) = L(G), where G is an essentially 2-edge-connected triangle-free
graph with |E(G)| = n. By Theorem 1.1, G does not have a DCT. Let G′0 be
the reduction of the core G0 of G. Then by Theorem 1.8, G′0 /∈ S L and
κ′(G′0) ≥ 2. Then by Theorem 3.13(a), |V (G′0)| ≥ 5. By Theorems 4.9(a)
and 1.5(c), |E(G′0)| ≤ 2|V (G′0)| − 4 ≤ 2(4p− 5)− 4 = 26, and G′0 is a simple
triangle-free graph.

Let S0, S1, M0, and U0 be the sets defined in Section 4.4. By Theorem
1.8, G′0 has no DCT containing S0. If n > 26, then |E(G′0)| < |E(G)| and so
|S1| ≥ 1. We distinguish the cases that G′0 6= K2,a and G′0 = K2,a.

Case 1. G′0 6= K2,a.

Then by Lemma 4.21(a), |S1|+ |M0| ≤ 5. We distinguish the subcases that
|S1|+ |M0| ≤ 3, |S1|+ |M0|= 4, and |S1|+ |M0|= 5.

Subcase 1.1. |S1|+ |M0| ≤ 3.

If |S1| = 3, then, by Lemma 4.21(c), |V (G′0)| ≤ 4, a contradiction. Hence,
1 ≤ |S1| ≤ 2, and so |M0| ≤ 2. Then by Lemma 4.21(c), |V (G′0)| ≤ 8. By
Theorem 4.15(a), |D2(G′0)| ≥ 3, and so |S1| ≥ 3, a contradiction.

Subcase 1.2. |S1|+ |M0|= 4.

Suppose first that |S1|= 1 and |M0|= 3 (or |S1|= |M0|= 2). Then |D2(G′0)| ≤
2. Then, by Theorem 4.15(a) and Lemma 4.21(c), 10 ≤ |V (G′0)| ≤ 13. By
Theorem 4.15(b), |α′(G′0)| ≥ 5. If |S1| = 1, then |α′(G′0 − S1)| ≥ 4, and so
|M0| ≥ 4, contrary to |M0| = 3. If |S1| = 2, then |α′(G′0 − S1)| ≥ 3, and so
|M0| ≥ 3, contrary to |M0|= 2.

Next suppose that |S1| = 3 and |M0| = 1. Then by Lemma 4.21(c),
|V (G′0)| ≤ 9. If |V (G′0)| ≤ 8, then, by Theorem 3.12 and since G′0 /∈ S L ,
G′0 ∈ G1 ∪ G2. Note that D2(G′0) ⊆ S1. Using |S1| = 3 and |M0| = 1, we
deduce that G′0 =W ∗

3 . Then S1 = {v1, v2, v3} and so cl(H) ∈ Q3(s1, s2, s3, 0).
If |V (G′0)| = 9, then by Theorem 4.15(a), |D2(G′0)| ≥ 3. Since D2(G′0) ⊆ S1,
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|S1| = |D2(G′0)| = 3. Let M be a maximum matching of G′0. By Theorem
4.15(b), |M | = 4. Then, using |M0| = 1, each vertex in D2(G′0) is incident
with an edge of M , and any two vertices in D2(G′0) are not adjacent in M ;
otherwise, |M0|= |α′(G′0−S1)| ≥ 2, a contradiction. Without loss of general-
ity, we may assume that M = {u1v1, u2v2, u3v3, u4u5}, where S1 = {v1, v2, v3}
and V0 = {u1, u2, . . . , u6}. Then {u1, u2, u3, u6} is an independent set of G′0;
otherwise, |M0| ≥ 2, a contradiction. Now |E(G′0)| ≥ 3× 4+ 1 = 13. Since
G′0 6= K2,a, by Theorem 1.5(c), |E(G′0)| ≤ 2|V (G′0)|−5= 13. We conclude that
|E(G′0)| = 13, and so S1 is an independent set of G′0. Then |E(G′0[V0])| = 7.
Since dG′0

(ui) ≥ 3 (1 ≤ i ≤ 6), using that {u1, u2, u3, u6} is an independent
set of G′0, it is easy to prove that G′0[V0] contains a triangle, a contradiction.

Finally suppose that |S1| = 4 and |M0| = 0. Then by Lemma 4.21(c),
|V (G′0)| ≤ 7. Then, by Theorem 3.12 and since G′0 /∈ S L , G′0 ∈ G1. Since
D2(G′0) ⊆ S1, using G′0 6= K2,a and |S1| = 4, G′0 ∈ {W

∗
3 ,θ(1,1, 2)}. If G′0 =

W ∗
3 , then S1 = {v1, v2, v3, u4}, and so cl(H) ∈ Q3(s1, s2, s3, r). Obviously,

θ(1, 1,2) can be contracted to a K2,3 such that each vertex of degree two of
the resulting graph K2,3 is nontrivial. So, if G′0 = θ(1,1, 2), then cl(H) ∈
Q2,3(s1, s2, s3, r).

Subcase 1.3. |S1|+ |M0|= 5.

Since |S1| ≥ 1, |M0| ≤ 4. Since G′0 6= K2,a, by Theorem 1.5(c), |E(G′0)| ≤
2(|S1|+2|M0|+ |U0|)−5. By Lemma 4.21(b), |E(G′0)| ≥ 15−|S1|+3|U0|. We
deduce that |M0| ≥ 5, a contradiction. This settles Case 1.

Case 2. G′0 = K2,a.

By Lemma 4.20(c), |D2(G′0)| ≤ 5. Then since G′0 /∈ S L , G′0 ∈ {K2,3, K2,5}.
For v ∈ S1, let Γ(v) be the preimage of v in G. Then |E(G)| = |E(K2,a)|+
∑

v∈S1
|E(Γ(v))| (a ∈ {3,5}).

Suppose first that G′0 = K2,3. Since D2(G′0) ⊆ S1, 3 ≤ |S1| ≤ 5. If |S1| = 5,
then V (G′0) = S1. By Lemma 4.20, σt(H) ≥

t(n+5)
5

(1 ≤ t ≤ 5), |E(Γ(v))| ≥
|V (Γ(v))| − 1 and n= |E(G)|,

|S1|
σt(H) + 2t

t
≤
∑

v∈S1

(dG′0
(v)+ |V (Γ(v))|)≤

∑

v∈S1

dG′0
(v)+

∑

v∈S1

(|E(Γ(v))|+1).
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Then n+ 15 ≤ 12+ (n− 6) + 5 = n+ 11, a contradiction. Hence 3 ≤ |S1| ≤
4. Since D2(G′0) ⊆ S1 and by the definition of Q2,3(s1, s2, s3, r), cl(H) ∈
Q2,3(s1, s2, s3, r).

Next suppose that G′0 = K2,5. Since D2(G′0) ⊆ S1, 5 ≤ |S1| ≤ 7. Let
Vr = D2(G′0). Then Vr ⊆ S1 and |Vr | = 5. By Lemma 4.20, σt(H) ≥

t(n+5)
5

(1≤ t ≤ 5), |E(Γ(v))| ≥ |V (Γ(v))| − 1 and n= |E(G)|,

|Vr |
σt(H) + 2t

t
≤
∑

v∈Vr

(dG′0
(v)+ |V (Γ(v))|)≤

∑

v∈Vr

dG′0
(v)+

∑

v∈Vr

(|E(Γ(v))|+1).

Then n+15≤ 10+(n−10)+5= n+5, a contradiction. This completes the
proof.

Proof of Theorem 4.12. This is the special case of Theorem 4.9 with k = 2,
p = 6, 1≤ t ≤ 6, and ε= 0. Suppose that H is not hamiltonian. By Theorem
1.3, cl(H) = L(G), where G is an essentially 2-edge-connected triangle-free
graph with |E(G)| = n. By Theorem 1.1, G does not have a DCT. Let G′0 be
the reduction of the core G0 of G. Then by Theorem 1.8, G′0 /∈ S L and
κ′(G′0) ≥ 2. Then by Theorem 3.13(a), |V (G′0)| ≥ 5. By Theorems 4.9(a)
and 1.5(c), |E(G′0)| ≤ 2|V (G′0)| − 4 ≤ 2(4p− 5)− 4 = 34, and G′0 is a simple
triangle-free graph.

Let S0, S1, S2, M0, and U0 be the sets defined in Section 4.4. By Theorem
1.8, G′0 has no DCT containing S0. If n > 34, then |E(G′0)| < |E(G)| and so
|S1| ≥ 1. We distinguish the cases that G′0 6= K2,a and G′0 = K2,a.

Case 1. G′0 6= K2,a.

Since δ(H) ≥ 4p− 6 = 18, by Lemma 4.21(d), M0 = S2 = ;. Then V (G′0) =
S1 ∪ U0. By Lemma 4.21(a), |S1| ≤ 6. Note that D2(G′0) ⊆ S1. We distinguish
the subcases that |S1| ≤ 4, |S1|= 5, and |S1|= 6.

Subcase 1.1. |S1| ≤ 4.

By Lemma 4.21(c), |V (G′0)| ≤ 3|S1| − 5 ≤ 7. Recall that G′0 /∈ S L , κ′(G′0) ≥
2, and that G′0 is a simple triangle-free graph. Then by Theorem 3.12, and
since G′0 6= K2,a, we deduce that G′0 ∈ {W

∗
3 ,θ(1,1, 2),θ(1,1, 3),θ(1,2, 2)}.

If G′0 ∈ {θ(1, 1,3),θ(1, 2,2)}, then |S1| ≥ 5, a contradiction. Hence, G′0 ∈
{W ∗

3 ,θ(1,1, 2)}.
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First assume G′0 = W ∗
3 . Then 3 ≤ |S1| ≤ 4. Suppose that |S1| = 3. Then

S1 = D2(G′0). Now E(G′0 − S1) 6= ;, contradicting the fact that M0 = ;.
Hence, |S1| = 4. Since U0 is an independent set, S1 = {v1, v2, v3, u4}. Then
we conclude that cl(H) ∈ L3.

Next assume G′0 = θ(1, 1,2). Then S1 = D2(G′0). Note that θ(1, 1,2)
can be contracted to a K2,3 such that the resulting K2,3 has three nontrivial
vertices. Then cl(H) ∈ L1.

Subcase 1.2. |S1|= 5.

By Lemma 4.21(c), |V (G′0)| ≤ 3|S1| − 5≤ 10. We distinguish two subcases.

Suppose first that |V (G′0)| ≤ 7. Since G′0 /∈ S L , by Theorem 3.12 and
using G′0 /∈ K2,a, we deduce that G′0 ∈ {W

∗
3 ,θ(1, 1,2),θ(1, 1,3),θ(1, 2,2)}.

Since D2(G′0) ⊆ S1 and using |S1| = 5, θ(1,1, 2),θ(1,1, 3) and θ(1, 2,2) can
be contracted to a K2,3 such that all vertices of the resulting K2,3 are nontriv-
ial. So, we conclude that in case G′0 ∈ {θ(1,1, 2),θ(1, 1,3),θ(1, 2,2)}, we
have cl(H) ∈ L1.

If G′0 = W ∗
3 , then, using that |S1| = 5 and U0 is an independent set,

without loss of generality, we may assume that S1 = {v1, v2, v3, u1, u4}. Then
cl(H) ∈ L3.

Next suppose that 8 ≤ |V (G′0)| ≤ 10. Let U0 = V1 = {v1, v2, . . . , v|U0|} and
S1 = V2 = {u1, u2, u3, u4, u5}. Note that G′0 is a 2-edge-connected reduced
graph, U0 is an independent set, and G′0 has no DCT containing S1. Then
⋃|U0|

i=1 NG′0
(vi) ⊆ V2 and dG′0

(vi) ≥ 3 (1 ≤ i ≤ |U0|). Then using Lemmas 4.17,
4.18 and 4.19, we deduce that G′0 ∈ {C(6,2), C(6,2)′,θ(1,1, 4)′′′,θ(1,2, 3)′,
W ∗∗

3 , T1, T2, T3, T4, T5}. It is easy to check that C(6, 2) and θ(1, 2,3)′ can be
contracted to a K2,3 by contracting a cycle of length four such that the result-
ing K2,3 has four nontrivial vertices. Furthermore, T1/G

′
0[{v3, v4, u1, u4, u5}],

T4/G
′
0[{v1, v2, u1, u2, u3}] and T5/G

′
0[{v1, v2, v3, u1, u2}] are isomorphic to a

K2,3, respectively. So, if G′0 ∈ {C(6,2),θ(1,2, 3)′, T1, T4, T5}, then cl(H) ∈
L1.

Note that M0 = ;, U0 is an independent set, and D2(G′0) ⊆ S1. If G′0 =
C(6,2)′, then S1 = D2(C(6,2)′) ∪ {w}. So, cl(H) ∈ L4. If G′0 = θ(1, 1,4)′′′,
then S1 = D2(θ(1, 1,4)′′′) ∪ {w1, w2}. So, cl(H) ∈ L5. If G′0 = W ∗∗

3 , then
S1 = D2(W ∗∗

3 )∪ {w}. It is easy to check that W ∗∗
3 can be contracted to a W ∗

3
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such that the resulting W ∗
3 has four nontrivial vertices. So, cl(H) ∈ L3. If

G′0 ∈ {T2, T3}, then S1 = {u1, u2, u3, u4, u5}. So, cl(H) ∈ L6.

Subcase 1.3. |S1|= 6.

By Lemma 4.21(b), 6≤ |V (G′0)| ≤ 2p− ε− 5= 7. Since G′0 /∈ S L and G′0 6=
K2,a, by Theorem 3.12, G′0 ∈ {W

∗
3 ,θ(1, 1,2),θ(1, 1,3),θ(1,2, 2)}. Suppose

that G′0 = W ∗
3 . Since D2(G′0) ⊆ S1, and using that |S1| = 6 and that U0

is an independent set, either S1 = {v1, v2, v3, u1, u2, u3}, or, without loss of
generality, we may assume that S1 = {v1, v2, v3, u1, u2, u4}. Then cl(H) ∈ L3.
Suppose that G′0 ∈ {θ(1,1, 2),θ(1, 1,3),θ(1, 2,2)}. Since D2(G′0) ⊆ S1 and
using that |S1| = 6, θ(1, 1,2), θ(1,1, 3) and θ(1, 2,2) can be contracted
to a K2,3 such that all vertices of the resulting K2,3 are nontrivial. Then
cl(H) ∈ L1. This settles Case 1.

Case 2. G′0 = K2,a.

By Lemma 4.20(c), |D2(G′0)| ≤ 6. Then since G′0 /∈ S L , G′0 ∈ {K2,3, K2,5}.
If G′0 = K2,3, then since D2(G′0) ⊆ S1, 3 ≤ |S1| ≤ 5. Then cl(H) ∈ L1. If
G′0 = K2,5, then since D2(G′0) ⊆ S1, 5 ≤ |S1| ≤ 7. For v ∈ S1, let Γ(v) be the
preimage of v in G. Then |E(G)|= |E(K2,5)|+

∑

v∈S1
|E(Γ(v))|. Suppose that

6≤ |S1| ≤ 7. Let Vr = D2(G′0)∪{u} such that Vr ⊆ S1, where dG′0
(u) = 5. Then

|Vr |= 6. By Lemma 4.20, σt(H)≥
tn
6

(1≤ t ≤ 6), |E(Γ(v))| ≥ |V (Γ(v))|−1,
and n= |E(G)|,

|Vr |
σt(H) + 2t

t
≤
∑

v∈Vr

(dG′0
(v)+ |V (Γ(v))|)≤

∑

v∈Vr

dG′0
(v)+

∑

v∈Vr

(|E(Γ(v))|+1).

Then n+ 12 ≤ 15+ (n− 10) + 6 = n+ 11, a contradiction. Hence |S1| = 5.
Since D2(G′0) ⊆ S1 and using |D2(G′0)| = 5, we deduce that S1 = D2(G′0).
Then cl(H) ∈ L2. This completes the proof.



Chapter 5

Neighborhood and degree
conditions for traceability

The results in this chapter are closely related to the results of the previous
chapter. Instead of hamiltonicity, in this chapter, we are mainly interested
in degree and neighborhood conditions for traceability of 2-connected claw-
free graphs. The proofs are similar to the proofs in the previous chapter, but
shorter, since we can reuse several results that were obtained in Chapter 4.

5.1 Introduction and main results

We start by recalling some of the notation and conventions of Chapter 4,
but we refrain from a long introduction. Instead, we present our main re-
sults shortly, and then proceed by some remarks, putting our results in some
context of related results.

We let t ≥ 1 and p ≥ t be positive integers, and ε be a given real number.
Depending on the values of p and ε, we define N(p,ε) =max{36p2− 34p−
ε(p+1), 20p2−10p−ε(p+1), (3p+1)(−ε−4p)}. In the following result, we
let H be a k-connected claw-free graph of order n > N(p,ε) with k ∈ {2, 3}.
In this chapter, we first obtain the following analogue of Theorem 4.9 for
traceability of claw-free graphs.

73
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Theorem 5.1. If δ(H) ≥ 3 and dt(H) ≥
t(n+ε)

p
, then either H is traceable or

cl(H) = L(G), where G is an essentially k-edge-connected triangle-free graph
without a DT, and G′0 satisfies one of the following:

(a) k = 2 and G′0 ∈ R0(c, 2), where c ≤max{4p− 5, 2p+ 1} and p ≥ 4;

(b) k = 3 and G′0 ∈ R0(c, 3), where c ≤max{3p− 5, 2p+ 1} and p ≥ 7.

We postpone the proof of Theorem 5.1 to the final section. Let Xi de-
note the class of all spanning subgraphs of the nontraceable graphs Hi , i =
1, . . . , 8, as depicted in Figure 5.1 (where the circular and elliptical parts rep-
resent cliques of arbitrary positive order, but at least the number of black
dots indicated in these parts). In [51], Fronček et al. proved the following
result.

1
H

2
H

3
H

4
H

5
H

6
H

7
H

8
H

FIGURE 5.1: Eight classes of nontraceable claw-free graphs.

Theorem 5.2. (Fronček, Ryjáček and Skupień [51]). Let H be a connected
claw-free graph of order n ≥ 112 − 7κ(cl(H)) such that δ(H) ≥ 14 and

σ6(H)> n+ 14+κ(cl(H)). Then either H is traceable or cl(H) ∈
8
⋃

i=1
Xi .

As an application of Theorem 5.1, we first obtain the following result.

Theorem 5.3. Let H be a 2-connected claw-free graph of sufficiently large order
n with δ(H)≥ 3. If dt(H)≥

t(n+6)
6
(t ∈ {1, 2, . . . , 6}), then H is traceable.

As another application of Theorem 5.1, we obtain the following related
result. It shows that, by increasing the (constant) lower bound on δ(H),
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in the following sense the degree condition on larger sets of (independent)
vertices can be relaxed.

Theorem 5.4. Let H be a 2-connected claw-free graph of sufficiently large order
n with δ(H) ≥ 22. If dt(H) ≥

t(n−2.5)
7

with t ∈ {1, 2, . . . , 7}, then either H is
traceable or cl(H) = L(G), where G is an essentially 2-edge-connected triangle-
free graph that can be contracted to either F1 or F2, in such a way that all the
vertices of degree two are nontrivial.

The above theorem can in fact easily be deduced from the following more
general result that we are going to prove.

Theorem 5.5. Let H be a 2-connected claw-free graph of sufficiently large order
n with δ(H) ≥ 22. If dt(H) ≥

t(n−2.5)
7

with t ∈ {1, 2, . . . , 7}, then either H is
traceable or cl(H) ∈ RF (n, 1).

Let F1(n, s) denote the subfamily of F (n, s) in which each Φi is isomor-
phic to K1,si

. Furthermore, let R1
F (n, s) = {H = L(G) | G ∈ F1(n, s)}, a

subfamily of RF (n, s).

The following result is another application of Theorem 5.1.

Theorem 5.6. Let H be a 2-connected claw-free graph of sufficiently large order
n with δ(H)≥ 18. Ifσ6(H)≥ n−6, then either H is traceable orσ6(H) = n−6
and cl(H) ∈ R1

F (n, 1).

From the proof of Theorem 5.6 (which will be given in Section 5.2), we
can easily obtain a result that has already been stated as Corollary 2.5.

Remark 5.1. (a) Let G∗ be a graph obtained from F1 or F2 by adding n−12
6
≥

2 pendant edges (for a suitable choice of n) at each vertex of degree two of
F1 or F2. Then dt(L(G∗)) =

t(n−6)
6

<
t(n+6)

6
. This example shows that for

given t ∈ {1,2, . . . , 6}, the lower bound n+6
6

in Theorem 5.3 is asymptotically
sharp.

Let G∗∗ be a graph obtained from G1 of Figure 2.2 by adding n−14
7
≥ 2

pendant edges (for a suitable choice of n) at each vertex of degree two of
G1. Then dt(L(G∗∗)) =

t(n−7)
7

<
t(n−2.5)

7
. Clearly, L(G∗∗) /∈ RF (n, 1). Note

that G∗∗ cannot be contracted to a graph in {F1, F2}. This example shows
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that, for given t ∈ {1,2, . . . , 7}, the bound n−2.5
7

in Theorems 5.4 and 5.5 is
asymptotically sharp.

(b) Our results also extend earlier results that are based on the notion of
the generalized t-degree, δt(H). Since obviously σt(H) ≥ Ut(H) ≥ δt(H),
the statements in Theorems 5.3, 5.4, 5.5 and 5.6 are also valid if we replace
dt(H) by δt(H).

5.2 Proofs of Theorems 5.1, 5.3, 5.5, and 5.6

In this section, we will present the proofs of Theorems 5.1, 5.3, 5.5, and 5.6.

Proof of Theorem 5.1. Suppose that H is not traceable. Then, in particular,
H is not hamiltonian and H is not complete. By Theorem 1.3, there exists an
essentially k-edge-connected triangle-free graph G such that cl(H) = L(G)
and |E(G)| = |V (H)|. Let G′0 be the reduction of the core G0 of G, and
let c = |V (G′0)|. By Theorem 1.8, κ′(G′0) ≥ κ

′(G0) ≥ k. Since H is not
traceable, by Theorems 1.2 and 1.4, G has no DT. By Theorem 1.9, G′0 has
no DT containing all the nontrivial vertices, so, in particular, G′0 has no DCT
containing all the nontrivial vertices. By Theorem 4.9, G′0 ∈Q0(c, k).

If k = 2, then, since G′0 has no ST, by Theorem 2.9, G′0 ∈ R0(c, 2) for
c ≥ 10. Using Theorem 4.9(a), we deduce that p ≥ 4.

If k = 3, then, since G′0 has no ST, by Theorem 3.13(b), G′0 ∈ R0(c, 3) for
c ≥ 16. Using Theorem 4.9(b), we deduce that p ≥ 7. This completes the
proof of Theorem 5.1.

Proof of Theorem 5.3. This is the special case of Theorem 5.1 with k = 2,
p = 6, 1 ≤ t ≤ 6 and ε = 6. Suppose that H is not traceable. Then H is
not hamiltonian. By Theorem 1.3, cl(H) = L(G), where G is an essentially 2-
edge-connected triangle-free graph with |E(G)| = |V (H)|. Since δ(cl(H)) ≥
δ(H)≥ 3, σ2(G)≥ 5.

By Theorem 5.1, G does not have a DT. Let G′0 be the reduction of the
core G0 of G. Then by Theorem 1.9, G′0 has no ST, and so G′0 6= K2,a, and
κ′(G′0) ≥ 2. Then by Theorem 2.9, |V (G′0)| ≥ 10. By Theorems 1.5(c) and
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5.1(a), |E(G′0)| ≤ 2|V (G′0)| − 5 ≤ 2(4p − 5) − 5 = 33, and G′0 is a simple
triangle-free graph. By Lemma 1.6, G′0 is (K3,3− e)-free and K3,3-free.

Let S0, S1, V0, M0, and U0 be the sets relating to G′0 as defined in Section
4.4. By Theorem 1.9, G′0 has no DT containing S0. If n > 33, then |E(G′0)| <
|E(G)| and so |S1| ≥ 1. Let M be a maximum matching in G′0 and D2(G′0) = l.
By Lemma 4.21(a), |S1|+ |M0| ≤ 6. Note that D2(G′0) ⊆ S1. We first prove
the following claim.

Claim 1. If |S1|+ |M0| ≤ 5, then |V (G′0)| ≥ 12.

Proof. If |S1|+ |M0| ≤ 5, then 0 ≤ l ≤ 5. Then, by Theorem 2.9, and since
G′0 has no ST, |V (G′0)| ≥ 12.

We distinguish three cases.

Case 1. |S1|+ |M0| ≤ 4.

Then 0≤ l ≤ 4. Then |M | ≤ 4; otherwise, |M0|= α′(G′0− S1)≥ 5− |S1|, and
so |S1|+ |M0| ≥ 5, a contradiction. However, by Theorem 4.15, by 0≤ l ≤ 4,
and by Claim 1, |M | ≥ 5, a contradiction.

Case 2. |S1|+ |M0|= 5.

By Claim 1, |V (G′0)| ≥ 12. We prove another claim.

Claim 2. |M | ≤ 5.

Proof. By contradiction. Suppose that |M | ≥ 6. Then |M0| = α′(G′0 − S1) ≥
6−|S1|, and so |S1|+|M0| ≥ 6, contradicting our assumption that |S1|+|M0|=
5.

We distinguish five subcases.

Subcase 2.1. |S1|= 1 and |M0|= 4.

Then 0 ≤ l ≤ 1. Then, using Theorem 4.15 and |V (G′0)| ≥ 12, |M | ≥ 6,
contradicting Claim 2.

Subcase 2.2. |S1|= 2 and |M0|= 3.

Then 0 ≤ l ≤ 2. Then by Theorem 4.15, by |V (G′0)| ≥ 12, and by Claim 2,

|M | = 5 and
|V (G′0)|−l+5

3
≤ 5. Then |V (G′0)| ≤ 10 + l. Then by |V (G′0)| ≥
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12, |V (G′0)| = 12 and l = 2. Using |M0| = 3, each vertex in S1 is in-
cident with an edge of M , and the two vertices in S1 are not adjacent in
M ; otherwise, |M0| = |α′(G′0 − S1)| ≥ 4, a contradiction. Let S1 = {v1, v2}
and V0 = {u1, u2, . . . , u10}. Without loss of generality, we may assume that
M = {u1v1, u2v2, u3u4, u5u6, u7u8}. Then {u1, u2, u9, u10} is an independent
set of G′0; otherwise, |M0| ≥ 4, contrary to |M0|= 3.

We denote S = {{v1}, {v2}, {u3, u4}, {u5, u6}, {u7, u8}}, V (S) = {v1, v2, u3,
. . . , u8}, E(S) =

⋃

Si∈S
E(Si , V (S) \ Si), and Q = {u1, u2, u9, u10}. Then E(S) =

E(G′0[V (S)]) \ {u3u4, u5u6, u7u8}.
Since G′0 6= K2,a, by Theorem 1.5(c), |E(G′0)| ≤ 2|V (G′0)| − 5 = 19. Then

|E(S)| ≤ 4; otherwise, since Q is an independent set of G′0 and |M0| = 3,
|E(G′0)| ≥ 3|Q|+ |M0|+ |E(S)| ≥ 20, a contradiction.

We first prove three claims before continuing the proof for Subcase 2.2.

Claim 3. e(Si , V (S) \ Si)≥ 2, for any Si ∈ {{u3, u4}, {u5, u6}, {u7, u8}}.

Proof. By contradiction. Without loss of generality, we may assume that
e({u3, u4}, V (S) \ {u3, u4}) ≤ 1. Then since dG′0

(ui) ≥ 3, e({u3},Q) ≥ 1 and
e({u4},Q}) ≥ 1. Then, using that G′0 is triangle-free, |M0| ≥ 4, contrary to
|M0|= 3.

Claim 4. |E(S)|= 4.

Proof. Suppose that |E(S)| ≤ 3. Then by Claim 3, 2 ≤ e(Si , V (S) \ Si) ≤ 3,
for any Si ∈ {{u3, u4}, {u5, u6}, {u7, u8}}. Since G′0 is simple and triangle-free,
and by Claim 3, it is easy to find a pair of vertices {ui , ui+1} (i ∈ {3, 5,7})
such that e({ui},Q}) ≥ 1 and e({ui+1},Q}) ≥ 1. Then, since G′0 is triangle-
free, |M0| ≥ 4, contrary to |M0|= 3.

Since Q is an independent set of G′0 and |M0| = 3, and using Claim 4, we
deduce that |E(G′0)| ≥ 3|Q| + |M0| + |E(S)| ≥ 19. Then |E(G′0)| = 19, and
so dG′0

(u) = 3 (u ∈ Q). By Claims 3 and 4, 2 ≤ e(Si , V (S) \ Si) ≤ 4, for any
Si ∈ {{u3, u4}, {u5, u6}, {u7, u8}}. In the following, for any pair of vertices
{ui , ui+1} (i ∈ {3,5, 7}), we always assume that e({ui}, V (S) \ {ui , ui+1}) ≥
e({ui+1}, V (S) \ {ui , ui+1}).

Claim 5. 2≤ e({ui}, V (S) \ {ui , ui+1})≤ 4 (i ∈ {3, 5,7}).
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Proof. By Claim 4, e({ui}, V (S) \ {ui , ui+1}) ≤ 4. Suppose that e({ui}, V (S) \
{ui , ui+1}) ≤ 1. Then by dG′0

(ui) ≥ 3 and dG′0
(ui+1) ≥ 3, e({ui},Q) ≥ 1

and e({ui+1},Q) ≥ 1. Then, since G′0 is triangle-free, |M0| ≥ 4, contrary to
|M0|= 3.

By Claims 4 and 5, we treat the following four subcases separately according
to the connection relations of the vertices in V (S).

Suppose first that e({ui}, V (S) \ {ui , ui+1}) = 4 and e({ui+1}, V (S) \ {ui ,
ui+1}) = 0, or e({ui}, V (S) \ {ui , ui+1}) = 3 and e({ui+1}, V (S) \ {ui , ui+1}) =
1, or e({ui}, V (S) \ {ui , ui+1}) = e({ui+1}, V (S) \ {ui , ui+1}) = 2. Since G′0 is
simple and triangle-free, it is easy to find a pair of vertices {u j , u j+1} ( j ∈
{3, 5,7}) such that e({u j},Q) ≥ 1 and e({u j+1},Q) ≥ 1. Then since G′0 is
triangle-free, |M0| ≥ 4, contrary to |M0|= 3.

Next suppose that e({ui}, V (S) \ {ui , ui+1}) = 3 and e({ui+1}, V (S) \
{ui , ui+1}) = 0. Without loss of generality, we may assume that e({u3}, V (S)\
{u3, u4}) = 3 and e({u4}, V (S) \ {u3, u4}) = 0. Then by Claim 5, u3u5, u3u7 ∈
E(G′0); otherwise, |E(S)| ≥ 5, contradicting Claim 4. Then by Claims 4 and
5, u5u7 ∈ E(G′0). Then G′0[{u3, u5, u7}] is a triangle, a contradiction.

Now suppose that e({ui}, V (S) \ {ui , ui+1}) = 2 and e({ui+1}, V (S) \
{ui , ui+1}) = 1. Without loss of generality, we may assume that e({u3}, V (S)\
{u3, u4}) = 2 and e({u4}, V (S) \ {u3, u4}) = 1. Then by Claim 5, either
u3u5 ∈ E(G′0) or u3u7 ∈ E(G′0); otherwise, |E(S)| ≥ 5, contradicting Claim
4. Without loss of generality, we may assume that u3u5 ∈ E(G′0). Then
u4u5 /∈ E(G′0); otherwise, G′0[{u3, u4, u5}] is a triangle, a contradiction. Note
that E(S) = E({u3, u4}, V (S) \ {u3, u4}) ∪ E({u5}, V (S) \ {u5, u6}) under our
assumptions. By Claim 5, e({u7}, V (S) \ {u7, u8}) ≥ 2. Then, since G′0 is
simple and triangle-free, u4u7, u5u7 ∈ E(G′0). Then u3u6 /∈ E(G′0); other-
wise, G′0[{u3, u5, u6}] is a triangle, a contradiction. Then u6u7, u6u8 /∈ E(G′0);
otherwise, |E(S)| ≥ 5, contradicting Claim 4. Then by dG′0

(u4) ≥ 3 and
dG′0
(u6) ≥ 3, |NG′0

(u4) ∩Q| ≥ 1 and |NG′0
(u6) ∩Q| ≥ 2. Without loss of gen-

erality, we assume that u4ua, u6ub ∈ E(G′0) (ua, ub ∈ Q and ua 6= ub). Then
{u3u5, u4ua, u6ub, u7u8} is a matching of G′0[V0], contrary to |M0|= 3.

Finally suppose that e({ui}, V (S) \ {ui , ui+1}) = 2 and e({ui+1}, V (S) \
{ui , ui+1}) = 0 (i ∈ {3, 5,7}). Then dG′0

(ui) = 3 (i ∈ {3, 5,7}); otherwise,
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NG′0
(ui)∩Q 6= ; for some i ∈ {3,5, 7}. Then, using dG′0

(ui+1)≥ 3, we can find
a matching of G′0[V0] with cardinality 4, contrary to |M0| = 3. Without loss
of generality, we may assume that dG′0

(u4) ≥ dG′0
(u6) ≥ dG′0

(u8) ≥ 3. Note
that dG′0

(u) = 3 (u ∈ Q), dG′0
(v1) = dG′0

(v2) = 2, and |E(G′0)| = 19. Then
∑

i∈{4,6,8} dG′0
(ui) = 13. Then by our assumptions, dG′0

(u4) = 5. Then, either
dG′0
(u6) = 5 and dG′0

(u8) = 3, or dG′0
(u6) = 4 and dG′0

(u8) = 4. Both cases will
result in a subgraph isomorphic to K3,3 or K3,3− e of G′0, a contradiction.

This settles Subcase 2.2.

Subcase 2.3. |S1|= 3 and |M0|= 2.

Then 0 ≤ l ≤ 3. Then, by Theorem 4.15, by |V (G′0)| ≥ 12, and by Claim

2, |M | = 5 and
|V (G′0)|−l+5

3
≤ 5. Hence, |V (G′0)| ≤ 10 + l. Then, using

|V (G′0)| ≥ 12, we get 2≤ l ≤ 3. We distinguish two subcases.

Suppose first that l = 2. Then |V (G′0)| = 12. Then, using |M0| = 2,
we get that each vertex in S1 is incident with an edge of M , and any two
vertices in S1 are not adjacent in M ; otherwise, |M0| = |α′(G′0 − S1)| ≥ 3,
a contradiction. Let S1 = {v1, v2, v3} and V0 = {u1, u2, . . . , u9}. Without loss
of generality, we may assume that M = {u1v1, u2v2, u3v3, u4u5, u6u7}. Then
{u1, u2, u3, u8, u9} is an independent set of G′0; otherwise, |M0| ≥ 3, con-
trary to |M0| = 2. Then |E(G′0)| ≥ 3 × 5 + 2 = 17. Since G′0 6= K2,a, by
Theorem 1.5(c), |E(G′0)| ≤ 2|V (G′0)| − 5 = 19. Hence, 17 ≤ |E(G′0)| ≤ 19.
Then |E[{u4, u5}, {v1, v2, v3, u6, u7}]∪E[{u6, u7}, {v1, v2, v3, u4, u5}]| ≤ 2; oth-
erwise, |E(G′0)| ≥ 3×5+2+3= 20, a contradiction. Using that G′0 is simple
and triangle-free, and that dG′0

(u) ≥ 3 (u ∈ V0), there exists a pair of ver-
tices {ui , ui+1} ∈ {{u4, u5}, {u6, u7}} such that e({ui}, {u1, u2, u3, u8, u9}) ≥ 1
and e({ui+1}, {u1, u2, u3, u8, u9}) ≥ 1. Then, since G′0 is triangle-free, |M0| =
α′(G′0− S1)≥ 3, contrary to |M0|= 2.

Next suppose that l = 3. Then 12 ≤ |V (G′0)| ≤ 13. Similarly as in the
proof for the case l = 2, we can prove that this is impossible by considering
the cases that |V (G′0)|= 12 and 13 separately. This settles Subcase 2.3.

Subcase 2.4. |S1|= 4 and |M0|= 1.

Then 0 ≤ l ≤ 4. By Lemma 4.21(c), |V (G′0)| ≤ 12. Then, by Claim 1,
|V (G′0)| = 12, and so |U0| = 6. By Theorem 4.15 and Claim 2, |M | = 5 and
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|V (G′0)|−l+5
3

≤ 5. This results in 2 ≤ l ≤ 4. Since |M0| = 1, each vertex
in S1 is incident with an edge of M , and any two vertices in S1 are not
adjacent in M ; otherwise, |M0|= |α′(G′0−S1)| ≥ 2, a contradiction. Let S1 =
{v1, v2, v3, v4} and V0 = {u1, u2, . . . , u8}. Without loss of generality, we may
assume that M = {u1v1, u2v2, u3v3, u4v4, u5u6}. Now {u1, u2, u3, u4, u7, u8} is
an independent set of G′0; otherwise, |M0| ≥ 2, contrary to |M0| = 1. We get
that |E(G′0)| ≥ 3×6+1= 19. Since G′0 6= K2,a, by Theorem 1.5(c), |E(G′0)| ≤
2|V (G′0)| − 5 = 19. Hence, |E(G′0)| = 19, and so S1 is an independent set of
G′0.

Now NG′0
(S1) ⊆ V0\{u5, u6} and NG′0

({u5, u6}) ⊆ V0; otherwise, |E(G′0)| ≥
3×6+1+1= 20, contrary to |E(G′0)|= 19. By Theorem 1.5(c), G′0[V0] is sim-
ple and triangle-free. Then, using dG′0

(ui)≥ 3 (i ∈ {5, 6}), NG′0
({u5, u6})⊆ V0,

and that {u1, u2, u3, u4, u7, u8} is an independent set of G′0, α′(G′0[V0]) =
|M0|= 2, contrary to |M0|= 1. This settles Subcase 2.4.

Subcase 2.5. |S1|= 5 and |M0|= 0.

Then by Lemma 4.21(c), |V (G′0)| ≤ 10, contrary to |V (G′0)| ≥ 12. This settles
Subcase 2.5 and thereby Case 2.

Case 3. |S1|+ |M0|= 6.

Since |S1| ≥ 1, |M0| ≤ 5. By Lemma 4.21(b), |E(G′0)| ≥ 2p+ ε− |S1|+ 3|U0|.
By Theorem 1.5(c), |E(G′0)| ≤ 2(|S1| + 2|M0| + |U0|) − 5. We deduce that
|M0| ≥ 5. Hence, |M0| = 5, and so |S1| = 1 and |U0| = 0. Then |V (G′0)| =
|S1|+2|M0|+|U0|= 11. Note that G′0 is simple and triangle-free, and κ′(G′0)≥
2. Then using Theorem 2.9 and that G′0 has no ST, G′0 ∈ {G1, G2, . . . , G6}.
Then |D2(G′0)| ≥ 6, and so |S1| ≥ 6, contrary to |S1|= 1.

This completes the proof.

Proof of Theorem 5.5. This is a special case of Theorem 5.1 with p = 7,
t ∈ {1,2, . . . , 7}, ε=−2.5, and k = 2. By Theorem 1.3, there is an essentially
2-edge-connected triangle-free graph G with cl(H) = L(G) and |E(G)| =
|V (H)|. Since δ(cl(H))≥ δ(H)≥ 22, σ2(G)≥ 24.

Suppose that H is not traceable. Then H is not hamiltonian, and G has
no DT. Let G′0 be the reduction of the core G0 of G. By Theorems 1.9 and 2.9,



82 Chapter 5. Neighborhood and degree conditions for traceability

G′0 has no ST and |V (G′0)| ≥ 10. Then G′0 cannot be isomorphic to a K2,a for
any a ≥ 2; otherwise, G′0 has an ST, a contradiction.

Let S0, S1, S2, M0, and U0 be sets relating to G′0 as defined in Section
4.4. Since δ(H) ≥ 22 = 4p − 6, by Lemma 4.21(d), M0 = S2 = ;. Then
V (G′0) = S1 ∪ U0, and S1 is the set of all the nontrivial vertices of G′0. By
Theorem 1.9, G′0 does not have a DT containing S1. By Lemma 4.21(a),
|S1| ≤ 7. We distinguish two cases.

Case 1. |S1| ≤ 6.

Since M0 = ;, E(G′0 − S1) = ;. Recall that G′0 is 2-edge-connected. By
Theorem 2.15, either G′0 has a trail passing through all vertices of S1, or
G′0 ∈ {F1, F2}. In the first case, G′0 has a DT containing S1, a contradiction.
Hence, G′0 ∈ {F1, F2}. Since D2(G′0) ⊆ S1 and |D2(G′0)| = 6, D2(G′0) = S1.
Then, by the definitions of cl(H), G′0, and RF (n, 1), cl(H) ∈ RF (n, 1).

Case 2. |S1|= 7.

Since |S1|= 7 and |M0|= 0, by Lemma 4.21(b), |V (G′0)| ≤ 2p−ε−5= 11.5.
By Theorem 2.9, G′0 ∈ {F1, F2, G1, G2, . . . , G6}. Note that |M0| = 0, V (G′0) =
S1 ∪ U0, and dG(v) = dG′0

(v) ≥ 3 for v ∈ U0. Suppose first that G′0 ∈ {F1, F2}.
Then |E(G′0)|= 12. By Lemma 4.21(b), |E(G′0)| ≥ (−2.5)+7+3×3= 13.5, a
contradiction. Suppose next that G′0 ∈ {G1, G2, . . . , G6}. Then 13≤ |E(G′0)| ≤
14. By Lemma 4.21(b), |E(G′0)| ≥ (−2.5)+7+3×4= 16.5, a contradiction.
This completes the proof of Theorem 5.5.

Proof of Theorem 5.6. This is a special case of Theorem 5.1 with p = 6,
t = 6, ε = −6, and k = 2. By Theorem 1.3, there is an essentially 2-edge-
connected triangle-free graph G such that cl(H) = L(G) and |E(G)|= |V (H)|.
Since δ(cl(H))≥ δ(H)≥ 18, σ2(G)≥ 20.

Suppose that H is not traceable. Then H is not hamiltonian, and G has
no DT. Let G′0 be the reduction of the core G0 of G. By Theorems 1.9 and 2.9,
G′0 has no ST and |V (G′0)| ≥ 10. Then G′0 cannot be isomorphic to a K2,a for
any a ≥ 2; otherwise, G′0 has an ST, a contradiction.

Let S0, S1, S2, M0, and U0 be sets relating to G′0 as defined in Section
4.4. Since δ(H) ≥ 18 = 4p − 6, by Lemma 4.21(d), M0 = S2 = ;. Then
V (G′0) = S1 ∪ U0, and S1 is the set of all the nontrivial vertices of G′0. By



5.2. Proofs of Theorems 5.1, 5.3, 5.5, and 5.6 83

Theorem 1.9, G′0 does not have a DT containing S1. By Lemma 4.21(a),
|S1| ≤ 6.

Since M0 = ;, E(G′0 − S1) = ;. Recall that G′0 is 2-edge-connected. By
Theorem 2.15, either G′0 has a trail passing through all vertices of S1, or
G′0 ∈ {F1, F2}. In the first case, G′0 has a DT containing S1, a contradiction.
So, G′0 ∈ {F1, F2}. Since D2(G′0) ⊆ S1 and |D2(G′0)| = 6, D2(G′0) = S1. Let
S1 = {v1, v2, . . . , v6}. Then dG′0

(vi) = 2.

Let Vr = S1 and M ′b = ;. Then Vr ∩ V (M ′b) = ; and |Vr |+ |M ′b| = r + b =
t = 6, with r = 6 and b = 0. By Lemma 4.20(b),

∑

v∈Vr

(|V (Γ(v))|+ dG′0
(v)) ≥

(r+b)(σt (H)+2t)
t

= n+ 6. Hence,

∑

v∈Vr

|V (Γ(v))| ≥ n− 6. (5.1)

Since |E(Γ(vi))| ≥ |V (Γ(vi))|−1, using (5.1) and |E(G′0)|= 12, n= |E(G)|=
|E(G′0)|+

∑

v∈Vr

|E(Γ(v))| ≥ 12+
∑

v∈Vr

(|V (Γ(v))|−1)≥ 12+(n−12) = n. Thus,

all inequalities are in fact equalities, so that |E(Γ(vi))| = |V (Γ(vi))| − 1 and
σ6(H) = n− 6. This implies that each Γ(vi) induces a tree with |E(Γ(vi))| =
|V (Γ(vi))| − 1= si . Since G is essentially 2-edge-connected, Γ(vi) = K1,si

. By
the definitions of cl(H), G′0, andR1

F (n, 1), cl(H) ∈ R1
F (n, 1). This completes

the proof of Theorem 5.6.

To obtain Corollary 2.5, note that if n is sufficiently large and δ(H)≥ n−6
6

,
then using cl(H) ∈ R1

F (n, 1), we deduce that δ(H) = n−6
6

and Γ(vi) = K1,s,
where s = n−12

6
. In this case, G is exactly the graph obtained from a graph

F ∈ {F1, F2} by adding n−12
6

pendant edges at each vertex of degree two of
F . Thus, G ∈ F (n, n−12

6
), and so cl(H) ∈ RF (n, n−12

6
).





Chapter 6

Generalized Dirac-type
conditions for traceability

Dirac’s classic minimum degree result, Theorem 2.1, inspired much, if not
all of the research on degree conditions for hamiltonian properties in graphs.
In [44, 62], the authors obtained many generalizations of Dirac’s Theorem.
In this chapter, we are interested in the minimum cardinality of the neigh-
borhood union over all sets of t vertices that guarantees the traceability of a
2-connected claw-free graph.

6.1 Introduction

As we have seen throughout this thesis, starting from Theorem 2.1, many
researchers went in different directions in an attempt to obtain more general
results, as well as counterparts for restricted graph classes. In this chapter,
our starting point is a result due to Faudree et al. from [46]. There the
authors used δ2(H) to present the following sufficient degree condition for
the hamiltonicity of claw-free graphs.

Theorem 6.1. (Faudree et al. [46]). Let H be a 2-connected claw-free graph
of order n with δ2(H)≥

n+1
3

. Then for n sufficiently large, H is hamiltonian.

85
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As in Chapter 4, we define N(p,ε) =max{36p2−34p− ε(p+1), 20p2−
10p − ε(p + 1), (3p + 1)(−ε− 4p)}, where p is an integer, and ε is a given
real number. In [36], Chen et al. further generalized Dirac’s Theorem and
obtained the following result.

Theorem 6.2. (Chen et al. [36]). Let H be a k-connected claw-free graph of
order n (k ∈ {2, 3}) with δ(H) ≥ 3. Let cl(H) = L(G). For given integers p ≥
t > 0 and a given real number ε, if δt(H)≥

t(n+ε)
p

and n> N(p,ε), then either
H is hamiltonian or G′0 ∈ Q0(c, k), where c ≤ max {p/t + 2t, 3p/t + 2t − 7}
and G′0 does not have a DCT containing all the nontrivial vertices.

Since the condition δt(H) ≥
t(n+ε)

p
and conditions involving {σt(H),

Ut(H)} have quite different implications on the structure of the graphs under
consideration, Chen et al. were able to give a much better upper bound for
|V (G′0)| in Theorem 6.2.

For 2-connected claw-free graphs, they obtained the following result.

Theorem 6.3. (Chen et al. [36]). Let H be a 2-connected claw-free graph of
order n, for n sufficiently large. For given integers p and t with 2 ≤ t ≤ 4 and
p/t ≤ 3, if δt(H)≥

t(n+1)
p

(i.e., δt(H)≥
n+1

3
), then H is hamiltonian.

6.2 Our results

In the following, we first obtain the following analogue of Theorem 6.2 for
traceability of claw-free graphs.

Theorem 6.4. Let H be a k-connected claw-free graph of order n (k ∈ {2, 3})
with δ(H) ≥ 3. Let cl(H) = L(G). For given integers p ≥ t > 0 and a given
real number ε, if δt(H)≥

t(n+ε)
p

and n> N(p,ε), then either H is traceable or
G′0 ∈ R0(c, k), where c ≤max {p/t + 2t, 3p/t + 2t − 7} and G′0 does not have
a DT containing all the nontrivial vertices.

We postpone the proof of the above theorem, and continue with listing
some applications of it for different values of t. As applications of Theorem
6.4 with given values for p, t,ε, k, we prove the following four results.
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Theorem 6.5. Let H be a 2-connected claw-free graph of order n with δ(H)≥
3, and let n be sufficiently large. If δ2(H)≥

2(n+8)
12

, then H is traceable.

Theorem 6.6. Let H be a 2-connected claw-free graph of order n with δ(H)≥
3, and let n be sufficiently large. If δ3(H)≥

3(n+6)
15

, then H is traceable.

Theorem 6.7. Let H be a 2-connected claw-free graph of order n with δ(H)≥
3, and let n be sufficiently large. If δ4(H)≥

4(n+4)
16

, then H is traceable.

Theorem 6.8. Let H be a 2-connected claw-free graph of order n with δ(H)≥
3, and let n be sufficiently large. If δ5(H)≥

5(n−1)
15

, then H is traceable.

Remark 6.1. (a) Let G∗ be the graph obtained from F1 or F2 by adding
n−12

6
≥ 2 pendant edges (for a suitable choice of n) at each vertex of de-

gree two of F1 or F2. Then it is easy to check that δ2(L(G∗)) =
n
6
<

2(n+8)
12

and δ(L(G∗)) ≥ 3. This example shows that the bound in Theorem 6.5 is
asymptotically sharp.

(b) Obviously, Theorem 6.3 cannot imply our Theorems 6.5, 6.6, 6.7,
and 6.8. Furthermore, Theorems 6.5, 6.6, 6.7, and 6.8 are improvements of
Theorems 5.3 and 5.5, in some sense (if we replace the bound for dt(H) by
the bound for δt(H) in Theorems 5.3 and 5.5, respectively) for t = 2,3, 4,5,
respectively.

6.3 Notation and a technical lemma

In this section, let H be a k-connected claw-free graph of order n > N(p,ε)
with k ∈ {2,3}, where t ≥ 1 and p ≥ t are positive integers, and ε is a
given real number, and N(p,ε) =max{36p2− 34p− ε(p+ 1), 20p2− 10p−
ε(p + 1), (3p + 1)(−ε − 4p)}. Moreover, we assume that δ(H) ≥ 3 and
δt(H) ≥

t(n+ε)
p

, and that cl(H) = L(G), and we let G, G0 and G′0 be the
graphs defined in Section 1.4.

For v ∈ V (G′0), we let Γ0(v) be the collapsible preimage of v in G0, and
we let Γ(v) be the preimage of v in G. We also use the following notation.

� S0 = {v ∈ V (G′0) | v is a nontrivial vertex in G′0};
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� St = {v ∈ V (S0) | |E(Γ(v))| ≥ t};

� S1 = {v ∈ V (S0) | 1≤ |E(Γ(v))| ≤ t − 1};

� S∗ = S0\(St∪S1), the set of vertices v ∈ S0 with Γ(v) = K1 and adjacent
to some vertices in D2(G);

� V0 = V (G′0) \ (St ∪ S1), the set of vertices v with Γ(v) = K1 in G, which
includes S∗;

� Φ0 = G′0[V0 ∪ S1];

� E0 = E(Φ0) is the set of edges in Φ0;

� VE is the set of vertices incident with some edges in E0;

� ER = ∪v∈S1
E(Γ(v)) and Φ∗ = G[E0 ∪ ER] (and E0 ∪ ER = E(Φ∗));

� U0 = V0 \ VE , and so V (G′0) = St ∪ S1 ∪ V0 = St ∪ S1 ∪ VE ∪ U0.

Since σ2(G) ≥ 5, by the definition of G′0, D2(G′0) ⊆ St ∪ S1, U0 is an
independent set, and NG′0

(x)⊆ St for x ∈ U0. We will use the properties that
are stated in the following recent result due to Chen et al. [36].

Lemma 6.9. (Chen et al. [36]). With the notation defined above, each of the
following holds:

(a) for each v ∈ St , |E(Γ(v))| ≥ δt(H)− dG′0
(v);

(b) |St | ≤ p/t. If |St |= p/t, then |E(G′0)| ≥ ε+
∑

v∈S1
dG′0
(v)+

∑

v∈V0
dG′0
(v)+

∑

v∈S1
|E(Γ(v))|;

(c) |E0|+ |ER|= |E(Φ∗)| ≤ t − 1 and |S1 ∪ VE | ≤ 2|S1|+ |VE | ≤ 2(t − 1);

(d) U0 ≤max{2, 2|St |+ 5} ≤max{2,2p/t − 5}.

6.4 Proofs of Theorems 6.4, 6.5, 6.6, 6.7, and 6.8

In this section, we will present our proofs of Theorems 6.4, 6.5, 6.6, 6.7, and
6.8.
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Proof of Theorem 6.4. Suppose that H is not traceable. Then, in particular,
H is not hamiltonian and H is not complete. Let G′0 be the reduction of the
core G0 of G, and let c = |V (G′0)|. By Theorem 1.8, κ′(G′0) ≥ κ

′(G0) ≥ k.
Since H is not traceable, by Theorems 1.2 and 1.4, G has no DT. By Theorem
1.9, G′0 has no DT containing all the nontrivial vertices, so, in particular, G′0
has no DCT containing all the nontrivial vertices. By Theorem 6.2, G′0 ∈
R0(c, k), where c ≤max {p/t+2t, 3p/t+2t−7}. This completes the proof.

Proof of Theorem 6.5. This is a special case of Theorem 6.4 with p = 12,
t = 2, ε = 8, and k = 2. By Theorem 1.3, there is an essentially 2-edge-
connected triangle-free graph G such that cl(H) = L(G) and |E(G)|= |V (H)|.
Since δ(cl(H)) ≥ δ(H) ≥ 3, σ2(G) ≥ 5. Let G′0 be the reduction of the core
G0 of G. Suppose that H is not traceable. By Theorem 6.4, G′0 ∈ R0(c, 2) and
G′0 has no DT containing all the nontrivial vertices. Then G′0 6= K2,a (a ≥ 2);
otherwise, G′0 has an ST, a contradiction. By Theorem 2.9, |V (G′0)| ≥ 10.

Let S0, St , S1, V0, Φ0, E0, VE and U0 be sets relating to G′0 as defined in
Section 6.3. Then G′0 does not have a DT containing S0. By Lemma 6.9(b),
|St | ≤ p/t = 6. By Lemma 6.9(c), 2|S1|+ |VE | ≤ 2, and so |S1| ≤ 1. By Lemma
6.9(d), |U0| ≤ max{2, 2p/t − 5} = 7. Note that V (G′0) = St ∪ S1 ∪ V0 =
St ∪ S1 ∪ VE ∪ U0. Then |V (G′0)| ≤ |St |+ |S1|+ |VE |+ |U0| ≤ 15. Recall that
dG′0
(v)≥ 3 for v ∈ V0. We first prove the following claim and then distinguish

the cases that |S1|= 0 and |S1|= 1.

Claim 1. |St | ≤ 5.

Proof. By contradiction, suppose that |St | = 6. By Lemma 6.9(b), |E(G′0)| ≥
ε+2|S1|+3|V0|+|S1|= 3|S1|+3|V0|+ε. Since G′0 6= K2,a (a ≥ 2), by Theorem
1.5(c), |E(G′0)| ≤ 2|V (G′0)| − 5 = 2(|St |+ |S1|+ |V0|)− 5 = 2|S1|+ 2|V0|+ 7.
Then |S1|+ |V0| ≤ 7− ε=−1, a contradiction.

Case 1. |S1|= 0.

Then |St |+ |S1| ≤ 5. By Lemma 6.9(c), |E0| ≤ 1 and |VE | ≤ 2. If |V (G′0)| ≤ 11,
then, by Theorem 2.9, and since G′0 has no ST, G′0 ∈ {F1, F2, G1, G2, . . . , G6}.
Since D2(G′0) ⊆ St ∪ S1, this implies |St | + |S1| ≥ 6, in contradiction with
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|St |+ |S1| ≤ 5. Hence, |V (G′0)| ≥ 12, and so 5 ≤ |U0| ≤ 7. We treat the three
subcases separately.

Suppose first that |U0| = 5. Then |V (G′0)| = 12, and so |St | = 5 and
|VE | = 2. Since G′0 6= K2,a (a ≥ 2), by Theorem 1.5(c), |E(G′0)| ≤ 2|V (G′0)| −
5 = 19. By the definitions of E0 and VE , |E0| = 1 and e(VE , St) ≥ 4. Then
|E(G′0)| ≥ e(VE , St) + |E0|+ 3|U0| ≥ 20, contrary to |E(G′0)| ≤ 19.

Next suppose that |U0| = 6. Then 12 ≤ |V (G′0)| ≤ 13. Then |VE | 6= 0. By
the definition of VE , |VE | = 2, and so |E0| = 1. Then e(VE , St) ≥ 4, and so
|E(G′0)| ≥ e(VE , St) + |E0|+ 3|U0| ≥ 23. Since G′0 6= K2,a (a ≥ 2), by Theorem
1.5(c), |E(G′0)| ≤ 2|V (G′0)| − 5≤ 21, contrary to |E(G′0)| ≥ 23.

Finally suppose that |U0| = 7. First assume |VE | = 0. Then |V (G′0)| = 12,
and so |St | = 5. Since G′0 6= K2,a (a ≥ 2), by Theorem 1.5(c), |E(G′0)| ≤
2|V (G′0)| − 5 = 19. Then |E(G′0)| ≥ 3|U0| = 21, contrary to |E(G′0)| ≤ 19.
Hence, |VE | 6= 0. By Lemma 6.9(c), |VE | ≤ 2. Since |VE | 6= 0, by the definition
of VE , |VE | = 2. Then 12 ≤ |V (G′0)| ≤ 14. Since G′0 6= K2,a (a ≥ 2), by
Theorem 1.5(c), |E(G′0)| ≤ 2|V (G′0)| − 5 ≤ 23. By the definitions of E0 and
VE , |E0|= 1 and so e(VE , St)≥ 4. Then |E(G′0)| ≥ e(VE , St)+|E0|+3|U0| ≥ 26,
contrary to |E(G′0)| ≤ 23.

Case 2. |S1|= 1.

Then |St | + |S1| ≤ 6. By Lemma 6.9(c), |E0| = |VE | = 0. First assume
|V (G′0)| ≤ 11. Then, by Theorem 2.9 and since G′0 has no ST, G′0 ∈ {F1, F2, G1,
G2, . . . , G6}. Since D2(G′0)⊆ St∪S1 and using |St |+|S1| ≤ 6, G′0 ∈ {F1, F2, G6}.
Then, using Claim 1, E(Φ0) = E(G′0[V0 ∪ S1]) = E0 6= ;, contrary to |E0| = 0.
Hence, 12 ≤ |V (G′0)| ≤ 13, and so 6 ≤ |U0| ≤ 7. Since |S1| = 1 and using
|E0|= 0, we get that e(S1, St)≥ 2.

Suppose first that |U0| = 6. Then |V (G′0)| = 12 and |E(G′0)| ≥ e(S1, St) +
3|U0| ≥ 20. Since G′0 6= K2,a (a ≥ 2), by Theorem 1.5(c), |E(G′0)| ≤ 2|V (G′0)|−
5= 19, contrary to |E(G′0)| ≥ 20.

Suppose next that |U0| = 7. Then |V (G′0)| ≤ 13 and |E(G′0)| ≥ e(S1, St) +
3|U0| ≥ 23. Since G′0 6= K2,a (a ≥ 2), by Theorem 1.5(c), |E(G′0)| ≤ 2|V (G′0)|−
5≤ 21, contrary to |E(G′0)| ≥ 23. This completes the proof.
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Proof of Theorem 6.6. This is a special case of Theorem 6.4 with p = 15,
t = 3, ε = 6, and k = 2. By Theorem 1.3, there is an essentially 2-edge-
connected triangle-free graph G such that cl(H) = L(G) and |E(G)|= |V (H)|.
Since δ(cl(H)) ≥ δ(H) ≥ 3, σ2(G) ≥ 5. Let G′0 be the reduction of the core
G0 of G. Suppose that H is not traceable. By Theorem 6.4, G′0 ∈ R0(c, 2) and
G′0 has no DT containing all the nontrivial vertices. Then G′0 6= K2,a (a ≥ 2);
otherwise, G′0 has an ST, a contradiction. By Theorem 2.9, |V (G′0)| ≥ 10.

Let S0, St , S1, V0, Φ0, E0, VE , ER, and U0 be sets relating to G′0 as defined
in Section 6.3. Then G′0 does not have a DT containing S0. By Lemma 6.9(b),
|St | ≤ p/t = 5. By Lemma 6.9(c), 2|S1|+ |VE | ≤ 4, and so |S1| ≤ 2. By Lemma
6.9(d), |U0| ≤ max{2, 2p/t − 5} = 5. Note that V (G′0) = St ∪ S1 ∪ V0 =
St ∪ S1 ∪ VE ∪ U0. Then |V (G′0)| ≤ |St |+ |S1|+ |VE |+ |U0| ≤ 14. Recall that
dG′0
(v) ≥ 3 for v ∈ V0. We first prove the following two claims and then

distinguish the cases that |S1|= 0, |S1|= 1, and |S1|= 2.

Claim 1. If |St |+ |S1| ≤ 5, then |V (G′0)| ≥ 12.

Proof. By contradiction. Suppose that |V (G′0)| ≤ 11. Then, by Theorem 2.9
and since G′0 has no ST, G′0 ∈ {F1, F2, G1, G2, . . . , G6}. Since D2(G′0)⊆ St ∪ S1,
|St |+ |S1| ≥ 6, contrary to |St |+ |S1| ≤ 5.

Claim 2. |St | ≤ 4.

Proof. By contradiction, suppose that |St | = 5. By Lemma 6.9(b), |E(G′0)| ≥
ε+2|S1|+3|V0|+|S1|= 3|S1|+3|V0|+ε. Since G′0 6= K2,a (a ≥ 2), by Theorem
1.5(c), |E(G′0)| ≤ 2|V (G′0)| − 5 = 2(|St |+ |S1|+ |V0|)− 5 = 2|S1|+ 2|V0|+ 5.
Then |S1|+ |V0| ≤ 5− ε=−1, a contradiction.

Case 1. |S1|= 0.

Then |St |+ |S1| ≤ 4. By Claim 1, |V (G′0)| ≥ 12. By Lemma 6.9(c), |E0| ≤ 2
and |VE | ≤ 4. Then |U0| ≥ 4.

Suppose first that |U0|= 4. Then |V (G′0)|= 12, and so |St |= 4 and |VE |=
4. Since G′0 6= K2,a (a ≥ 2), by Theorem 1.5(c), |E(G′0)| ≤ 2|V (G′0)| − 5 = 19.
Then, by the definitions of E0 and VE , |E0| = 2, and so e(VE , St) ≥ 2× 4 = 8.
Then |E(G′0)| ≥ e(VE , St) + |E0|+ 3|U0| ≥ 22, contrary to |E(G′0)| ≤ 19.
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Suppose next that |U0|= 5. Then 12≤ |V (G′0)| ≤ 13, and so 3≤ |VE | ≤ 4.
Since G′0 6= K2,a (a ≥ 2), by Theorem 1.5(c), |E(G′0)| ≤ 2|V (G′0)| − 5 ≤ 21.
Then, by the definitions of E0 and VE , |E0|= 2, and either Φ0 has an induced
subgraph isomorphic to K1,2 or Φ0 has an induced subgraph isomorphic to
2K2. For the first case, |E(G′0)| ≥ e(VE , St)+ |E0|+3|U0| ≥ 5+2+3×5= 22.
For the second case, |E(G′0)| ≥ e(VE , St)+ |E0|+3|U0| ≥ 2×4+2+3×5= 25.
In both cases we obtain a contradiction with |E(G′0)| ≤ 19.

Case 2. |S1|= 1.

Then |St |+ |S1| ≤ 5. By Claim 1, |V (G′0)| ≥ 12. Since |S1| = 1, |ER| ≥ 1. By
Lemma 6.9(c), |E0| ≤ 1 and |VE | ≤ 2. Then |V (G′0)| = 12, and so |U0| = 5,
|St | = 4, |VE | = 2, and S1 ∩ VE = ;. Since G′0 6= K2,a (a ≥ 2), by Theorem
1.5(c), |E(G′0)| ≤ 2|V (G′0)|−5= 19. Note that S1∩VE = ;. By the definitions
of E0 and VE , |E0|= 1, and so e(VE , St)≥ 4. Then |E(G′0)| ≥ e(VE , St)+ |E0|+
e(S1, St) + 3|U0| ≥ 4+ 1+ 2+ 3× 5= 22, contrary to |E(G′0)| ≤ 19.

Case 3. |S1|= 2.

Then |St | + |S1| ≤ 6. By Lemma 6.9(c), |VE | = 0, and so |E0| = 0. This
implies that |V (G′0)| ≤ 11. By Theorem 2.9 and since G′0 has no ST, G′0 ∈
{F1, F2, G1, G2, . . . , G6}. Since D2(G′0) ⊆ St ∪ S1 and using |St | + |S1| ≤ 6,
G′0 ∈ {F1, F2, G6}. Since |St | ≤ 4, E(Φ0) = E(G′0[V0 ∪ S1]) = E0 6= ;, contrary
to |E0|= 0. This completes the proof.

Proof of Theorem 6.7. This is a special case of Theorem 6.4 with p = 16,
t = 4, ε = 4, and k = 2. By Theorem 1.3, there is an essentially 2-edge-
connected triangle-free graph G such that cl(H) = L(G) and |E(G)|= |V (H)|.
Since δ(cl(H)) ≥ δ(H) ≥ 3, σ2(G) ≥ 5. Let G′0 be the reduction of the core
G0 of G. Suppose that H is not traceable. By Theorem 6.4, G′0 ∈ R0(c, 2) and
G′0 has no DT containing all the nontrivial vertices. Then G′0 6= K2,a (a ≥ 2);
otherwise, G′0 has an ST, a contradiction. By Theorem 2.9, |V (G′0)| ≥ 10.

Let S0, St , S1, V0, VE , ER, and U0 be sets relating to G′0 as defined in
Section 6.3. Then G′0 does not have a DT containing S0. By Lemma 6.9(b),
|St | ≤ p/t = 4. By Lemma 6.9(c), 2|S1|+ |VE | ≤ 6, and so |S1| ≤ 3. By Lemma
6.9(d), |U0| ≤ max{2,2p/t − 5} = 3. Note that V (G′0) = St ∪ S1 ∪ V0 =
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St ∪ S1 ∪ VE ∪ U0. Then |V (G′0)| ≤ |St |+ |S1|+ |VE |+ |U0| ≤ 13. Recall that
dG′0
(v)≥ 3 for v ∈ V0. We first prove the following claim.

Claim 1. |St | ≤ 3.

Proof. By contradiction, suppose that |St | = 4. By Lemma 6.9(b), |E(G′0)| ≥
ε+2|S1|+3|V0|+|S1|= 3|S1|+3|V0|+ε. Since G′0 6= K2,a (a ≥ 2), by Theorem
1.5(c), |E(G′0)| ≤ 2|V (G′0)| − 5 = 2(|St |+ |S1|+ |V0|)− 5 = 2|S1|+ 2|V0|+ 3.
Then |S1|+ |V0| ≤ 3− ε=−1, a contradiction.

Using Claim 1, we first assume that |St | ≤ 2. Then |V (G′0)| ≤ 11. By Theorem
2.9 and since G′0 has no ST, G′0 ∈ {F1, F2, G1, G2, . . . , G6}. Since D2(G′0) ⊆
St ∪ S1, |St |+ |S1| ≥ 6. Then |S1| ≥ 4, contrary to |S1| ≤ 3. Hence, |St | = 3,
and so |V (G′0)| ≤ 12.

Suppose first that |S1| = 0. Since |V (G′0)| ≤ 12, |V0| ≤ 9. Assume that
|V0| ≤ 8. Then |V (G′0)| ≤ 11. By Theorem 2.9 and since G′0 has no ST, G′0 ∈
{F1, F2, G1, G2, . . . , G6}. Since D2(G′0) ⊆ St ∪ S1, |St |+ |S1| ≥ 6, contrary to
|St |+ |S1|= 3. Hence, |V0|= 9, and so |V (G′0)|= 12. This equality holds only
if |VE |= 6 and |U0|= 3. Then |E(G′0)| ≤ 2|V (G′0)|−5= 19. By Lemma 6.9(c),
|E0|+|ER| ≤ 3, and so |E0| ≤ 3. Then, by the definitions of VE and E0, |E0|= 3,
and so e(VE , St) ≥ 3× 4 = 12. Then |E(G′0)| ≥ e(VE , St) + |E0|+ 3|U0| ≥ 24,
contrary to |E(G′0)| ≤ 19.

Next suppose that |S1| = 1. By Lemma 6.9(c), |VE | ≤ 4. Then |V (G′0)| ≤
|St |+ |S1|+ |VE |+ |U0| ≤ 11. By Theorem 2.9 and since G′0 has no ST, G′0 ∈
{F1, F2, G1, G2, . . . , G6}. Since D2(G′0) ⊆ St ∪ S1, |St |+ |S1| ≥ 6, contrary to
|St |+ |S1|= 4.

Now suppose that |S1| = 2. By Lemma 6.9(c), |VE | ≤ 2. Then |V (G′0)| ≤
|St |+ |S1|+ |VE |+ |U0| ≤ 10. By Theorem 2.9 and since G′0 has no ST, G′0 ∈
{F1, F2}. Since D2(G′0)⊆ St ∪ S1, |St |+ |S1| ≥ 6, contrary to |St |+ |S1|= 5.

Finally suppose that |S1|= 3. By Lemma 6.9(c), |VE |= 0. Then |V (G′0)| ≤
|St |+|S1|+|VE |+|U0| ≤ 9, contrary to |V (G′0)| ≥ 10. This completes the proof.

Proof of Theorem 6.8. This is a special case of Theorem 6.4 with p = 15,
t = 5, ε = −5, and k = 2. By Theorem 1.3, there is an essentially 2-edge-
connected triangle-free graph G such that cl(H) = L(G) and |E(G)|= |V (H)|.
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Since δ(cl(H)) ≥ δ(H) ≥ 3, σ2(G) ≥ 5. Let G′0 be the reduction of the core
G0 of G. Suppose that H is not traceable. By Theorem 6.4, G′0 ∈ R0(c, 2) and
G′0 has no DT containing all the nontrivial vertices. Then G′0 6= K2,a (a ≥ 2);
otherwise, G′0 has an ST, a contradiction. By Theorem 2.9, |V (G′0)| ≥ 10.

Let S0, St , S1, V0, VE , and U0 be sets relating to G′0 as defined in Section
6.3. Then G′0 does not have a DT containing S0. By Lemma 6.9(b), |St | ≤
p/t = 3. By Lemma 6.9(c), 2|S1| + |VE | ≤ 8, and so |S1| ≤ 4. By Lemma
6.9(d), |U0| ≤ max{2,2p/t − 5} = 2. Note that V (G′0) = St ∪ S1 ∪ V0 =
St ∪S1∪VE ∪U0. Then |V (G′0)| ≤ |St |+ |S1|+ |VE |+ |U0| ≤ 13. We distinguish
the cases that |St | ≤ 1, |St |= 2, and |St |= 3.

Suppose first that |St | ≤ 1. Then |V (G′0)| ≤ 11. By Theorem 2.9 and
since G′0 has no ST, G′0 ∈ {F1, F2, G1, G2, . . . , G6}. Since D2(G′0) ⊆ St ∪ S1,
|St |+ |S1| ≥ 6, contrary to |St |+ |S1| ≤ 5.

Next suppose that |St | = 2. Then |V (G′0)| ≤ 12. If |V (G′0)| ≤ 11, then,
by Theorem 2.9 and since G′0 has no ST, G′0 ∈ {F1, F2, G1, G2, . . . , G6}. Since
D2(G′0) ⊆ St ∪ S1, |St | + |S1| ≥ 6. Then |S1| = 4, and so |VE | = 0. Then
|V (G′0)| ≤ |St | + |S1| + |VE | + |U0| ≤ 8, contrary to |V (G′0)| ≥ 10. Hence,
|V (G′0)|= 12, the equality holds only if |S1|= 0, |VE |= 8 and |U0|= 2. Since
U0 is an independent set, and since NG′0

(x)⊆ St for x ∈ U0, |St | ≥ 3, contrary
to |St |= 2.

Finally suppose that |St | = 3. Recall that dG′0
(v) ≥ 3 for v ∈ V0. By

Lemma 6.9(b), |E(G′0)| ≥ ε+ 2|S1|+ 3|V0|+ |S1| = 3|S1|+ 3|V0|+ ε. Since
G′0 6= K2,a (a ≥ 2), by Theorem 1.5(c), |E(G′0)| ≤ 2|V (G′0)| − 5 = 2(|St | +
|S1| + |V0|) − 5 = 2|S1| + 2|V0| + 1. Then |S1| + |V0| ≤ 1 − ε = 6, and so
|V (G′0)| ≤ |St |+ |S1|+ |V0| ≤ 9, contrary to |V (G′0)| ≥ 10. This completes the
proof.



Summary

This thesis contains many new contributions to the field of hamiltonian graph
theory, a very active subfield of graph theory. In particular, we have obtained
new sufficient minimum degree and degree sum conditions to guarantee that
the graphs satisfying these conditions, or their line graphs, admit a Hamilton
cycle (or a Hamilton path), unless they have a small order or they belong
to well-defined classes of exceptional graphs. Here, a Hamilton cycle corre-
sponds to traversing the vertices and edges of the graph in such a way that
all their vertices are visited exactly once, and we return to our starting vertex
(similarly, a Hamilton path reflects a similar way of traversing the graph, but
without the last restriction, so we might terminate at a different vertex).

Degree conditions are the classic approach to hamiltonian problems. All
our results are motivated by Dirac’s Theorem and Ore’s Theorem, that date
back to the1950s and 1960s. However, many of our results are based on
some very recent results for hamiltonicity of claw-free graphs involving the
degree sums of adjacent vertices and other degree and neighborhood condi-
tions. The proofs of our results also rely on some beautiful powerful tech-
niques developed by Catlin and Ryjáček, and recent work due to Chen and
his coauthors. With our work we have successfully tried to unify and extend
several existing results.

In Chapter 1, we present an introduction to the topics of this thesis to-
gether with Ryjáček’s closure for claw-free graphs, Catlin’s reduction method,
and the reduction of the core of a graph. Using these tools, investigating the
hamiltonicity or traceability of a claw-free graph H is equivalent to inves-
tigating the existence of a dominating closed trail or dominating trail in a
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graph G for which the line graph L(G) = cl(H), the closure of H. Specific
terminology and notation are also presented in this chapter.

In Chapter 2, we consider the traceability of 2-connected claw-free graphs
with specific conditions on degree sums of pairs of adjacent vertices. Our
main results imply sharp lower bounds on the minimum degree and the de-
gree sums of adjacent pairs of vertices for the traceability of 2-connected
claw-free graphs with sufficiently large order. We also improved some known
results. In this chapter, we also characterized the exceptional graphs, not
containing a spanning trail, among the 2-edge-connected graphs of order at
most 11. We have demonstrated that these exceptional graphs are very use-
ful in dealing with sufficient conditions for traceability of claw-free graphs.
These eight exceptional graphs are repeatedly used in Chapters 2, 5 and 6.

In Chapter 3, our results contribute to an old conjecture of Benhocine
et al. and the more recent Conjecture 3.1 due to Chen and Lai. Our The-
orems 3.9, 3.10 and 3.11 extend several known results. In this chapter,
we also characterized other exceptional graphs among the 2-edge-connected
triangle-free graphs of order at most 8. These exceptional graphs are very
useful in dealing with sufficient conditions for hamiltonicity of claw-free
graphs. These twenty-two exceptional graphs are also used in Chapter 4.

In Chapters 4 and 5, we consider sufficient minimum degree and degree
sum conditions that imply that graphs admit a Hamilton cycle or a Hamilton
path, unless they have a small order or they belong to well-defined classes
of exceptional graphs. Our Theorems 4.11, 4.12, 5.3, 5.5 and 5.6 unify and
extend several known earlier results. In particular, Theorem 5.6 provides a
sharp lower bound on the degree sums of any independent vertex set with
cardinality six for the traceability of 2-connected claw-free graph, and, as a
corollary, a sharp lower bound on the minimum degree.

In Chapter 6, our results imply that several sufficient neighborhood union
conditions force a claw-free graph to be traceable. We also improved some
existing results by providing sharp bounds. In particular, the lower bound
on the neighborhood union of any pair of vertices for the traceability of 2-
connected claw-free graphs in Theorem 6.5 is asymptotically sharp.

Throughout this thesis, we have investigated the existence of Hamilton
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cycles and Hamilton paths under different types of degree and neighbor-
hood conditions, including minimum degree conditions, minimum degree
sum conditions on adjacent pairs of vertices, minimum degree sum condi-
tions over all independent sets of t vertices of a graph, minimum cardinality
conditions on the neighborhood union over all independent sets of t vertices
of a graph, as well minimum cardinality conditions on the neighborhood
union over all t vertex sets of a graph. Despite our new contributions, many
problems and conjectures remain unsolved. Specifically, if one would be able
to find the smallest 3-edge-connected graphs without a spanning trail, then
using a similar approach, one would be able to establish new and sharp suffi-
cient degree and neighborhood conditions for the traceability of 3-connected
claw-free graphs.

For our future research, we would like to continue by considering differ-
ent types of degree and neighborhood conditions related to the existence of
disjoint cycles, even factors, as well as supereulerian properties, Hamilton-
connectivity, and also continue our work on the hamiltonicity and traceability
of graphs.





Samenvatting

Dit proefschrift bevat veel nieuwe bijdragen aan het gebied van de hamil-
tonse grafentheorie, een zeer actief deelgebied van de grafentheorie. De
meeste van die bijdragen zijn gebaseerd op voldoende voorwaarden met be-
trekking tot de graden van de punten die garanderen dat deze grafen een
Hamiltonpad of Hamiltoncykel bevatten, tenzij ze tot zekere welbeschreven
klassen van grafen behoren of een klein aantal punten hebben. Zo’n Hamil-
tonpad of Hamiltoncykel correspondeert met het doorlopen van de punten en
lijnen van de graaf op zo’n manier dat alle punten precies één keer doorlopen
worden (en men in het beginpunt terugkeert in het geval van een Hamilton-
cykel).

Graadvoorwaarden zijn de klassieke benadering binnen dit deelgebied,
gemotiveerd door de stellingen van Dirac en van Ore die teruggaan tot de
vijftiger en zestiger jaren van de vorige eeuw. Veel van de door ons gepre-
senteerde resultaten zijn echter gebaseerd op enkele zeer recente resultaten
op het gebied van de existentie van Hamiltoncykels in klauw-vrije grafen,
wederom met betrekking tot graad- en buurvoorwaarden. De bewijzen voor
de gepresenteerde resultaten berusten tevens op twee prachtige reductietech-
nieken ontwikkeld door Catlin and Ryjáček, alsmede op recent werk van
Chen en zijn coauteurs. Met ons gepresenteerde werk hebben we een ges-
laagde poging gedaan om bekende resultaten onder één noemer te brengen
en uit te breiden.

Hoofdstuk 1 bevat een inleiding tot de onderwerpen van dit proefschrift,
alsmede beschrijvingen van Ryjáček’s afsluiting voor klauw-vrije grafen, de
reductiemethode van Catlin, en de reductie van de core van een graaf. Met
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behulp van deze technieken wordt het onderzoeken van de existentie van
Hamiltonpaden en Hamiltoncykels in een klauw-vrije graaf H equivalent met
het onderzoeken van de existentie van een dominerende wandeling of ges-
loten wandeling in een graaf G waarvan de lijngraaf L(G) gelijk is aan de af-
sluiting van H. Specifieke terminologie en notaties worden ook in dit eerste
hoofdstuk gepresenteerd.

In Hoofdstuk 2 beschouwen we specifieke voorwaarden met betrekking
tot paren buurpunten voor de existentie van Hamiltonpaden in 2-samenhan-
gende klauw-vrije grafen. Onze hoofdresultaten impliceren een scherpe on-
dergrens voor de minimale graad en voor de minimale graadsom van buur-
paren voor deze existentie in grafen met een voldoende groot aantal pun-
ten. Hiermee verbeteren we een aantal reeds bekende resultaten. Tevens
karakteriseren we de uitzonderingsgrafen die geen opspannende wandeling
bevatten, onder alle 2-lijn-samenhangende grafen op ten hoogste elf punten.
Deze acht uitzonderingsgrafen worden herhaaldelijk gebruikt in Hoofdstuk
2, 5 en 6.

De resultaten uit Hoofdstuk 3 hebben betrekking op een oud vermoeden
van Benhocine et al. en een meer recent vermoeden van Chen en Lai (Con-
jecture 3.1 in het proefschrift). Onze stellingen Theorems 3.9, 3.10 en 3.11
in dit hoofdstuk zijn uitbreidingen van diverse bekende resultaten. Tevens
karakteriseren we nieuwe uitzonderingsgrafen onder de 2-lijn-samenhangen-
de driehoeksvrije grafen op ten hoogste acht punten. Deze uitzonderings-
grafen zijn zeer nuttig bij het bepalen van voldoende voorwaarden voor de
existentie van Hamiltoncykels in klauw-vrije grafen. Deze 22 grafen worden
ook gebruikt in Hoofdstuk 4.

In Hoofdstuk 4 en 5 beschouwen we voldoende minimale graadvoor-
waarden en graadsomvoorwaarden voor de existentie van een Hamiltoncykel
of een Hamiltonpad, tenzij de grafen weinig punten hebben of tot een welbe-
schreven klasse van uitzonderingsgrafen behoren. Onze stellingen Theorems
4.11, 4.12, 5.3, 5.5 en 5.6 unificeren diverse reeds bekende resultaten, en
zijn algemener. Onze stelling Theorem 5.6 geeft een scherpe ondergrens
voor de graadsom van zes onafhankelijke punten voor de existentie van een
Hamiltonpad in een 2-samenhangende klauw-vrije graaf.
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Onze resultaten uit Hoofdstuk 6 houden in dat diverse voldoende buur-
voorwaarden afdwingen dat een klauw-vrije graaf een Hamiltonpad bevat.
Tevens verbeteren we een aantal bestaande resultaten door scherpe grenzen
te geven. Zo is de ondergrens voor de buurvereniging van paren punten uit
onze stelling Theorem 6.5 asymptotisch scherp.

Dit proefschrift is doorspekt met resultaten die te maken hebben met
de existentie van Hamiltoncykels en Hamiltonpaden, met name resultaten
die gebaseerd zijn op verschillende typen buur- en graadvoorwaarden, zoals
minimale graadvoorwaarden, minimale graadsomvoorwaarden voor buur-
paren, voor onafhankelijke verzamelingen, en buurverenigingen over alle
deelverzamelingen van t punten. Niettegenstaande onze nieuwe bijdragen
blijven veel open problemen en vermoedens onopgelost. Eén van die onopge-
loste problemen zou opgelost kunnen worden als men in staat was de kle-
inste 3-lijn-samenhangende grafen te bepalen die geen opspannende wan-
deling hebben. Dit zou aanleiding geven tot nieuwe en scherpe voldoende
graad- en buurvoorwaarden voor de existentie van Hamiltonpaden in 3-
samenhangende klauw-vrije grafen.

Voor de toekomst richten we ons op het voortzetten van dit onderzoek
naar de relatie tussen verschillende typen graad- en buurvoorwaarden en de
existentie van disjuncte cykels, even factoren, zowel als voor supereulerse
eigenschappen en Hamilton-samenhang, alsmede een voortzetting van ons
werk op het gebied van de existentie van Hamiltoncykels en Hamiltonpaden.
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degree conditions for hamiltonicity in claw-free graphs, Discrete Math.,
236 (2001) 65–80.

[50] E. Flandrin, I. Fournier and A. Germa, Circumference and hamiltonism
in K1,3-free graphs, in: Graph Theory in Memory of GA Dirac (Sandb-
jerg, 1985), in: Ann. Discrete Math., vol. 41, North-Hollnad, Amster-
dam, New York, 1989, pp. 131–140.
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