14 research outputs found

    Closed-loop Control of Silicon Nanotweezers for Improvement of Sensitivity to Mechanical Stiffness Measurement and Bio-Sensing on DNA Molecules

    No full text
    International audienceIn this work we show that implementation of closed loop control to silicon nanotweezers improves the sensitivity of the tool for mechanical characterizations of biological molecules. Micromachined tweezers have already been used for the characterizations of mechanical properties of DNA molecules as well as for the sensing of enzymatic reactions on DNA bundle. However the resolution of the experiments does not allow the sensing on single molecules. Hereafter we show theoretically and experimentally that, reducing the resonance frequency of the system by the implementation of a state feedback, the sensitivity to stiffness variation is enhanced. Such improvement leads to better resolution for detection of enzymatic reactions on DNA

    Roadmap for optical tweezers

    Full text link
    ArtĂ­culo escrito por un elevado nĂşmero de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboraciĂłn, si le hubiere, y los autores pertenecientes a la UAMOptical tweezers are tools made of light that enable contactless pushing, trapping, and manipulation of objects, ranging from atoms to space light sails. Since the pioneering work by Arthur Ashkin in the 1970s, optical tweezers have evolved into sophisticated instruments and have been employed in a broad range of applications in the life sciences, physics, and engineering. These include accurate force and torque measurement at the femtonewton level, microrheology of complex fluids, single micro- and nano-particle spectroscopy, single-cell analysis, and statistical-physics experiments. This roadmap provides insights into current investigations involving optical forces and optical tweezers from their theoretical foundations to designs and setups. It also offers perspectives for applications to a wide range of research fields, from biophysics to space explorationEuropean Commission (Horizon 2020, Project No. 812780

    Roadmap for Optical Tweezers 2023

    Get PDF
    Optical tweezers are tools made of light that enable contactless pushing, trapping, and manipulation of objects ranging from atoms to space light sails. Since the pioneering work by Arthur Ashkin in the 1970s, optical tweezers have evolved into sophisticated instruments and have been employed in a broad range of applications in life sciences, physics, and engineering. These include accurate force and torque measurement at the femtonewton level, microrheology of complex fluids, single micro- and nanoparticle spectroscopy, single-cell analysis, and statistical-physics experiments. This roadmap provides insights into current investigations involving optical forces and optical tweezers from their theoretical foundations to designs and setups. It also offers perspectives for applications to a wide range of research fields, from biophysics to space exploration

    Roadmap for optical tweezers

    Get PDF
    Optical tweezers are tools made of light that enable contactless pushing, trapping, and manipulation of objects, ranging from atoms to space light sails. Since the pioneering work by Arthur Ashkin in the 1970s, optical tweezers have evolved into sophisticated instruments and have been employed in a broad range of applications in the life sciences, physics, and engineering. These include accurate force and torque measurement at the femtonewton level, microrheology of complex fluids, single micro- and nano-particle spectroscopy, single-cell analysis, and statistical-physics experiments. This roadmap provides insights into current investigations involving optical forces and optical tweezers from their theoretical foundations to designs and setups. It also offers perspectives for applications to a wide range of research fields, from biophysics to space exploration.journal articl

    Interfacial and Mechanical Properties of Carbon Nanotubes: A Force Spectroscopy Study

    Get PDF
    Next generation polymer composites that utilize the high electrical conductivity and tensile strength of carbon nanotubes are of interest. To effectively disperse carbon nanotubes into polymers, a more fundamental understanding of the polymer/nanotube interface is needed. This requires the development of new analytical methods and techniques for measuring the adhesion between a single molecule and the sidewalls of carbon nanotubes. Atomic Force Microscopy is an integral tool in the characterization of materials on the nanoscale. The objectives of this research were to: 1) characterize the binding force between single molecules and the backbone of a single walled carbon nanotube (SWNT), and 2) measure and interpret the mechanical response of carbon-based nano-objects to compressive loads using an atomic force microscope. To identify chemical moieties that bind strongly to the sidewall of the nanotubes, two experimental approaches have been explored. In the first, force volume images of SWNT paper were obtained using gold-coated AFM tips functionalized with terminally substituted alkanethiols and para-substituted arylthiols. Analysis of these images enabled quantification of the adhesive interactions between the functionalized tip and the SWNT surface. The resultant adhesive forces were shown to be dependent upon surface topography, tip shape, and the terminal group on the alkanethiol. The mechanical response of several single- and multi-walled carbon nanotubes under compressive load was examined with an AFM. When the scanner, onto which the substrate has been mounted, was extended and retracted in a cyclic fashion, cantilever deflection, oscillation amplitude and resonant frequency were simultaneously monitored. By time-correlating cantilever resonance spectra, deflection and scanner motion, precise control over the length of nanotube in contact with the substrate, analogous to fly-fishing was achieved. This multi-parameter force spectroscopy method is applicable for testing the mechanical and interfacial properties of a wide range of nanoscale objects. This research has led to a clearer understanding of the chemistry at the nanotube/polymer interface, as well as the mechanical response of nanoscale materials. A new force spectroscopic tool, multi-parameter force spectroscopy, should be extremely helpful in characterizing the mechanical response of a myriad of nanoscale objects and enable nanoscale devices to become a reality.Ph.D.Committee Chair: Lawrence A. Bottomley; Committee Member: Boris Mizaikoff; Committee Member: F. Levent Degertekin; Committee Member: Jiri Janata; Committee Member: Robert L. Whetten; Committee Member: Thomas M. Orland

    Fundamental design principles of novel MEMS based Landau switches, sensors, and actuators : Role of electrode geometry and operation regime

    Get PDF
    Microelectromechanical systems (MEMS) are considered as potential candidates for More-Moore and More-than-Moore applications due to their versatile use as sensors, switches, and actuators. Examples include accelerometers for sensing, RF-MEMS capacitive switches in communication, suspended-gate (SG) FETs in computation, and deformable mirrors in optics. In spite of the wide range of applications of MEMS in diverse fields, one of the major challenges for MEMS is their instability. Instability divides the operation into stable and unstable regimes and poses fundamental challenges for several applications. For example: Tuning range of deformable mirrors is fundamentally limited by pull-in instability, RF-MEMS capacitive switches suffer from the problem of hard landing, and intrinsic hysteresis of SG-FETs puts a lower bound on the minimum power dissipation. ^ In this thesis, we provide solutions to the application specific problems of MEMS and utilize operation in or close to unstable regime for performance enhancement in several novel applications. Specifically, we propose the following: (i) novel device concepts with nanostructured electrodes to address the aforementioned problems of instability, (ii) a switch with hysteresis-free ideal switching characteristics based on the operation in unstable regime, and (iii) a Flexure biosensor that operates at the boundary of the stable and unstable regimes to achieve improved sensitivity and signal-to-noise ratio. In general, we have advocated electrode geometry as a design variable for MEMS, and used MEMS as an illustrative example of Landau systems to advocate operation regime as a new design variabl

    Nanofluidic systems for individual and contact-free electrostatic trapping of charged objects

    Get PDF
    Contact-free trapping of nano-objects in solution is of broad interest for many applications, such as studying of polymer dynamics, detecting molecular reactions or investigating the structure and functionality of large biomolecules, to name a few. Although several trapping methods have been developed, stable and high-throughput trapping of individual nanometer-sized objects in a straightforward manner remain challenging. A powerful method of trapping charged objects smaller than 100 nm and without any external applied power is geometry-induced electrostatic (GIE) trapping. This method is based on altering the surface topography of nanofluidic channels that are charged when exposed to water. The topographically modified surfaces result in electrostatic potential wells, in which nano-objects can be trapped from milliseconds to several days, depending on the trap specification and the buffer solution. Various trapping geometries (e.g., circular pockets and rectangular slits or grids) can be realized using state-of-the-art nanofabrication tools. This thesis explores the development and use of nanofluidic devices for electrostatic trapping and manipulation of nano-objects, such as gold nanoparticles (Au NPs) or DNA. For imaging the Au NPs, a home built interferometric scattering (iSCAT) detection system was used. iSCAT is a label free coherent optical microscopy technique that significantly increases the signal-to-noise ratio (SNR) in comparison to other imaging methods that are based on detecting only the signal scattered by a nano-object. In detail, using standard silicon-based GIE trapping devices, Au NPs smaller than 60 nm become difficult to detect using iSCAT microscopy. To overcome this limitation, trapping devices made from glass substrate are introduced with a new developed fabrication process. These devices allow imaging of Au NPs with an increased contrast and SNR of an order of magnitude using iSCAT detection, enabling the detection of relatively smaller nanoparticles and thereby allowing the study of their trapping behavior. Further, the GIE trapping method is integrated into a microfluidic system that comes with the key benefits of reduced sample volume, in situ change of solutions, precise control of solution delivery, and the feasibility to trap nano-objects along a gradient of e.g. salt or other reactants. Using this high-throughput screening device, the performance has been quantitatively analyzed by screening the electrostatic potential along a salt gradient using 60 nm Au NPs as probes in a single experiment. Additionally, the critical salt concentration for the stability of the colloidal dispersion could be observed. The advancement of this method sets the ground for a variety of new experiments. As an example, having the possibility to insert and flush the device with different solutions, functionalization of the nanofluidic channel walls with positively charged polyelectrolytes was achieved resulting in a reversal of the walls net charge and thus allowing the trapping of positively charged Au NPs. One drawback that makes the development and application of GIE trapping devices made from rigid SiOx materials difficult, is the high cost and time-consuming nanofabrication in limiting infrastructures such as cleanroom facilities. Hence, new GIE trapping devices made from the soft material polydimethylsiloxane (PDMS) are introduced that are fabricated using a high-throughput and easy handling replica molding process. Stable trapping of Au NPs down to 60 nm in diameter is demonstrated and potential depths of up to Q ~ 24 kBT of circular pockets are experimentally observed that provide stable trapping for many days. In addition, by taking advantage of the feature that PDMS is a flexible material, the PDMS devices are elastically compressed, which results in a reduction of the device channel height and thus active tuning of trapping strengths and residence times. With this capability, extremely deep potentials of up to Q ~ 200 kBT are achieved, providing practically permanent contact-free trapping of individual nano-objects. Furthermore, the implementation of a 3D PDMS pneumatic valve system is demonstrated, which makes the devices capable of controlling the trap stiffnesses and residence times actively as well as trapping and releasing the nano-objects. These devices will enable high-throughput trapping of nano-objects for studying their behavior and interactions in aqueous environment. The simple and low-cost fabrication process and the fact that the chip-based devices do not need externally applied fields or an elaborate build-up will make them equally available for research and commercial applications

    Bio-Based Polymeric Films

    Get PDF
    These days, massive consumer demands for short-term single-use plastic materials have produced huge plastic waste, which in turn has created tremendous environmental pollution. Biodegradable polymers or biopolymers can be used to develop alternatives to synthetic petroleum-based plastics. Different sources of biopolymers, like carbohydrates, proteins, and lipids, as well as biodegradable polymers such as polyesters, polyamides, polyurethanes, etc., have been utilized recently to make environmentally benign biodegradable plastic

    Nanobiotechnologie: Werkzeuge fĂĽr die Proteomik : molekulare Organisation und Manipulation von Proteinen und Proteinkomplexen in Nanodimensionen

    Get PDF
    First milestone of this Ph.D. thesis was the successful extension of conventional NTA/His-tag technique to self-assembling, multivalent chelator thiols for high-affinity recognition as well as stable and uniform immobilization of His-tagged proteins on chip surfaces. Bis-NTA was linked via an oligoethylene glycol to alkyl thiols by an efficient modular synthesis strategy yielding a novel, multivalent compound for formation of mixed SAMs with anti-adsorptive matrix thiols on gold. Multivalent chelator chips allow a specific, high-affinity, reversible, long-term immobilization of His-tagged proteins. In AFM studies reversibility of the specific protein immobilization process was visualized at single molecule level. The entire control over the orientation of the immobilized protein promotes this chip surface to an optimal platform for studies focusing on research targets at single molecule level and nanobiotechnology. Based on the constructed protein chip platform above and a novel AFM mode (contact oscillation mode, COM) – developed during the current Ph.D. work – protein nanolithography under physiological conditions enabling fabrication of active biomolecular patterns in countless variety has been established. Reversible COM-mediated nanostructuring is exceptionally suitable for multiplexed patterning of protein assemblies in situ. The first selfassembled protein layer acts as a biocompatible and ductile patterning material. Immobilized proteins can be replaced by the AFM tip applying COM, and the generated structures can be erased and refilled with different proteins, which are immobilized in a uniform and functional manner. Multi-protein arrays can be systematically fabricated by iterative erase-and-write processes, and employed for protein-protein interaction analysis. Fabrication of two-dimensionally arranged nanocatalytic centres with biological activity will establish a versatile tool for nanobiotechnology. As an alternative chip fabrication approach, the combined application of methodologies from surface chemistry, semiconductor technology, and chemical biology demonstrated successfully how pre-patterned templates for micro- and nanoarrays for protein chips are fabricated. The surface physical, as well the biophysical experiments, proved the functionality of this technology. The promises of such process technology are fast and economic fabrication of ready-to-use nanostructured biochips at industrial scale. Membrane proteins are complicated in handling and hence require sophisticated solutions for chip technological application. A silicon-on-insulator (SOI) chip substrate with microcavities and nanopores was employed for first technological investigation to construct a protein chip suitable for membrane proteins. The formation of an artificial lipid bilayer using vesicle fusion on oxidized SOI cavity substrates was verified by CLSM. Future AFM experiments will give further insights into the chip architecture and topography. This will provide last evidence of the sealing of the cavity by the lipid bilayer. Transmembrane proteins will be employed for reconstitution experiments on this membrane protein chip platform. Highly integrated microdevices will find application in basic biomedical and pharmaceutical research, whereas robust and portable point-of-care devices will be used in clinical settings.Erster Meilenstein der vorliegenden Arbeit war die erfolgreiche Erweiterung des konventionellen NTA/His-tag-Konzepts auf selbst-assemblierende, multivalente Chelatorthiole für die hochaffine Erkennung und stabile, einheitliche Immobilisierung His-getaggter Proteine auf Chipoberflächen. Mittels einer effizienten, modularen Synthesestrategie wurden Bis-NTA-Module über Oligoethylenglykoleinheiten an Alkylthiole angebunden. Diese Chelatorthiole wurden zusammen mit antiadsorptiven Matrixthiolen zur Ausbildung gemischter selbst-assemblierender Monolagen (SAMs) auf Goldoberflächen eingesetzt. Die multivalenten Chelatorchips erlauben eine spezifische, hochaffine, umkehrbare und langfristige Immobilisierung His-getaggter Proteine. Die Umkehrbarkeit der spezifischen Proteinimmobilisierung wurde in rasterkraftmikroskopischen (AFM) Studien bis zur Einzel-Molekül-Ebene visualisiert. Die vollständige Kontrolle über die Orientierung immobilisierter Proteine qualifiziert diese entwickelte Chipoberfläche zu einer optimalen Plattform für Anwendungsbereiche der Einzelmolekülbiochemie und Nanobiotechnologie. Basierend auf dieser Plattform für Proteinchips und einem – im Rahmen dieser Arbeit – neuentwickelten AFM-Modus (Kontaktoszillationsmodus, COM) wurde die „Protein-Nanolithographie“ etabliert, welche die Fabrikation von aktiven, biomolekularen Strukturen in unzähliger Vielfalt ermöglicht. Die umkehrbare COM-vermittelte Nanolithographie ist insbesondere für die multiplexe Anordnung von Proteinverbänden in situ geeignet. Die erste Schicht immobilisierter Proteine fungiert als ein biokompatibles und verformbares Strukturierungsmaterial. Diese immobilisierten Proteine können nun im Kontaktoszillationsmodus mit der AFM-Spitze lokal entfernt („Löschen“) und gegen andere Proteine – die an die freigelegte Chipoberfläche ebenfalls spezifisch und funktional immobilisieren – ausgetauscht werden („Schreiben“). Arrays, bestehend aus mehreren unterschiedlichen Proteinen können nun systematisch in iterativen Lösch-und-Schreib-Vorgängen fabriziert und für Proteininteraktionsanalysen eingesetzt werden. Die Fabrikation von zwei-dimensional arrangierten nanokatalytischen Zentren mit biologischer Aktivität wird von großem Nutzen für die Nanobiotechnologie sein. Eine alternative Herstellungsmethode aus einer Kombination von Oberflächenchemie, Halbleitertechnologie und chemischer Biologie wurde für die Fabrikation von vorstrukturierten Templaten für Mikro- und Nanoarrays entwickelt. Die Funktionalität dieser Chipplattform wurde anhand oberflächen- und biophysikalischer Experimente erfolgreich gezeigt. Zukünftiges Ziel ist die Anfertigung vorstrukturierter Template in der Dimension weniger Nanometer zur Ausbildung von Bio-Arrays mit einzelnen Molekülen. Ein weiteres Ziel besteht in der kompletten Verlagerung des Herstellungsprozesses in die Gasphase. Eine Produktion in der Gasphase verspricht eine schnelle und wirtschaftliche Erzeugung sofort einsatzbereiter nanostrukturierter Biochips im industriellen Maßstab. Der Umgang mit Membranproteinen verlangt besondere Vorkehrungen im experimentellen Milieu, ebenso speziell sind die Bedürfnisse in den entsprechenden Chip-Anwendungen. Ein Chip mit Mikrokavitäten und Nanoporen, basierend auf der „Silicon-on-Insulator“ (SOI)-Technologie, wurde für erste technologische Studien zum Entwurf eines Proteinchips für Membranproteine eingesetzt. Künstliche Lipidmembranen wurden auf der SOI-Oberfläche mittels Vesikelfusion ausgebildet und mit konfokaler Laser-Scanning-Mikroskopie gezeigt. Zukünftige AFM-Experimente werden weitere Einsichten in die Chiparchitektur und Topographie ermöglichen. Transmembranproteine werden in Rekonstitutionsexperimenten für funktionale Studien der Membranproteinchips eingesetzt. Anwendungsbereiche solcher hochintegrierten Mikrosysteme sind sowohl in der biologischen Grundlagenforschung als auch in mobilen Diagnostikgeräten im klinischen Einsatz zu finden
    corecore