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1.8 Operation of a nanoelectromechanical system relays for More-Moore appli-
cations. (A) In off state, source is separated from the drain by an air-gap;
whereas (B) in on state metallic source and drain are shorted to create a
direct current path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
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1.11 Schematically showing the outline of the thesis. Each chapter focuses on
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2.1 (a) Schematic of a MEMS capacitive actuator, representative of many
applications such as, RF-MEMS switches, varactors, deformable mirrors,
and Mirasol displays. (b) Lumped parameter spring-mass model of the
same. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Evolution of energy landscapes when (a) VG is increasing and (b) VG is
decreasing. Open circle and open triangle denote the position where M1

is stabilized when VG is increasing or decreasing, respectively. Filled sym-
bols denote the other minima in energy landscape. Open square denote
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points by an energy barrier. (c) The corresponding hysteretic y-VG char-
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2.3 The evolution of the spring and electrostatic forces, when (a) VG is in-
creasing and (b) VG is decreasing. Dotted straight line corresponds to
the spring force; whereas solid curved lines correspond to the electrostatic
force. Open circle and open triangle denote the position where M1 is sta-
bilized when VG is increasing or decreasing, respectively. Filled symbols
denote the other position where M1 can also be stabilized. Open squares
denote the points where the two forces balance, but M1 cannot be stabi-
lized. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Schematically showing the effect of instability in MEMS capacitive actu-
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2.5 (a) Effective stiffness (keff ) and (b) effective air-gap capacitance (Cair) as
a function of the gap (y) between the two electrodes and charge (Q) on
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2.6 Pull-in can occur even when VG < VPI due to: (a)-(b) Dynamic pull-in
or (c)-(d) noise initiated pull-in. Open circle in (a)-(b) denotes the initial
starting point for M1 and dotted line denotes U(y0). ys denote stable
equilibrium point and yu unstable equilibrium point. Dynamic pull-in
requires that U(y0) > U(yu). In (c)-(d) open circles denote total energy
(sum of potential and kinetic) and Us = U(ys). . . . . . . . . . . . . . . 44

2.7 Uninhibited acceleration during pull-in. (a) Potential energy landscape
for VG > VPI . (b) Position and (c) velocity of M1 as a function of time.
tPI is the pull-in time and vimpact is the impact velocity with which M1
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2.8 (a) Schematic of a ferroelectric material based capacitor structure. Evo-
lution of the energy landscapes of ferroelectric material when (b) VG is
increasing and (c) VG is decreasing. Open circle and open triangle denote
the equilibrium points where ferroelectric is stabilized when VG is increas-
ing and decreasing, respectively. Filled circles and triangles denote other
equilibrium points. Open squares denote unstable equilibrium points.(C)
Corresponding hysteretic Q− VG characteristics of the ferroelectric mate-
rial showing abrupt jump in charge at VG = Vsp and VG = Vsn. . . . . . 49

2.9 Schematically showing the instability related characteristics of a ferroelec-
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2.10 (a) Voltage drop across ferroelectric and (b) its capacitance as a function
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2.11 Qualitative dynamic response of ferroelectric materials. (a) Dynamic
switching when VG is changed abruptly from zero to VG < Vsp and (b)
noise initiated switching if the energy barrier is couple of kBT . (c) Hot
atom damage due to huge acceleration of atoms while crossing the unstable
regime. KE is the amount of energy gained. . . . . . . . . . . . . . . . 52

2.12 (a) MEMS capacitive actuators and (b) ferroelectric materials are example
of a generic class of Landau systems characterized by two well energy
landscapes. (c) Each Landau system is associated with two stable regimes
separated by an unstable regime. . . . . . . . . . . . . . . . . . . . . . 53

3.1 Electromechanical actuators with varying electrode geometries e.g., (a)
classical parallel-plate actuator with M1 and M2 as planar electrodes, (b)
M1 as carbon nanotube (CNT) [46] or nanowire [47] (example case of
cylindrical electrode), and (c) aligned array of CNTs [48] as M1 (example
of aligned array of cylinders). (d) Equivalent spring-mass model of the
actuator. (e) Typical actuation characteristics showing the position (y) of
M1 and resonance frequency (ω) as a function of voltage/charge (VG/QG). 57

3.2 Pull-in instability of electromechanical actuators. (a)-(h) y vs. VG/VPI or
QG/QPI characteristics in p− n space. Symbols denote the experimental
data taken from literature (planar electrode with linear spring [63] (a),
cylindrical electrode with linear spring [64] (b) and planar electrode with
nonlinear spring [65] (e)) and solid line numerical simulations. (i) yc as
a function of n for linear (p = 1) and nonlinear springs (p = 3). Filled
symbols denote the experimental data, open symbols denote numerical
simulations, and solid line denotes the analytical formula given by Eq. 3.3.
Symbols have been grouped in voltage (V ) and charge (Q) actuation. . 62

3.3 (a)-(h) ω vs. VG/QG characteristics in p − n space showing the spring-
softening and spring-hardening behavior of electromechanical resonators.
Filled symbols denote the experimental data taken from literature (pla-
nar electrode with linear spring [67] (a), cylindrical electrode with linear
spring [68] (b), planar electrode with nonlinear spring [69] (e) and cylin-
drical electrode with nonlinear spring [56] (f)), open symbols denote the
numerical simulations, and solid line denotes the analytical formula given
by Eq. 3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
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3.4 Application of scaling relationships to interpret the actuation character-
istics of an array of cylinders based electrode with linear spring. (a) yc
as a function of the spacing (g) between individual cylinders. Solid line
denotes numerical simulations, • denotes yc for vertically aligned array of
CNTs [70] and N denotes yc for an individual CNT [64] under V -actuation.
△ denotes yc for an isolated parallel-plate actuator and � for cylindrical
electrode under Q-actuation. (b)-(g) ω for different g. Filled symbols
denote the experimental data (aligned array of CNTs for very small spac-
ing [48] (a)), open symbols denote numerical simulations and solid line
scaling relationship given by Eq. 3.2. . . . . . . . . . . . . . . . . . . 65

3.5 Parameters extraction using the critical-gap yc of actuators based on an ar-
ray of cylinders. (a) yc as a function of the separation g, (b) corresponding
effective n obtained using Eq. 3.3 with p = 1. (c)-(e) Resonance frequency
vs. voltage characteristics for three different values of g. Symbols denote
numerical simulations and solid line is the fit based on Eq. 3.5 - 3.6 using
the value of n from Fig. 3.5 b. . . . . . . . . . . . . . . . . . . . . . . . 68

3.6 Parameters extraction using the experimental y/y0 vs. VG characteristics
of planar electrode for (a) linear [63] spring, (b) nonlinear [65] spring and
(c) cylindrical [72] electrode for nonlinear spring. Symbols denote the
experimental data and solid line is the fit. . . . . . . . . . . . . . . . . 69

3.7 Parameters extraction using the experimental resonance frequency vs.
voltage characteristics of planar electrode with linear spring [67]. Blue
open circles denote the experimental data and black open squares denote
the experimental data used to extract various parameters. Solid line is the
fit, black dotted line suggests that the characteristic is linear at low volt-
ages. Green dotted line defines the boundary when characteristic starts
to deviate from linear behavior. . . . . . . . . . . . . . . . . . . . . . . 70

4.1 Fixed-geometry classical microelectromechanical actuators: (a) planar elec-
trodes [63] (b)Nanotube (example of cylinder) electrodes [52], and (c) par-
tial electrode [60]. (d) Corresponding displacement vs. voltage character-
istics showing the travel range tVr for all the structures; symbols denote
the experimental data and solid line is the numerical simulation. . . . . 75
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4.2 Travel range as a function of electrode geometry parameter n. Solid line
denotes the analytical formula of travel range (Eq. 4.1); whereas open sym-
bols denote experimental data for fixed-geometry electrodes-planar [63]
(open circle), nanotube [52] (open triangle), and partial electrode [60]
(open square). Filled symbols denote the maximum achievable travel
range using reconfigurable nano-structured array of cylinders (diamond)
and spheres (pentagon) (see Figs 4.3-4.4 for details). For reconfigurable
electrodes n and therefore travel range can be tuned in the range shown
by arrows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3 Extension and tuning of travel range by reconfigurable nano-structured
regular electrodes e.g., array of electrically connected (a) nano- wires/tubes
(example of cylinders) and (b) nanodots (example of spheres). (c)-(f) Cor-
responding travel range as a function of tuning parameter g the separation
between individual elements both for linear (c-d) and non-linear spring (e-
f) of cubic nonlinearity. Solid line denotes numerical simulations, open
symbol experimental data and filed symbol analytical result. . . . . . 77

4.4 Physics of tuning behavior and maximum achievable travel range for nano-
structured array electrodes e.g., array of nano- wires/tubes. (a) Two
dimensional potential profile for various separation g, (b) corresponding
dC/dy as a function of y, and (c) travel range as a function of g. Solid line
denotes the numerical simulation and dotted line is the analytical formula
given by Eqs. 4.2-4.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5 Problem of Hard-landing during pull-in. Schematic of (a) RF-MEMS ca-
pacitive switch and (b) ohmic switch or NEMS relay. (b) Energy (U) vs.
displacement (y) profile for VG < VPI (blue curve) and VG > VPI (red
curve). VG is the applied voltage between M1 and M2. Ed is the energy
dissipation atM1/dielectric or drain interface during pull-in. (c) Displace-
ment (y) and velocity (v) as a function of time (t) during pull-in showing
pull-in time (tPI) and impact velocity (vimpact). . . . . . . . . . . . . . 82

4.6 Soft-landing by resistive braking. (a) Velocity (v) as a function of displace-
ment (y) during pull-in for R = 0 and R = 10kΩ (b) vimpact and tPI as a
function of R. Below R = 1MΩ, vimpact changes but tPI remains almost
the same. (c) Different components of energy as a function of R. ET is
the total energy supplied by the voltage source, Ed =

1
2
mv2impact is energy

dissipation at the dielectric surface, and ER is the total energy dissipated
through R during pull-in process. (d) Distribution of vimpact due to pro-
cess variation for R = 0 and R = 10kΩ. Both, the mean (µ) and standard
deviation (σ) decreases for R = 10kΩ. . . . . . . . . . . . . . . . . . . . 84
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4.7 Soft-landing by patterning the electrode M1/M2 or the dielectric. Elec-
trodeM1/M2 can be - (p1) rectangular plate, (p2) array of nano- wires/tubes,
(p3) array of nanodots, and dielectric can be - (p4) an array of linear
slots, or (p5) a fractal of linear slots. (a) v as a function of y for pat-
terned electrode or dielectric. Velocity reduction is maximum for an array
of nanodots. (b) vimpact (c) tPI as a function of separation (g) between
individual elements. As g increases vimpact reduces at the cost of increased
tPI . (d) vimpact and tPI for fractal dielectric as a function of DF . As DF

increases vimpact increases and tPI decreases. . . . . . . . . . . . . . . . 86

5.1 (a) Schematic of a field effect transistor (FET).(b) Corresponding IDS−VG
characteristics for two devices with different sub-threshold swings (S). As
S reduces, power supply voltage (VDD) and threshold voltage (VT ) can be
reduced keeping the same on (ION) and off (IOFF ) current. . . . . . . . 91

5.2 Phase space of FETs based on their sub-threshold swing. (a) Equivalent
capacitor divider model of an FET. (b) Classification of various proposals
of novel FETs based on the values of body factor (m) and transport factor
(n). FETs with gate insulators having Cins > 0, exhibits m > 1 ; whereas
FETs with gate insulators having Cins < 0, exhibits m < 1. U is the total
energy and Q is the charge on Cins. . . . . . . . . . . . . . . . . . . . . 92

5.3 (a) Schematic of a suspended-gate FET in which an air-gap serves as the
gate insulator.(b) Capacitance of the air-gap as a function of the gate
charge (Q) and (c) typical hysteretic IDS −VG characteristics of SG-FET.
The parameters used in the simulations are y0 = 10nm, ǫs = 11.7, L =
100nm, W = 4µm, H = 33.9nm, E = 200GPa, NA = 6.22 × 1015cm−3,
and VDS = 0.5V . (e) Schematic of a ferroelectric FET in which a ferroelec-
tric material serves as the gate insulator.(f) Capacitance of ferroelectric
as a function of the gate charge (Q) and (c) typical hysteretic IDS − VG
characteristics of FE-FET. The parameters used in the simulations are
y0 = 35.2nm, ǫs = 11.7, L = 100nm, W = 4µm, NA = 5 × 1018cm−3,
VDS = 0.5V , α0 = −6.5 × 107m/F , β0 = 3.75 × 109m5F/C2, and γ0 = 0.
Note that, numerical simulation framework for SG-FET and FE-FET have
been discussed in appendix B and C, respectively. . . . . . . . . . . . . 95

5.4 Summary of the response of Landau switches, namely SG-FET and FE-
FET. (a) Typical hysteretic IDS−VG characteristics with abrupt transition,
(b) ideal switching characteristics which we are after in this chapter, and
(c) hysteresis-free sub-60mV/decade switching characteristics of properly
designed Landau switches. . . . . . . . . . . . . . . . . . . . . . . . . . 96
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5.5 Hysteresis-free sub-60mV/decade switching in SG-FET. Single well energy
landscape for hysteresis-free smooth switching when (a) VG is increasing
and (b) VG is decreasing. Open circles denote the position where gate
is stabilized. Corresponding (c) y − VG characteristics for hysteresis-free
smooth switching. (d) Voltage-drop across air-gap capacitor (Vair) and
series capacitor (ψs) showing the voltage amplification in ψs in the unstable
regime. (e) Body factor m which is less than one in the unstable regime of
SG-FET. Symbols denote the numerical simulations and solid line Eq. 5.4.
(f) Corresponding IDS−VG characteristics with an effective sub-threshold
swing of 39.3mV/decade reflecting the voltage amplification provided by
the negative capacitor. The parameters used for simulations are same as
the one used in Fig. 5.3 except H = 26.4nm and NA = 4.95× 1015cm−3. 98

5.6 Hysteresis-free sub-60mV/dec switching in an n-channel FE-FET. (a) Q−
VG characteristics for hysteresis-free smooth switching. (b) Voltage-drop
across ferroelectric (VFE) and series capacitor (ψs) showing the voltage
amplification in ψs in the unstable regime(Q′

c1 ≤ Q ≤ Q′

c2). (c) Body
factor m which is less than one in the unstable regime of FE-FET. Sym-
bols denote the numerical simulations and solid line Eq. 5.5. (d) Corre-
sponding IDS − VG characteristics with an effective sub-threshold swing
of 52mV/decade reflecting the voltage amplification provided by the neg-
ative capacitor. The parameters used in the simulations are simulations
are same as the one used in Fig. 5.3 except NA = 7.5× 1019cm−3. . . . 100

5.7 Summary of various field effect transistors, namely (a) classical FET with
traditional gate insulator such as SiO2, (b) FE-FET with a ferroelectric
material as the gate insulator, (c) SG-FET which has an air-gap as the gate
insulator, and (d) corresponding minimum achievable sub-threshold swing:
classical-FET (◦), FE-FET with BaTiO3 (⋄), PZT (PbZr1−xT ixO3) with
x = 0 and SBT (Sr0.8Bi2.2Ta2O9) (�) as ferroelectric material, and SG-
FET (△). Open symbols denote bulk FETs with constant channel doping
and solid symbols denote FETs with constant channel capacitance. For
classical FETs, the value is same for both cases. For FE-FET, Smin de-
pends on the material property of ferroelectric; whereas for SG-FET, it is
material independent. . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.8 Physics of minimum sub-threshold swing in NC-FETs. (a) Equivalent
capacitor divider model of a FET. Value of Cs must be chosen such that
Eq. 5.6 is satisfied at all charges. (b) Illustrating generic Cins(Q)−Q (solid
line) and Cs(Q)−Q (dotted lines for three channel doping) characteristics
in an NC-FET. Value of NA (NA2 in this illustrative example) for which
Cs(Q) and −Cins(Q) match closely, S is minimized. . . . . . . . . . . . 104



xxi

Figure Page

5.9 Voltage drop and capacitance characteristics of gate insulators in SG-FET
and FE-FET. (a) voltage drop across air-gap (Vair), (b) air-gap capaci-
tance (Cair), and channel depletion capacitance (Cs) as a function of the
gate charge (Q) in SG-FET. (c) Similarly, voltage drop across the ferro-
electric (VFE), (d) ferroelectric capacitance (CFE), and channel depletion
capacitance (Cs) as a function of the gate charge (Q) in FE-FET. Q > 0
behavior corresponds to an n-channel whereas Q < 0 corresponds to a
p-channel FE-FET. Here, value of NA is such that Cs(Q) and −Cins(Q)
match closely in NC regime giving rise to minimum sub-threshold swing. 108

5.10 Minimum achievable sub-threshold swing in NC-FETs. (a) Vair and ψs
as a function of gate charge Q for the values of NA = 1.2 × 1016cm−3

and y0 = 10nm obtained from Eq. 5.13 for k = 0.45N/m and A =
4µm× 0.1µm. (b) VFE and ψs as a function of the gate charge Q for the
values of NA = 7.5× 1019cm−3 and yFE = 35.2nm obtained from Eq. 5.18
for SBT (Sr0.8Bi2.2Ta2O9) used as the ferroelectric material (taken from
ref. [42]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.11 In search of an ideal switch with hysteresis-free Sideal = 0mV/decade
switching characteristics. (a)-(b) Classical FET with a positive capaci-
tance (PC) gate insulator exhibits S ≥ SBZ . (c)-(d) A FET with negative
capacitance (NC) gate insulator e.g., FE-FET and SG-FET can exhibit
S < SBZ . (e)-(f) Proposed ZSubFET architecture with gate insulator as
a series combination of two different types of NC gate insulators, namely,
NC1 & NC2, can achieve ideal switching characteristics. . . . . . . . . 116

5.12 (a) Equivalent capacitive divider model of a FET and (b) capacitance-
charge characteristics for an NC-FET. Insulator capacitance being infinity
at Q = Qc1 makes perfect matching of Cs(Q) and −Cins(Q) impossible.
(c) Capacitive divider model of a FET with the gate insulator as a series
combination of two different types of gate insulators (NC1 & NC2 in Fig.
5.11 e) and (d) capacitance-charge characteristics for the same NC-FET.
NC1 and NC2 are chosen such that overall gate capacitance C−1

ins = C−1
NC1+

C−1
NC2 is not infinity at any point in the NC regime. . . . . . . . . . . . 118

5.13 Series combination of an air-gap capacitor and ferroelectric in ZSubFET
can lead to a constant negative capacitance behavior and that is the key
to 0mV/decade switching. (a)-(c) Schematic of FE-FET, SG-FET, and
ZSubFET. Corresponding negative capacitance behavior of (d) ferroelec-
tric in FE-FET, (e) air-gap in SG-FET, and (f) their series combination
in ZSubFET. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
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5.14 Two dimensional energy landscapes of ZSubFET at (a) VG = 0, (b) VG <
0, and (c) VG > 0. Along magenta curve in (a) all points correspond
to equilibrium with same energy. In (b)-(c) solid circles denote the point
where ZSubFET is stabilized at the respective voltages. (d) Corresponding
gate charge vs. gate voltage characteristics. . . . . . . . . . . . . . . . 122

5.15 Switching dynamics in a ZSubFET when gate voltage is switched from
negative to positive. (a) Total energy landscape at VG > 0. Open circle
denotes the state before switching and solid circle after the switching.
Switching occurs along the magenta line. Corresponding (b) position of
the movable gate and (c) gate charge as a function of time. . . . . . . . 125

6.1 (a) Sensitivity (S) of different types of biosensors, e.g., (b) Electrical sensor
(Si-NW FET) in which transduction is achieved by modulation of channel
conductivity (G) when charged biomolecules are captured by the gate. (c)
Transduction in cantilever-based nanomechanical biosensors is achieved
by change in its mass, stiffness, or surface stress. Nanocantilever can be
operated in dynamic mode (mass change based detection using shift in
resonance frequency) or in static mode (surface stress change based detec-
tion using piezoresistive material). (d) Proposed Flexure-FET biosensor
in which transduction is achieved due to change in the stiffness of the sus-
pended gate, (e) Operation of Flexure-FET below pull-in. Displacement
of the suspended gate (ydc) and drain current (IDS) as a function of ap-
plied gate bias VG. ydc changes rapidly near pull-in (VG ≈ VPI) and IDS
increases exponentially with VG in the subthreshold regime (VG < VT ). 131

6.2 (a)-(b) Equivalent spring-mass model of Flexure-FET. Stiffness changes
from k to k+∆k after the capture of biomolecules, and therefore, position
of gate changes from ydc to ydc + ∆ys which results in the modulation of
drain current from IDS1 to IDS2. . . . . . . . . . . . . . . . . . . . . . . 133

6.3 Change in the sensor characteristics due to capture of target molecules on
the surface of the gate, (a) y vs. VG before and after capture, and (b)
corresponding change in the position of gate electrode ∆ys vs. VG. ∆ys
increases rapidly near pull-in due to spring-softening effect. The capture
of target molecules is directly mirrored in the change in IDS. (c) IDS
vs. VG before and after capture, and (d) corresponding ratio of the two
currents IDS1 (before capture) and IDS2 (after capture) as a function of
∆ys. Symbols are the numerical simulation and solid line is the analytical
formula (Eq. 6.7). The device considered has the following typical param-
eters: L = 4µm,W = 1µm,H = 40nm,E = 200GPa, y0 = 100nm, yd =
5nm, ǫs = 11.7, ǫd = 3.9, NA = 6e16cm−3. . . . . . . . . . . . . . . . . . 136



xxiii

Figure Page

6.4 Comparison of the sensitivity of different biosensors. Sensitivity S (a)
Flexure-FET (symbols denote the numerical simulation). (b) Si-NW biosen-
sors in subthreshold [120] and accumulation regime [121], (c) Resonance
mode nanomechanical biosensors [122],(d) Surface stress change based
piezoresistive nanomechanical biosensors [123], as a function of Ns or ρ.
In (b)-(d), symbols are the experimental data and the line is the guide to
the eye. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.5 Schematic of a Flexure biosensor (a) before and (b) after capture of biomolecules.
Note the absence of integrated FET in a-b compared to Fig. 6.1. Spring-
mass model of Flexure biosensor (c) before and (d) after capture of biomolecules.
(e) Position of movable electrode before and after capture and (f) corre-
sponding change in the electrode position as a function of applied bias. 143

6.6 (a) Representation of Flexure biosensor as a positive feedback system and
(b)square of the magnitude of the corresponding closed loop transfer func-
tion at different voltages. As voltage increase, low frequency gain increases
and resonance frequency decreases. . . . . . . . . . . . . . . . . . . . . 145

6.7 (a) Root mean square fluctuations due to various noise sources and (b)
corresponding signal-to-noise ratio as a function of applied bias for 5%
change in the stiffness. The parameters used in simulations are m =
1.26fg,ω0 = 8× 108rad/s, Q = 100, g = 7.4× 10−6W/K, 1

k
∂k
∂T

= 10−3/K,
and τT = 30ps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.8 Limit-of-Detection (LOD) for change in the stiffness limited by (a) ther-
momechanical noise and (b) temperature fluctuations. . . . . . . . . . . 150

6.9 Results of time domain stochastic simulations of a Flexure sensor at VG =
0.995VPI with ∆Ub ≈ 3.75 × 103kBT , due to (a)-(b) thermomechanical
noise and (c)-(d) temperature fluctuations stiffness noise. Us denote the
potential energy at equilibrium position i.e., at the bottom of potential
well. Symbols in Figs. a & c denote the total energy (kinetic + potential).
Dotted black line in Fig. c correspond to maximum stiffness; whereas
magenta line to minimum stiffness. Inset in Figs. a & c show the zoomed
region around the bottom of potential well. . . . . . . . . . . . . . . . . 151

6.10 Noise initiated pull-in due to (a)-(b) thermomechanical noise at VA =
0.99994VPI with ∆Ub ≈ 5kBT and (c)-(d) stiffness noise due to temper-
ature fluctuations at VA = 0.999995VPI . ys corresponds to the stable
equilibrium position; whereas yu unstable. . . . . . . . . . . . . . . . . 153

7.1 Several novel devices proposals are the outcome of this thesis and should
inspire future experiments in the field of switching, sensing, and actuation. 162
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7.2 (a) Capacitive divider model of the series combination of ferroelectric and
regular capacitor and (b)-(c) Simulated capacitance of the ferroelectric
highlighting the increase in the capacitance in the region when ferroelec-
tric is stabilized in the unstable regime. (d) Schematic of the structure
fabricated by Khan et al., [104] and (e) Corresponding experimental data
(taken from [104]) of total capacitance at three different temperatures. 166

7.3 Hysteretic sub-60mV/decade switching characteristics observed in exper-
iments. (a) Schematic of a ferroelectric FET with a polymer ferroelec-
tric as the gate insulator [103], (b) current-voltage characteristics showing
sub-60mV/decade switching with hysteresis, and (c) sub-threshold swing
as a function of gate voltage. (Data taken from [103]) (d) Schematic of a
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ABSTRACT

Jain, Ankit Ph.D., Purdue University, December 2014. Fundamental Design Prin-
ciples of Novel MEMS based “Landau” Switches, Sensors, and Actuators : Role of
Electrode Geometry and Operation Regime. Major Professor: M. A. Alam.

Microelectromechanical systems (MEMS) are considered as potential candidates

for “More-Moore” and “More-than-Moore” applications due to their versatile use as

sensors, switches, and actuators. Examples include accelerometers for sensing, RF-

MEMS capacitive switches in communication, suspended-gate (SG) FETs in compu-

tation, and deformable mirrors in optics. In spite of the wide range of applications

of MEMS in diverse fields, one of the major challenges for MEMS is their instability.

Instability divides the operation into stable and unstable regimes and poses funda-

mental challenges for several applications. For example: Tuning range of deformable

mirrors is fundamentally limited by pull-in instability, RF-MEMS capacitive switches

suffer from the problem of hard landing, and intrinsic hysteresis of SG-FETs puts a

lower bound on the minimum power dissipation.

In this thesis, we provide solutions to the application specific problems of MEMS

and utilize operation in or close to unstable regime for performance enhancement in

several novel applications. Specifically, we propose the following: (i) novel device

concepts with nanostructured electrodes to address the aforementioned problems of

instability, (ii) a switch with hysteresis-free ideal switching characteristics based on

the operation in unstable regime, and (iii) a Flexure biosensor that operates at the

boundary of the stable and unstable regimes to achieve improved sensitivity and

signal-to-noise ratio. In general, we have advocated electrode geometry as a design

variable for MEMS, and used MEMS as an illustrative example of “Landau” systems

to advocate operation regime as a new design variable.
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1. INTRODUCTION

This thesis is about microelectromechanical systems (MEMS) and has two parts. The

first part focuses on specific applications of MEMS and associated problems; whereas

in second part, MEMS are identified and used as an illustrative example of a broader

class of bi-stable “Landau” systems. The specific contributions include:

• Role of Electrode Geometry in MEMS: Classical MEMS based applica-

tions have relied on planar electrodes. In this thesis, we for the first time,

use electrode geometry as a new design variable to address several problems

associated with classical planar electrodes (details in chapters 3 and 4).

• Using Operation Regime as a New Design Variable: Classical MEMS

actuators are associated with an intrinsic instability that divides the opera-

tion regime into stable and unstable regimes. Traditionally, this instability and

associated unstable regime have always been considered as a problem to be mit-

igated. In this thesis, we advocate using operation regime as a design variable

and show that operation in the unstable or close to unstable regime can give rise

to extraordinary performance enhancement. The concepts associated with the

use of “operation regime” as a design variable are not limited to MEMS only,

but belong to a general class of bi-stable Landau systems (details in chapters 5

and 6).

• Potential of Integration of MEMS and FETs: The first MEMS device

invented in 1967 was a resonant gate transistor [1] and was based on the inte-

gration of MEMS and an FET. After that, the two fields (namely, MEMS and

FET) evolved separately without realizing the true potential of their integra-

tion. In this thesis, we demonstrate the full potential of integration of MEMS



2

with FET and show that integrating two different technologies can enable ap-

plications that are not possible by individual technologies (details in chapters 5

and 6).

The rest of the chapter is organized as follows. In section 1.1, we briefly discuss the

history of electromechanical systems. We highlight the prospects of MEMS for both

More-Moore and More-than-Moore applications in section 1.2. We discuss different

types of MEMS and give examples of each type in section 1.3. In section 1.4, we

highlight various design variables that can help tune the performance. We present

the outline of thesis in section 1.5. In section 1.6, we list all the published papers

based on the work presented in this thesis.

1.1 History of Electromechanical Systems

Electromechanical systems have impacted our society in an unparalleled way. In

the last two centuries, the world has seen the phenomenal growth of electromechanical

systems at all length scales. In the mid- 1800’s to early 1900’s, it was electromechani-

cal systems at macro length scales (few centimeters to few meters) in the form of elec-

tromagnetically actuated motors and generators, which are now ubiquitous. Electric

motors and generators enabled conversion of electrical energy to mechanical energy

and vice versa, and are now indispensable for power generation and rail transport. In

the early to mid- 1900’s, electromechanical relays were used in communication and

computation much before the adoption of vacuum tubes. For example, electrome-

chanical relays were used in telegraphy and the first digital computer by Konrad

Zuse (invented in late 1930’s) was also based on electromechanical relays. It is only

after 1950’s that electromechanical systems at micron length scales, widely known as

microelectromechanical systems (MEMS), started to emerge. Pressure sensors were

the first MEMS devices, which were invented after the discovery of piezoresistive ef-

fect in silicon and germanium in 1954, and eventually commercialized in 1970’s [2].

In the mid- 1960’s, the first MEMS actuator known as resonant gate transistor was
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invented [1], eventually leading to many more applications based on the concept of

MEMS actuation. It should be stressed that MEMS actuators are electrostatically

actuated; electromechanical systems at macro length scales are actuated electromag-

netically . This is because magnetic forces are much weaker compared to electro-

static forces at small length scales [3]. Note that, MEMS contain moving parts, e.g.,

cantilevers, membranes, and diaphragms, which are made by micro-fabrication tech-

niques such as surface and bulk micro-machining in contrast to standard machining

techniques such as lathe machining [4]. With this historical background, in the next

section, we highlight the potential of MEMS for More-than-Moore and More-Moore

applications.
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1.2 MEMS for More-Moore and More-than-Moore

Since 1970’s, MEMS have been creating new applications in diverse fields, which

would not be possible otherwise. For example, they are widely used in automobile,

gaming, chemical, health, and display industries [5, 6]. In automobile industry, they

are used as accelerometers in crash sensors [7], pressure sensors in tyre pressure mon-

itoring systems (TPMS) [7], and gyroscopes in vehicle stability control system [6].

The replacement of joystick by Wii in gaming industry has been enabled by MEMS

based accelerometers [7]. In health industry, they are used as pressure sensors in

blood pressure measuring unit; whereas chemical industry requires pressure sensors

for monitoring of gas leakage. Other applications of MEMS include digital micromir-

ror devices (DMD) [8] in projectors, optical switches [7], ink-jet printers head [7],

and micro-fludics [7]. Beyond this industrial use of MEMS, in recent years, they are

gradually entering in the field of consumer electronics e.g., smart phones [9, 10].

Figure 1.1 uses the example of mobile phones to highlight the commercialization

of MEMS in consumer electronics. Since 1980’s, mobile phones have evolved from

being a very rudimentary and bulky to highly sophisticated and lightweight (Fig.

1.1 a). This continuing evolution may eventually embed bio-sensors in smart phones

to enable medical diagnosis. This evolution is not only driven by the increasing

number of transistors (following well-known Moore’s law of transistor industry), but

also continuously increasing number of MEMS [9, 10]. Although the total number

of MEMS components in any electronic gadgets is much smaller than the number

of transistors, it should be appreciated that each MEMS component enables a new

function. Note that, increasing number of transistors can only increase the brain

power of the system; whereas components such as MEMS enable senses and muscles.

Considering these two aspects, two research directions have emerged: The More-

Moore strategy focuses on integrating more number of transistors in a given area to

sustain the Moore’s law; and the More-than-Moore approach focuses on creating new

applications (Figs. 1.1-1.2).
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Figure 1.1 b shows different MEMS components that are inside the most advanced

phone of today, which include inertial sensors e.g., accelerometer and gyroscope, RF-

MEMS, microphone, and microdisplays. New MEMS are being added in each genera-

tion [9,10]. The addition of these MEMS components enable new applications adding

functional diversity. MEMS are therefore identified as ideal candidates for creating

More-than-Moore applications [11,12], and is reflected in their inclusion in 2011 ITRS

(International Technology Roadmap for Semiconductors) [6].

It is interesting to note that MEMS are traditionally known for creating new appli-

cations. But, in recent years, they are being considered for More-Moore applications

also. Since scaling of transistors is becoming more and more difficult every genera-

tion, sustaining the growth has become a fundamental challenge of enormous scientific

and economic importance. The scaling of transistors in past few technology nodes

have required new breakthroughs (Fig. 1.1 a). These breakthroughs have involved

engineering both the material and device geometry. Examples of material engineering

include use of strained Si and high-κ metal gate (HKMG); whereas adoption of Fin-

FET [13] is an example of device geometry engineering (Fig. 1.1 a). Next technology

generations will also require similar innovations. Various alternatives to the cur-

rent transistors include multi-gate FET [14], nanowire based gate all around (GAA)

FET [15], carbon nanotube FET [16], 2D materials such as graphene or MoS2 based

FET [17], tunnel FET [18], and negative capacitance FET [19]. MEMS, or rather, na-

noelectromechanical systems (NEMS) such as NEMS relays [20] and suspended-gate

field effect transistors (SG-FETs) [21] are also being considered as an alternative of

transistor due to their extraordinary performance to be discussed in section 1.3 and

we will discuss them in detail in subsequent chapters. In this thesis, we will show that

MEMS based switches provide us a unique platform to realize ideal switching charac-

teristics that are not possible by other existing alternatives of transistors. Therefore,

MEMS are not only good candidates for More-than-Moore applications, but also find

applications along More-Moore direction (Fig. 1.2). In the next section, we discuss

application space of MEMS and show specific examples for sensing, switching, and
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actuation. We also identify some of the bottlenecks of existing MEMS devices and

point out our proposal of novel MEMS devices to address those bottlenecks.

1.3 Application Space of MEMS

In the previous section, we pointed out that MEMS are potential candidates for

enabling both More-Moore and More-than-Moore applications. We now discuss spe-

cific applications of MEMS in broad range of fields. Broadly, MEMS can be cate-

gorized as sensors, switches, and actuators (Fig. 1.2). They differ in the following

ways. The input to sensors is some physical quantity e.g., pressure (P ), acceleration

(a), rotation (ω), mass (m), or some chemical concentration (C) and the output is

an electrical quantity like voltage (V ) or current (I). In contrast, input to MEMS
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actuators is an electrical quantity like voltage (V ) or current (I) and the output is

some displacement (y) or rotation (ω). In MEMS based switches, input is V or I

and the output is also V or I. Note that, MEMS based switches differ from classical

field effect transistors as the latter do not involve any mechanical movement; whereas

MEMS based switches are just specific examples of MEMS actuators in which y or ω

is converted to electrical quantities for output. Also, classical MEMS sensors such as

pressure sensors and accelerometers are micro-mechanical systems relying on the me-

chanical movement due to some external stimuli e.g., pressure (P ) or acceleration (a)

to be sensed. The readout based on either capacitance change (capacitive detection)

or resistance change (piezoresistive detection) is the only electrical part in classical

MEMS sensors. In contrast, MEMS actuators or switches are electromechanical sys-

tems that rely on the interaction between the electrostatic and mechanical forces.

The mechanical movement induced by electrostatic force enables novel applications.

We illustrate these points in details through following examples:

1.3.1 MEMS Sensors for More-than-Moore

A typical MEMS based sensor consists of a movable or a bendable element such

as a cantilever, fixed-fixed beam, or a diaphragm. Based on the interaction of stimuli

(to be detected) with the movable element, MEMS sensors can broadly be divided

into following three categories: (i) Force sensors, (ii) Elastic sensors, and (iii) Stress

sensors. In force sensors, the stimuli exerts an external force on the movable element

and causes it to move. The movement is then used as the signature for detection. In

elastic sensors, the interaction of stimuli with the movable element results in modifi-

cation of the elastic properties such as mass or the stiffness, resulting in the change

in the resonance frequency. This change in the resonance frequency is measured for

detection. Finally, in stress sensors, the stimuli introduces a stress in the movable

element resulting in either bending of the movable element or change in the resonance

frequency or both. Either of which can then be measured for detection. Note that,
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based on the operation mode of sensor, they are further classified in two categories:

(i) Static sensors and (ii) Dynamic Sensors. The static sensors are based on the mea-

surement of static deflection of movable element; whereas the dynamic sensors rely

on the change in resonance frequency. Force sensors are operated in static mode;

whereas elastic sensors are classically operated in dynamic mode. In this thesis, in

chapter 6, we will introduce a new class of elastic sensors that operate in static mode.

Interestingly, stress sensors can be operated in both modes. Figure 1.3 summarizes

this classification of MEMS sensors. Below, we illustrate each of the above points

using specific example of MEMS sensor.

Pressure Sensors: Static Force Sensors

Classical pressure sensors consist of a diaphragm suspended above a fixed electrode

(Fig.1.4 A). It is an example of a force sensor operated in static mode. When a

pressure is exerted on the diaphragm, it deflects downward towards the fixed electrode

changing the gap y between the two electrodes [22]. The change in capacitance due to

change in the gap (y) is then measured using electronic circuits. Another approach for

pressure sensing involves a diaphragm of a piezoresistive material, in which pressure on

the diaphragm creates a strain in the diaphragm and changes its resistance [22]. This
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change in the resistance can then be read electrically. Note that, the capacitive sensors

do not require any specific material, but piezoresistive sensors require a piezoresistive

material for sensing.

Accelerometer (Inertial Sensor): Static Force Sensor

Inertial sensors are used for the sensing of inertial quantities such as acceleration

and rotation [2,5]. Inertial sensors (e.g., accelerometers) are employed in automobiles

as crash sensors, smart phones for the rotation of screens, and Wii games [7]. Figure

1.4 B shows the schematic of an accelerometer. It consists of an inertial mass (M)

attached to the springs, a movable electrode, and two fixed electrodes as shown in Fig.

1.4 B. It is also an example of a force sensor operated in static mode. In presence of

an acceleration (a), inertial mass experiences a force of (Ma) opposite to the direction

of acceleration. The movement due to this acceleration changes the gap (y1 & y2)

between the movable and the fixed electrodes, and therefore changes the differential

capacitance. This change in the differential capacitance is then measured electrically

for the detection of acceleration. Note that, Fig. 1.4 B shows one movable and two

fixed electrodes, however, in practice there are multiple electrodes to amplify the

change in differential capacitance.

Vapor/Gas and Biomolecule Sensors

MEMS based vapor/gas and biomolecule sensors share the same structure that

consists of a cantilever (Fig. 1.4 C-D). In case of vapor/gas sensing [23], a vapor/gas

sensitive material such as a polymer is attached to the cantilever; whereas biomolecule

sensing [24] requires decorating the cantilever surface by receptor molecules. Note

that, vapor/gas or biomolecule sensor can be either elastic sensor or stress sensor

and can be operated in either static or dynamic mode. In static mode stress sensor,

addition of vapor/gas to the polymer or target-receptor binding creates a surface

stress and results in the bending of the cantilever. The displacement of the tip of the
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Fig. 1.4. Examples of MEMS sensors. (A) Classical pressure sen-
sors and (B) accelerometer with capacitive read out. In both cases,
change in the capacitance due to change in the gap between the two
electrodes is used for detection. Cantilever based emerging (C) va-
por/gas and (D) bio-molecule sensors. Both sensors rely on change in
the surface stress or mass of the cantilever for detection. Note that,
all these sensors solely rely on mechanical movement of a cantilever
or diaphragm, and electrical part is only for the read out. There is
no interaction between mechanical or electrostatic forces.

cantilever (y) is then measured using optical instruments. In contrast, dynamic mode

elastic sensors require observing the change in the resonance frequency (f) due to the

addition of mass to the cantilever due to the capture of vapor/gas or biomolecules.

Proposed Sensors in this Thesis

As mentioned above, classical MEMS based sensors are only micromechanical

systems. There is no interaction between electrostatic and mechanical forces. The

electrical part in classical MEMS sensors is only for readout. In chapter 6, we will

propose a new class of electromechanical sensors in which a voltage is applied to the
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movable element. The interaction between electrical and mechanical forces divides

the operation regime into stable and unstable regimes (details in chapter 2). We will

show that operation at the boundary of stable and unstable regimes enhances both

the sensitivity and signal-to-noise ratio of the sensor.

1.3.2 MEMS Actuators for More-than-Moore

We now discuss examples of MEMS actuators in which electrostatic force induces

displacement in a movable electrode and thus controls the gap (y) between the two

electrodes (one movable and one fixed). Note that, this ability to control the gap

(y) between the two electrodes enables many applications in diverse fields ranging

from communication to computation to optics (Fig. 1.5). Broadly, MEMS actuators

can be categorized as capacitive (Fig. 1.5 A) and FET actuators (Figs. 1.5 A -

B). Both capacitive and FET actuators share the same mechanical structure i.e., one

movable electrodeM1 or gate suspended in air. Electrically, capacitive actuators have

a fixed bottom electrode; whereas FET actuators have a semiconducting channel to

enable transistor action (Figs.1.5 A-B). Note that, both type of actuators can be

operated in two modes:(i) tunable (or analog) and (ii) switching (or digital). Tunable

mode requires continuous change of the gap (y) between the two electrodes with

continuous change of applied voltage. In contrast, only two states of the gap (y)

i.e., up state (y = y0) and down state (y = 0) are used in switching mode. Note

that, MEMS switches for More-Moore applications to be discussed below are special

case of MEMS actuators. The description of both tunable and switching applications

enabled by these actuators is discussed below:

Optics: Deformable Mirrors (Tunable Capacitive Actuator)

Deformable mirrors employ an array of MEMS actuators to change the shape of

a mirror. They are widely used in adaptive optics for enhanced imaging [25, 29].

They consist of an array of tiny (micron size) mirrors each of which is mounted on a
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Fig. 1.5. Examples of MEMS actuators used in the fields ranging from
communication to computation to optics. Schematic of (A) capacitive
and (B) FET actuators. MEMS actuators are used as (C) deformable
mirrors [25] and (D) Mirasol displays [26] in optics, (E) RF-MEMS
varactors [27] and (F) capacitive switches [28] in communication, (G)
NEMS relays [20] and (H) SG-FET [21] in computation.

movable electrode of MEMS actuator as shown in Fig. 1.6 A. Controlling the position

of the movable electrode in each actuator enables adjusting the relative position of

the mirrors as shown in Fig. 1.6 B. This relative adjustment of the position of mirrors

allows to tune the shape of the mirror and thus enable corrective optics applications.

The key performance metric of deformable mirrors is the tuning range and a large

tuning range is desired. As we will see in chapter 2, the intrinsic instability of MEMS

actuators, however, limits the tuning range. In chapter 4, we will propose design of

novel tunable MEMS actuators with improved tuning range.

Optics: Mirasol Displays (Switching Capacitive Actuator)

Mirasol displays [26] are reflective interferrometric displays and work based on the

principle of thin film interference. These displays do not require any external light

source, instead use the ambient light for display. Each pixel in these displays consists
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Fig. 1.6. Application of capacitive MEMS actuators in optics. (A)-
(B) Tunable deformable mirrors which are used in adaptive optics.
The relative position of individual mirror mounted on the movable
electrode can be controlled through the application of voltage between
movable and fixed electrode, thus enabling tuning of the shape of
the mirror. (C) Operation of Mirasol displays which are a reflective
interferrometric low power displays.

of three MEMS actuators (each for different color red, green, and blue). Figure 1.6 C

shows the schematic and operation of Mirasol displays. The constructive interference

of reflected light from thin film stack and bottom reflective membrane gives rise

to a particular color, which depends on the gap between thin film stack and the

reflective membrane. When a voltage is applied between thin film stack and reflective

membrane, they collapse and the pixel appears black. Note that, the operation of

Mirasol displays rely on the structure and MEMS actuation rather than any specific

properties of a material as in LED or LCD based displays. Moreover, their standby

power is very small, and power is consumed only during switching between different

states of color e.g., blue to black.
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Communication: RF-MEMS Varactors (Tunable Capacitive Actuator)

Radio frequency (RF)-MEMS varactors are tunable capacitors. Capacitance is

tuned by applying the voltage between movable and the bottom fixed electrode (Fig.

1.5 E). Schematically, they have the same structure as shown in Fig. 1.5 A. Dielectric

need not be present in some cases. RF-MEMS varactors [30] are used in low noise

parametric amplifiers (LNA), harmonic frequency generators, and voltage controlled

oscillators (VCOs) [30]. Note that, classical varactors based on Si or GaAs p-n or

Schottky junction diodes do not provide adequate tuning, sufficient RF linearity, high

enough quality factor, and higher self-resonance frequency as compared to RF-MEMS

varactors [30].

Communication: RF-MEMS Capacitive Switches (Switching Capacitive

Actuator)

RF-MEMS capacitive switches (Fig. 1.5 F) are used for signal routing, impedance

matching networks, and adjustable gain amplifiers [28, 30, 31]. Figure 1.7 A shows

the use of an RF-MEMS capacitive switch in a transmission line to pass or block

an RF signal. In the up state of the movable electrode, impedance is high due to

low capacitance, and therefore signal is transmitted (Fig. 1.7 B). In contrast, when

electrode is in the down position, impedance is low due to high capacitance, and

therefore signal is reflected (Fig. 1.7 C). Note that, RF-MEMS capacitive switches

have lower power consumption, lower insertion loss, lower return loss, higher RF

linearity, and better isolation compared to their semiconductor counterparts such as

Si FETs, GaAs MESFETs (Metal Semiconductors Field Effect Transistors), and p-

i-n (PIN) diodes [28, 30, 31]. Since the operation of the switch requires switching

the movable electrode between up and down position, the movable electrode hits the

bottom dielectric with high velocity during switching and causes dielectric surface

to degrade. This is one of the key reliability concerns of RF-MEMS switches. We
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Fig. 1.7. Operation of an RF-MEMS capacitive switch which utilizes
the switching mode of a capacitive MEMS actuator. (A) Equivalent
circuit model which shows the use of a capacitve switch. (B) When
voltage is not applied, capacitance is low and impedance is high, signal
passes. (C) In contrast, when voltage is high, capacitance is high and
impedance is low, signal reflects. Z0 is the impedance of transmission
line itself.

will discuss the physics of hard-landing in chapter 2 and provide novel strategies of

soft-landing in chapter 4.

Proposed Actuators in this Thesis

We will show in chapter 2 that the interaction between the electrostatic and me-

chanical forces in MEMS actuators results in an intrinsic instability. This instability

poses application specific problems in several of MEMS applications. In chapter 4, we

propose novel design of MEMS actuators that rely on the use of electrode geometry
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as a design variable. The proposed actuators use nanostructured electrodes (instead

of classical planar) to circumvent the problems associated with instability.

1.3.3 MEMS Switches for More-Moore

In the previous section, we discussed More-than-Moore applications of MEMS

actuators. Here, we illustrate some of the emerging MEMS actuators namely MEMS

switches for More-Moore applications. As mentioned above, MEMS switches are

specific examples of MEMS actuators with voltage or current as the output.

Computation: NEMS Relays (Switching Capacitive Actuator)

Figure 1.8 shows the schematic of NEMS relays, which are examples of MEMS

capacitive actuators. They consist of a cantilever (called source) and two fixed elec-

trodes (called gate and drain, respectively). The terminology of source, gate, and

drain has been borrowed from transistors. In the OFF state, source is separated from

the drain and no current flows between them (Fig. 1.8 a). In ON state, application

of voltage between gate and source pulls the source down to contact drain and a

direct current path is created between them (Fig. 1.8 b). The major advantage of

NEMS relays over current FETs is their superior OFF state performance. NEMS

relays have very low off current (compared to classical FETs) due to the presence

of an air-gap between source and drain. Since turning on of NEMS relays require

mechanical movement, they are slower than classical FETs. The cascading of NEMS

relays at circuit level will make the circuit run even slower due to large mechanical

delays. Therefore, NEMS relays based circuits employ different circuit architectures

in which no operation relies on cascading of NEMS relays. Instead, during any op-

eration, corresponding NEMS relays are turned on simultaneously. Further details

can be found in reference [32] and references therein. Note that, hard-landing during

switching is also one of the reliability concerns in NEMS relays and will be discussed

further in chapter 4.
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Fig. 1.8. Operation of a nanoelectromechanical system relays for
More-Moore applications. (A) In off state, source is separated from
the drain by an air-gap; whereas (B) in on state metallic source and
drain are shorted to create a direct current path.

Computation: Suspended-Gate FET (Switching FET Actuator)

Suspended-Gate Field Effect Transistor (SG-FET) [21] combines both MEMS

actuation and FET behavior. It is a FET with a movable gate (Figs. 1.5 B & H). The

movement of the gate due to the application of gate voltage gives rise to unique FET

characteristics. Like NEMS relays, SG-FET also has very low sub-threshold leakage

compared to classical FETs because of the separation of gate from the channel by

an air-gap. Therefore, SG-FET can also be used as a sleep transistor. However,

the inherent pull-in instability of MEMS actuators gives rise to abrupt switching

equivalent to sub-threshold swing of 0mV/dec [21]. Because of such sharp switching

characteristics, SG-FET is considered as an ideal candidate for the replacement of

classical FETs. However, the intrinsic hysteresis of SG-FET poses a fundamental

challenge for the reduction of power supply voltage. We will discuss the issue of

hysteresis in chapter 2 and address it in chapter 5. Also, in SG-FET, gate is separated

from the channel by a large distance in off state, one should address the issue of drain

induced barrier lowering (DIBL), which is supposed to be worse than classical FETs.
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1.4 Design Variables

In this chapter, we have so far focused on potential of MEMS from an application

point of view. We discussed several MEMS devices both for More-Moore and More-

than-Moore applications. We now discuss what are the different design variables that

can be optimized to tune the performance of any electronic or MEMS based device.

In general, there are three key ingredients of a device: (i) material, (ii) geometry, and

(iii) operation regime (Fig. 1.9). The performance of a device can be tuned through

tuning of any of the variable. Note that, the unique physics of MEMS provide a

platform to advocate “operation regime” as a new design variable for performance

enhancement (details in chapter 2). We also show in chapter 4, how the use of

electrode geometry as a design variable can address some of the problems associated

with planar electrodes. We discuss several examples to further highlight the role of

each of the design variable.

1.4.1 Material

The first design variable is “material”. The performance of any device (whether

for More-Moore applications or More-than-Moore applications) can be improved by

choosing a better material. For example, the resistance of a metal wire can be de-

creased by choosing a material with high conductivity. The wires made of gold have

low resistance compared to wires made of copper. Also, pull-in voltage in RF-MEMS

capacitive switches can be lowered by having a membrane of low Young’s modu-

lus [33]. Also, channel materials such as GaAs [34] or CNT [16] (instead of Si) can

improve the on current due to higher mobility of charge carriers. One can cite more

examples, but it has been observed that the discovery of new materials with better

property keep replacing old materials. That is the reason that the world moved from

stone age to bronze age to iron age. The bottom line is adoption of materials with

better properties can lead to better device performance.
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Fig. 1.9. Material, geometry, and operation regime are the three key
components of any electronic or electromechanical device.

1.4.2 Geometry

The second design variable is “geometry”. In certain cases, the device perfor-

mance can be modified/improved by changing the device geometry (keeping material

the same). For example, the resistance of a wire can be modified by changing its

length or cross-sectional area. We will also show in chapters 3-4 how modifying the

electrode geometry helps address some of the problems associated with classical pla-

nar electrodes based MEMS. The other example of modifying the geometry includes

antenna, where the geometry of antenna determines the directivity and the radiation

pattern [35]. Similarly, in biosensors, the geometry of the sensor surface determines

the response time [36]. The density of states of classical materials such as Si depends

on the dimensionality of the material. For example, D(E) ∝ E
DF−2

2 with DF = 3 for

bulk semiconductors, DF = 2 for a sheet, and DF = 1 for a wire, where D(E) is the

density of states at energy E. Also, the electric field due to a charge source depends

again on the dimensionality of the source. For example, ξ ∝ 1
r2−DF

with DF = 0 for
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a point source, DF = 1 for a line source, and DF = 2 for a planar source, where ξ is

the electric field at a distance r from the source. All these examples therefore suggest

that geometry can be used to tune the device performance.

1.4.3 Operation Regime

The third variable is “operation regime”, which is very different from conventional

design variables such as material and geometry. Traditionally, electronic devices were

operated in stable regimes only. But, recently it has been proposed that operation

in or close to unstable regime can lead to performance enhancement. For example,

negative capacitance FETs operate in the unstable regime to provide necessary volt-

age amplification leading to lower sub-threshold swing [19]. In section 1.3, we also

saw that inherent pull-in instability of SG-FET leads to 0mV/decade sub-threshold

swing characteristics [21]. We will show several such examples in chapters 5 & 6,

where modifying the operation regime or utilizing instability will lead to performance

enhancement.

The role of the three design variables can be easily understood by the following

analogy. Consider, material and geometry of a device are represented by numbers as

shown in Fig. 1.10. The higher number represents better material quality or better

geometry. The arithmetic operation (addition or multiplication) between these two

numbers represents the “operation regime” of the device. Performance is the output

of this arithmetic operation. We consider addition as the classical operation in the

stable regime; whereas multiplication represents operation in or close to the unstable

regime. This analogy clearly highlights that the improvement in material or device

geometry improves the performance. However, an extraordinary gain in performance

is possible only by changing the operation regime. We will demonstrate this using

specific examples of MEMS in chapters 5 and 6.
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Fig. 1.10. Explaining the role of various design variables using simple
example of arithmetic operations.

1.5 Outline of the Thesis

The focus of this thesis is on electronic/electromechanical systems with intrinsic

instability. We call such systems “Landau” systems (details in chapter 2). Landau

systems are bi-stable in nature and are characterized by a two well energy landscape.

The presence of instability (or bi-stable nature) naturally divides the operation regime

in two regimes: stable and unstable. The goal of the thesis is to understand insta-

bility and its consequences, provide solutions to the problems that arise because of

instability, and utilize it (operation in or close to the unstable regime) for perfor-

mance enhancement. In this thesis, we have used MEMS capacitive actuators as an

illustrative example of Landau systems. For the specific applications of MEMS, we

have proposed use of electrode geometry as a design variable to address the problems

arising because of instability. We have then used MEMS as a platform to advocate
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the “operation regime” as a new design variable. For the sake of generality, we have

considered ferroelectric materials as another example of Landau systems. We show

that the concepts derived from the analysis of MEMS are general enough to be ap-

plicable to ferroelectric materials. The analysis presented in this thesis is based on

experimentally validated detailed numerical simulations and analytical calculations.

Note that, the chapters 3 & 4 are specific to MEMS applications; whereas chapters

5 & 6 only use MEMS as a platform to advocate the role of operation regime. The

outline of the thesis is as follows (Fig. 1.11):

• In chapter 2, we introduce the concept of Landau systems using MEMS ca-

pacitive actuators and ferroelectric materials. Using the evolution of energy

landscapes, we discuss the origin of instability and point out its consequences

on the static/dynamic response of the system. We then point out which features

of instability are important in which applications. We highlight the problems

that arise because of the instability. We also discuss the applications where

instability can be used for performance enhancement.

• The focus of chapter 3 is on the development of a universal framework for the

instability in MEMS capacitive actuators. We provide compact analytical for-

mulas for instability and related characteristics that can explain a broad range

of experimental data in a single theoretical framework. We also illustrate the

usefulness of the developed scaling relationships by using them for the charac-

terization of novel MEMS actuators.

• In chapter 4, we focus on applications of MEMS capacitive actuators in which in-

stability lead to a fundamental problem. Specifically, we propose novel solutions

to address the problem of limited travel range in tunable gap electromechani-

cal actuators and hard-landing in MEMS switches. The proposed solutions are

based on utilizing the electrode geometry as a design variable.

• In chapter 5, we harness instability or use operation regime as a design variable

for performance enhancement in field effect transistors (FETs). We utilize the
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Fig. 1.11. Schematically showing the outline of the thesis. Each
chapter focuses on one key aspect of the instability.

negative capacitance behavior in the unstable regime for voltage amplification

in suspended-gate FET and ferroelectric FET for sub-60mV/decade switching

characteristics. We then establish that there is a fundamental lower limit of

sub-threshold swing associated with each negative capacitance FET. We find

that the limit depends on the type of negative capacitor and channel type. We

then propose a novel device concept that uses series combination of two different

types of negative capacitors as gate insulator of a FET. We then show that the

proposed device with constant channel capacitance has the potential to achieve

hysteresis-free 0mV/decade (ideal) switching characteristics.

• In chapter 6, we continue with the philosophy of using operation regime as a

design variable. We propose a new class of Flexure biosensors that operate close

to the boundary between stable and unstable regime to not only improve the

sensitivity but also amplify signal-to-noise ratio.

• In chapter 7, we summarize the findings of this thesis and propose some possible

future directions.
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2. ELEMENTARY PHYSICS OF INSTABILITY

In the previous chapter, we mentioned about using instability and operation regime

as a design variable. In this chapter, we illustrate the physics of instability and how

does that lead to stable and unstable regimes, using MEMS capacitive actuators as

an example case. For MEMS capacitive actuators, we show that its operation and

instability can be understood using a simple spring-mass system. We establish the

connection between the so called two well “Landau” energy landscape and the energy

landscape of MEMS capacitive actuators. Once this connection is established, we find

that the phenomenon of instability is a key characteristic feature of all Landau systems

and we use ferroelectric material as another example to justify it. Our approach is very

general: It explains both the static and dynamic characteristics, as well as provide

techniques to control device operation. This chapter is organized as follows. We start

with the discussion of instability in MEMS in section 2.1. We discuss ferroelectrics

in section 2.2. We comment on the general features of Landau systems in section 2.3

and conclude in section 2.4.

2.1 Instability in MEMS/NEMS

2.1.1 Spring-Mass Model of MEMS Capacitive Actuators

Figure 2.1 shows the schematic of a typical voltage actuated MEMS capacitive

actuator. As explained in chapter 1, it consists of a movable electrode M1 and a

fixed electrode M2, separated by an air-gap and a thin dielectric (Fig. 2.1 a). The

application of voltage VG causesM1 to deflect toward the fixed dielectric and reduced

gap between M1 and M2 increases the capacitance. This tuning of the gap and the
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Fig. 2.1. (a) Schematic of a MEMS capacitive actuator, represen-
tative of many applications such as, RF-MEMS switches, varactors,
deformable mirrors, and Mirasol displays. (b) Lumped parameter
spring-mass model of the same.

capacitance with VG is the basis of many applications such as, RF-MEMS capacitive

switches [30], varactors [30], deformable mirrors [25], and Mirasol displays [26].

The behavior of MEMS capacitive actuator can be modeled using a simple spring-

mass system (Fig. 2.1 b), which is characterized by a single displacement y assuming

all the points on M1 move together. In spring-mass model, we assume that electrode

M1 is suspended from a spring above the fixed electrode M2. And, the operation is

governed by the interaction between mechanical energy (or force) and electrostatic

energy (or force), and are discussed below-

Energy Landscapes : Spring and Electrostatic Energy

The spring energy (derived from the mechanical energy in Euler-Bernoulli frame-

work, refer to appendix A) consists of two parts: (i) linear spring energy and (ii)

non-linear spring energy corresponding to a spring of cubic non-linearity. The ex-

pression for each components is given by-

UL
s =

1

2

(

αEI

L3
− βP

L

)

(y0 − y)2 =
1

2
k (y0 − y)2 , (2.1)
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UNL
s =

γEA

4L3
(y0 − y)4 =

1

4
k′ (y0 − y)4 , (2.2)

where α, β, and γ are the geometrical constants that depend on the specific boundary

conditions of electrode M1 (refer to Eqs. A.1 - A.2 for fixed-fixed case). Note that,

k =
(

αEI
L3 − βP

L

)

is the linear spring constant, whereas k′ ≡ γEA

L3 corresponds to

a spring of cubic non-linearity. Here, E is the Young’s modulus of the electrode

material, I is the second moment of area, L is the length, and P is the axial load

M1. For a rectangular cross-sectional beam, second moment of area I is given as

I ≡ WH3

12
[37], where W is the width and H is the thickness of M1. It should be

stressed that the term 1
2
αEI
L3 (y0 − y)2 in UL

s corresponds to bending energy of M1

(Eq. A.3 in appendix A) and −βP

2L
(y0 − y)2 energy component corresponds to the

stress inM1 (Eq. A.5). Moreover, the quadratic dependence of UL
s on the stretching of

spring (i.e., (y0−y)) is the consequence of quadratic dependence of UBending & UStress

on y(x) (Eqs. A.3 - A.5). Similarly, UNL
s corresponds to UStretching (Eq. A.4) and

quadruple dependence of UStretching on y(x) is reflected in the quadruple dependence

of UNL
s on (y0 − y). Note that, the equations 2.1-2.2 governs the mechanical aspect

of the actuator.

The other energy component is the electrostatic energy and consists of two parts:

(i) energy stored in the capacitor ( Q2

2C(y)
) and (ii)decrease in the energy of the voltage

source (−QVG), and is given by-

Uelec =
Q2

2C(y)
−QVG, (2.3)

where C(y) is the total capacitance of the MEMS actuator and Q is the charge on

M1.

The static operation of the actuator is simply governed by minimization of total

energy, U = UL
s + UNL

s + Uelec, with respect to Q and y. Minimizing U with respect
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to Q, i.e., dU
dy

= 0, yields well-known capacitor equation i.e., Q = C(y)VG. The total

energy of the system thus reduces to-

U = UL
s + UNL

s − 1

2
C(y)V 2

G. (2.4)

Further minimization of U with respect to y, i.e., dU
dy

= 0, yields the following force

balance equation [38]-

Force Balance : Spring and Electrostatic Forces

Fs = Felec, (2.5)

where Fs is the total restoring spring force and is given by-

Fs ≡ k (y0 − y) + k′ (y0 − y)3 . (2.6)

In equation 2.6, the linear term corresponds to UL
s and cubic term to UNL

s . And, Felec

is the total electrostatic force acting on M1 and is given by-

Felec = −1

2

dC

dy
V 2
G. (2.7)

The electrostatic force is governed by the capacitance (C) of the actuator. For a

parallel-plate capacitive actuator, total capacitance is C = ǫ0WL

y+
yd
ǫd

. Here, ǫ0 is the

permittivity of free space, yd is the dielectric thickness, and ǫd is the corresponding

dielectric constant. Therefore, for parallel-plate capacitive actuator, the electrostatic

force reduces to-

Felec =
1

2

ǫ0WL
(

y + yd
ǫd

)2V
2
G. (2.8)
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Similarly, once C is known, Felec can easily be calculated for other geometries also.

Equations 2.5-2.7 govern the static behavior of MEMS actuators. Dynamics of the

spring-mass system in response to VG is dictated by Newton’s law-

Equation of Motion

m
d2y

dt2
+ b

dy

dt
+ Fs = Felec. (2.9)

Equation 2.9 is similar to Eq. A.13. Here, m is the total mass of M1 and b is

the damping coefficient, which is governed by squeeze-film gas damping in MEMS

actuators [39].

Conditions of Stability/Instability

So far, we have discussed equations, such as, force balance (Eq. 2.5) that can be

used to find the equilibrium points. We now discuss how to determine whether an

equilibrium point is an stable equilibrium point or an unstable equilibrium point. For

that, we re-write Eq. 2.9 (for b = 0), as follows-

dy

dt
= v, m

dv

dt
= Felec − Fs; (2.10)

where v is the velocity. Now, using the conditions of equilibrium, which requires

all time derivatives to be zero, i.e., dy

dt
= 0 and dv

dt
= 0, we get back the equation

of force balance (Eq. 2.5). Therefore, at equilibrium v = 0 ≡ veq and Fs (yeq) =

Felec (yeq), where yeq and veq define the points of equilibrium. In order to check the

stability/instability of points defined by yeq and veq, consider small perturbations
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around the equilibrium point by letting y = yeq +∆y and v = veq +∆v. With these

values of y and v, Eq. 2.10 reduces to -

d∆y

dt
= ∆v, m

d∆v

dt
=
d (Felec − Fs)

dy
∆y ≡ keff∆y (2.11)

where keff ≡ d(Felec−Fs)
dy

= d2U
dy2

is the local (or effective) stiffness at y = yeq. Note that,

the new system has trivial equilibrium point at (0, 0) and it’s stability depends only on

the value of keff . One may now seek solutions to Eq. 2.11 by setting ∆y = Aeλt and

∆v = Beλt. For nontrivial solutions, the following equations must be satisfied [40]-

λ2 + keff = 0. (2.12)

Equation 2.12 suggests that if λ is real and positive, the corresponding equilibrium

point will be unstable; whereas if λ is imaginary, equilibrium point will be stable.

Therefore, based on linear stability analysis, following are the conditions of stable

and unstable equilibrium-

Stable : keff ≡
d2U

dy2
> 0 (2.13)

Unstable : keff ≡
d2U

dy2
< 0 (2.14)

Note that, if d
2U
dy2

= 0, linear stability analysis cannot be applied, one will need to con-

sider higher order terms in the series expansion of Felec and Fs. We must emphasize

that there is a rich literature on the classification of stability/instability of equilib-

rium points such as Lyapunov’s stability or Structural stability criteria [40], we have

however restricted ourselves to linear stability analysis, relevant for the discussion in
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this thesis. For more rigorous discussion on instability, the reader may refer to the

following references [40, 41].

2.1.2 Origin of Instability in MEMS Capacitive Actuators

We now illustrate how does instability arise in a simple spring-mass system. Origin

of the instability can be understood by looking at the evolution of (i) total system’s

energy landscape or (ii) spring and electrostatic forces in response to the applied

VG. Although, both approaches capture the essential physics and explain the MEMS

behavior, some may find one approach more convenient than the other.

Evolution of Energy Landscapes

Figure 2.2 a shows U -y (Eq. 2.4) profile for a linear spring (i.e., k′ = 0 in Eq.

2.4) and parallel plate capacitive actuator, when VG is increasing. At each VG, M1

is stabilized at the minimum of U . When VG is low, U -y profile exhibits only one

minima. But, with increasing VG, U -y profile exhibits two minima corresponding

to two stable equilibrium points (one at y ≈ y0 and other at y = 0, see open and

filled circles in Fig. 2.2 a) and one maxima corresponding to unstable equilibrium

point (open square in Fig. 2.2 a). M1 is stabilized at one of the two equilibrium

points (y ≈ y0 when VG is increasing from zero). Note that, with increasing VG, the

stable and unstable equilibrium points approach each other to annihilate at VG = VPI

and making MEMS capacitive actuator inherently unstable. Beyond, VG > VPI , U -y

profile exhibits only one minima at y = 0. Therefore, when VG exceeds the pull-in

voltage (VPI), M1 can no longer be stabilized in air. Instead, it gets pulled-in to

stabilize at y = 0, corresponding to the global minima of U . This is the well-known

pull-in instability of voltage actuated MEMS actuators [1] and occurs at y = yc, where

yc =
2

3
y0 −

yd
3ǫd

. (2.15)
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(c)(a) (b)

VG increasing

VG=VPI

VG>VPI

VG=VPO

VG<VPO

VG decreasing

Fig. 2.2. Evolution of energy landscapes when (a) VG is increasing
and (b) VG is decreasing. Open circle and open triangle denote the
position where M1 is stabilized when VG is increasing or decreasing,
respectively. Filled symbols denote the other minima in energy land-
scape. Open square denote the unstable equilibrium point which sep-
arates the two stable equilibrium points by an energy barrier. (c) The
corresponding hysteretic y-VG characteristics.

Equation 2.15 implies that (i) yc =
2
3
y0 for yd = 0 and (ii) yc does not depend on the

stiffness ofM1 and always occurs at two third of the initial air-gap for a parallel-plate

actuator [1].

OnceM1 is pulled in, it cannot be pulled back at the same VG due to the presence

of an energy barrier (Figs. 2.2 a-b). As VG is reduced below VPI , U -y profile is

modified and unstable equilibrium moves towards y = 0 as shown in Fig. 2.2 b.

M1 however remains stuck at y = 0 until unstable equilibrium occurs at y = 0 at

VG = VPO. Any further reduction in VG below pull-out voltage (VPO), makes M1 to

swing back to air. Figure 2.2 c shows the corresponding y-VG hysteretic characteristics

showing the abrupt change in y at VG = VPI and VG = VPO.

Balance of the Two Forces

The energy landscape in Fig. 2.2 described the combined effect of the integrated

system. The analysis of individual components provides further insights as follows.

We now look at the evolution of spring and electrostatic forces in response to the
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applied VG to understand the operation of MEMS capacitive actuator. Figure 2.3 a

shows the two forces for a linear spring (i.e., k′ = 0 in Eq. 2.6) and parallel plate

actuator, when VG is increasing. As expected from Eq. 2.6, Fs is independent of

VG; whereas Felec increases as V 2
G (Eq. 2.8). The forces are balanced at two points

(open circle and open square in Fig. 2.3 a) in the air-gap and M1 is stabilized at

points denoted by open circles. The points denoted by open squares corresponds to

an unstable equilibrium point. As VG increases, the two points come closer and merge

at VG = VPI . Beyond VG exceeding VPI , Felec overwhelmes Fs and they cannot be

balanced at any point in the air. Therefore, M1 is pulled in to rest on the dielectric

at y = 0. As evident from Fig. 2.3 a, at VG = VPI , Fs and Felec are tangent to each

other. In other words, mechanical (−dFs
dy

) and electrical (dFelec
dy

) stiffness match at

pull-in i.e.,

k =
ǫ0WL

(

yc +
yd
ǫd

)3V
2
G. (2.16)

Equations 2.5-2.8 together with Eq. 2.16 yield Eq. 2.15. Corresponding analytical

formula for pull-in voltage is given by-

VPI =

√

√

√

√ 8

27

k
(

y0 +
yd
ǫd

)3

ǫ0WL
. (2.17)

Once M1 is pulled in, it cannot be pulled back at the same VG due to much higher

Felec than Fs at y = 0 (Fig. 2.3 a). When VG is reduced below VPI , M1 remains stuck

at y = 0 until Felec becomes equal to Fs. This occurs at pull-out voltage (VPO), which

is given by-

VPO =

√

2ky0y2d
ǫ0ǫ2dWL

. (2.18)

As soon as VG is reduced below VPO, Fs exceeds Felec at y = 0 and M1 comes back
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(a)

N

VG increasing

VG=VPI

VG>VPI

(b)

N

VG decreasing

VG=VPO

VG<VPO

ÞÞÞÞ

Þ

Fig. 2.3. The evolution of the spring and electrostatic forces, when
(a) VG is increasing and (b) VG is decreasing. Dotted straight line
corresponds to the spring force; whereas solid curved lines correspond
to the electrostatic force. Open circle and open triangle denote the
position where M1 is stabilized when VG is increasing or decreasing,
respectively. Filled symbols denote the other position where M1 can
also be stabilized. Open squares denote the points where the two
forces balance, but M1 cannot be stabilized.

in air. This asymmetry between pull-in and pull-out leads to the hysteretic y-VG

characteristics as shown in Fig. 2.2 c.

2.1.3 Consequences of Pull-in Instability

In the previous section 2.1.2, we showed how the interaction between mechanical

and electrostatic energy (or forces) leads to pull-in instability and hysteresis in capac-
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itive MEMS actuators. We now carefully examine the consequences of this instability

on the static and dynamic response.

Static Response

(i) Stable and Unstable Regimes:

First obvious consequence of pull-in instability is thatM1 can only be stabilized in

certain region of the air-gap, while rest of the region is inherently unstable. Beyond

pull-in, M1 is stabilized at y = 0, provided a thin dielectric is present (i.e., yd 6= 0).

The bottom line is that there are two stable regimes (corresponding to open/filled

circles in Figs. 2.2-2.3) separated by an inherently unstable regime (corresponding

to open squares in Figs. 2.2-2.3) as shown in Fig. 2.4 (characteristics of a typical

bistable system). We will later see that all bi-stable Landau systems are characterized

by this property and may lead to many novel applications.

In the literature, region of the air-gap in which M1 can be stabilized is termed as

travel range of M1 and is equal to y0− yc (Fig. 2.4). Travel range is a very important

performance metric for tunable-gap electromechanical actuators and a large value is

desired. But, as we saw, pull-in instability limits it to only one third of the air-gap

for parallel-plate actuators (Fig. 2.4). We will come back to this issue in chapter 4

and discuss various ways of extending the travel range.

(ii) Spring-Softening Effect:

We saw that the application of VG not only changes y, but also modifies the

curvature of U − y profile at the stable and unstable equilibrium points (Fig. 2.2).

This change in the curvature can be captured by defining an effective stiffness of M1

and is given by-

keff
k

≡ d2U

dy2
= −d (Fs − Felec)

y
= 3− 2

y0
y
. (2.19)
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Fig. 2.4. Schematically showing the effect of instability in MEMS
capacitive actuators on its static and dynamic response.

Figure 2.5 a shows keff as a function of y. keff decreases with decrease in y (or

equivalent increase in VG)and becomes zero at pull-in, i.e., y = 2y0
3
. Intuitively, this

behavior can be understood as follows. The system is characterized by two stiffness:

mechanical and electrical. Mechanical stiffness (km = −dFs/dy = k) is positive and

independent of VG; whereas electrical stiffness (ke = dFe/dy = − ǫ0WLV 2
G

y3
for yd = 0)

is negative. As a result, effective stiffness keff = km + ke continues to decrease with

increasing VG and eventually becomes zero at pull-in. This is the well known spring-

softening effect [1]. keff is negative for y < 2y0
3

and is signature of unstable regime.

This spring-softening effect have important consequences for sensing applications and

will be discussed in detail in chapter 6.

(iii) Negative Capacitance:

In the upper stable regime, MEMS capacitive actuator behaves like a regular

tunable capacitor. With the increase in VG, y decreases and capacitance (C = ǫ0/y)

increases. However, in the unstable regime, the effective air-gap capacitance (Cair ≡
WL

(

d2U
dQ2

)

−1

= dQ

dVair
) becomes negative (Fig. 2.5 b). Here, Vair is the voltage drop

in air and Q = ǫ0Vair/y is the per unit area charge on M1. Note that, Cair is the

differential capacitance and only signifies the curvature of U -Q curve. Although, this
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behavior is similar to the negative effective stiffness in the unstable regime, it has not

been much appreciated in MEMS literature.

This strange behavior can be understood in a more transparent way if we look

at U − Q profile instead of U − y profile. For that, we first minimize total energy

U = UL
s +UNL

s +Uelec with respect to y i.e., dU/dy = 0. This yields the force balance

equation k (y0 − y) = Q2WL

2ǫ0
. The total energy is now simplified to-

U

WL
=

1

2
α

′

0Q
2 +

1

4
β

′

0Q
4 −QVG, (2.20)

where α
′

0 = y0/ǫ0 and β
′

0 = −WL/2ǫ20k are material/geometrical constant of the

actuator. In Equation 2.20, the first term (1
2
α

′

0Q
2) and the third term (−QVG)

correspond to the normal capacitor energy and the decrease in the energy of the

voltage source, respectively. The second term (−1
4
β

′

0Q
4) however is unusual and is

responsible for the negative capacitance in the unstable regime. One can now look

at the evolution of U − Q profiles with applied VG to understand the operation of

MEMS capacitive actuator. Using Eq. 2.20, effective air-gap capacitance is given by-

C−1
air ≡

1

WL

d2U

dQ2
= α

′

0 + 3β
′

0Q
2 =

3y − 2y0
ǫ0

. (2.21)

Equation 2.21 suggests that Cair is positive when y >
2y0
3
, negative when 0 < y < 2y0

3
,

and infinite at y = 2y0
3

(Fig. 2.5 b). The charges Qc1 and Qc2 in Fig. 2.5 b corresponds

to y = 2y0
3

and y = 0, respectively, and are given by-

Q2
c1 =

2ǫ0ky0
3WL

,Q2
c2 =

2ǫ0ky0
WL

. (2.22)

This negative capacitance behavior cannot typically be observed because system is

unstable in that regime. However, if the device is stabilized in the negative capac-

itance regime using feedback mechanisms, it can lead to voltage amplification. We

will discuss this effect and its consequences in field effect transistors in chapter 5.
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Fig. 2.5. (a) Effective stiffness (keff ) and (b) effective air-gap capac-
itance (Cair) as a function of the gap (y) between the two electrodes
and charge (Q) on M1, respectively.

(iv) Transition Boundary:

We just saw that MEMS exhibit normal behavior with positive stiffness and capac-

itance; whereas unusual behavior such as negative capacitance and negative stiffness

in the unstable regime. However, at the transition boundary (which occurs at y = 2y0
3

for parallel-plate geometry) of stable and unstable regime, effective stiffness is zero

i.e., keff = 0 and effective air-gap capacitance is infinite i.e., C−1
air = 0. We will see in

chapter 5 that infinite air-gap capacitance at the transition boundary will lead to a

fundamental result of negative capacitance field effect transistors; whereas zero stiff-

ness at the transition boundary will become the basis of novel critical-point Flexure

sensors in chapter 6.

(v) Abrupt Transition:

In the previous subsections, we looked at what happens in the stable/unstable

regimes and at the corresponding transiton boundary. Another important thing to

note is the abrupt transition from one stable regime to another stable regime at
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VG = VPI and VG = VPO, respectively (Fig. 2.4). Note that, increasing VG in-

finitesimally above VPI or decreasing it infinitesimally below VV PO causes y to change

by large amount (Fig. 2.2 c). This abrupt transition is responsible for ultra sharp

switching characteristics in suspended-gate field effect transistors [21] and nanoelec-

tromechanical relays [20]. We will discuss this abrupt transition in more detail in

chapter 5.

(vi) Hysteresis:

Abrupt transition discussed above is always associated with an intrinsic hysteresis

(HV ) (Fig. 2.4). It means that going and coming from one stable branch to another

branch occurs at different voltages i.e., VPI 6= VPO. The value of hysteresis can be

obtained from analytical expressions of VPI & VPO (Eqs. 2.17 - 2.18), and is given

by-

HV ≡ VPI − VPO =
2k

3ǫ0WL

y0 + 4yd
ǫd

VPI + VPO
y2c . (2.23)

Equation 2.23 suggests that hysteresis and pull-in instability are correlated. As soon

as yc becomes zero, HV also becomes zero. As abrupt transition is associated with yc,

hysteresis-free abrupt transition seems impossible in the MEMS capacitive actuator.

We will come back to this issue of hysteresis-free abrupt transition in chapter 5 and

address the possibility or impossibility of hysteresis-free abrupt transition.

Dynamic Response

In the previous section, we looked at the consequences of pull-in instability on

the static response. We pointed out that effective air-gap capacitance and effective

stiffness becomes negative in the unstable regime. We now look at the dynamic

response and try to understand movement of M1 when it transitions from one stable

regime to another.
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(i) Variable Resonance Frequency:

MEMS capacitive actuators, which we are discussing, are also tunable oscillators

with resonance frequency given by ω0 =
√

k/m at VG = 0. We saw that keff changes

with the application of VG. Therefore, resonance frequency, which is directly related

to keff (Figs. 2.2 a - b), i.e., ω =
√

keff/m, changes as well. Therefore, MEMS

capacitive actuator can also serve as a tunable oscillator with ω being tuned by the

application of VG. Using Eq. 2.19, one can obtain an analytical expression for ω as

follows-

ω

ω0

=

√

keff
k

=

√

3− 2
y0
y
. (2.24)

Equation 2.24 suggests that ω decreases continuously from ω0 to zero as y changes

from y0 to y = 2y0
3
. In chapter 6, we will see that ultra low frequency close to pull-in

is responsible for the improvement of signal-to-noise ratio in Flexure sensors.

(ii) Pull-in below Pull-in Voltage:

When we discussed the static response, we saw that M1 transitions from upper

stable regime to lower stable regime, when VG > VPI is applied. Surprisingly, M1 can

dynamically transition for VG < VPI in the following ways:

Dynamic Pull-in

Dynamic pull-in can occur when VG is suddenly changed from zero to VG < VPI ,

such that U(y0) is greater than the value of U at the top of the energy barrier (Fig. 2.6

a). Now, M1 starts from y = y0 at t = 0 and moves down hill to gain kinetic energy.

If damping is very small, M1 can get sufficient kinetic energy to surmount the energy

barrier as shown in Fig. 2.6 a. Figure 2.6 b shows the corresponding position of M1

as a function of time. The chances of such dynamic pull-in are higher when damping
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Fig. 2.6. Pull-in can occur even when VG < VPI due to: (a)-(b)
Dynamic pull-in or (c)-(d) noise initiated pull-in. Open circle in (a)-
(b) denotes the initial starting point for M1 and dotted line denotes
U(y0). ys denote stable equilibrium point and yu unstable equilibrium
point. Dynamic pull-in requires that U(y0) > U(yu). In (c)-(d) open
circles denote total energy (sum of potential and kinetic) and Us =
U(ys).

is small. If the damping is very high, dynamic pull-in will not occur. However, M1

may still get pulled-in for VG < VPI due to thermomechanical fluctuations as follows.

Noise Initiated Pull-in

Figure 2.6 c shows potential energy landscape when VG < VPI . Ideally, M1 should

stabilize at y = ys and remain there. However, due toM1 being in thermal equilibrium

with the surroundings, it exchanges energy continuously in units of kBT , where kB

is the Boltzmann constant and T is the absolute temperature. As a result, M1
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vibrates randomly around its stable equilibrium position as shown in Figs. 2.6 c-

d. These random vibrations are the source of noise in MEMS. If the energy barrier

(U(yu) − U(ys)) is couple of kBT as shown in Fig. 2.6 c, M1 can get the required

energy from the surroundings to surmount the barrier leading to noise initiated pull-

in. This noise initiated pull-in puts a fundamental limit on how close we can operate

close to pull-in. This will therefore play a critical role in Flexure sensors that achieve

maximum sensitivity close to pull-in only (chapter 6 for further discussion).

(iii) Uninhibited Acceleration During Pull-in:

In the previous subsection, we looked at the unintended pull-in, which occurs even

when VG < VPI . For regular operation, when VG > VPI is applied, U − y profile as

shown in Fig. 2.7 a, suggests that M1 will experience a large acceleration in unstable

regime. Figures 2.7 b - c show position and velocity of M1 as a function of time

during pull-in. Sudden increase in the velocity towards the end is due to this large

acceleration. This uninhibited acceleration will cause M1 to gain huge kinetic energy

(KE = 1
2
mv2) (Fig. 2.7 a). M1 will therefore land on the dielectric surface with very

high velocity and cause dielectric to degrade. This hard-landing of M1 is one of the

major reliability concerns in MEMS switches. In chapter 4, we will discuss various

strategies to reduce impact velocity of M1 during pull-in.
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Fig. 2.7. Uninhibited acceleration during pull-in. (a) Potential energy
landscape for VG > VPI . (b) Position and (c) velocity of M1 as a
function of time. tPI is the pull-in time and vimpact is the impact
velocity with which M1 reaches y = 0.

2.2 Instability in a Ferroelectric Material

In the previous section, we discussed the origin and consequences of instability in

MEMS capacitive actuators. We now look at the behavior of ferroelectric materials,

which also show similar instability characteristics, in-spite of their completely different

physics.

2.2.1 Origin of Instability in Ferroelectric Materials

Figure 2.8 a shows the schematic of a ferroelectric based capacitor structure in

which a ferroelectric insulator is sandwiched between two metal electrodes M1 & M2.

This capacitor behaves very differently compared to regular capacitors (with tradi-

tional dielectrics such as SiO2) that follows simple linear charge-voltage relationship.

In order to understand the operation of ferroelectric based capacitor, we look at the

evolution of energy landscapes as a function of the applied VG. We consider a single

crystalline ferroelectric material. The total energy U of a ferroelectric material is

related to the charge Q on M1 by Landau’s energy landscape and is given by-

U

WLyFE
=

1

2
α0Q

2 +
1

4
β0Q

4 +
1

6
γ0Q

6 −Q
VG
yFE

, (2.25)
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where α0, β0, and γ0 are material dependent constants. yFE is the thickness of the

ferroelectric dielectric. Note that, the first (α0Q
2/2) and the fourth term (−QVG/yFE)

in Eq. 2.25 are similar to a regular capacitor. The second (Q4/4β0) and the fourth

terms (1
6
γ0Q

6) are extra for a ferroelectric material. If all the coefficients α0, β0,

and γ0 are positive, qualitatively, nothing interesting or unusual happens. Capacitor

behaves normally, but with a nonlinear charge-voltage characteristics. However, a

ferroelectric has α0 < 0, β0 > 0, γ0 > or α0 < 0, β0 < 0, γ0 > 0 and therefore exhibits

a completely different charge-voltage characteristics.

Figure 2.8 a shows U −Q profiles for a ferroelectric with α0 < 0, β0 > 0, γ0 = 0, when

VG is increasing. Ferroelectric is stabilized at the minimum of U . At VG = 0, U −Q

profiles exhibits two local minima (stable equilibrium points are denoted by open

and filled circles in Fig. 2.8 a) separated by a local maxima (unstable equilibrium is

denoted by open square in Fig. 2.8 a). As VG increases, U − Q profile changes such

that value of Q at equilibrium increases (though keeping the same negative sign, we

have assumed that ferroelectric is negatively polarized at VG = 0). With the increase

in VG, left stable equilibrium point and unstable equilibrium point approach each

other to annihilate at VG = Vsp. Therefore, as soon as VG exceeds Vsp, Q has to

abruptly change from a negative value Q = −Qc to a positive value as shown in Fig.

2.8 c.

If VG is now reduced below Vsp, Q can not switch back from a positive value to a

negative value, because of the presence of an energy barrier (Figs. 2.8 a - b). VG has

to be reduced below Vsn for switching back the ferroelectric to a negative value. When

VG is decreasing, ferroelectric switches at Q = Qc. Value of Qc can be obtained by

requiring that d2U
dQ2 = 0 i.e., α0 + 3β0Q

2
c + 5γ0Q

4
c = 0. If γ0 = 0, an analytical solution

for Qc exists and is given by-

Qc =

√

−α0

3β0
. (2.26)
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Figure 2.8 c shows the corresponding hysteretic Q − VG characteristics. There are

two sharp jump in Q−VG characteristics at VG = Vsp and VG = Vsn. Mathematically,

Q− VG profile can be obtained by requiring dU
dQ

= 0 i.e.,

VFE
yFE

= α0Q+ β0Q
3 + γ0Q

5, (2.27)

where VFE = VG for capacitor structure in Fig. 2.8 a. The values of corresponding

Vsp or Vsn are obtained from Eq. 2.27 with Q = −Qc and Q = Qc, respectively, and

are given by (for γ0 = 0)-

Vsp = −Vsn = −2α0QcyFE
3

. (2.28)

Note that, Vsp/Vsn are analogous to VPI/VPO of MEMS capacitive actuators; whereas

Qc is similar to yc.

2.2.2 Consequences of Instability in Ferroelectrics

We saw that the qualitative operation and behavior of a ferroelectric material is

very similar to a MEMS capacitive actuator. Both of them exhibit instability. In

MEMS capacitive actuator, instability arises due to interaction between spring and

electrostatic forces; whereas in ferroelectrics, it arises due to the internal atmoic struc-

ture of ferroelectric materials [42]. We therefore expect that qualitative consequences

of instability in ferroelectric materials should also be similar to MEMS capacitive

actuators. We briefly highlight them below.
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F3Ö

Vsn

Vsp
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M1

VG Ferroelectric

M2

(a)

Fig. 2.8. (a) Schematic of a ferroelectric material based capacitor
structure. Evolution of the energy landscapes of ferroelectric mate-
rial when (b) VG is increasing and (c) VG is decreasing. Open cir-
cle and open triangle denote the equilibrium points where ferroelec-
tric is stabilized when VG is increasing and decreasing, respectively.
Filled circles and triangles denote other equilibrium points. Open
squares denote unstable equilibrium points.(C) Corresponding hys-
teretic Q − VG characteristics of the ferroelectric material showing
abrupt jump in charge at VG = Vsp and VG = Vsn.

Static Response

(i) Stable and Unstable Regimes: Similar to the stable/unstable regimes of

a MEMS capacitive actuator, ferroelectric dielectric exhibits stable/unstable regimes

as shown in Fig. 2.9. Ferroelectric is stable only for Q < −Qc & Q > Qc. It cannot

be stabilized for charge values ranging from Q = −Qc to Q = Qc. The key point is

that two stable regimes are separated by an unstable regime (typical characteristics

of a bi-stable system).
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Fig. 2.9. Schematically showing the instability related characteristics
of a ferroelectric material.

(ii) Negative Capacitance: Voltage drop across the ferroelectric material (Eq.

2.27) increases with Q in the stable regimes and decreases with Q in the unstable

regimes (2.10 a). As a result, the capacitance of ferroelectric, given by-

C−1
FE ≡ 1

WL

d2U

dQ2
= yFE

(

α0 + 3β0Q
2 + 5γ0Q

4
)

, (2.29)

is positive in the stable regimes and negative in the unstable regime (2.10 b). This

negative capacitance behavior of ferroelectric has been utilized in field effect transis-

tors for voltage amplification. We will discuss it in detail in chapter 5.

(iii) Transition Boundary: The boundary between stable and unstable regimes

occur at Q = ±Qc. Like MEMS capacitive actuators, capacitance CFE is infinite at

the transition boundary (Fig. 2.10 b). The capacitance being infinite at the transition

boundary have very important consequences for field effect transistors and will discuss

further in chapter 5.

(iv) Abrupt Transition: The transition from one stable regime to another stable

regime is abrupt as shown in Fig. 2.8 c. As soon as VG is infinitesimally increased

or decreased above Vsp or below Vsn, Q changes abruptly. This abrupt transition is

similar to the abrupt transition in MEMS capacitive actuator.

(v) Hysteresis: Going from one stable regime (say Q < −Qc in Fig. 2.9) to

another (Q > Qc in Fig. 2.9) and coming back to the same regime occurs at different
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Fig. 2.10. (a) Voltage drop across ferroelectric and (b) its capacitance
as a function of charge Q. In the unstable regime, CFE is negative.

voltages, Vsp & Vsn, respectively. Therefore, there is an intrinsic hysteresis, whose

value (for γ0 = 0) is given by-

HV = Vsp − Vsn = −4Qcα0yFE
3

. (2.30)

Equation 2.30 suggests that HV and jump in Q − VG characteristics are directly

related. If one disappears, other also disappears. Therefore, whether hysteresis-free

abrupt transition is possible or not, is an important question. We will address this

question in chapter 5.

Dynamic Response

Like static response, dynamic behavior of ferroelectric materials is also qualita-

tively similar to MEMS capacitive actuators. Below, we briefly point out the corre-

sponding similarities.

(i) Switching below Switching Voltage: Ferroelectric material can also switch

from one stable regime to another stable regime even when VG < Vsp or VG > Vsn.

This switching can occur because of two reasons. Similar to dynamic pull-in, if initial
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Dynamic Switching Noise Initiated 

Switching
Hot Atom Damage

Fig. 2.11. Qualitative dynamic response of ferroelectric materials.
(a) Dynamic switching when VG is changed abruptly from zero to
VG < Vsp and (b) noise initiated switching if the energy barrier is
couple of kBT . (c) Hot atom damage due to huge acceleration of
atoms while crossing the unstable regime. KE is the amount of energy
gained.

energy of the ferroelectric is larger than the energy at the top of energy barrier (un-

stable equilibrium), ferroelectric may switch (Fig. 2.11 a). Similar to noise initiated

pull-in, if the energy barrier for ferroelectric is couple of kBT at some VG, it may get

energy from the surroundings and surmount the energy barrier (Fig. 2.11 b).

(ii) Hot Atom Damage During Switching: Similar to the phenomenon of

hard-landing in MEMS capacitive actuators, there is corresponding hot atom damage

in ferroelectrics [43]. When a voltage VG > Vsp is applied, atoms (responsible for fer-

roelectricity) inside the ferroelectric material travels from one stable state to another

stable state. During this travel, they go through the unstable regime and undergo a

huge acceleration. As a result, their velocity increases rapidly during switching (that’s

why the name hot atom). They come to rest and stabilize at the stable equilibrium

position by dissipating all the gained kinetic energy (Fig. 2.11 c). This dissipated

energy may damage internal atomic structure of the ferroelectric and therefore is one

of the reliability concerns for ferroelectrics.
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Fig. 2.12. (a) MEMS capacitive actuators and (b) ferroelectric mate-
rials are example of a generic class of Landau systems characterized
by two well energy landscapes. (c) Each Landau system is associated
with two stable regimes separated by an unstable regime.

2.3 Landau Systems

In this chapter, we have looked at the operation of MEMS capacitive actuators

and ferroelectric dielectric based capacitors. Although, the underlying physics is very

different, their qualitative behavior is very similar. The hysteretic behavior with

instability characteristics arise because of the two well energy landscapes (Figs. 2.2

& 2.8). We classify such systems as Landau systems due to the similarity with Landau

energy landscape of phase transition. Other examples of Landau systems include a

buckled beam [44]. The qualitative consequences that we have discussed for MEMS

capacitive actuators and ferroelectrics should be applicable to any another Landau

systems.
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2.4 Conclusions

In this chapter:

• We explained the origin of instability in MEMS capacitive actuators and fer-

roelectric materials using the evolution of respective energy landscapes as a

function of the applied voltage.

• We highlighted the consequences of this instability on the static and dynamic

response. Two stable regimes separated by an unstable regime, negative ca-

pacitance in the unstable regime, spring-softening effect, abrupt transition, and

hysteresis are the key consequences related to the static response. Dynamic pull-

in, noise initiated pull-in, and hard-landing are the corresponding consequences

related to the dynamic response.

• We also pointed out the relevance of various instability features in different

applications. For example, we will see the significance of negative capacitance in

novel Landau switches in chapter 5 and spring-softening effect in novel Flexure

biosensors in chapter 6.

• We finally proposed a new class of system which we call Landau system-switches,

sensors, and actuators. We believe that the general features of any Landau

system should be similar. Therefore, once you have understood one, other

should easily follow.

In the next chapter, we will explore the features and consequences of instability

in MEMS capacitive actuators in more detail. In this chapter, we illustrated the

pull-in instability for planar electrodes and linear spring only. In next, we will discuss

the effect of nonlinear spring, electrode geometry, and actuation mechanism on the

pull-in instability and related characteristics and capture all the details in very simple

analytical formulas.
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3. UNIVERSAL SCALING RELATIONSHIPS FOR

INSTABILITY IN MEMS CAPACITIVE ACTUATORS

In chapter 2, we discussed the physics of instability and its consequences in MEMS

capacitive actuators and ferroelectric materials. We highlighted that these two ex-

amples belong to a broader class of systems which we call Landau systems. While

discussing the operation of MEMS capacitive actuators, we made three major as-

sumptions: (i) the spring force is linear, (ii) the electrodes are planar, and (iii) the

actuation mechanism is voltage controlled. In general, however, capacitive actua-

tors can have nonlinear springs, non-planar electrodes, and can be actuated by other

mechanisms such as charge actuation. Understanding how does these variations affect

the instability and actuation characteristics, is the goal of this chapter1. We plan to

achieve the following:

• We will develop scaling relationships for pull-in instability, pull-in voltage/charge,

and resonance frequency in terms of only two scaling parameters, n and p. The

parameter n is fundamentally related to the electrode geometry and actuation

mechanism; whereas p is related to the nature of spring.

• We will not only use the developed scaling theory to explain a broad range

of experimental data within a single theoretical framework, but also use it to

characterize electrode geometry and nature of spring for any new actuator.

• We believe that these scaling relationships should enable the design of electrode

geometry, actuation mechanism, and/or spring for desired actuation character-

istics.

1The content (text and figures) in this chapter have been adapted from [45] c©IEEE 2013.
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Rest of the chapter is organized as follows. In section 3.1, we discuss why there

is a need of universal scaling relationships for instability. We derive the analytical

formulas of pull-in voltage/charge and resonance frequency in section 3.2. We then use

these scaling relationships to explain a broad range of experimental data in a single

theoretical framework in section 3.3. We show the power of scaling relationships for

characterization of novel actuators in section 3.4 and conclude in section 3.5.

3.1 Background

As discussed in chapters 1 & 2, tunable-gap electromechanical actuators have

found wide range of applications in diverse fields as RF-MEMS varactors [30], res-

onators [1], deformable mirrors [25], and photonic laser cavity [49]. And, electrode

geometry, actuation mechanism and/or the nature of spring in electromechanical

actuators have broadened over the years. First, advances in nano-fabrication and

discovery of new materials have allowed electrode geometry to evolve from being pla-

nar (e.g., graphene [50]) to cylindrical (e.g., single carbon nanotubes (CNTs) [46] or

nanowires [47]) to array of cylinders (e.g., array of aligned carbon nanotubes [48] )

(Figs. 3.1 a-c). And yet, the actuation characteristics have been treated indepen-

dently for the respective electrode geometries [51–54]. Moreover, the effect of nonlin-

ear restoring spring force arising from mid-plane stretching [55] for planar electrodes,

and tension developed due to stretching in cylindrical electrodes [56,57], resulting in

spring-hardening (Fig. 3.1 e), have only been considered for few isolated electrode

geometries. Finally, although V -actuation is widely used, Q-actuation [58, 59] has

also been suggested to overcome the problem of pull-in instability. Note that, in V -

actuation a constant voltage (V ) is applied betweenM1 &M2; whereas in Q-actuation

a fixed amount of charge(Q) is deposited on M1 using current sources [58, 59]. How-

ever, the effects of Q-actuation on the actuation characteristics have not been con-

sidered in detail.
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Z y
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Spring-softening
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Fig. 3.1. Electromechanical actuators with varying electrode geome-
tries e.g., (a) classical parallel-plate actuator with M1 and M2 as pla-
nar electrodes, (b)M1 as carbon nanotube (CNT) [46] or nanowire [47]
(example case of cylindrical electrode), and (c) aligned array of CNTs
[48] as M1 (example of aligned array of cylinders). (d) Equivalent
spring-mass model of the actuator. (e) Typical actuation characteris-
tics showing the position (y) of M1 and resonance frequency (ω) as a
function of voltage/charge (VG/QG).

In general, the actuation characteristics, such as the capacitance (C(y)) in RF-

MEMS varactors [30], travel range (y0−yc) in analog-tuned actuators [60] (Fig. 3.1 e),

or resonance frequency (ω) in resonators [1], are governed by a geometry-dependent,

complex interplay between Felec and Fs (Fig. 3.1 d-e), and are accessible only to the

problem-specific detailed numerical simulations.

This case-by-case analysis of actuators reflects the fact that there is no general

theory or guideline, which can be used to analyze an actuator with arbitrary electrode

geometry, actuation or spring mechanism. Therefore, a general theoretical framework
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is needed that (i) applies equally well to V and Q actuation for arbitrary electrode

geometry, (ii) correlates the response of different electrode geometries and actuation

mechanisms, (iii) works both for linear and nonlinear springs, (iv) is consistent with

the available experimental data, (v) can be used to characterize novel actuator with

arbitrary electrode geometry, and (vi) enables design of electrode geometry for desired

performance.

In next section, we develop a set of universal scaling relationships for pull-in in-

stability, pull-in voltage/charge and resonance frequency, that depend only on two

scaling parameters, n and p. Here, n is related to the electrode geometry and actua-

tion mechanism; whereas p is related to the nature of spring.

3.2 Theory of Electromechanical Actuators

As discussed in chapter 2, the response of the actuator is dictated by the balance

of Fs and Felec, i.e., Fs = Felec. While Felec depends on the voltage/charge (V/Q)

actuation and the geometry of electrodes, Fs is determined by the geometrical di-

mensions (e.g., length and thickness), material properties (e.g., Youngs modulus),

and mechanical support (e.g., fixed-fixed vs. fixed-free) of M1. In general, for a

nonlinear spring with Fs =
∑p=∞

p=1 kp (y0 − y)p and general electrode geometry and

actuation mechanism with Felec = −1
2
dC
dy
V 2
G = −1

2
dC−1

dy
Q2
G ≈ γ

2yn
φ2
G, the condition of

force balance implies-

p=∞
∑

p=1

kp (y0 − y)p =
γ

2yn
φ2
G, (3.1)

where kp are spring constants associated with the nonlinearity of order p, C is the

capacitance of the actuator, γ is a geometrical constant, and n is related to the elec-

trode geometry and actuation mechanism. φG is the forcing function i.e., φG = VG for

V -actuation and φG = QG for Q-actuation. Note that, restoring spring force typically

consists of linear and cubic terms i.e., Fs = k1 (y0 − y) + k3 (y0 − y)3 (considered in
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this chapter), where the cubic nonlinearity arises due to the tension developed in M1

because of stretching [38,55]. For parallel-plate actuator (Fig. 3.1 a), C = ǫ0Ae
y

implies

γ = ǫ0Ae and n = 2 for V -actuation, while γ = 1
ǫ0Ae

and n = 0 for Q-actuation. Here,

Ae is the area of M1 and ǫ0 is the permittivity of free space. Although, Felec ≈ γ

2yn
φ2
G

should be viewed as an approximation, which may not hold for arbitrary electrode

geometry, we find that it provides a good approximation to broad range of regu-

lar electrode geometries considered in this chapter (see below) and fractal electrode

geometries discussed in ref. [61]. And, when the approximations are numerically jus-

tified (as we do in this chapter), the empirical parameter n allows us to relate the

actuation characteristics with the electrode geometry.

The application of φG (VG or QG) not only changes the position (y) of M1, but

also modifies the effective stiffness keff ≡ −d(Fs−Felec)
dy

as discussed in chapter 2. This

allows tuning of the resonance frequency ω ∝
√

keff , which is given by-

ω

ω0

=

√

√

√

√

p=∞
∑

p=1

kp
k1

(y0 − y)p−1

(

n+ p− n
y0
y

)

, (3.2)

where ω0 ∝
√
k1 is the resonance frequency at φG = 0, or, equivalently, y = y0. Note

that, Eq. 3.2 expresses ω/ω0 as an explicit function of y. Since the corresponding

φG(y) is analytically known from Eq. 3.1, ω/ω0 vs. φG characteristics can be obtained

using Eqs. 3.1 - 3.2. Interestingly, Eq. 3.2 reduces to ω
ω0

=
√

3− 2y0
y
for a parallel-

plate actuator with linear spring (n = 2 and kp ≈ 0, for p > 1) (see Eq. 2.24 in

chapter 2), a well-known result for resonant gate transistor [1].

Note that, both ω and keff vanish at pull-in (i.e., dFs
dy

= dFelec
dy

and Fs = Felec)

and beyond which M1 can no longer be stabilized in air. The critical-gap yc at pull-

in can be determined from Eq. 3.2 by requiring that ω = 0. A simple analytical

solution is possible, if the infinite series associated with the restoring spring force Fs

is dominated by a single term, such that Fs ≈ kp (y0 − y)p. For example, a linear

spring is characterized by p = 1 such that Fs = k1 (y0 − y), while a spring with
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dominant cubic nonlinearity is characterized by p = 3 such that Fs ≈ k3 (y0 − y)3.

The analytical solution is thus given by-

yc
y0

=
n

n+ p
. (3.3)

Surprisingly, yc depends neither on the absolute value of kp, nor on the magnitude

of applied φG. It only depends on the electrostatic dimension n and the order of

spring nonlinearity p. Equation 3.3 anticipates the well-known results for parallel

plate actuators with linear spring (i.e., p = 1), namely, yc = 2/3y0 for V -actuation

(see Eq. 2.15 in chapter 2) and yc = 0 for Q-actuation [62]. The corresponding value

of pull-in voltage (VPI) or charge (QPI) is given by (obtained using Eqs. 3.1 & 3.3

with Fs ≈ kp (y0 − y)p)-

φ2
PI =

2kp
γ

(

n

n+ p

)n(
p

n+ p

)p

yn+p0 . (3.4)

Here, Eq. 3.4 reduces to the well-known result of pull-in voltage V 2
PI =

8k1y30
27ǫ0Ae

[1]

(Eq. 2.16 in chapter 2 with yd = 0) and pull-in charge Q2
PI = 2k1ǫ0Aey0 [62] for

parallel-plate actuator with linear spring (kp = k1; p = 1 in Eq. 3.4 with γ = ǫ0Ae,

n = 2 for V -actuation and γ = 1
ǫ0Ae

, n = 0 for Q-actuation). The scaling relationships

(Eqs. 3.2 - 3.4) are the main results of this chapter, and suggest that the actuation

characteristics (Fig. 3.1 e) are dictated essentially by n & p. We emphasize that in

spite of the simplicity of the model; it captures the essential physics of the electrostatic

actuation very well and explains broad range of the experimental data. Therefore,

when working with a novel device, starting with such a simple model will be very

useful and details of the support or fringing fields can be added later using other

existing modeling framework [61].
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Electrode Capacitance (C) Felec for V -actuation Felec for Q-actuation

Planar ǫ0Ae
y

ǫ0Ae
2y2

V 2
G

1
2ǫ0Ae

Q2
G

(n = 2, γ = ǫ0Ae) (n = 0, γ = 1
ǫ0Ae

)

Cylinder
2πǫ0L

ln(2(1+ y
R))

πǫ0L

(y+R)[ln(2(1+ y
R))]

2V 2
G

1
4πǫ0R(y+R)

Q2
G

(n ≈ 1.4, γ = 2πǫ0L) (n ≈ 1, γ = 1
2πǫ0L

)

Array
2πǫ0L

ln

(

sinh( 2π(y+R)
g )

πR
g

)

2π2ǫ0L coth( 2π(y+R)
g )

g

[

ln

(

sinh( 2π(y+R)
g )

πR
g

)]2V 2
G

coth( 2π(y+R)
g )

2gǫ0L
Q2
G

(n & γ depend on g) (n & γ depend on g)

Table 3.1
Analytical expression of electrostatic force with values of n & γ for all
the actuators considered in this chapter. n & γ have been obtained
from the analytical formula of Felec. Ae is the area of M1 for planar
electrode, R is the radius of cylinder, L is the length of cylinder, and
g is the spacing between individual cylinder for array electrodes.

3.3 Numerical/Experimental Validation

The power of the scaling relationships (Eqs. 3.2 - 3.4) can be best appreciated by

interpreting numerical simulation results and experimental data for different actuators

as shown in Figs. 3.1 a - c. The actuation characteristics are obtained by numerically

solving the equations of motion of spring-mass system (Fig. 3.1 d) (details in appendix

D about numerical simulations). Electrostatic force for each of the actuator has been

obtained using the analytical formula of capacitance (Table 3.1) .

3.3.1 Fixed Regular Electrode Geometry

Figures 3.2 a - h summarize the displacement (y) vs. φG characteristics for planar

and cylindrical electrodes for two values of p and four values of n. As mentioned

previously, p corresponds to the order of spring nonlinearity with p = 1 corresponding
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Fig. 3.2. Pull-in instability of electromechanical actuators. (a)-(h)
y vs. VG/VPI or QG/QPI characteristics in p − n space. Symbols
denote the experimental data taken from literature (planar electrode
with linear spring [63] (a), cylindrical electrode with linear spring [64]
(b) and planar electrode with nonlinear spring [65] (e)) and solid line
numerical simulations. (i) yc as a function of n for linear (p = 1) and
nonlinear springs (p = 3). Filled symbols denote the experimental
data, open symbols denote numerical simulations, and solid line de-
notes the analytical formula given by Eq. 3.3. Symbols have been
grouped in voltage (V ) and charge (Q) actuation.

to linear spring (with k3 ≈ 0 ), and p = 3 corresponding to cubic nonlinearity

(i.e., k3 (y0 − y)3 ≫ k1 (y0 − y)). On the other hand, n corresponds to different

electrode geometry and V/Q actuation mechanisms. For example, n for cylindrical

electrode can be determined from analytical formula of C (Table 3.1), as follows.

For V -actuation, we have dC
dy

∝ 1

(y+R)[ln(2(1+ y
R))]

2 ∼ 1
y1.4

; whereas for Q-actuation

dC
dy

∝ 1
(y+R)

∼ 1
y1
. Therefore, for cylindrical electrode, n ≈ 1.4 for V -actuation and

n ≈ 1 under Q-actuation (see Table 3.1 n & γ for different electrode geometries).

In Figures 3.2 a - h, solid lines denote the numerical simulations and filled sym-

bols denote the experimental data reproduced from Refs. [63–65]. The available
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experimental data both for planar and cylindrical electrodes agree very well with the

numerical simulations, as shown in Figs. 3.2 a - b & e. Note that, yc as determined

from the numerical simulations or experimental data for different electrode geome-

tries, actuation and spring mechanism is summarized in Fig. 3.2 i. The experimental

data is exactly predicted by the scaling relationship of Eq. 3.3. Typically, yc under

V -actuation is larger than that of Q-actuation both for planar as well as cylindrical

electrodes, which is consistent with the conclusions of Bochobza-Degani, et al. [66].

To validate the scaling relationship suggested in Eq. 3.2, we plot (see Figs. 3.3 a

- h) ω vs. VG/QG characteristics for variety of actuators. Experimental data (Filled

symbols) for planar and cylindrical electrode with linear/nonlinear spring under V/Q

actuation is exactly matched by the numerical simulations (open symbols) and scaling

formula (Eq. 3.2 solid line). Note that, each open symbol in Fig. 3.3 corresponds

to one dynamic numerical simulation (see appendix D for details). Hundreds of

numerical simulations were performed to generate one of ω vs. VG/QG characteristics.

(e.g., Fig. 3.3 a), and that is very well reproduced by the scaling relationship of Eq.

3.2.

3.3.2 Array Electrode Geometry

We now show the generality of Eqs. 3.2 - 3.3 by using them to explore the

actuation characteristics of actuators based on aligned array of cylinders (Fig. 3.1 c).

It should be appreciated that actuation characteristics change as g changes due to

change in the capacitance and therefore Felec. Based on the numerical simulations for

the case of a linear spring, Fig. 3.4 a plots yc as a function of g, suggesting possibility

of tuning yc by tuning of g. When g is small and the electrodes are closely spaced,

the array of cylinders behaves like a planar electrode, and yc is identical to that of

a parallel-plate actuator both for V and Q actuation, as expected. For larger g, the

electrodes are spaced further apart, and the elements of the array interact with M2

as isolated cylinders, and yc matches with that of a single cylinder. Interestingly,
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Fig. 3.3. (a)-(h) ω vs. VG/QG characteristics in p− n space showing
the spring-softening and spring-hardening behavior of electromechan-
ical resonators. Filled symbols denote the experimental data taken
from literature (planar electrode with linear spring [67] (a), cylindri-
cal electrode with linear spring [68] (b), planar electrode with nonlin-
ear spring [69] (e) and cylindrical electrode with nonlinear spring [56]
(f)), open symbols denote the numerical simulations, and solid line
denotes the analytical formula given by Eq. 3.2.

yc under V -actuation is larger than that of Q-actuation for all values of g, again

confirming the conclusions of Bochobza-Degani, et al. [71].

The corresponding ω vs. VG/QG characteristics are shown in Figs. 3.4 b - g for

three different values of g. Open symbols denote numerical simulations and filled
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Fig. 3.4. Application of scaling relationships to interpret the actu-
ation characteristics of an array of cylinders based electrode with
linear spring. (a) yc as a function of the spacing (g) between indi-
vidual cylinders. Solid line denotes numerical simulations, • denotes
yc for vertically aligned array of CNTs [70] and N denotes yc for an
individual CNT [64] under V -actuation. △ denotes yc for an iso-
lated parallel-plate actuator and � for cylindrical electrode under
Q-actuation. (b)-(g) ω for different g. Filled symbols denote the
experimental data (aligned array of CNTs for very small spacing [48]
(a)), open symbols denote numerical simulations and solid line scaling
relationship given by Eq. 3.2.

symbols experimental data, which are in excellent agreement with each other. Note

that, here Eq. 3.2 cannot be directly used to interpret numerical simulations, because

n is not analytically known via Eq. 3.1 due to complex dependence of C on y (Table

3.1). However, once yc is known from static numerical simulations as shown in Fig. 3.4

a, n can be estimated using Eq. 3.3, and Eq. 3.2 can then be applied. Considering

this, the results of the numerical simulations are very well reproduced by scaling

relationship of Eq. 3.2 with n = yc
1−yc

obtained from Fig. 3.4 a, see solid lines in Figs.

3.4 b-g.
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3.4 Characterization of Novel Actuators

In general, it is possible that values of n & p are not known a-priori for a newly

fabricated actuator. In that case, following simplified scaling relationships (obtained

from Eqs. 3.1 - 3.2) can be used to extract parameters n & p to characterize the

essential response of the new actuator. If Fs consists of only two terms (one linear

and other higher order term such as cubic) i.e., Fs = k1 (y0 − y) + kr (y0 − y)r, with

r > 1, equation 3.1 can be re-written as follows-

(

y

y0

)n [
1

β

(

1− y

y0

)

+

(

1− y

y0

)r]

=

(

φG
φ0

)2

, (3.5)

where β = kry
r−1
0 /k1 is a constant and depends on the nature of the spring; whereas

φ0 = 2kry
r+n
0 /γ. Equation 3.5 suggests that y/y0 is only a function of φG/φ0. Scaling

relationship of ω (Eq. 3.2) can also be simplified to-

ω

ω0

=

√

(

n+ 1− n
y0
y

)

+ β

(

1− y

y0

)r−1 (

n+ r − n
y0
y

)

. (3.6)

Equation 3.6 suggests that ω/ω0 is only a function of y/y0 and (therefore of φG/φ0)

for given values of n, r, and β. Analytical expression of φPI is now given by-

φ2
PI = φ2

0

(

n

n+ p

)n(
p

n+ p

)p

, (3.7)

that implies that φPI/φ0 is just a constant for given values of n and p. Here, p =

1 when k(r(>1)) ≈ 0 (linear spring) or p = r when nonlinear term dominates i.e.,

kr (y0 − y)r ≫ k1 (y0 − y).

One can now use Eqs. 3.5 - 3.6 or Eq. 3.3 to extract parameters n, p, β, and φ0

for novel actuators. For example, if value of yc is precisely known from experiments,

n can be obtained using Eq. 3.3, provided value of p is known. On the other hand, if

y/y0 vs. φG is known from experiments, the force balance equation (Eq. 3.5) can be
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used to fit the data for the extraction of n & p. Finally, ω/ω0 vs. φG experimental

data can be fitted using Eqs. 3.5 - 3.6, and various parameters can be extracted. Note

that, these extracted values of n & p can then be used to infer about the electrode

geometry (through n) and the nature of spring (through p & β). Note that, a large

value of 1/β implies a linear spring (i.e., k(r(>1)) ≈ 0 ); whereas a small value of 1/β

indicates dominance of nonlinear spring force (i.e., large value of k(r(>1))).

3.4.1 Parameters Extraction from Data of Critical-Gap (yc)

If yc is known for a novel actuator, n can be extracted using Eq. 3.3, provided p

is known. We use numerical simulation results of array of cylinders based actuator

to show how we can extract different parameters. Figure 3.5 a shows yc as a function

of g for V -actuation. Assuming that the spring is linear (i.e., p = 1), we can use Eq.

3.3, and extract n, see Fig. 3.5 b. To assess the presumption that the contribution

from cubic nonlinear spring (i.e., r = 3) is negligible, we use the just extracted value

of n in Eqs. 3.5 - 3.6 with r = 3 to reproduce ω/ω0 vs. VG characteristics, as shown

in Figs. 3.6 c - e. The fitting parameter 1/β ≫ 1, implies that the linear spring

dominates, and confirms the presumption of p = 1.

3.4.2 Parameters Extraction from Gap (y) vs. Voltage (VG) Characteris-

tics

We use the available experimental y/y0 vs. VG characteristics of planar and cylin-

drical electrodes to extract parameters n & 1/β using Eq. 3.5 with r = 3. Figures 3.6

a - b show two set of experimental data (symbols), corresponding fit (solid line), and

extracted parameters for planar electrode. The extracted value of n ≈ 1.88 (Fig. 3.6

a) and n ≈ 1.86 (Fig. 3.6 b) is close to 2, which is expected for actuators based on

planar electrodes with voltage actuation. A slight difference in the value of n from 2

could be attributed to fringing fields, because n = 2 does not account for the fringing

fields.
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Fig. 3.5. Parameters extraction using the critical-gap yc of actuators
based on an array of cylinders. (a) yc as a function of the separation g,
(b) corresponding effective n obtained using Eq. 3.3 with p = 1. (c)-
(e) Resonance frequency vs. voltage characteristics for three different
values of g. Symbols denote numerical simulations and solid line is
the fit based on Eq. 3.5 - 3.6 using the value of n from Fig. 3.5 b.

The corresponding extracted value of 1/β suggests that linear spring dominates

(large value of 1/β) for the actuator in Fig. 3.6 a, whereas nonlinear spring dominates

(small value of 1/β) in Fig. 3.6 b. Similarly, Figure 3.6 c shows experimental data and

corresponding fit for an actuator based on cylindrical electrode. The extracted value

of n ≈ 1.4 is consistent with the analytical formula of capacitance of a cylinder (Table

3.1). The small value of 1/β indicates that nonlinear spring behavior is dominant for

this actuator. Therefore, extracted values of n & 1/β can be used to infer about

electrode geometry and the nature of spring.
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Fig. 3.6. Parameters extraction using the experimental y/y0 vs. VG
characteristics of planar electrode for (a) linear [63] spring, (b) nonlin-
ear [65] spring and (c) cylindrical [72] electrode for nonlinear spring.
Symbols denote the experimental data and solid line is the fit.

3.4.3 Parameters Extraction from Resonance Characteristics

Finally, we show the method of extracting parameters using experimental ω/ω0

vs. VG characteristics. Figure 3.7 shows the experimental data (blue open circles) for

three different actuators. In order to extract parameters, one should use only a part

of ω/ω0 vs. VG characteristics (black open squares in Fig. 3.7) due to the following

reasons. First note that, Eq. 3.6 can also be written as follows:

(

ω
ω0

)2

= 1 + r kr
k1
(y0 − y)r−1 − γ

2k1yn
V 2
G,

which suggests that
(

ω
ω0

)2

≈ a− bV 2
G for lower voltages when y ≈ y0, where a ≈ 1 &

b = γ

2k1yn0
. Therefore,

(

ω
ω0

)2

vs. V 2
G profile is linear for smaller voltages, as confirmed

by black dotted line in Fig. 3.7. This linear dependence of
(

ω
ω0

)2

on V 2
G suggests

that the characteristic is not very sensitive to the value of n at low voltages. Instead,

the best results are obtained by using the segment of the characteristics that deviate

from linear behavior. In Fig. 3.7, we use experimental data such that
(

ω
ω0

)2

< 0.8

(data below horizontal dotted green line) to extract parameters (using Eqs. 3.5 - 3.6

with r = 3). Extracted value of n ≈ 1.81 (Fig. 3.7 a), n ≈ 2.08 (Fig. 3.7 b), and

n ≈ 2.03 (Fig. 3.7 c) is close to 2, as expected for actuators with planar electrodes

under voltage actuation. Slight difference in the value of n from 2 in Fig. 3.7 a could
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Fig. 3.7. Parameters extraction using the experimental resonance
frequency vs. voltage characteristics of planar electrode with linear
spring [67]. Blue open circles denote the experimental data and black
open squares denote the experimental data used to extract various
parameters. Solid line is the fit, black dotted line suggests that the
characteristic is linear at low voltages. Green dotted line defines the
boundary when characteristic starts to deviate from linear behavior.

be due to fringing fields. Extracted values of 1/β (large values) for all the actuators

suggest that linear spring dominates.

3.5 Conclusions

In this chapter:

• We saw that planar electrodes, linear spring, and voltage actuation are a special

case of tunable-gap electromechanical actuators. In general, electrodes may be

nanostructured, spring may be nonlinear, and actuation can also be done using

charge or a current source (as opposed to a voltage source).

• We found that instability related actuation characteristics are fundamentally

related to the electrode geometry, nature of spring, and actuation mechanisms.

• We provided scaling relationships for the resonance frequency ω, pull-in insta-

bility (yc), and pull-in voltage/charge (VPI/QPI), which capture all the essential

physics in only two scaling parameters, n & p. n is related to the electrode ge-

ometry and actuation mechanism; whereas p is related to the nature of spring.



71

• We used the universal scaling relationships to explain a wide range of existing

experimental data from literature in a single theoretical framework. Previously,

all the analysis was done on case-by-case basis.

• We illustrated how the scaling relationships can be used to characterize and

extract values of n & p for any novel actuator.

The key message from this chapter is that the actuation characteristics can be

tuned by tuning the electrode geometry. In the next chapter, we will use this under-

standing to address two problems associated with classical planar electrodes based

tunable actuators and switches. We will show how modifying the electrode geometry

can address the problem of travel (or tuning) range in tunable actuators and problem

of hard-landing in MEMS switches.
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4. SOLUTIONS TO THE PROBLEMS ARISING DUE TO

INSTABILITY : TRAVEL RANGE AND HARD LANDING

In chapter 2, we looked at the origin and the consequences of instability in Landau

systems. In context of MEMS capacitive actuators, we identified the following two

problems because of this intrinsic instability:

• First problem was related to the travel range of tunable-gap electromechanical

actuators because instability limits the travel (or tuning) range to y0−yc, which
is only one third of the air-gap for planar electrodes.

• Second problem was of hard-landing in MEMS based switches. We saw that

when movable electrodeM1 transitions from one stable regime to another stable

regime during switching, it experiences a huge acceleration while crossing the

unstable regime. As a result, its velocity increases rapidly and it lands on the

dielectric with very high impact velocity, leading to the damage of dielectric

surface.

In this chapter1, we address these two problems. Based on our understanding from

previous chapter that electrode geometry can help tune the instability, we propose

novel device structures that can extend the travel range. We also provide novel

strategies that can reduce the impact velocity during switching.

Rest of the chapter is organized as follows. In section 4.1.1, we discuss the back-

ground of the problem of travel range and provide theory of travel range in section

4.1.2. Our proposal of reconfigurable nano-structured electrodes is discussed in sec-

tion 4.1.3. We summarize our key findings for travel range in section 4.1.6. We

1The content (text and figures) in this chapter have been adapted from [73] c©AIP 2011 and [74]
c©IEEE 2013.
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discuss the background of the problem of hard-landing in section 4.2.1, propose vari-

ous strategies of soft-landing in section 4.2.2, summarize our findings in section 4.2.5.

We finally conclude this chapter in section 4.3.

4.1 Problem of Limited Travel Range

4.1.1 Travel Range Background

Tunable microelectromechanical actuators have found wide range of applications

in various fields. Examples include tunable vertical cavity lasers [75], reflective diffrac-

tion grating (polychromator) [60], photonic crystal cavity [49], interferometric Mira-

sol displays [26], deformable mirrors for adaptive optics [25], and micro membrane

pumps for drug delivery [76]. The functions of these devices rely on the analog posi-

tion control of a movable electrode. Figure 4.1(a) shows the schematic of a classical

parallel-plate actuator (having planar electrodes) with movable electrodeM1 and fixed

electrode M2. As discussed in chapters 2 & 3, voltage controlled tunable micoactua-

tors suffer from well-known pull-in instability that snaps M1 and M2, when the gap

(y) between the two is reduced below 2/3 of the initial air-gap (y0) (Fig. 4.1(d) for

planar electrodes). This pull-in instability limits the travel range (tVr ) of M1 to just

1/3 of the initial air-gap and poses a fundamental challenge for applications requiring

large travel range.

In literature, various techniques have been proposed to extend the travel range.

For example, closed-loop control techniques [77] dynamically modify the voltage

across the actuator based on the position of M1 as feedback to achieve desired travel

range. Estimating position of M1, however, requires complex circuits; moreover a

control circuit optimized for one actuator is unlikely to work for another due to pro-

cess variations requiring adaptive control [78] for an ensemble of actuators. Likewise,

while techniques such as charge actuation [62] do not have the problem of pull-in

instability, it requires extra circuitry for precise control of charge [58]. In practice,

parasitic capacitances in charge-based actuators lead to uncontrolled pull-in [59], di-
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minishing advantages of charge actuation. In another approach, one increases the

effective air-gap to 3y0 by adding a series capacitor [79] so that desired travel range

(y0) is achieved [63]. In this case as well, uncontrolled parasitic capacitance in par-

allel to the actuator degrades the travel range [63]. Finally, travel range can also be

tailored by a geometric redesign of electrode, (Figs. 4.1 b-c), however, these fixed-

electrode geometries do not allow tailoring of travel range, once the devices have been

fabricated.

Therefore, techniques which (i) do not use any external feedback circuit, (ii) do

not suffer from any parasitic capacitance, (iii) do not rely on the increase of an

effective air-gap, and (iv) can enable post-fabrication tuning of the travel range, are

desirable. To address these issues, we propose to replace the planar electrodes by

electrically re-configurable nano-structured electrodes to not only extend the travel

range beyond 1/3 of the initial air-gap, but also electrically tune the travel range after

the fabrication of microactuator.

4.1.2 Theory of Travel Range

We have discussed the basic operation of the tunable microactuator in chapters

2 & 3. In chapter 3, we also provided a very general analytical formula for the

critical-gap yc. Using Eq. 3.3 from chapter 3, we found that travel range (tVr ) is given

by-

tVr = 1− yc
y0

=
p

p+ n
, (4.1)

where p is the order of nonlinearity of spring and n is the elctrostatic dimension

of the electrodes. Equation 4.1, therefore, suggests ways to extend and tune tVr by

manipulating the electrode geometry factor n and changing the nonlinearity of the

spring p. Remarkably, n = 0 ensures that the M1 can travel across the entire gap

without being pulled-in.
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Fig. 4.1. Fixed-geometry classical microelectromechanical actuators:
(a) planar electrodes [63] (b)Nanotube (example of cylinder) elec-
trodes [52], and (c) partial electrode [60]. (d) Corresponding dis-
placement vs. voltage characteristics showing the travel range tVr for
all the structures; symbols denote the experimental data and solid
line is the numerical simulation.

Equation 4.1 can be experimentally validated by interpreting the corresponding

displacement vs. voltage characteristics for all the structures (0 < n < 2), as shown

in Fig. 4.1 d. The experimental data are indicated by symbols, whereas solid line is

the numerical simulation of Eqs. 2.5 - 2.7 discussed in chapter 2. For planar electrode

(n = 2) travel range of 1/3 is consistent with the experimental data. The travel range

of nanotube electrode suggests that n ≈ 1.4 which is consistent with the capacitance

of a cylindrical electrode (Table 3.1). Similarly, the travel range for partial electrode

can be matched by n ≈ 0.14, see last panel in Fig. 4.1 d. Using this value of n,

experimental data is correctly reproduced by the numerical simulations in Fig. 4.1 d.

Solid line in Fig. 4.2 is the plot of Eq. 4.1 with p = 1 (i.e., for linear spring), whereas

empty symbols denote experimental data for structures such as planar, nanotube

(example of a cylindrical electrode) and partial electrodes (Fig. 4.1). Therefore,

Eq. 4.1 captures the essence of travel range for different fixed-geometry electrode

structures.
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Electrostatic Dimension

Fig. 4.2. Travel range as a function of electrode geometry parameter
n. Solid line denotes the analytical formula of travel range (Eq. 4.1);
whereas open symbols denote experimental data for fixed-geometry
electrodes-planar [63] (open circle), nanotube [52] (open triangle), and
partial electrode [60] (open square). Filled symbols denote the max-
imum achievable travel range using reconfigurable nano-structured
array of cylinders (diamond) and spheres (pentagon) (see Figs 4.3-4.4
for details). For reconfigurable electrodes n and therefore travel range
can be tuned in the range shown by arrows.

4.1.3 Reconfigurable Nanostructured Electrodes

4.1.4 Actuation with Linear Spring (p = 1)

Equation 4.1 and Fig. 4.2 suggest that travel range can be tuned through tuning of

n dynamically. We propose to use reconfigurable nano-structured electrodes M2 such

as a regular array electrode e.g., array of electrically connected nano- wires/tubes

(example case of cylinders) (Fig. 4.3 a) and nanodots (example case of spheres)

(Fig. 4.3 b) that can modify the value of n dynamically. In general, M2 can be a

fractal or any other complex geometry electrode, but we restrict ourselves to simple,

regular structures as they can easily be fabricated using nanofabrication techniques
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Fig. 4.3. Extension and tuning of travel range by reconfigurable nano-
structured regular electrodes e.g., array of electrically connected (a)
nano- wires/tubes (example of cylinders) and (b) nanodots (example
of spheres). (c)-(f) Corresponding travel range as a function of tuning
parameter g the separation between individual elements both for lin-
ear (c-d) and non-linear spring (e-f) of cubic nonlinearity. Solid line
denotes numerical simulations, open symbol experimental data and
filed symbol analytical result.

like transfer printing [80], bottom-up assembly [81] or/and liquid-filled microchannels

[82].

The array electrodes are characterized by the separation g between the individual

elements that dictate the electrostatic field and therefore the static behavior of mi-

croactuators. Equations 2.5 - 2.7 have been numerically solved for the static behavior

of the actuator. The capacitance C(y) of the nano-structured electrode system has

been obtained from the solution of Poisson’s equation, i.e., ∇2φ(x, y, z) = 0 (φ being

the electrostatic potential at (x, y, z) and x,z are parallel to the M1/M2 surface) for

each y and then used in Eq. 2.7. The results are summarized in Figs. 4.3-4.4. We find

that (i) travel range for both the structures is larger than 1/3 and (ii) travel range can

be tuned by changing the separation g. This separation g can be tuned electrically by

selectively applying the voltage to different elements, and thus enabling post fabrica-

tion control of travel range. For example, if voltage is applied to alternate elements,

it behaves as if g is doubled compared to the case when voltage is applied to all the
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elements. Figure 4.2 also highlights this fact and the arrows show the limit in which

travel range can be tuned by manipulating n through the tuning of g.

Interestingly, Figs. 4.3 c - d show that the dependence of travel range on g is non

monotonic, with a peak at g ∼ 1.6y0. To interpret this peak for an array of nano-

wires/tubes, Figure 4.4 a shows the potential profile for five different values of g at the

same applied voltage. The corresponding dC/dy as a function of y is shown in Fig.

4.4 b. For small values of g ≈ 2R, field lines emanating from individual wire/tube

merge and potential profile resembles that of regular planar electrodes (Fig. 4.4 a, A).

Indeed, we find that the negative of the slope of log(dC/dy)−log(y) is n ≈ 2 and travel

range is 1/3 (Fig. 4.4 b - c, A), as expected for planar electrodes. Indeed, the results

at this limit has been validated by recent experiments in vertically aligned carbon

nanotube arrays [70] (open triangle in Fig. 4.3 a). In contrast, for large separation

of g ≫ y0, the field lines emanating from individual wire/tube do not interact, and

the structure behaves like an isolated wire/tube (Fig. 4.4, E). Therefore, travel range

for large values of g is same as that of an individual wire/tube and is consistent with

the experimental data of an individual carbon nanotube [52] (open square in Fig. 4.3

a). At intermediate values of (g ≈ y0), structure behaves like a series combination of

planar and cylindrical electrode, that minimizes n and maximizes travel range (Fig.

4.4, C).

One can analytically interpret the maxima in travel range for array of nano-

wires/tubes. To the left of C in Fig. 4.4, when the structure resembles planar

electrodes, we find that (see appendix F for derivation)-

g

y0
≈ 2π(3tr − 1)

W
(

y0
R
(3tr − 1)

) ; left of the C (4.2)

To the right of C, the capacitance behavior is similar to that of an individual nano-

wire/tube, which leads to -
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Fig. 4.4. Physics of tuning behavior and maximum achievable
travel range for nano-structured array electrodes e.g., array of nano-
wires/tubes. (a) Two dimensional potential profile for various sepa-
ration g, (b) corresponding dC/dy as a function of y, and (c) travel
range as a function of g. Solid line denotes the numerical simulation
and dotted line is the analytical formula given by Eqs. 4.2-4.3.

g

y0
≈ π(1− tr)

√

(

(λ+ 3)tr − λ

λ− 2(λ+ 1)tr

)

; right of C (4.3)

where λ ≈ log (2(1 + y0/R)) and W is the Lambert function. Equations 4.2-4.3

correctly anticipates the numerical simulation, as shown in Fig. 4.4(c).

Similar characteristics are also expected for electrodes composed of array of nan-

odots, see Fig. 4.3 d. The array of nanodots transitions from a planar like behavior

to a single nanodot (single sphere) like behavior when separation g is increased. Note

that, for large g, the isolated nanodot has approximately the same travel range as
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that of electrodes with small g. This is expected from the characteristic dependence

of capacitance between a single sphere and a plane as a function of y given by Maxwell

formula, C ≈ 4πǫ0R
(

1 + R
2(y+R)

+ R2

4(y+R)2
+ · · ·+∞

)

(see the filled diamond in Fig.

4.3 d). Moreover, array of nanodots achieves travel range which is more than 0.6 of

the initial air-gap.

4.1.5 Actuation with Non-Linear Spring (p = 3)

The travel range of microactuator can be further extended by the use of a nonlinear

spring [83], as is evident from Eq. 4.1. For example, mid-plane stretching [55] gives

rise to cubic non-linearity i.e.,Fs = k(y0 − y) + k′(y0 − y)3 where k′ is spring-constant

associated with cubic nonlinearity. If the cubic nonlinear term dominates the linear

term (i.e., Fs ≈ k′(y0 − y)3), tVr = 3/(n + 3) (From Eq. 4.1 with p = 3). Therefore,

nonlinear spring extends the travel range to 3/5 for planar electrodes. Figures 4.3

e - f show the travel range for the array electrodes with a nonlinear spring of cubic

nonlinearity. In this case, the electrode with array of nanodots can achieve travel

range of close to 0.8, and electrode with array of nano- wires/tubes achieves a travel

range of 0.7, significantly higher than those obtained from linear springs. Therefore,

the combination of nonlinear spring and nano-structured electrode extends the travel

range well beyond the 1/3 limit of classical planar electrodes.

4.1.6 Travel Range Summary

We showed that reconfigurable nano-structured electrode extends the travel range

beyond the perceived fundamental limit of 1/3 without using any external circuit,

a series capacitor and/or modifying the actuation mechanism. Moreover, electrical

tuning of the separation between the individual elements of array electrodes will

enable post fabrication tuning of the travel range. The use of nonlinear spring coupled

with the nano-structured electrode provides additional flexibility in further extending

the travel range.
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4.2 Problem of Hard Landing

4.2.1 Hard Landing Background

Hard-landing is one of the major reliability concerns for electromechanical switches

e.g., RF-MEMS capacitive switches (Fig. 4.5 a), RF-MEMS ohmic switches or na-

noelectromechanical relays (Fig. 4.5 b) [84]. It is the degradation of the dielectric

or drain surface (Figs. 4.5 a - b) caused by the impact velocity vimpact, the velocity

with which the movable electrode M1 impacts the dielectric or drain, and dissipates

Ed = 1/2mv2impact on the dielectric surface or drain (m is the mass of M1). This

impact damages the dielectric or drain and increases the adhesion forces [85], which

may eventually lead to the malfunction of the switch due to stiction [86]. Reliability

and performance concerns therefore dictate that electrodeM1 should land softly in an

ideal electromechanical switch (i.e., with lower vimpact) without compromising other

critical parameters like pull-in time (tPI) and pull-in voltage (VPI).

Various open and closed loop control [87] techniques have been employed to reduce

vimpact for individual [88] and ensemble [89] of switches. These techniques modify the

input waveform so that VG(t) is reduced below VPI as M1 approaches the dielectric,

thereby ensuring softer landing. An innovative self learning control algorithm has

also been proposed to minimize the impact velocity and contact bounce by correcting

the VG(t) waveform iteratively [90]. These external circuits add to the cost and the

waveform developed for a nominal switch is often not optimal for an ensemble of

switches (due to process variations) and the worst-case design inevitably compromise

global performance.

Towards the goal of developing a self corrective, cost effective, and process vari-

ation tolerant soft-landing scheme, we propose following two techniques to reduce

vimpact during pull-in the switch without compromising VPI and tPI significantly-

• The first method involves resistive feedback/braking so that part of Ed is re-

motely dissipated in a resistor away from the dielectric or drain surface.
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Fig. 4.5. Problem of Hard-landing during pull-in. Schematic of (a)
RF-MEMS capacitive switch and (b) ohmic switch or NEMS relay.
(b) Energy (U) vs. displacement (y) profile for VG < VPI (blue curve)
and VG > VPI (red curve). VG is the applied voltage between M1 and
M2. Ed is the energy dissipation at M1/dielectric or drain interface
during pull-in. (c) Displacement (y) and velocity (v) as a function of
time (t) during pull-in showing pull-in time (tPI) and impact velocity
(vimpact).

• The second method relies on the patterning of either ofM1,M2 or the dielectric

in such a way that the effective capacitor area decreases dynamically as M1

approaches the dielectric or drain to reduce vimpact.

4.2.2 Strategies of Soft-Landing

The pull-in of an electromechanical switch is achieved by applying a step potential

VG between the electrodes M1 and M2 (Figs. 4.5 a - b). Assuming M1 at rest at y0

(Fig. 4.5 c, point A), a step voltage VG < VPI imparts an energy UT1 = −1/2C(y0)V
2
G

to the membrane (Fig. 4.5 c, point B). Electrode M1 eventually comes to rest at the

minima (point P1) of the total potential energy (U) landscape defined by the sum

of electrostatic (−1/2C(y)V 2
c , Vc being the voltage across the capacitor) and spring

(1/2k(y0−y)2 ) potential energies (blue solid line in Fig. 4.5 c). The energy difference

between UT1 and P1 is lost due to air-damping. For step voltage VG > VPI , however,

the energy of M1 jumps to UT2 and since the energy landscape this time (red solid

line in Fig. 4.5 c) does not have any minima, the “pull-in instability” results in
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uninhibited acceleration of M1 that is eventually brought to hard-stop at y = 0

(point P2 in Fig. 4.5c) by slamming against the dielectric or drain. It is this kinetic

energy (Ed = 1/2mv2impact, Fig. 4.5 b) at the M1/dielectric or drain interface that

damages the dielectric or drain. Figure 4.5 d shows the displacement (y) and velocity

(v) of the electrode M1 as a function of time (t) during pull-in.

The dynamics of the switch that is governed by Eq. 2.9 in chapter 2, indicates that

the acceleration ofM1 is directly proportional to the electrostatic force which is given

by-

Felec =
1

2

d(CV 2
c )

dy
=

1

2
V 2
c

dC

dy
+

1

2
C
dV 2

c

dy
. (4.4)

where Vc is the voltage betweenM1 andM2 such that VG = IR+Vc and I = d(CVc)/dt

with VG being the applied voltage and R being the series resistance. AsM1 approaches

the dielectric or drain, vimpact can be dynamically reduced by modulating Vc or C

such that either the point D or P2 in Fig. 4.5 c move in a way to reduce Ed and

vimpact. Traditional schemes like waveform shaping [91] attempt to reduce vimpact by

modulating VG - the applied bias (with R = 0, Vc = VG). Here we propose two new

and simpler schemes for soft-landing that are as follows:

4.2.3 Resistive Braking

One can reduce vimpact by inserting a resistance R in series with the voltage source.

Initially, there will be large t = 0+ transient (few ns) to charge the capacitor during

which the charging current I can be significant. Once this t = 0+ transient is over

and the upper electrode begins to move, I is relatively small at the early stages of

pull-in such that Vc ∼ VG and M1 pulls in classically. For t close to tPI , I increases

rapidly, causing significant remote resistive dissipation across R. As a result, the

point D moves down closer to P2 in Fig. 4.5(b), with corresponding reduction in

Ed and vimpact. This self retardation does not require any complex external circuitry
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Fig. 4.6. Soft-landing by resistive braking. (a) Velocity (v) as a
function of displacement (y) during pull-in for R = 0 and R = 10kΩ
(b) vimpact and tPI as a function of R. Below R = 1MΩ, vimpact
changes but tPI remains almost the same. (c) Different components
of energy as a function of R. ET is the total energy supplied by the
voltage source, Ed =

1
2
mv2impact is energy dissipation at the dielectric

surface, and ER is the total energy dissipated through R during pull-
in process. (d) Distribution of vimpact due to process variation for
R = 0 and R = 10kΩ. Both, the mean (µ) and standard deviation
(σ) decreases for R = 10kΩ.

to shape Vc, but achieves the same effect dynamically through the negative feedback

introduced by R in the scheme.

Figure 4.6 a shows v as a function of y during pull-in with (i) R = 0 and (ii)

R = 10kΩ. In both the cases, electrode M1 lands on the dielectric in almost same

tPI (Fig. 4.6 b), but with R = 10kΩ, vimpact is reduced by almost 50%, so that

only 25% of the kinetic energy is dissipated on the M1/dielectric interface, while

the rest 75% is dissipated in the remote resistance. Since resistive braking is only
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operative for a short duration close to t ∼ tPI when v(t) is high (Fig. 4.5 c), therefore

resistive braking changes vimpact without affecting tPI significantly. The upper limit

of R is determined by the fact that if R is too high, the increase in tPI may be

unacceptable, as I becomes large enough to reduce Vc and retard the motion of M1

throughout the pull-in process. For the illustrative problem, R < 1MΩ provides

large reduction in vimpact, without changing tPI significantly (Fig. 4.6 b). Figure 4.6

c shows various components of energy dissipation as a function of R. Total energy

(ET = C(0)V 2
G = (ǫ0ǫdWL/yd)V

2
G) is independent of R whereas energy dissipation

at the dielectric surface (Ed = 1/2mv2impact) decreases with R and energy dissipated

through R (ER =
∫

∞

0
I2Rdt) increases with R. Interestingly, note that ER + Ed =

ET − 1/2C(0)V 2
G − 1/2ky20 (by energy conservation) is independent of R. This means

that the energy dissipation at the dielectric surface decreases because of increase in

the (remote) resistive dissipation through R, while keeping the energy supplied by

the voltage source unchanged. One major advantage of resistive braking is that it

works well for an ensemble of switches in presence of process variation. Fig. 4.6 d

shows the distribution of impact velocity with 10% variation in the input parameters

(L,W, y0, yd, etc.). Both, the mean (µ) and the standard deviation (σ) of the impact

velocity are reduced significantly for R = 10kΩ.

4.2.4 Capacitive Braking

An alternate scheme for reducing vimpact is to pattern M1 or M2 or dielectric

as shown in Fig. 4.7 p1 - p5. For example, electrode M1 or M2 can be an array

of electrically connected nano- wires/tubes (example case of cylinders) or nanodots

(example case of spheres) (Fig. 4.7 p2 & p3) and/or the dielectric can be patterned

to have an array/fractal of linear slots (Fig. 4.7 p4 & p5). Note that, this idea of

patterning of the bottom electrode M2 is similar to our proposal of reconfigurable

nano-structured electrodes for the problem of travel range.
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Fig. 4.7. Soft-landing by patterning the electrode M1/M2 or the di-
electric. Electrode M1/M2 can be - (p1) rectangular plate, (p2) array
of nano- wires/tubes, (p3) array of nanodots, and dielectric can be -
(p4) an array of linear slots, or (p5) a fractal of linear slots. (a) v as a
function of y for patterned electrode or dielectric. Velocity reduction
is maximum for an array of nanodots. (b) vimpact (c) tPI as a function
of separation (g) between individual elements. As g increases vimpact
reduces at the cost of increased tPI . (d) vimpact and tPI for fractal
dielectric as a function of DF . As DF increases vimpact increases and
tPI decreases.
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Now, regardless the patterning, in the up-state of M1, the fringing fields between

the plates ensure that these patterned capacitors are indistinguishable from unpat-

terned parallel plate capacitor and therefore C = Ay−1 before pull-in; VPI is therefore

unaffected by patterning. AsM1 approaches the dielectric during pull-in, however, the

individual field lines associated with the patterned array begins to separate rapidly

from each other and elements of the array begins to behave as an isolated cylinders

or spheres, with dramatic reduction in the effective area of the capacitor and hence

the capacitance (C = A(y)y−1). This dramatic reduction in the capacitance of a pat-

terned capacitor causes electrostatic potential energy to reduce in magnitude, pushing

point P2 up closer to D (Fig. 4.5 c) resulting in reduced Ed and vimpact.

The capacitance C(y) for the patterned structures shown in Fig. 4.7 p1 - p5 has

been obtained in the same way as discussed in section 4.1.3 and then used in Eq. 4.4.

The results for the pull-in dynamics are summarized in Fig. 4.7 a - d. Figure 4.7 a

shows v as a function of y for patterned electrodes or dielectric. Reduction in vimpact

is maximum for an array of nanodots. Figures 4.7 b - c shows vimpact and tPI as a

function of separation (g) between individual elements of the patterned electrode or

dielectric. As g increases, vimpact decreases at the cost of increased tPI . Figure 4.7 d

shows vimpact and tPI as a function of fractal dimension (DF ) of patterned dielectric

of Fig. 4.7 p5. As DF of the patterned dielectric increases, the dielectric begins to

resemble a classical parallel plate MEMS switch and the advantages of patterning are

rapidly diminished.

4.2.5 Hard Landing Summary

To summarize this section, we proposed two novel schemes of resistive and ca-

pacitive braking (rather than the pulse shaping) for dynamic soft landing in elec-

tromechanical switches. The proposed resistive braking scheme also provides an

optimum solution for the design of an ensemble of switches in presence of process

variations. Note that, one disadvantage of the patterned electrode/dielectric is the
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loss of ON-state capacitance (CON), therefore a combination of resistive braking as

well as electrode/dielectric patterning may offer the best compromise between relia-

bility vs. performance (tPI ,and CON).

4.3 Conclusions

In this chapter:

• We saw that intrinsic pull-instability poses problem of limited travel range for

tunable-gap electromechanical actuators such as deformable mirrors and hard-

landing for MEMS switches.

• To address the respective problems, we provided novel device level solutions,

which do not require any extra circuits or feedback mechanism.

• The proposed solutions utilize electrode geometry as a new design variable in

electromechanical actuators and switches to address the problems arising due

to pull-in instability.

• The proposed solutions for hard-landing are very general and can inspire solu-

tions to minimize damage in other Landau systems such as ferroelectric mate-

rials also [43].

In this chapter, we focused on addressing the problems due to instability. It may

therefore appear that instability is a bad thing. In the next two chapters, we will try

to convince that instability can be very useful, if used properly. In the next chapter,

we will discuss the strategies to harness instability, mainly its negative capacitance

behavior for voltage amplification in field effect transistors.
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5. HARNESSING NEGATIVE CAPACITANCE :

HYSTERESIS-FREE SUB-60mV/DECADE FIELD

EFFECT TRANSISTORS

In the last chapter, we addressed the problems that arise due to instability. Specif-

ically, we proposed novel device structures to address the problems of travel range

and hard-landing. In contrast to the existing solutions for the respective problems,

the proposed solutions do not require any external circuit or feedback mechanisms.

The goal of this as well as next chapter is very different from the last chapter. Here

(as well as in the next chapter), instead of treating instability as a source of problems,

we harness instability for performance enhancement. In this chapter, we focus on

field effect transistors (FETs), namely a suspended-gate FET and ferrooelectric FET,

that use air-gap of MEMS and ferroelectrics as the gate insulator, respectively. We

utilize the negative capacitance behavior of these novel gate insulators as discussed

in chapter 2, to beat the fundamental thermodynamic limit of sub-threshold swing of

60mV/decade in classical FETs. The specific goals of this chapter1 are as follows:

• Illustrate how the negative capacitance behavior of air-gap in MEMS and ferro-

electrics (seen in chapter 2) can lead to hysteresis-free sub-60mV/decade switch-

ing characteristics.

• Once we understand that negative capacitance of the gate insulator can lower

sub-threshold swing below 60mV/decade, we answer the question: “How low

can the sub-threshold swing be in a negative capacitance FET (NC-FET)?”.

• We end the search of an ideal switch and propose a novel device concept that

achieve hysteresis-free 0mV/decade switching characteristics.

1The content (text and figures) in this chapter have been adapted from [92] c©IEEE 2013 and [93]
c©IEEE 2014.
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Rest of the chapter is organized as follows. In section 5.1, we start with the back-

ground and motivation of the need of sub-60mV/decade switch. We discuss both the

hysteretic and hysteresis-free switching characteristics of novel Landau switches in sec-

tion 5.2. In section 5.3, we discuss the conditions of hysteresis-free sub-60mV/decade

switching in Landau switches and establish the fundamental lower limits of sub-

threshold swing in negative capacitance field effect transistors. We discuss our pro-

posal of hysteresis-free ideal switching characteristics in section 5.4 and conclude in

section 5.5.

5.1 Background

Reducing power supply voltage (VDD) to lower power dissipation (Pdyn ∝ V 2
DD) in

an integrated circuit (IC) is one of the fundamental challenge for the scaling of modern

ICs. The reduction of VDD requires reducing threshold voltage (VT ) to meet the ON

current (ION ∝ (VDD − VT )
α, here α ∼ 1− 2) requirement. However, lowering of VT

comes at the expense of increased OFF state power dissipation (POFF ∝ IOFF ) due

to increased OFF current (IOFF ∝ 10

(

−
VT
S

)

[94]. Here, S is the sub-threshold swing

of the underlying switch. These conflicting requirements suggest that the advantages

obtained by reducing VDD can be offset by either reduced performance (lower ION)

or increased POFF [95]. The situation therefore demands for reducing S so that VDD

and VT can be reduced simultaneously without sacrificing the performance or power

(Figs. 5.1). An ideal switch with Sideal = 0mV/decade is thus needed to realize the

ultimate scaling of ICs [96]. However, thermodynamics dictate that S for classical

field effect transistors (FETs) (Fig. 5.1 a) cannot be lower than the Boltzmann limit

of SBZ = 60mV/decade [94].

The sub-threshold swing is the change in gate voltage (VG) required to change the

drain current (IDS) by one order of magnitude. When an FET is operated between

gate voltage VG1 < VG < VG2, writing sub-threshold swing (S) as-
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Fig. 5.1. (a) Schematic of a field effect transistor (FET).(b) Corre-
sponding IDS − VG characteristics for two devices with different sub-
threshold swings (S). As S reduces, power supply voltage (VDD) and
threshold voltage (VT ) can be reduced keeping the same on (ION) and
off (IOFF ) current.

S ≡ ∆VG
∆ψs

=
∆VG

log10

(

IDS2
IDS1

) =
∆ψs

log10

(

IDS2
IDS1

)

∆VG
∆ψs

= n×m, (5.1)

shows that S is the product of two factors. Here IDS1, IDS2 are drain currents at

VG1, VG2 respectively, ∆ψs is the change in surface potential and ∆VG = VG2 − VG1.

The transport factor, n ≡ ∆ψs

log10

(

IDS2
IDS1

) = 2.3kBT/q (kB = Boltzmann constant, T=

absolute temperature, and q=electron charge) is 60mV/decade at room temperature

for above the barrier current transport. Using the capacitor divider model of a FET

(Fig. 5.2 a), the parameter m (also known as the body factor) can be written as-

m ≡ ∆VG
∆ψs

=

∫ Q2

Q1
(Cs(Q)

−1 + Cins(Q)
−1) dQ

∫ Q2

Q1
(Cs(Q)−1) dQ

. (5.2)

Here, Cs(Q) is the channel depletion capacitance, Cins(Q) is the capacitance of the

gate insulator, Q is charge on the gate, andQ1, Q2 correspond to VG1, VG2 respectively.

For an FET with constant Cs and Cins, Eq. 5.2 reduces to the well-known formula of

m i.e.,

m = 1 +
Cs
Cins

. (5.3)
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Fig. 5.2. Phase space of FETs based on their sub-threshold swing. (a)
Equivalent capacitor divider model of an FET. (b) Classification of
various proposals of novel FETs based on the values of body factor (m)
and transport factor (n). FETs with gate insulators having Cins > 0,
exhibits m > 1 ; whereas FETs with gate insulators having Cins < 0,
exhibits m < 1. U is the total energy and Q is the charge on Cins.

In a classical FET, gate insulator such as SiO2 (Fig. 5.1 a) exhibits positive capac-

itance i.e., Cins > 0, which results in body factor m ≥ 1 (Eq. 5.3). As a result, S

cannot be lower than SBZ = 60mV/decade (Fig. 5.2 b).

In literature, there have been two major approaches to reduce S below SBZ (Fig.

5.2 b). The first scheme involves reducing n < 60mV/decade (while keeping m

fixed) by modifying the transport within the channel. For example, instead of relying

on the thermionic emission based transport (n = 60mV/decade), Tunnel-FETs [18]

and green transistors [97] utilize band-to-band tunneling; whereas Impact Ionization

FETs [98] utilize impact ionization to reduce S < SBZ . In the second approach, m is

reduced below one by changing the gate insulator. In this scheme, the classical gate

insulator (Cins) characterized by a single well energy landscape as shown in Fig. 5.2

b, is replaced by an inherently unstable gate insulator that exhibits a two-well energy
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landscape, Fig. 5.2 b. As illustrated in chapter 2, the capacitance (Cins) in the un-

stable regime (dotted square for two well energy landscape in Fig. 5.2 b), is negative.

Therefore, this negative capacitance behavior has the potential to reduce body factor

m below one and S < SBZ (Fig. 5.2 b). We call these new class of switches Landau

switches (as opposed to Boltzmann switches), because the operation of these devices

rely on an energy landscape defined by a pair of energy wells. This characteristic

two-well energy landscape is associated with phase transition processes [99] and is

elegantly interpreted by the Landau theory. Landau switches are also called negative

capacitance field effect transistors (NC-FETs) due to their negative capacitance be-

havior in the unstable regime. In this chapter, we focus on two illustrative examples

of Landau switches, namely, Ferroelectric-FET (FE-FET) [100] and suspended gate

FET (SG-FET) [21,101].

5.2 Switching Characteristics of NC-FETs

In this section, we show that in a properly designed SG-FET and FE-FET, neg-

ative capacitance of the air-gap and ferroelectric material, respectively, provide the

necessary voltage amplification to exhibit hysteresis-free sub-60mV/decade behavior.

Before that, let us extend our understanding of instability in MEMS capacitive ac-

tuators and ferroelectric materials to explain the basic operation of an SG-FET and

FE-FET.

5.2.1 Abrupt Switching Characteristics of SG-FET and FE-FET with

Hysteresis

Figure 5.3 a shows the schematic of an SG-FET in which gate is suspended from

a spring and air-gap creates the gate insulator. The structure is similar to a MEMS

capacitive actuator discussed in chapter 2, except that the thin dielectric in Fig. 2.1

has been replaced by a semiconductor channel to create a FET with movable gate.

In the equivalent capacitor divider model of an FET as shown in Fig. 5.2 a, Cs for
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SG-FET is same as that of a regular classical FET. However, air-gap capacitance

Cair replaces Cins. Note that, the physics of Cair in SG-FET is exactly same as in a

MEMS capacitive actuator and was discussed in chapter 2. Figure 5.3 b shows Cair as

a function of the charge (Q) on the gate. Cair (Eq. 2.21) is positive for 0 < Q < Qc1

and negative for Qc1 < Q < Qc2. The charge Qc1 corresponds to the instability point

y = 2y0/3; whereas Qc2 corresponds to the physical boundary y = 0 between the gate

and channel (Eq. 2.22 and Fig. 2.4). As explained in chapter 2, movable gate is

unstable in the negative capacitance regime and therefore exhibits a hysteretic y−VG
characteristics (Fig. 2.2 c). As a result, SG-FET also exhibits hysteretic IDS − VG

switching characteristics as shown in Fig. 5.3 c. Abrupt transition of the gate from

top to down position at pull-in voltage and from down to the top position at pull-out

voltage, results in vertical jump in IDS − VG characteristics which is equivalent to

sub-threshold swing of 0mV/decade. Note that, this abrupt switching behavior of

SG-FET is associated with an intrinsic hysteresis (Fig. 5.3 c).

We saw in chapter 2, the qualitative physics of a ferroelectric is similar to the

physics of MEMS capacitive actuator. Similarly, the behavior of an FE-FET (Fig.

5.3 d) is qualitatively very similar to the behavior of an SG-FET. Recall that an

FE-FET is similar to a regular FET, except with a ferroelectric material as the gate

insulator (Fig. 5.3 d). Like SG-FET, Cs in Fig. 5.2 a is same as that of a classical

FET; whereas Cins is replaced by ferroelectric capacitance CFE. Figure 5.3 e shows

CFE as a function of the gate charge (Q). We consider only positive values of Q for

an n-channel FET. CFE is positive for Q > Q′

c1 and negative for Q′

c2 < Q < Q′

c1.

The charge Q′

c1 corresponds to the boundary between stable and unstable regime

and is same as Qc discussed in chapter 2 (Fig. 2.9); whereas Q′

c2 = 0 for an n-

channel FE-FET. As explained in chapter 2, ferroelectric is unstable in the negative

capacitance regime and exhibits hysteretic Q− VG characteristics (Fig. 2.8 d). As a

result, FE-FET also exhibits hysteretic IDS − VG characteristics (Fig. 5.3 f).

As evident from the responses of SG-FET and FE-FET, a typical Landau switch

exhibits hysteretic IDS − VG characteristics with abrupt transition equivalent to
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Fig. 5.3. (a) Schematic of a suspended-gate FET in which an air-
gap serves as the gate insulator.(b) Capacitance of the air-gap as a
function of the gate charge (Q) and (c) typical hysteretic IDS − VG
characteristics of SG-FET. The parameters used in the simulations
are y0 = 10nm, ǫs = 11.7, L = 100nm, W = 4µm, H = 33.9nm,
E = 200GPa, NA = 6.22×1015cm−3, and VDS = 0.5V . (e) Schematic
of a ferroelectric FET in which a ferroelectric material serves as the
gate insulator.(f) Capacitance of ferroelectric as a function of the gate
charge (Q) and (c) typical hysteretic IDS − VG characteristics of FE-
FET. The parameters used in the simulations are y0 = 35.2nm, ǫs =
11.7, L = 100nm, W = 4µm, NA = 5 × 1018cm−3, VDS = 0.5V ,
α0 = −6.5 × 107m/F , β0 = 3.75 × 109m5F/C2, and γ0 = 0. Note
that, numerical simulation framework for SG-FET and FE-FET have
been discussed in appendix B and C, respectively.

0mV/decade (Fig. 5.4 a). In principle, abrupt switching (S = 0mV/decade) of

Landau switches could potentially reduce the energy dissipation to Ed = QV∆VG,

when operated between points O1 and O2 in Fig. 5.4 a. Here QV is the difference in

the charge between the two states (O1 and O2) and ∆VG is fundamentally dictated by

thermal noise [102]. Unfortunately, as we saw, abrupt switching always comes at the



96

lo
g

(I
D

S
)

VG

HV S=0

VG

lo
g

(I
D

S
)

HV=0

S=0

O2

O1

O3

O2

O1

VG

lo
g

(I
D

S
)

HV=0

S<60mV/decade

(a) (b) (c)

Fig. 5.4. Summary of the response of Landau switches, namely SG-
FET and FE-FET. (a) Typical hysteretic IDS − VG characteristics
with abrupt transition, (b) ideal switching characteristics which we
are after in this chapter, and (c) hysteresis-free sub-60mV/decade
switching characteristics of properly designed Landau switches.

cost of an intrinsic hysteresis, because once switched from one stable regime to an-

other stable regime (or vice versa), switching back does not occur at the same applied

voltage. Therefore, hysteresis in Landau switches (Fig. 5.4 a) dictates the energy dis-

sipation (Ed = QVHV with HV being the width of the hysteresis), because the switch

must operate between points O3 and O2 (Fig. 5.4 a). The fundamental question is:

under what condition hysteresis-free abrupt switching (HV = 0, S = 0mV/decade)

can be realized in a Landau switch? (Fig. 5.4 b). We will answer this question below

in section 5.4. Before that, we discuss how can we get a hysteresis-free response (even

with S 6= 0) in a Landau switch. We will show below, hysteresis-free response in a

Landau switch requires stabilization in the unstable regime and consequently lead to

sub-60mV/decade switching (Fig. 5.4 c).

5.2.2 Hysteresis-Free sub-60mV/decade Switching Characteristics of SG-

FET and FE-FET

In the previous section, we saw that intrinsic instability of SG-FETs and FE-FETs

is responsible for the hysteresis of IDS − VG characteristics (Fig. 5.4 a). Therefore,

if the movable gate in SG-FET and ferroelectric in FE-FET, respectively, can be

stabilized in the unstable regime, hysteresis will go away. Although, Cins is negative

in the unstable regime, if Cs is properly chosen such that C−1
G = C−1

ins + C−1
s > 0,
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movable gate and ferroelectric will be stabilized in the unstable regime. We show

below that this stabilization in the unstable regime provides the necessary voltage

amplification to reduce S < SBZ .

Hysteresis-free smooth switching (HV = 0 & S > 0mV/decade, Fig. 5.4 c) in

SG-FET requires a benign y − VG characteristics that displays no hysteresis, but

then have no pull-in instability either, i.e., HV = 0 & yc = 0. Since HV ∝ y2c (Eq.

2.23 in chapter 2) and yc is given by Eq. 2.15. yd = 2y0 makes both HV and yc

zero. As there is no dielectric in SG-FET as opposed to MEMS capacitive actuators,

yd is just the equivalent thickness corresponding to the channel capacitance Cs. It

means that a constant series capacitor Cs = ǫ0/2y0 makes the overall capacitance

C−1
G = C−1

air + C−1
s positive and enables hysteresis-free smooth switching. Figures

5.5 a-b show the energy landscape (Eq. 2.4 with yd = 2y0) when VG is increasing

and decreasing respectively. Interestingly, U − y profile at different voltages exhibits

only one minima which is the characteristic of a single well energy landscape. Open

circles and open triangles in Figs. 5.5 a-b denote the position where gate is stabilized.

Figure 5.5 c shows the corresponding y − VG characteristics which does not exhibit

any hysteresis as expected from single well energy landscape.

Note that, this switching behavior has fundamentally been made possible by sta-

bilizing the gate in its inherently unstable regime. This stabilization comes from an

inherent negative feedback provided by the series capacitor (Cs) (channel depletion

capacitance), so that the voltage-drop across air-gap capacitor (Vair) decreases when

the gate enters in the unstable regime (Fig. 5.5 d). This decrease in Vair amplifies

the voltage-drop across Cs(surface potential (ψs)) (Fig. 5.5 d ). This amplification

in ψs is directly reflected in the body factor m < 1, symbols in Fig. 5.5 e . If one

accounts for the charge build up inside the semiconductor (i.e., voltage dependence

of Cs), it can be shown that -

m ≡ dVG
dψs

= 1 +
Cs
Cair

, Cs =

√

qǫ0ǫsNA

2ψs
(5.4)
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Fig. 5.5. Hysteresis-free sub-60mV/decade switching in SG-FET. Sin-
gle well energy landscape for hysteresis-free smooth switching when
(a) VG is increasing and (b) VG is decreasing. Open circles denote
the position where gate is stabilized. Corresponding (c) y − VG
characteristics for hysteresis-free smooth switching. (d) Voltage-drop
across air-gap capacitor (Vair) and series capacitor (ψs) showing the
voltage amplification in ψs in the unstable regime. (e) Body fac-
tor m which is less than one in the unstable regime of SG-FET.
Symbols denote the numerical simulations and solid line Eq. 5.4.
(f) Corresponding IDS − VG characteristics with an effective sub-
threshold swing of 39.3mV/decade reflecting the voltage amplification
provided by the negative capacitor. The parameters used for simula-
tions are same as the one used in Fig. 5.3 except H = 26.4nm and
NA = 4.95× 1015cm−3.

where q is the charge on an electron, ǫs is dielectric constant of channel material, and

NA is the channel doping. Cair is the effective air-gap capacitance (Eq. 2.21 and Fig.

5.3 b). Note that, in contrast to Eq. 5.2 which gives an effective value of m between

VG1 < VG < VG2, Eq. 5.4 gives value ofm at single VG. As expected, air-gap capacitor

effectively acts like a negative capacitor when gate enters in the unstable regime (i.e.,
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Cair < 0 when y < 2/3y0) and thus, provides necessary voltage amplification to reduce

m below one. Equation 5.4 correctly reproduces the numerical simulations results in

Fig. 5.5 e. The corresponding IDS−VG for the same SG-FET obtained from the self-

consistent numerical simulations is shown in Fig. 5.5 f and confirms the hysteresis-free

smooth switching of SG-FET. In sub-threshold regime, IDS − VG characteristics is

highly nonlinear and does not exhibit a constant sub-threshold swing. Therefore, we

define an effective sub-threshold swing (same as Eq. 5.1) for IDS(y = 2/3y0) < IDS <

IDS(y = 0) when SG-FET is biased in negative capacitance regime. Considering this,

S is given by ∆V/ log10(IDS(y = 0)/IDS(y = 2/3y0)), where ∆V is defined in Fig.

5.5 f. The value of S for the chosen parameters is 39.3mV/decade and is less than

the fundamental thermodynamic limit of 60mV/decade. Reduction in S confirms the

voltage amplification provided by the air-gap capacitor in its negative capacitance

regime.

Similar to an SG-FET, hysteresis-free smooth switching in FE-FET, requires a

benign Q − VG characteristics such that it does not exhibit any hysteresis with no

instability in Qs. It has previously been shown that a series capacitor Cs ≤ −1
α0yFE

stabilizes the ferroelectric for all values of Q as shown in Fig. 5.6 a [19] (α0 is

the material constant of the ferroelectric and yFE is the thickness, see chapter 2

also). Fundamentally, stabilization of the ferroelectric in inherently unstable regime

(Q′

c2 ≤ Q ≤ Q′

c1) comes from an inherent negative feedback provided by the series

capacitor. Similar to an SG-FET, in the unstable regime, the voltage drop across

the ferroelectric (VFE) decreases (Fig. 5.6 b). This decrease in VFE amplifies the

change in surface potential (Fig. 5.6 b). Like SG-FET, the value m in FE-FET can

be analytically given by-

m ≡ dVG
dψs

= 1 +
Cs
CFE

, (5.5)

where CFE is the capacitance of the ferroelectric (Eq. 2.29 and Fig. 5.6 e). As

expected, ferroelectric effectively acts like a negative capacitor (CFE < 0, when Q′

c2 ≤
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Fig. 5.6. Hysteresis-free sub-60mV/dec switching in an n-channel FE-
FET. (a) Q− VG characteristics for hysteresis-free smooth switching.
(b) Voltage-drop across ferroelectric (VFE) and series capacitor (ψs)
showing the voltage amplification in ψs in the unstable regime(Q′

c1 ≤
Q ≤ Q′

c2). (c) Body factor m which is less than one in the unstable
regime of FE-FET. Symbols denote the numerical simulations and
solid line Eq. 5.5. (d) Corresponding IDS−VG characteristics with an
effective sub-threshold swing of 52mV/decade reflecting the voltage
amplification provided by the negative capacitor. The parameters
used in the simulations are simulations are same as the one used in
Fig. 5.3 except NA = 7.5× 1019cm−3.

Q ≤ Q′

c1) in the unstable regime and provides the necessary voltage amplification to

lower m below one (Fig. 5.6 c ). Equation 5.5 matches the numerical simulations

result very well. The corresponding IDS − VG characteristics is shown in Fig. 5.6

d, which confirms the hysteresis-free smooth switching. The effective sub-threshold

swing in the unstable regime is S = ∆V/ log10(IDS(Q = Q′

c1)/IDS(Q = Q′

c2)) is

52mV/decade confirming the voltage amplification provided by the negative capacitor.
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To summarize, we saw that Landau switches (SG-FET or FE-FET) typically ex-

hibit hysteretic IDS − VG characteristics. However, if Cs is properly chosen so that

negative capacitance gate insulator is stabilized throughout the negative capacitance

regime, Landau switches exhibit hysteresis-free sub-60mV/decade switching charac-

teristics. The question: “Can the sub-threshold swing be lowered all the way to

0mV/decade by any combination of Cs or Cins?” is explored in the next section.

5.3 Minimum Sub-threshold Swing in Negative Capacitance FETs

In the last section, we showed that stabilization of the gate insulator in the un-

stable regime gives rise to hysteresis-free sub-60mV/decade switching characteristics

in NC-FET. And, it is now well accepted in the literature that NC-FETs can lower

S [103–105] , but given a specific device architecture, the question whether there is

a lower limit of S (and if so, the conditions that define the limit) have not been

answered. Without this limit, one cannot ascertain the technological relevance of

NC-FETs. Therefore, in this section, we:

• demonstrate that the fundamental constraints related to the stability and hysteresis-

free operation dictate that there is a lower limit of S associated with each NC-

FET technology,

• provide a general algorithm to calculate the minimum sub-threshold swing

(Smin), and

• illustrate the concept using SG-FET and FE-FET for two channel configura-

tions namely a partially depleted bulk FET and a FET with constant channel

capacitance.

The lower limit reflects the fact that the choice of Cs is fundamentally dictated

by the need to stabilize the gate insulator in the negative capacitance regime.
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Fig. 5.7. Summary of various field effect transistors, namely (a)
classical FET with traditional gate insulator such as SiO2, (b) FE-
FET with a ferroelectric material as the gate insulator, (c) SG-FET
which has an air-gap as the gate insulator, and (d) corresponding
minimum achievable sub-threshold swing: classical-FET (◦), FE-
FET with BaTiO3 (⋄), PZT (PbZr1−xT ixO3) with x = 0 and SBT
(Sr0.8Bi2.2Ta2O9) (�) as ferroelectric material, and SG-FET (△).
Open symbols denote bulk FETs with constant channel doping and
solid symbols denote FETs with constant channel capacitance. For
classical FETs, the value is same for both cases. For FE-FET, Smin
depends on the material property of ferroelectric; whereas for SG-
FET, it is material independent.

5.3.1 Stability Constraints Dictate Minimum S

We have seen that gate insulators in both FE-FET and SG-FET exhibit negative

Cins(Q) (with Cins = CFE in FE-FET and Cins = Cair in SG-FET) in the unstable

regime. Hysteresis-free smooth switching requires stabilization of Cins in the negative

capacitance regime by proper choice of Cs. It means that the overall gate capacitance,

CG(Q)
−1 = Cs(Q)

−1 + Cins(Q)
−1 (Fig. 5.8 a) must still be positive at all charges for

hysteresis-free stable operation [19, 106, 107]. This stability requirement places a

fundamental constraint on Cs(Q) i.e.,
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Cs(Q)
−1 ≥ −Cins(Q)−1, (5.6)

which should hold throughout the negative capacitance regime. Equation 5.6 is the

key equation that distinguishes a classical FET from an NC-FET and has been dis-

cussed by many researchers in context of FE-FETs [105, 108]. Equations 5.1-5.2 &

5.6 suggest that an obvious choice of Cs(Q) = −Cins(Q) will make S = 0. However,

as we will see, in FE-FET or SG-FET, Cs(Q) cannot be made equal to Cins(Q) at

all charges due to their different functional dependencies on Q, which in turn places

a lower limit on S.

For a given dependence of Cins(Q) and Cs(Q) on Q, sub-threshold swing is mini-

mized when Cs(Q) and −Cins(Q) are matched as closely as possible (Eqs. 5.1-5.2 &

5.6). The exact value of the minimum sub-threshold swing depends on the choice of

Cs(Q) and Cins(Q). For example, Cs(Q) is defined by the specific FET technology,

e.g., single gate vs. multi-gate FET or partially depleted vs. fully depleted. Sim-

ilarly, Cins(Q) depends on the particular design (or details) of negative capacitance

gate insulators e.g., ferroelectric in FE-FET vs. air-gap in SG-FET or single crys-

talline ferroelectric vs. polycrystalline ferroelectric. However, the critical point is, for

a given choice of Cs(Q) and Cins(Q), there is always a minimum sub-threshold swing

that characterizes the NC-FET. Below, as an illustrative example, we calculate the

minimum sub-threshold swing for SG-FET and FE-FET with a partially depleted

channel with constant doping and FETs with constant channel capacitance.

To understand the specific lower limit of S for an NC-FET, it is essential to

understand Cins(Q) − Q and Cs(Q) − Q characteristics. As discussed in chapter 2

and in previous secion, for any NC gate insulator, there are two regimes of operation

defined by its: (i) positive (Cins(Q) > 0) and (ii) negative (Cins(Q) < 0) capacitance

(solid line in Fig. 5.8 b). These regimes are separated by a boundary which occurs

at Q = Qc1 such that Cins(Qc1) = ∞ (infinite insulator capacitance, see Figs. 2.4

& 2.9). Note that, NC regime thus extends from Q = Qc1 to Q = Qc2 where Qc2 is
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Fig. 5.8. Physics of minimum sub-threshold swing in NC-FETs. (a)
Equivalent capacitor divider model of a FET. Value of Cs must be
chosen such that Eq. 5.6 is satisfied at all charges. (b) Illustrating
generic Cins(Q)−Q (solid line) and Cs(Q)−Q (dotted lines for three
channel doping) characteristics in an NC-FET. Value of NA (NA2

in this illustrative example) for which Cs(Q) and −Cins(Q) match
closely, S is minimized.

defined by a physical constraint associated with a specific system. Regarding Cs(Q),

note that: (i) Cs(Q) depends on the channel doping NA, (ii) Cs(Q) depends whether

channel is in sub-threshold (Cs(Q) ∝ NA/Q) or in inversion (Cs(Q) ∝ Q) and (iii)

value of Cs(Q) is large in inversion than in sub-threshold [94].

To illustrate the point that sub-threshold swing is minimized for close matching

between Cs(Q) and −Cins(Q), let us plot Cs(Q) in Fig. 5.7 b for three different

values of NA such that: (i) for NA1, Cs(Q) exceeds −Cins(Q) even in sub-threshold

regime and therefore the gate insulator becomes unstable, (ii) for NA3, channel gets

inverted (reflected in the downward transition of magenta curve) so that Cs(Q) ex-

ceeds −Cins(Q) and gate insulator becomes unstable once again, (iii) for NA2, channel

remains in sub-threshold throughout the NC regime, and Cs(Q) and −Cins(Q) are

matched as close as possible for the given dependencies of Cs(Q) and Cins(Q); which
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results in minimum S. Therefore, for monotonic Cs(Q)
−1 and −Cins(Q)−1, the nec-

essary condition for minimum sub-threshold swing is that: (i)

Cs(Q = Qc2) = −Cins(Q = Qc2), (5.7)

and (ii) channel should be in sub-threshold throughout the NC regime. The condi-

tion of channel being in sub-threshold is mathematically equivalent to ψs < 2ψB =

2kBT/q log(NA/ni) (ni = intrinsic carrier concentration) throughout NC regime,

which simplifies to ψs(max(|Qc1| , |Qc2|)) = lψB with l < 2. For a partially de-

pleted FET with constant channel doping, ψs is related to Q by depletion charge i.e.,

ψs = Q2/(2qǫ0ǫsNA) [94], the condition thus translates to-

lψB =
(max(|Qc1| , |Qc2|))2

2qǫ0ǫsNA

, (5.8)

where ǫ0 is the permittivity of free space and ǫs is the dielectric constant of the

channel material. In Figure 5.8 b, NA2 satisfies both the conditions (Eqs. 5.7 - 5.9)

and exhibits minimum sub-threshold swing. The corresponding value of minimum

sub-threshold swing (Smin) can be obtained from Eqs. 5.1 - 5.2 with Q1 = QC1 &

Q2 = Qc2, and is given by-

Smin =
2.3kBT

q

(

1 +
Vins(Qc2)− Vins(Qc1)

ψs(Qc2)− ψs(Qc1)

)

(5.9)

Here, Vins(Q) is the voltage drop across gate insulator such that VG = Vins(Q)+ψs(Q)

and Cins(Q) = dQ/dVins. Note that, Smin defined by Eq. 5.9 corresponds to the

maximum current modulation in NC regime. We emphasize that the approach to

determine Smin (Eq. 5.9) and stability condition (Eq. 5.8) are very general and will

work irrespective of the choice of Cs and Cins. However, Eq. 5.8 is valid only for a

partially depleted FET with constant channel doping. Equation 5.8 (and therefore
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Quantity SG-FET FE-FET

Qc1

√

2ǫ0ky0
3WL

5γ0Q
4
c1 + 3β0Q

2
c1 + α0 = 0

Qc2

√

2ǫ0ky0
WL

0

Vins(Qc1)
√

8ky30
27ǫ0WL

yFE (α0Qc1 + β0Q
3
c1 + γ0Q

5
c1)

Vins(Qc2) 0 0

ψs(Qc1) lψB/3 lψB

ψs(Qc2) lψB 0

Table 5.1
Various quantities that determine the value of Smin in SG-FET and
FE-FET. Note that, Qc1 & Qc2 for FE-FET are same as Q′

c1 & Q′

c2.
Values of Vins are relevant both for partially depleted FET and FET
with constant channel capacitance; whereas values of ψs are relevant
only for partially depleted FETs.

minimum S) will change as we change the FET structure (e.g., single gate vs. multi

gate [109] [17] or bulk FET vs. fully depleted FET). Below, we will discuss two

specific examples to illustrate how the charges Qc1 and Qc2 are obtained for FE-FET

and SG-FET, respectively, and explain how these charges dictate Smin (see Table

5.1).

5.3.2 Minimum S in Partially Depleted SG-FET

In order to evaluate the minimum sub-threshold swing in SG-FET, we recall that

Vair and Cair that are obtained from Eq. 2.20, are given by-
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Vair = α
′

0Q+ β
′

0Q
3, C−1

air ≡
dVair
dQ

= α
′

0 + 3β
′

0Q
2, (5.10)

where α
′

0 = y0/ǫ0 and β
′

0 = −WL/(2ǫ20k) are material and geometrical constants

(Eq. 2.21). To recall, Vair − Q and Cair(Q) − Q characteristics consist of positive

(Cair(Q) > 0) and negative (Cair(Q) < 0) capacitance regimes (Figs. 5.9 a-b). This

negative capacitance behavior has been previously verified experimentally in electro-

static actuators using charge-based actuation [59]. The two regimes are separated

by a boundary which occurs at Q = Qc1 or (physically at y = 2y0/3) such that

dVair/dQ = 0 i.e., Qc1 = ±
√

2ǫ0ky0
3WL

(Eq. 2.22). Qc2 = ±
√

2ǫ0ky0
WL

corresponds to the

physical boundary at y = 0 (Eq. 2.22). As discussed in chapter 2, the NC region in

SG-FET is limited to 0 < y < 2y0/3 which corresponds to Qc1 < Q < Qc2 for an

n-channel SG-FET.

Using the value of Cair and Qc2, Eq. 5.7 for SG-FET reduces to Cs(Qc2) =

−Cair(Qc2) = ǫ0/2y0. Realizing that Cs =
√

qǫ0ǫsNA
2ψs

is the depletion capacitance and

ψs(Qc2) = lψB as Qc2 = max(|Qc1| , |Qc2|) (from the derivation of Eq. 5.8), Eq. 5.7

is further simplified to-

y20NA

ψB
=

lǫ0
2qǫs

(5.11)

Similarly, Eq. 5.8 of channel being in sub-threshold reduces to

y0
NAψB

=
lqǫsWL

k
. (5.12)

Equations 5.11-5.12 relate NA and y0 (corresponding to minimum S) for a given value

of k and their explicit values are given by-

NA =

(

ǫ0k
2

2lq3ǫ3sW
2L2ψB

)
1
3

, y0 =

(

l2ǫ0WLψ2
B

2k

)
1
3

, (5.13)
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Fig. 5.9. Voltage drop and capacitance characteristics of gate insula-
tors in SG-FET and FE-FET. (a) voltage drop across air-gap (Vair),
(b) air-gap capacitance (Cair), and channel depletion capacitance (Cs)
as a function of the gate charge (Q) in SG-FET. (c) Similarly, volt-
age drop across the ferroelectric (VFE), (d) ferroelectric capacitance
(CFE), and channel depletion capacitance (Cs) as a function of the
gate charge (Q) in FE-FET. Q > 0 behavior corresponds to an n-
channel whereas Q < 0 corresponds to a p-channel FE-FET. Here,
value of NA is such that Cs(Q) and −Cins(Q) match closely in NC
regime giving rise to minimum sub-threshold swing.

The corresponding value of minimum sub-threshold swing can thus be obtained from

Eq. 5.9 with other parameters in Table 5.1-

SSGFETmin =
2.3kBT

q

(

1− 1√
3

)

(5.14)

which is independent of any material or geometrical parameters of SG-FET and is

25mV/decade at room temperature (Fig. 5.7 d). Note that, while deriving Eq. 5.14,

we have neglected various non-ideal effects such as strain gradients in the suspended
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beam [110,111], stiction of the gate to the substrate [112,113], which may be present

in a realistic SG-FET. These non-ideal effects would make the sub-threshold swing

material dependent. For an idealized switch, however, the sub-threshold swing is

material independent and is given by Eq. 5.14. Moreover, the value of minimum sub-

threshold swing (25mV/decade) should not be confused or compared with the ultra-

low values of sub-threshold swing (close to 0mV/decade) achieved during pull-in and

pull-out phase of a SG-FET (Fig. 5.3 c) [21, 114] due to the following reasons: these

low sub-threshold swings arise due to the inherent instability when Cs is not sufficient

to stabilize the gate throughout the negative capacitance regime and therefore, such

abrupt transitions are always associated with an intrinsic hysteresis (Fig. 5.3 c). In

contrast, Smin = 25mV/decade corresponds to the effective sub-threshold swing which

arises when Cs is sufficient to stabilize the gate throughout the negative capacitance

regime resulting in hysteresis-free sub-60mV/decade switching characteristics. Our

analysis should also not be confused with the sharp switching characteristics of NEMS

relays [20] which have structure similar to an SG-FET, but involves metal-to-metal

contact for current conduction.

Based on the values of NA and y0 obtained for an SG-FET with parameters

shown in the caption of Fig. 5.10, Cs is shown in Fig. 5.9 b suggesting Cs(Q)
−1 ≥

−Cair(Q)−1 at each Q. The corresponding Vair and ψs obtained from numerical

simulations are shown in Fig. 5.10 a. As expected, Vair decreases with the increase

in Q and amplifies ψs making m < 1 and S < 60mV/decacde. Figures 5.9 b & 5.10

a confirm the design rules used for deriving the Eqs. 5.12 - 5.13 i.e., (i) Cs(Qc2) =

−Cair(Qc2) and (ii) ψs(Qc2) = 0.5523V < 2ψB = 0.7310V . The value of SSGFETmin is

25mV/decade and is consistent with the analytical formula of Eq. 5.14.

5.3.3 Minimum S in Partially Depleted FE-FET

To determine the critical charges Q
′

c1, Q
′

c2 and thus Smin for FE-FET, recall from

chapter 2 and Eqs. 2.27 & 2.29 that VFE and CFE are given by-
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Fig. 5.10. Minimum achievable sub-threshold swing in NC-FETs. (a)
Vair and ψs as a function of gate charge Q for the values of NA = 1.2×
1016cm−3 and y0 = 10nm obtained from Eq. 5.13 for k = 0.45N/m
and A = 4µm×0.1µm. (b) VFE and ψs as a function of the gate charge
Q for the values of NA = 7.5× 1019cm−3 and yFE = 35.2nm obtained
from Eq. 5.18 for SBT (Sr0.8Bi2.2Ta2O9) used as the ferroelectric
material (taken from ref. [42]).

VFE
yFE

= α0Q+ β0Q
3 + γ0Q

5, C−1
FE ≡ dVFE

dQ
= yFE

(

α0 + 3β0Q
2 + 5γ0Q

4
)

, (5.15)

where α0, β0, γ0 are the material constants and yFE is the thickness of the ferroelectric

gate insulator. Figures 5.9 c-d show again VFE and CFE, respectively as a function of

Q for typical parameters of a ferroelectric with α0 < 0, β0 > 0, & γ0 = 0. As discussed

previously, CFE(Q)−Q characteristics consist of two regimes corresponding to positive

(CFE(Q) > 0) and negative (CFE(Q) < 0) capacitance (Figs. 5.9 c-d). The boundary

between the two occurs at Q = Q
′

c1 such that C−1
FE = 0 i.e., α0+3β0Q

′2
c1+5γ0Q

′4
c1 = 0.

Thus, VFE decreases and CFE is negative for −Q′

c1 < Q < Q′

c1 (Fig. 2.9). However, an

n-channel FE-FET must be operated in the Q > 0 branch of the NC regime, so that

it can be balanced by the negative charges of the channel. Operation of an n-channel

FE-FET for Q > 0 thus defines Q′

c2 = 0 (other boundary of the NC regime).

Based on the value of CFE and Qc2 = 0, Eq. 5.7 reduces to Cs(Q = Q′

c2 = 0) =

−1/α0yFE. As Cs(Q) is a variable capacitance with Cs(Q = 0) =
√

qǫ0ǫsNA/φt (flat
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band capacitance of a FET [94]) with φt = kBT/q, the condition (Eq. 5.7 further

simplifies to

y2FENA =
φt

qǫ0ǫsα2
0

, (5.16)

which relates NA, yFE, and α0. Similarly, knowing that Q′

c1 = (max(|Q′

c1| , |Q′

c2|),
Eq. 5.9 of channel being in sub-threshold reduces to-

lψB =
Q′2
c1

2qǫ0ǫsNA

. (5.17)

Equations 5.16-5.17 are similar to Eqs. 5.11 - 5.12 for SG-FET and relate NA and

yFE with the material constants α0, β0, and γ0 of a ferroelectric material. Using

Equations 5.16-5.17, values of NA and yFE can be simply expressed as-

NA =
Q′2
c1

2lqǫ0ǫsψB
, yFE =

√

2lψBφt
Q′2
c1α

2
0

. (5.18)

The value of sub-threshold swing is minimized for NA and yFE given by Eq. 5.18.

The corresponding value of minimum sub-threshold swing obtained from Eq. 5.9 and

other parameters in Table 5.1 is given by -

SFEFETmin ≈ 2.3kBT

q

(

1 +
M

yFE

)

, (5.19)

where M = 2φt (α0Q
′

c1 + β0Q
′3
c1 + γ0Q

′5
c1) / (α

2
0Q

′2
c1) is a material dependent constant.

The yFE in Eq. 5.19 is not arbitrary, but can be related to other constants described

by Eq. 5.18. SFEFETmin is 42mV/decade for BaTiO3 and SFEFETmin ≈ 52mV/decade for

PZT (PbZr1−xT ixO3, x = 0) (see Table 5.2 for various parameters of ferroelectric

material) (Fig. 5.8 d).
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Based on the values of NA and yFE obtained for SBT (Sr0.8Bi2.2Ta2O9), Cs is

shown in Fig. 5.9 d suggesting Cs(Q)
−1 ≥ −CFE(Q)−1 at each Q. The corresponding

VFE and ψs obtained from numerical simulations of an ideal MOS capacitor type

structure are shown in Fig. 5.10 b. With the increase in Q, VFE decreases and that

in turn amplifies ψs making m < 1 and S < 60mV/decade. Figures 5.9 d & 5.10 b

confirm the design rules used for deriving the Eqs. 5.18 - 5.19 i.e., (i) Cs(0) = −CFE(0)
and (ii) ψs(Q

′

c1) = 1.0664V < 2ψB = 1.1893V . The value of SFEFETmin is 52mV/decade

and is consistent with the analytical formula of Eq. 5.19 (Fig. 5.7 d).

Note that, while deriving Eq. 5.19, we have considered a one dimensional single

crystalline model of the ferroelectric which is the most common model used in the

literature [19,105,109,115] for negative capacitance FE-FET. As the non-ideal effects

of a realistic ferroelectric such as domain nucleation, domain propagation, grains,

and grain boundaries degrade the sub-threshold swing of a realistic device [116], the

minimum sub-threshold swing for a given ferroelectric material is achieved when these

non-idealities are absent and is estimated using Eq. 5.19.

Discussion on Smin

It is important to emphasize that while the physics of minimum sub-threshold

swing discussed in previous sections is completely general, the value of Smin is fun-

damentally governed by the particular choice of Cins(Q) and Cs(Q). Unlike Smin =

60mV/decade for classical-FETs, a single Smin does not define the performance of all

NC-FETs; instead, the stability-constrained Smin depends on the choice of material

system and channel type. To illustrate how the value of Smin can change with a

different channel configuration, we consider FET architectures with constant CS(Q)

below. This example will be directly relevant for fully depleted FETs.
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Parameters BaTiO3 [19] PZT [42] SBT [42]

α0(m/F ) −107 −4.5× 107 −6.5× 107

β0(m
5F/C2) −8.9× 108 5.2× 108 3.75× 109

γ0(m
9F/C4) 4.5× 1010 5.9× 108 0

NA(cm
−3) 2.3× 1020 3.3× 1020 7.5× 1019

yFE(nm) 129 23.7 35.2

Table 5.2
Various parameters of ferroelectric material used for the simulations.

5.3.4 Minimum S in Fully Depleted SG-FET

For an SG-FET with constant channel capacitance CS, Eq. 5.7 dictates that the

value of constant Cs should be-

Cs = −Cair(Qc2) =
ǫ0
2y0

(5.20)

Now, using Eq. 5.9 and ψs = Q/Cs for a constant Cs, one can show that (See Table

1 for other values)-

SSGFETmin =
2.3kBT

q

3
√
3− 4

3
√
3− 3

, (5.21)

which suggests that the value of Smin for constant Cs is 33mV/decade (Fig. 5.7 d).
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Interestingly, value of Smin for partially depleted FET is lower than that of FET with

constant Cs due to better matching between Cs(Q) and −Cair(Q).

5.3.5 Minimum S in Fully Depleted FE-FET

For FE-FET with constant Cs, Eq. 5.7 suggests that the constant value of the

capacitance Cs should be-

Cs = −CFE(Q′

c2 = 0) = − 1

α0yFE
. (5.22)

Now, using Eq. 5.9 and ψs = Q/Cs for a constant Cs, one can show that(See Table

1 for other values)-

SFEFETmin =
2.3kBT

q

(

−β0Q
′2
c1 + γ0Q

′4
c1

α0

)

. (5.23)

As shown in Fig. 5.7 d, Smin for constant Cs is lower than partially depleted FE-FET

due to improved matching between Cs(Q) and CFE(Q). Note that, Eq. 5.22 is only

valid for ferroelectrics with α0 < 0 and β0, γ0 > 0. For ferroelectrics with α0, β0 < 0

& γ0 > 0, Eq. 5.7 will not apply as CFE(Q)
−1 will not be monotonic. In such case,

the value of the constant series capacitance for hysteresis-free operation should be

equal to-

Cs =
1

(

−α0 +
9β2

0

20γ0

)

yFE
(5.24)

where C−1
s in Eq. 5.24 is equal to the maximum value of −CFE(Q)−1. Now, the value

of the minimum sub-threshold swing is given by-

SFEFETmin =
2.3kBT

q



1 +
α0 + β0Q

′2
c1 + γ0Q

′4
c1

−α0 +
9β2

0

20γ0



 . (5.25)
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The value of Smin for BaTiO3 for constant Cs is 17mV/decade (Fig. 5.7 d) which

is lowest of all the ferroelectric materials considered. Interestingly, in case of par-

tially depleted FE-FETs, due to the opposite voltage dependence of Cs(Q)
−1 and

−CFE(Q)−1, Eq. 5.19 describes the Smin for both the above mentioned cases for

ferroelectrics.

Summary of Smin

We have established that the sub-threshold swing cannot be arbitrarily lowered

in negative capacitance field effect transistors. There is a fundamental lower limit of

S associated with each NC-FET. The analysis also highlights that the value of Smin

for FE-FET or SG-FET can further be reduced by properly optimizing Cs(Q) and

−Cins(Q) so that the matching between the two improves. In the next section, we

will address the question: “can we achieve sub-threshold swing of 0mV/decade using

any combination of CS and Cins?”

5.4 Proposal of a Hysteresis-free Zero Sub-threshold Swing FET (ZSub-

FET)

Before we begin, let us remind that our ultimate goal is to find the ideal switch

with Sideal = 0mV/decade switching characteristics. We have seen that the classical

Boltzmann switch is far from ideal due to thermodynamically limited sub-threshold

swing S ≥ SBZ = 60mV/decade (Figs. 5.11 a-b). We also saw that sub-threshold

swing in NC-FETs with a single NC gate insulator S cannot be reduced arbitrarily

(Figs. 5.11 c-d). In this section, we focus on FETs in which gate insulator is a series

combination of two different types of NC gate insulators (Fig. 5.11 e). The two NC

gate insulators (NC1 & NC2 in Fig. 5.11 e) are chosen such that the capacitance

of the series combination is negative and constant (i.e., voltage independent). This

constant negative capacitance of the gate insulator is matched by a constant channel
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Fig. 5.11. In search of an ideal switch with hysteresis-free Sideal =
0mV/decade switching characteristics. (a)-(b) Classical FET with a
positive capacitance (PC) gate insulator exhibits S ≥ SBZ . (c)-(d)
A FET with negative capacitance (NC) gate insulator e.g., FE-FET
and SG-FET can exhibit S < SBZ . (e)-(f) Proposed ZSubFET ar-
chitecture with gate insulator as a series combination of two different
types of NC gate insulators, namely, NC1 & NC2, can achieve ideal
switching characteristics.

capacitance to achieve ideal switching (Fig. 5.11 f). We will show the following in

this section:

• The sub-threshold swing in an NC-FET with a single NC gate insulator cannot

be reduced all the way to 0mV/decade.

• We propose a novel device concept namely a ZSubFET that achieves hysteresis-

free 0mV/decade switching. We illustrate the concept by a suspended-gate

ferroelectric FET in which ferroelectric behaves as one NC and air-gap as the

another.
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5.4.1 Series Combination of Negative Capacitance Gate Insulators

We recall that sub-threshold swing in an NC-FET is governed by Eqs. 5.1 - 5.2 &

5.6, which suggest that the value of S depends on the matching between Cs(Q)
−1 and

−Cins(Q)−1 (Fig. 5.12 a). As shown in Fig. 5.12 b, closer matching between the two,

decreases S. One can therefore expect that an obvious choice of Cs(Q) = −Cins(Q)
should make S = Sideal = 0mV/decade.

However, S cannot be lowered all the way to Sideal, because none of the known

negative capacitors allows point-by-point matching of Cs(Q) with −Cins(Q). Even if

Cs(Q) and −Cins(Q) are matched at almost all values of Q, they cant be matched at

Q = Qc1 due to the fact that Cins(Qc1) = ∞ (open circle in Fig. 5.12 b at Q = Qc1).

Therefore, a single NC gate insulator can never exhibit ideal switching [107, 117].

Moreover, we just saw that this matching argument is responsible for fundamental

lower limit of subthreshold swing (0 < Smin < 60) for a given Cins(Q) (determined

by the type of NC gate insulator) and Cs(Q) (determined by the type of channel

configuration) [117]. For example, Smin is 25mV/decade for a bulk SG-FET and

33mV/decade for a SG-FET with constant channel capacitance (relevant for modern

fully depleted FET architectures). On the other hand, the corresponding limits for

FE-FET with SBT (Sr0.8Bi2.2Ta2O9) as the ferroelectric material are 52mV/decade

and 20mV/decade, respectively (Fig. 5.7 d). Therefore, unless the point of infinite

capacitance of NC is removed, ideal switching cannot be achieved.

We show below that a series combination of NCs, in which (i) infinite capacitance

of individuals NCs occurs at different values of charge and (ii) they have opposite

capacitance-charge characteristics (one increasing and other decreasing), can lead to

an ideal switching characteristics (Figs. 5.12 c-d). In a series combination of two

capacitors (say NC1 and NC2 in Figs. 5.11 e & 5.12 c), if one of the capacitance

is infinite, the total capacitance will be equal to the other finite capacitance i.e.,

C−1
ins = C−1

NC1 + C−1
NC2 = C−1

NC1, provided CNC2 = ∞. Therefore, NC gate insulators

such that (i) CNC1 = ∞ with CNC2 < 0 or vice versa (see open circles, squares, arrows
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Fig. 5.12. (a) Equivalent capacitive divider model of a FET and (b)
capacitance-charge characteristics for an NC-FET. Insulator capaci-
tance being infinity at Q = Qc1 makes perfect matching of Cs(Q) and
−Cins(Q) impossible. (c) Capacitive divider model of a FET with the
gate insulator as a series combination of two different types of gate
insulators (NC1 & NC2 in Fig. 5.11 e) and (d) capacitance-charge
characteristics for the same NC-FET. NC1 and NC2 are chosen such
that overall gate capacitance C−1

ins = C−1
NC1 + C−1

NC2 is not infinity at
any point in the NC regime.

and oval in Fig. 5.12 d at Q = Qc1 and Q = Q′

c1) and (ii) total capacitance remains

negative in the regime where one of the capacitance is positive and other negative i.e.,

Cins < 0 with CNC1 < 0 and CNC2 > 0 or vice versa (see region with Q < Qc1 and

Q > Q′

c1 in Fig. 5.12 d), can make Cins(Q) negative by bypassing the point of infinite
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Fig. 5.13. Series combination of an air-gap capacitor and ferroelectric
in ZSubFET can lead to a constant negative capacitance behavior and
that is the key to 0mV/decade switching. (a)-(c) Schematic of FE-
FET, SG-FET, and ZSubFET. Corresponding negative capacitance
behavior of (d) ferroelectric in FE-FET, (e) air-gap in SG-FET, and
(f) their series combination in ZSubFET.

capacitance of individual NCs. This negative Cins(Q) can then be matched by Cs(Q)

through a proper design of the channel leading to ideal switching characteristics.

5.4.2 Zero Sub-threshold Swing FET (ZSubFET)

We illustrate the concept of ZSubFET using the series combination of ferroelec-

tric of FE-FET (Fig. 5.13 a) and air-gap capacitor of SG-FET (Fig. 5.13 b) in a

suspended-gate ferroelectric FET (Fig. 5.13 c). Figure 5.13 d shows C−1
FE as a func-

tion of Q for a ferroelectric material with α0 < 0 , β0 > 0, & γ0 = 0 (Eq. 5.15).

Equation 5.15 implies that Q′

c1 =
√

−α0/3β0 and Q′

c2 = 0 for an n-type FE-FET.

The air-gap capacitance (Cair(Q)) is given by Eq. 5.10. As shown in Fig. 5.13 e, the

dependence of C−1
air and C

−1
FE are opposite to each other. Now, the capacitance of the

series combination can be obtained from Eqs. 5.10 & 5.15 as follows-
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C−1
ins ≡ C−1

FE + C−1
air = (α0yFE + α′

0) + 3 (β0yFE + β′

0)Q
2. (5.26)

Equation 5.26 suggests that the capacitance of the series combination (Cins) can be

tuned by tuning the parameters of the ferroelectric or suspended-gate. Note that, if

the parameters are chosen such that α0yFE + α′

0 < 0 and β0yFE + β′

0 < 0, Cins will

be strictly negative from Q = Q′

c2 = 0 to Q = Qc2 =
√

2ǫ0ky0/WL. In such case,

a variable channel capacitance such that Cs = −Cins will make the sub-threshold

swing identically zero. Since the design of a channel with specific charge dependence

may not be easy, we propose a simpler design in which parameters are chosen such

that β0yFE + β′

0 = 0 and α0yFE + α′

0 < 0 leading to a constant negative insulator

capacitance C−1
ins = α0yFE+α

′

0 < 0 (Fig. 5.13 f). These two conditions are equivalent

to designing suspended-gate stiffness (k) and air-gap (y0) as follows-

k =
WL

2ǫ20β0yFE
, y0 < −ǫ0α0yFE. (5.27)

Now, the choice of the channel capacitance

C−1
s = − (α0yFE + α′

0) (5.28)

will make the overall gate capacitance (C−1
G = C−1

ins + C−1
s = 0) infinity and S to be

0mV/decade. In equation 5.27, α0 and yFE are related to the ferroelectric; whereas α′

0

is related to suspended-gate and air-gap. It should be noted that the parameters used

in Fig. 5.13 are only for illustration purposes, in general one should follow conceptual

framework of Eqs. 5.27 - 5.28 to design an ideal switch.

5.4.3 Switching Behavior

In the previous section, we showed that the gate insulator capacitance of a ZSub-

FET can be constant and negative, thus giving rise to ideal switching behavior. To
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gain insights into the mechanics of the extraordinary switching, we now discuss both

the steady state and dynamic response using the two dimensional energy landscape

of ZSubFET, as follows-

Static Response

The static response of a ZSubFET can be understood by looking at the evolution

of energy landscapes as a function of the applied gate voltage (VG). The total energy

(U) has four main components: (i) ferroelectric energy given by two-well Landau

energy landscape of the ferroelectric (Eq. 2.25 with γ0 = 0) i.e.,

UFE =
(

1
2
α0Q

2 + 1
4
β0Q

4
)

WLyFE,

(ii) air-gap energy comprising of spring and electrostatic energy i.e.,

Uair =
1
2
k (y0 − y)2 + Q2WLy

2ǫ0
.

(iii) series capacitor energy i.e.,

Us =
Q2WL

2Cs
,

(iv) energy due to the applied bias i.e.,

UVG = −QWLVG.

The total energy (U ≡ UFE + Uair + Us + UVG) is therefore given by-

U =

(

1

2
α0Q

2 +
1

4
β0Q

4

)

WLyFE+
1

2
k (y0 − y)2+

Q2WLy

2ǫ0
+
Q2WL

2Cs
−QWLVG (5.29)

Note that, ZSubFET is stabilized at the minimum of total system energy (U)

for a given VG. On the energy landscape, points with ∂U/∂y = 0 and ∂U/∂Q = 0

correspond to equilibrium and are given by the solutions of following equations-

k (y0 − y) =
Q2WL

2ǫ0
, (5.30)
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Fig. 5.14. Two dimensional energy landscapes of ZSubFET at (a)
VG = 0, (b) VG < 0, and (c) VG > 0. Along magenta curve in
(a) all points correspond to equilibrium with same energy. In (b)-
(c) solid circles denote the point where ZSubFET is stabilized at the
respective voltages. (d) Corresponding gate charge vs. gate voltage
characteristics.

WLVG =
(

α0yFE + yǫ−1
0 + C−1

s

)

WLQ+ β0WLyFEQ
3. (5.31)

Equation 5.30 describes the balance of spring and electrostatic forces acting on

the suspended-gate; whereas Eq. 5.31 is Kirchhoffs voltage law applied to the series

combination of three capacitors namely air-gap, ferroelectric and the channel. Figure

5.14 a shows the energy landscape as a function of y and Q at VG = 0 for parameters

following Eq. 5.27. Magenta curve in Fig. 5.14 a shows the points at which U

is minimized. All the points on the magenta curve have the same energy. Note

that, instead of discrete distinct points of stabilization, there is a connected path
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on the energy landscape and ZSubFET can be stabilized at any point on that path.

This connected path is equivalent to the flat energy landscape for hysteresis-free

0mV/decade switching as discussed in reference [107]. Also, equation of path is given

by Eq. 5.30. Note that, Eqs. 5.30 and 5.31 become identical for parameters following

Eq. 5.27. If VG is increased or decreased, energy landscapes tilts resulting in only one

point of stable equilibria shown by a solid circle in Figs. 5.14 b-c. Therefore, slight

change of gate voltage from negative to positive, switches ZSubFET abruptly from a

negative charge state (Q ≈ −Q0) to a positive charge state (Q ≈ Q0) (Fig. 5.14 d).

Here, Q0 = Qc2 is the value of gate charge at VG = 0. This abrupt switching of the

gate charge is equivalent to 0mV/decade switching. Note that, although the charge

switches from Q ≈ −Q0 to Q ≈ Q0, the initial and final position of the suspended gate

are both located at y = 0. In order to understand the role of the gate in 0mV/decade

switching, one needs to look at the switching dynamics, which we discuss next.

Dynamic Response

When gate voltage is switched from negative to positive, state changes from y =

0, Q ≈ −Q0 (Fig. 5.14 b) to y = 0, Q ≈ Q0 (Fig. 5.14 c). The dynamics of this abrupt

switching can be modeled by coupling gate dynamics with ferroelectric dynamics. The

coupled equations are given as follows-

m
dv

dt
+ bv = k (y0 − y)− Q2WL

2ǫ0
(5.32)

ρ0
dQ

dt
= VG − Vair − ψs −

(

α0Q+ β0Q
3
)

yFE (5.33)

ψs =
Q

Cs
(5.34)

Equation 5.32 is Newtons law applied to the movable gate. Here, m is the mass

of the gate, v = dy/dt is velocity, t is time, b is the damping coefficient, k (y0 − y)
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is the restoring spring force and Q2WL/2ǫ0 the electrostatic force. Equation 5.33

is Landau-Khalatnikov (LK) equation and describes the dynamics of ferroelectric

switching [19]. Here, ρ0 is material dependent constant. Vair = Qy/ǫ0 is the voltage

drop across air-gap and ψs (Eq. 5.34) is the surface potential or voltage drop in the

channel. Equations 5.32 - 5.34 are solved self-consistently to simulate the switching

dynamics when VG changes from negative to positive. Before switching (i.e., VG < 0),

ZSubFET is in the state y = 0, Q ≈ −Q0 (at t = 0) (open circle in Fig. 5.15).

Switching occurs along the magenta curve shown in Fig. 5.15 a. Solid circles denotes

the final state at VG > 0. With the change in VG, first Q starts to change following

Eq. 5.33 (Fig. 5.15 c). Change in Q modifies the electrostatic force on the movable

gate and causes it to move upward (Fig. 5.15 b). During switching, gate moves up

and then comes down to stabilize at y = 0. Note that, movement of the gate plays

an intriguing role to facilitate ferroelectric switching. If the gate was fixed at y = 0,

ferroelectric and thus ZSubFET cannot switch due to the presence of an energy barrier

(Fig. 5.15 a). Coupling of the ferroelectric with movable gate creates a path in two

dimensional energy landscape for hysteresis-free abrupt switching. Similar switching

dynamics take place when gate voltage is switched from positive to negative voltage.

Note that, the exact path followed on the energy landscape during switching depends

on the exact values of m, b and ρ0. Again, the parameters used in Fig. 5.15 are

only for illustration purposes to highlight the intriguing role of gate in 0mV/decade

switching.

Summary of 0mV/decade Switching

To summarize this section, we have proposed the novel idea of hysteresis-free

0mV/decade switching based on a series combination of two different types of neg-

ative capacitance gate insulators. This series combination helps bypass the point of

infinite capacitance of individual NCs and makes the overall capacitance negative in

a certain regime. We illustrated the concept using ferroelectric and air gap insulators
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(a)

(b) (c)

8À P r

Fig. 5.15. Switching dynamics in a ZSubFET when gate voltage is
switched from negative to positive. (a) Total energy landscape at
VG > 0. Open circle denotes the state before switching and solid
circle after the switching. Switching occurs along the magenta line.
Corresponding (b) position of the movable gate and (c) gate charge
as a function of time.

in a ZSubFET. We believe that the proposed device should reduce the power sup-

ply voltage and corresponding power dissipation of integrated circuits to the lowest

possible which is to be determined by noise considerations only [102].
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5.5 Conclusions

In this chapter:

• We showed that instability need not to lead to problems always. Instability can

be harnessed for performance enhancement also. In other words, we highlighted

operation regime as a new design variable. It means that performance can be

improved through operating in the unstable regime.

• We showed that negative capacitance behavior of Landau systems, namely,

MEMS capacitive actuators and ferroelectrics, can be used for voltage am-

plification in SG-FET and FE-FET, respectively, to lower sub-threshold swing

below 60mV/decade.

• We established the fundamental lower limits of sub-threshold swing of negative

capacitance field effect transistors. We find that sub-threshold swing cannot

be reduced all the way to 0mV/decade in an NC-FET with single NC gate

insulator.

• To overcome the limitations of single NC gate insulators based FET, we pro-

posed to use a series combination of two different types of NC gate insulators for

realizing ideal switching characteristics. Specifically, we showed that hysteresis-

free zero sub-threshold swing can be achieved in a suspended-gate ferroelectric

FET.

• Basically, we have addressed two very fundamental questions such as (i)“How

low can the sub-threshold swing be in an NC-FET?” and (ii) “Is it at all possible

to achieve hysteresis-free 0mV/decade switching characteristics in a FET?” We

believe that the results of this chapter will serve as the guidelines for the design

of novel field effect transistors.

In the next chapter, we will continue with the philosophy of harnessing instability

or using operation regime as a design variable for performance enhancement. We will
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show how spring-softening effect of MEMS can be used to enhance signal-to-noise

ratio in Flexure sensors.
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6. HARNESSING SPRING-SOFTENING : IMPROVED

SENSITIVITY AND SIGNAL-TO-NOISE RATIO IN

FLEXURE BIOSENSORS

In the last chapter, we illustrated how instability can be used for performance en-

hancement. Specifically, we showed that negative capacitance behavior of Landau

switches can lead to (i) hysteresis-free sub-60mV/decade switching characteristics in

FETs with single NC gate insulator and (ii) hysteresis-free 0mV/decade characteris-

tics in properly designed FETs with series combination of two NC gate insulators.

In this chapter, we show one more example where harnessing instability can lead

to improved performance. We propose a novel Flexure biosensor targeted to detect

specific biomolecules. We show that biasing the proposed sensor at the boundary

of stable and unstable regimes not only enhances the sensitivity, but also improves

signal-to-noise ratio. This chapter is divided in two parts:

• In the first part1, we introduce the novel Flexure-FET biosensor and show how it

is better than existing state-of-the-art other electronic or mechanical biosensors.

• In the second part, we show how internal low pass filtering of MEMS (decrease

in the resonance frequency with applied bias as seen in chapter 2) helps amplify

the signal-to-noise ratio in Flexure sensors.

Rest of the chapter is organized as follows. For the sensitivity analysis, we discuss

the motivation behind the need of a new biosensor in section 6.1.1. The operation of

novel Flexure-FET biosensor is discussed in section 6.1.2. We compare the proposed

sensor with the existing electronic/mechanical sensors in section 6.1.3 and provide

a brief summary of findings in section 6.1.4. For the noise analysis, we identify

1The content (text and figures) in this part have been adapted from [118].
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Flexure sensors as a positive feedback system in section 6.2.1. We evaluate signal-

to-noise ratio and limit-of-detection for various noise sources in section 6.2.2. The

safe operating voltage of Flexure sensors has been discussed in section 6.2.3. We

discuss the assumptions of our analysis in section 6.2.4 and summarize the findings

of signal-to-noise ratio in section 6.2.5. We finally conclude in section 6.3

6.1 Proposal of Flexure-FET Biosensor

6.1.1 Background and Motivation

Detection of biological molecules e.g., viruses, proteins, and DNA is essential

for food safety, early warning of biological attack, early stage diagnosis of cancer,

and genome sequencing. Nanoscale devices are widely regarded as a potential can-

didate for ultra-sensitive, low-cost, label-free detection of biomolecules. They are

considered as a technology alternative to the existing chemical or optical detection

schemes. Label-free schemes detect biomolecules using their intrinsic properties, e.g.,

size, mass or charge of a molecule, instead of using extrinsic optical or magnetic labels

attached to the target molecule. Among the various label-free technologies, signif-

icant research have focused on developing ultrasensitive nanoscale electrical [119]

and mechanical [24] biosensors. Despite remarkable progress over the last decade,

these technologies have fundamental challenges that limit opportunities for further

improvement in their sensitivity, see Fig. 6.1 a [120–123]. For example, the sensi-

tivity of electrical nanobiosensors such as Si-Nanowire (NW) FET (Fig. 6.1 b) is

severely hindered by the electrostatic screening due to the presence of other charged

ions/molecules in the solution [124], which limits its sensitivity to vary linearly (in

subthreshold regime [120]) or logarithmically (in accumulation regime [121,125,126])

with respect to the captured molecule density Ns. Moreover, the miniaturization and

stability of the reference electrode have been a persistent problem, especially for lab-

on-chip applications [119]. Finally, it is difficult to detect neutral biological entities

such as viruses or proteins using charge-based electrical nanobiosensors.
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In contrast, nanomechanical biosensors like nanocantilevers [127, 128] (Fig. 6.1

c) can detect neutral molecules also. Here, the capture of target molecules on the

cantilever surface modulates its mass, stiffness, and/or surface stress [122, 128, 129].

This change in the mechanical properties of the cantilever can then be observed

as a change in its resonance frequency (dynamic mode), mechanical deflection, or

change in the resistance of a piezoresistive material (static mode) attached to the

cantilever [123, 130]. Unfortunately, the response of the nanomechanical biosensors

varies only linearly [122] or logarithmically [123, 131, 132] with the change in the

mass or surface stress of the cantilever, and therefore, these sensors may not be

sufficiently sensitive to detect target molecules at very low analyte concentrations,

unless sophisticated, low-noise setup is used.

To overcome the respective limitations of classical electrical and mechanical biosen-

sors, we propose the concept of a Flexure-FET biosensor that integrates the key

advantages of both technologies, but does not suffer from the limitations of either ap-

proach. The Flexure-FET consists of a nanoplate channel biased through a thin-film

suspended gate (Fig. 6.1 d). While the structure is similar to that of a suspended-gate

FET (discussed in the previous chapter) [21,101] or a resonant gate transistor [1], we

call the device Flexure-FET to emphasize its distinctive nonlinear operation specifi-

cally optimized for ultrasensitive detection of biomolecules. As shown in Fig. 6.1 e,

the ultra high sensitivity arises from the coupling of two electro-mechanical nonlinear

responses, namely (i) spring-softening [133] in which stiffness decreases nonlinearly

with the applied gate bias VG and vanishes at the pull-in point (Chapter 2) and (ii)

subthreshold electrical conduction [94] in which current depends exponentially on the

surface potential. Such non-linear electro-mechanical coupling enables exponentially

high sensitivity for Flexure-FET sensors (Fig. 6.1 a), which is fundamentally un-

achievable by exclusive use of existing nanoscale electronic or mechanical biosensors.

Moreover, the reliance of change in stiffness [134, 135] ensures screening-free detec-

tion of charged/neutral molecules, with no need for a reference electrode, and the

measurement of drain current for detection requires no complex instrumentation.
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Fig. 6.1. (a) Sensitivity (S) of different types of biosensors, e.g., (b)
Electrical sensor (Si-NW FET) in which transduction is achieved by
modulation of channel conductivity (G) when charged biomolecules
are captured by the gate. (c) Transduction in cantilever-based
nanomechanical biosensors is achieved by change in its mass, stiffness,
or surface stress. Nanocantilever can be operated in dynamic mode
(mass change based detection using shift in resonance frequency) or in
static mode (surface stress change based detection using piezoresistive
material). (d) Proposed Flexure-FET biosensor in which transduction
is achieved due to change in the stiffness of the suspended gate, (e)
Operation of Flexure-FET below pull-in. Displacement of the sus-
pended gate (ydc) and drain current (IDS) as a function of applied
gate bias VG. ydc changes rapidly near pull-in (VG ≈ VPI) and IDS
increases exponentially with VG in the subthreshold regime (VG < VT ).

It should be noted that from a mechanical perspective, the Flexure-FET op-

erates close to pull-in instability (a critical point) and operates in static mode.

Similar critical point sensing has also been reported for sensors operating in dy-

namic mode [136–140]. These sensors detect the stimuli by observing: (i) change

in the resonance frequency [137, 139], (ii) change in the amplitude at a given fre-

quency [136–138,140], or (iii) switching triggered by a detection event [138]. In terms

of instability, Flexure-FET utilize the pull-in instability; whereas these sensors utilize

parametric resonance [136,137], buckling instability [139], bifurcations [138,140], and
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escape phenomenon [138]. However, beyond the critical point sensing, the integrated

transistor-action in the sub-threshold regime provides the Flexure-FET an additional

exponential sensitivity (and simpler DC read-out) that could not be achieved by the

classical nonlinear sensor schemes.

6.1.2 Operation of Flexure-FET

Flexure-FET Response to Target Capture

For transduction, the proposed Flexure-FET biosensor utilizes the change in

suspended-gate stiffness from k to k + ∆k, [129, 135, 141–143] due to the capture

of biomolecules. The change in stiffness due to the capture of biomolecules has been

demonstrated by several recent experiments of mass sensing using nanocantilever

based resonators [129, 141, 142]. This well-known observation of stiffness change has

been attributed to the change in the membrane thickness, Young’s modulus, and/or

surface stress of the beam [129, 134, 135, 144]. In the following analysis, we model

the change in k by the change in the effective thickness H of the gate (∆H), al-

though it should be stressed that the conclusions do not depend on the particular

hypothesis regarding ∆k. For now, we ignore the details of the spatial distribution of

molecules associated with random sequential adsorption [145], and assume a uniform

distribution of adsorbed molecules on the sensor surface. Therefore, the conservation

of volume suggests ∆H = NsAtHt, where Ns is the areal density, At is the effective

cross-sectional area, and Ht is the effective thickness of the target molecule. Using

the fact that k = αEWH3

12L3 , the change in stiffness ∆k due to ∆H(≪ H) can be related

to adsorbed molecule density Ns as follows-

∆k

k
≈ 3NSAtHt

H
. (6.1)
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Fig. 6.2. (a)-(b) Equivalent spring-mass model of Flexure-FET. Stiff-
ness changes from k to k+∆k after the capture of biomolecules, and
therefore, position of gate changes from ydc to ydc+∆ys which results
in the modulation of drain current from IDS1 to IDS2.

For simplicity, we have taken the Young’s modulus of captured molecules to be same

as that of the membrane, but this is obviously not necessary, and the theory can be

generalized by the methods developed in reference [134]. Combining Eqs. B.1-B.3

from appendix B, we get k(y0 − ydc)y
2
dc ≈ ǫ0A(VG − ψs)

2/2. ydc is the position of the

gate before capture and ydc+∆ys after capture. y0 is the initial air-gap. The change

in gate position ∆ys for small change in stiffness ∆k due to capture of biomolecules

is given as -

(3ydc − y0)∆y
2
s + y(3ydc − 2y0)∆ys ≈

ǫ0A (VG − ψs)
2

2

∆k

k2
. (6.2)

If Flexure-FET is biased close to pull-in (VG ≈ VPI , ydc ≈ 2/3y0), the non-linear ∆y
2
s

term dominates the linear ∆ys term in Eq. 6.2. It is essential to bias the Flexure-FET

in this nonlinear, close to pull-in regime for maximum sensitivity. Using Eqs. 6.1-6.2,

we find-

∆ys ≈

√

ǫ0A (VG − ψs)
2

2(3ydc − y0)

∆k

k2
≈ β

√

Ns, (6.3)
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where β = ǫ0A(VG−ψs)
2

2(3ydc−y0)
AtHt
Hk

is a bias and device dependent constant.

Since the electrostatic force in subthreshold regime is given by 1
2
ǫ0E

2
airA = qǫsψsNAA

(Eq. B.2 in appendix B), the corresponding change in the surface potential ∆ψs is

obtained by perturbation of Eq. B.1 in appendix B, i.e.,

∆ψs ≈
−k∆ys +∆k(y0 − ydc)

qǫsNAA
. (6.4)

Using Eqs. B.3, B.4, & B.5 from appendix B, we can calculate the drain current IDS

in the subthreshold regime, as follows,

IDS ≈
µnL

(

VDS
W

)

(

qn2
i

NA

)(

kBT
q

)

√

2qNA
ǫ0ǫs

e
qψs
kBT

√
ψs
. (6.5)

Now, the ratio of the drain current before (IDS1) and after (IDS2) capture of biomolecules

(in terms of the change in surface potential ∆ψs) is given by-

IDS1
IDS2

≈ exp

(

−q∆ψs
kBT

)

. (6.6)

Using Eqs. 6.4 and 6.6, the ratio IDS1
IDS2

is given by-

IDS1
IDS2

≈ exp

(

k∆ys −∆k(y0 − ydc)

kBTǫsNAA

)

. (6.7)

Therefore, if Flexure-FET is operated close to pull-in and in subthreshold regime,

sensitivity S (using Eqs. 6.3 & 6.7) is given by-

S ≡ IDS1
IDS2

≈ exp
(

γ1
√

Ns − γ2Ns

)

. (6.8)
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where γ1 = kβ

kBTǫsNAA
and γ2 = 3(y0−ydc)kAtHt

kBTǫsNAAH
. The sensitivity S is defined as IDS1

IDS2
,

because IDS decreases after capture (see next section).

Equation 6.8 is one of the key results of this chapter and shows how nonlinear in-

teraction between mechanical (spring-softening) and electrical (subthreshold) aspects

of sensing leads to an exponential sensitivity to capture of biomolecules. Such gain

in sensitivity is impossible to achieve exclusively by electrical or mechanical sensing

mechanisms.

Numerical Confirmation of Flexure-FET Response

The compact analytical expression of sensitivity of the Flexure-FET sensor can be

validated by the self-consistent numerical solution of Eqs. B.1-B.5. The results for the

change in sensor characteristics due to the capture of biomolecules are summarized

in Fig. 6.3. For example, Fig. 6.3 a shows ydc vs. VG before and after capture of

target molecules. After the capture, gate moves up (for a fixed VG) due to increased

restoring spring force (because of increase in the k, Fig. 6.3 a). Interestingly, change

in gate position ∆ys is maximum close to pull-in due to spring-softening effect, as

shown in Fig. 6.3 b. The change in gate position ∆ys is directly reflected in change

in IDS. Figure 6.3 c shows IDS vs. VG before and after capture of biomolecules.

Interestingly, IDS decreases after capture due to increased separation between the

gate and the dielectric (hence decreased capacitance). The corresponding ratio of the

currents IDS1 (before capture) and IDS2 (after capture) increases exponentially with

∆ys (Fig. 6.3 d), and becomes maximum near pull-in. Note that the results from

detailed numerical simulations are accurately anticipated by Eq. 6.7, thus validating

the analytical model described in the previous section. Therefore, by operating the

Flexure-FET close to mechanical pull-in and in electrical subthreshold regime, orders

of magnitude change in IDS can be easily achieved for typical surface density of

Ns = 5 ∗ 1012cm−2, projected area of the biomolecule, At = πR2
t with Rt = 1nm,
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Fig. 6.3. Change in the sensor characteristics due to capture of tar-
get molecules on the surface of the gate, (a) y vs. VG before and
after capture, and (b) corresponding change in the position of gate
electrode ∆ys vs. VG. ∆ys increases rapidly near pull-in due to
spring-softening effect. The capture of target molecules is directly
mirrored in the change in IDS. (c) IDS vs. VG before and after cap-
ture, and (d) corresponding ratio of the two currents IDS1 (before
capture) and IDS2 (after capture) as a function of ∆ys. Symbols are
the numerical simulation and solid line is the analytical formula (Eq.
6.7). The device considered has the following typical parameters:
L = 4µm,W = 1µm,H = 40nm,E = 200GPa, y0 = 100nm, yd =
5nm, ǫs = 11.7, ǫd = 3.9, NA = 6e16cm−3.

and Ht = 5.1nm. These parameters translate to just an equivalent ∆k ∼ 6%. Note

that to achieve the maximum sensitivity, it is important to bias the Flexure-FET in

subthreshold regime below pull-in (i.e., VT ≈ VPI).
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6.1.3 Comparison with Classical Sensors

Now, we compare the sensitivity of the proposed Flexure-FET sensors with the

current nanoscale electrical/mechanical biosensors. Figure 6.4 a indicates that the

Flexure-FET sensors are exponentially sensitive to change in stiffness or captured

molecule density Ns (symbols: numerical simulation, solid line: analytical result, Eq.

6.8). In the following, we explain the origin of linear (or logarithmic) sensitivity for

electrical and mechanical nanoscale biosensors.

Electrical Nanobiosensors

For Si-NW FET biosensors which have the optimal sensitivity in subthreshold

regime [120], sensitivity S is defined to be the ratio of conductance G (after) and

G0 (before) capture of target molecules (assuming conductance increases after the

capture). Therefore, using Eq. 6.5, S can be approximated as-

SSiNW ≡ G

G0

≈ exp

(

q∆ψs
kBT

)

. (6.9)

Unfortunately, the detection of biomolecules in a fluidic environment involves elec-

trostatic screening by other ions in the solution. Consequently, the surface potential

scales logarithmically with biomolecule density, i.e., (q/kBT )∆ψs ≈ log (δNS) [124] ,

where δ is a constant that depends on ionic strength and properties of dielectric/fluid

interface. Therefore, optimal sensitivity of Si-NW biosensors is given by,

SSiNW ∝ δNs. (6.10)

In Fig. 6.4 b, S is plotted against volume concentration ρ, as the captured molecule

density Ns ∝ ρ (linear regime of Langmuir isotherm [124]). Therefore, all the con-

clusions regarding the dependence of sensitivity on Ns also holds for ρ. It should
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be noted that the reported sensitivity in the subthreshold regime [120] is actually

sub-linear (Fig. 6.4 b), below the maximum sensitivity limit defined by Eq. 6.10

that can be achieved in this sensing regime. In the accumulation or the inversion

regimes, SSiNW ∝ ∆ψs [124], and therefore, SSiNW ∝ log (NS), as shown in Fig. 6.4

b [121,124].

Mechanical Nanobiosensors

For nanomechanical biosensors such as resonance mode nanocantilever, the sen-

sitivity S is defined as ω0

ω
, where ω is the resonance frequency after the capture of

target biomolecules, and ω0 is the resonance frequency before capture. Using the

well-known fact that ω =
√

k
m
, where, k is the stiffness and m is the initial mass of

the cantilever, S is given by

SRes ≡
ω0

ω
≈ 1 +

1

2

∆m

m
= 1 +

1

2

NsWLm∗

m
, (6.11)

wherem∗ is the mass of individual biomolecule and ∆m = NsWLm∗ is the added mass

of the biomolecules. Therefore, the sensitivity of mechanical biosensor can only vary

linearly with Ns. This theoretical prediction is confirmed by experimental data [122]

in Fig. 6.4 c. We emphasize that the nanomechanical biosensors with careful design

and appropriate instrumentation can be extraordinarily sensitive; indeed, zeptogram

mass detection [146] has been reported. Equation 6.11 simply suggests that the

sensitivity of such sensor still varies linearly with respect to Ns.

It is also important to realize that the linear sensitivity with Ns is achieved only

if the change in stiffness due to capture of molecules is negligible. In general, how-

ever, capture of target molecules increases stiffness of the membrane. If this increase

in stiffness compensates the corresponding increase in the mass, there might be no

change in resonance frequency at all [129,142] and the sensitivity could be vanishingly
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Fig. 6.4. Comparison of the sensitivity of different biosensors. Sen-
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Surface stress change based piezoresistive nanomechanical biosensors
[123], as a function of Ns or ρ. In (b)-(d), symbols are the experimen-
tal data and the line is the guide to the eye.

small. One must independently measure the change in the stiffness [143, 144] to de-

couple the mass-effect from stiffness-effect so that the mass of the adsorbed molecule

can be correctly estimated. In contrast, the Flexure-FET relies only on the change

in the stiffness and works in the static mode, and therefore, requires no more than a

simple measurement of the drain current.

Another class of nanocantilever sensor involves operation in the static mode, where

the capture of the target molecules introduces a surface stress, which in turn bends

the cantilever. The displacement ∆ys of the tip can in principle be measured using
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sophisticated optical readout methods, but a simpler approach can be used instead:

One can measure the change in surface stress by measuring the change in the re-

sistance of a piezoresistor attached to the cantilever. For these piezoresistive based

cantilever biosensors, the sensitivity is defined as the ratio of resistance after (R) and

before (R0) the capture of biomolecules. Figure 6.4(d) shows a logarithmic depen-

dence of S on ρ. Similar logarithmic dependence for surface stress change has also

been reported in references [131,132]. We, therefore, conclude that these static mode

sensors do not exceed linear sensitivity limit of classical sensors.

We summarize the results discussed in this section in Fig. 6.1 a, where the sen-

sitivity of various types of nanobiosensors have been plotted against normalized Ns,

defined as the ratio of the measured quantity (either ρ or Ns) to the minimum mea-

sured ρ or Ns of the available data. Figure 6.1 a allows us to conclude that the

Flexure-FET biosensor will be exponentially more sensitive compared to existing

nanoscale electrical or mechanical biosensors.

6.1.4 Summary of Flexure-FET

In this section, we have demonstrated how Flexure-FET nanobiosensor achieves

exponentially high sensitivity by combining two non-linear characteristics of spring-

softening and subthreshold conduction. This extreme high sensitivity of Flexure-

FET, therefore, breaks the fundamental limits of linear or logarithmic sensitivity

of classical nanoscale electrical or mechanical biosensors. There are broad range of

applications that can benefit from this sensitivity gain. For example, the current

genome sequencing schemes require PCR (Polymerase chain reaction) amplification

of DNA strands because of the lower sensitivity of existing biosensors. The high

sensitivity of Flexure-FET can eliminate the requirement of multiplication step and

hence reduce the cost of sequencing. In addition, we recall that the proposed sensing

scheme (i) can detect both charged and neutral molecules and (ii) does not rely

on reference electrode, (the fundamental roadblock of Si-NW type biosensors). The



141

sensitivity of Flexure-FET can be further enhanced by choosing a softer membrane

(having low stiffness) such as some polymer with low Young’s modulus or an ultra thin

membrane like graphene. Finally, let us emphasize that the sensing scheme is very

general which converts any change in the mechanical property of the gate electrode

or change in the air-gap, to the change in the drain current of the FET channel.

Therefore, the proposed idea is not necessarily restricted to biomolecules detection

but should find broader applications in gas/chemical/pressure sensing as well.

6.2 Signal-to-Noise Ratio in Flexure Sensors

In the last section, we saw that operating Flexure-FET close to pull-in, can give

rise to exponential sensitivity. In this section, we focus on the noise aspects of novel

sensors and answer two very fundamental questions regarding Flexure sensors:

• “Does signal-to-noise ratio (SNR) and limit-of-detection (LOD) also improve

close to the pull-in instability point?”

• In the previous section, we assumed that we can operate just at the bound-

ary between stable and unstable regime i.e., at VG ≈ VPI . We derived the

analytical formula of sensitivity (Eqs. 6.3 & 6.8) based on this particular as-

sumption. Here, we ask, “How close can we operate close to pull-in instability

point, without making the system unstable?”

Without the answers to these questions, it is difficult to ascertain the technological

relevance of novel Flexure sensors. Note that, in our noise analysis, we only consider

the transduction noise (noise in the movable gate) and not the readout noise (channel

noise) because readout noise depends on the specific readout mechanism. In general,

change in the position of gate (∆ys) can be detected using various methods such as

optical methods or an integrated transistor (as shown in Flexure-FET). Therefore,

we focus on the more fundamental noise sources which are present in every Flexure

sensor irrespective of the readout mechanisms.
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6.2.1 Flexure Sensor as a Positive Feedback System

Recall that a Flexure biosensor consists of a movable electrode (e.g., a fixed-

fixed beam) and a bottom fixed electrode as shown in Fig. 6.5 a. The beam is

decorated with specific receptor molecules. The movable electrode is deflected towards

the bottom electrode through an applied voltage (VG) (Fig. 6.5 a). The capture

of target biomolecules increases the flexural rigidity of the beam (basis of Flexure

sensors) [129, 134, 141, 142], making the beam move away from the bottom electrode

as shown in Fig. 6.5 b. The change in deflection ∆ys = yafter−ybefore can be measured

using either optical methods or an integrated transistor as in Flexure-FET biosensor

(previous section).

The behavior of Flexure sensor in response to the capture of biomolecules or

environmental noise can be understood using a simple spring-mass system in which

movable electrode is suspended from a spring of stiffness k (Fig. 6.5 c). We saw in

previous section that capture of target biomolecules is modeled as an increase in the

stiffness from k to k+∆k (Fig. 6.5 d). Balance of spring and electrostatic forces i.e.,

k (y0 − ydc) =
ǫ0WL

2y2dc
V 2
G, (6.12)

governs the static response of the sensor (see chapter 2). To remind, y0 is the initial

air gap (at VG = 0) and ydc is the gap between the two electrodes at VG 6= 0. Note

that, ydc = ybefore before capture and ydc = yafter after capture of biomolecules (Fig.

6.5). Dynamics of the movable electrode after capture of biomolecules is dictated by

Newtons law i.e.,

m
d2∆y

dt2
+ b

d∆y

dt
− (k +∆k) (y0 − ydc −∆y) = − ǫ0WL

2 (ydc +∆y)2
V 2
G, (6.13)

where ∆y is change in the position from ydc, m is the mass of movable electrode, b is

the damping coefficient. For ∆y < ydc and ∆k < k, Eq. 6.13 is simplified to-
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Fig. 6.5. Schematic of a Flexure biosensor (a) before and (b) after
capture of biomolecules. Note the absence of integrated FET in a-b
compared to Fig. 6.1. Spring-mass model of Flexure biosensor (c)
before and (d) after capture of biomolecules. (e) Position of movable
electrode before and after capture and (f) corresponding change in
the electrode position as a function of applied bias.

m
d2∆y

dt2
+ b

d∆y

dt
+

(

k − ǫ0WL

y3dc
V 2
G

)

∆y = ∆k (y0 − ydc) ≡ ∆F (6.14)
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Using Eq. 6.14, one can easily find the transfer function of ∆y with respect to the

force ∆F = ∆k (y0 − ydc) as follows-

∆Y (ω)

∆F (ω)
=

A
1+Aβ

1 + jω
k
b
(1+Aβ)

− ω2

k
m
(1+Aβ)

(6.15)

Equation 6.15 is the key equation of this section and highlights several important

things about Flexure sensors. For β = 0, Eq. 6.15 reduces to the well-known transfer

function of a spring-mass system i.e., TOLF (ω) ≡ ∆Y (ω)
∆F (ω)

= 1
k+jbω−mω2 (Fig. 6.6 a).

Equation 6.15 suggests that the application of a bias VG, provides a positive feedback

with feedback gain β = − ǫ0WL
y3
dc

V 2
G (known as electrostatic stiffness) (Fig. 6.6 a). This

positive feedback modifies the transfer function to
TOLF (ω)

1+TOL
F

(ω)β
(same as Eq. 6.15).

Therefore, the low frequency gain is modified from A = 1/k to A/ (1 + Aβ) and

bandwidth from ω0 =
√

k/m to ω0

√
1 + Aβ (assuming resonance frequency dictates

the bandwidth for low values of b) (Fig. 6.8 b). We will show below that the increase

of the low frequency gain and decrease of the bandwidth in a positive feedback system

(β < 0), is the key for the improved SNR/LOD in Flexure sensors.

One can now use Eq. 6.15 to analyze both the signal and noise for Flexure sensors

as follows. Assuming that the change in stiffness (∆k) due to capture of biomolecules

is a low frequency signal i.e., ω ≈ 0, ∆ys can simply be obtained from Eq. 6.15

∆ys ≈ (y0 − ydc)
∆k

k

1

1 + Aβ
. (6.16)

Equation 6.16 implies that when Aβ ≈ −1 (equivalent to the condition of pull-in),

∆ys will be very large. This is confirmed by numerical simulations of Eq. 6.12 in

Figs. 6.5 d-e. Figure 6.5 d shows ydc as a function of VG before and after capture of

target molecules (similar to Fig. 6.3 a). The corresponding ∆ys is shown in Fig. 6.5

e and confirms large value of ∆ys close to pull-in (similar to Fig. 6.3 b). Intuitively,

decrease in the effective stiffness (k+β) with increase in VG (known as spring softening
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Fig. 6.6. (a) Representation of Flexure biosensor as a positive feed-
back system and (b)square of the magnitude of the corresponding
closed loop transfer function at different voltages. As voltage increase,
low frequency gain increases and resonance frequency decreases.

effect), results in large ∆ys, even for small ∆k. Note that, Eq. 6.16 is valid slightly

away from pull-in; whereas Eq. 6.3 is valid very close to pull-in. As we will show

below, due to noise, Flexure sensors cannot be operated very close to pull-in. As a

result, Eq. 6.16 will correctly estimate ∆ys.

Interestingly, closed loop system becomes unstable for Aβ < −1 and Aβ = −1

separates the stable and unstable regimes (point of pull-in instability). Note that,

Aβ = −1 is equivalent to the condition of pull-in i.e., k = ǫ0WL
y3
dc

V 2
G for Flexure

sensors [1].

The output noise power for Flexure sensor can also be evaluated using Eq. 6.15.

We first divide the intrinsic noise of Flexure sensor in two categories namely stiffness

noise and force noise. The stiffness noise will cause the stiffness to fluctuate randomly;

whereas movable electrode will experience a random force due to force noise. We will

below discuss the physical origin of each of these noise sources. We proceed by

assuming that both force and stiffness noise are white in nature with power spectral

density SF (ω) = NF and Sk(ω) = Nk, respectively. The total noise power at the

output is then given by-
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∆yFN ≡

√

∫

∞

0

SF (ω)

∣

∣

∣

∣

∆Y (ω)

∆F (ω)

∣

∣

∣

∣

2

dω ≈
√

NFQω0/k2

1 + Aβ
, (6.17)

∆ykN
y0 − ydc

≡

√

∫

∞

0

Sk(ω)

∣

∣

∣

∣

∆Y (ω)

∆F (ω)

∣

∣

∣

∣

2

dω ≈
√

NkQω0/k2

1 + Aβ
, (6.18)

where Q = mω0/b is the quality factor. Equations 6.16 - 6.17 implies that both ∆yFN

and ∆ykN also increase when Aβ ≈ −1. However, ∆yFN and ∆ykN increase at a slower

rate compared to ∆ys due to different dependencies on 1+Aβ. Using Eqs. 6.16-6.18,

SNR can be estimated as follows-

SNRF ≡ ∆ys
∆yFN

=

√

(y0 − ydc)
2 ∆k2

NFQω0 (1 + Aβ)
, (6.19)

SNRk ≡ ∆ys
∆ykN

=

√

∆k2

NkQω0 (1 + Aβ)
, (6.20)

which implies that SNR is also amplified by operating close to the point with Aβ ≈
−1. Intuitively, this improvement in SNR can be understood as follows. First, opera-

tion close to the instability point increases the DC gain (Eq. 6.15), and thus amplifies

the output signal ∆ys (Eq. 6.16). Second, had the bandwidth of the system remained

constant or noise were a DC signal, the noise would have also gotten amplified in the

same proportion as signal, leaving the SNR unchanged. However, the noise is AC.

And, decrease in the bandwidth of the close loop system, helps reject the noise and

improve SNR. Note that, the maximum value of SNR is not infinity (at Aβ = −1),

but is governed by the value of Aβ which is as close to negative one as possible,

without making the system switch from stable to unstable regime due to the noise

initiated transition. This simple analysis thus highlights the essence of this section.

Below, we will evaluate SNR for various practical noise sources in Flexure biosensors.
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Although, we have discussed SNR and LOD using the analysis based on linear

transfer function, we want to point out that we have also carried full time domain

analysis of noise using stochastic simulations. As discussed in the appendix E, the

results obtained from the linear transfer function analysis (Eq. 6.15) are consistent

with the time domain stochastic simulations (see Figs. E.1-E.2 appendix E).

6.2.2 SNR and LOD for Specific Noise Sources

We consider the following noise sources which are present in any nanoscale can-

tilever or beam based sensors.

(i) Thermomechanical noise [147] is the consequence of nanobeam being in

thermal equilibrium with its surrounding at absolute temperature T . This noise exerts

a random force on the beam with white power spectral density, given by-

SF (ω) =
4kBTmω0

Q
, (6.21)

where kB is the Boltzmann constant.

(ii) Temperature fluctuations [148] arises due to the small heat capacity of

the nanobeam. Temperature fluctuations cause stiffness of the beam to change also.

The power spectral density of corresponding fluctuations is given by-

Sk(ω) =

(

∂k

∂T

)2
4kBT

2

πg

1

1 + (ωτT )
2 (6.22)

where, ∂k/∂T is the rate of change of stiffness with temperature, ST (ω) is the power

spectral density of temperature fluctuations, g and τT are the thermal conductance

and the thermal time constant associated with the nanobeam, respectively. Further

details about each of the noise sources can be found in the refs. [147–150] and refer-

ences therein. The goal of this section is not to discuss the origin or details of various

noises sources, rather to understand how various noise sources interact with the mov-

able gate and lead to fluctuations in the displacement. Note that, thermomechanical
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Fig. 6.7. (a) Root mean square fluctuations due to various noise
sources and (b) corresponding signal-to-noise ratio as a function of
applied bias for 5% change in the stiffness. The parameters used
in simulations are m = 1.26fg,ω0 = 8 × 108rad/s, Q = 100, g =
7.4× 10−6W/K, 1

k
∂k
∂T

= 10−3/K, and τT = 30ps.

noise is a white force noise (no frequency dependence); whereas stiffness noise due to

temperature fluctuations is also white provided 2πω−1
0 ≫ τT , (Eq. 6.22), which is true

for all practical purposes (see caption of Fig. 6.7 for various parameters). Therefore,

analytical expressions of SNR will be directly relevant for both noise sources.

Figure 6.7 a shows ∆yN for both noise sources. The assumption of white noise

is justified by the parameter values, 2πω−1
0 ≈ 78ns which is much larger than τT .

As expected from Eqs. 6.18 - 6.19, ∆yN increases with VG and becomes maximum

close to pull-in. The corresponding SNR for both type of noise sources is shown in

Fig. 6.7 b and suggests that SNR also increases for all noise sources. The value

of SNR is minimum for thermomechanical noise and this observation is consistent

with the conclusions of the paper by Ekinci et al., [149]. Importantly, SNR is greater

than one for stiffness noise at all values of VG; whereas SNR< 1 for VG < V ∗

G for

thermomechanical noise (see Fig. 6.7 b). This behavior can intuitively be understood

as follows. The absence of any force on the movable electrode at VG = 0, makes

∆ys = 0 irrespective of the change in the stiffness of the movable electrode; whereas
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∆yFN =
√

kBT/k [151] for thermomechanical noise at VG = 0, resulting in SNR= 0.

Therefore, any change in the stiffness using Flexure sensors cannot be detected at

VG = 0. As VG is increased, electrostatic force on the movable electrode increases and

so does ∆ys (Eq. 6.16). Therefore, in order to detect a given change in the stiffness,

a certain minimum VG has to be applied. Also, note that Flexure sensor can not be

operated very close to pull-in due to noise initiated pull-in (see next section). As a

result, for proper functioning of the sensor, VG should not exceed a safe operating

voltage Vsafe < VPI . For the parameters considered in this section, Vsafe ≈ 0.995VPI .

Now, limit-of-detection for each type of noise source can simply be obtained by

requiring SNR=3. The minimum detectable change in the stiffness (or LOD) is thus

given by-

∆kFmin = 3

√

NFQω0

(y0 − ydc)
2 (1 + Aβ), (6.23)

∆kkmin = 3
√

NkQω0 (1 + Aβ), (6.24)

As expected from the increased SNR, both ∆kFmin and ∆kkmin decreases with in-

creasing VG (Fig. 6.8). Interestingly, ∆kmin due to stiffness noise decreases with

decreasing Q because of reduced bandwidth of the system (Fig. 6.8 b). On the other

hand, ∆kmin for thermomechanical noise is independent of Q because NF ∝ 1/Q

(Eqs. 6.21 & 6.23) (Fig. 6.8 a). It should be noted that the ultimate LOD is deter-

mined by the noise source with minimum SNR and that is thermomechanical noise

for Flexure sensors.
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Fig. 6.8. Limit-of-Detection (LOD) for change in the stiffness limited
by (a) thermomechanical noise and (b) temperature fluctuations.

6.2.3 Safe Operating Voltage to Avoid Noise Initiated Pull-in

We just saw that biasing close to pull-in improves both SNR and LOD. In this

section, we answer a very important and fundamental question regarding the stability

of Flexure sensors close to pull-in point. The question is “how close can we be to the

pull-in point without making the sensor unstable?” Note that, in Figs. 6.7 - 6.8, VG

was swept from VG = 0 to VG = 0.995VPI . Now, let us see, if biasing at VG = 0.995VPI

is practically possible or not. To answer this question, we look at the behavior of

movable electrode in response to both force and stiffness noise using time domain

stochastic simulations. Simulation framework has been discussed in detail in sections

appendix E. Figure 6.9 a shows the potential energy (U = 1
2
k (y0 − y)2 − ǫ0WL

2y
V 2
G

landscape of Flexure sensor at VG = 0.995VPI . Movable electrode is stabilized at

the minimum of U . In absence of noise, movable electrode should have remained at

the bottom of potential energy well in Fig. 6.9 a (see the dotted line in Fig. 6.9 b

also). However, thermomechanical noise exerts random force on the electrode making

it fluctuate (reason for noise characterized by ∆yFN) around its equilibrium position
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Fig. 6.9. Results of time domain stochastic simulations of a Flexure
sensor at VG = 0.995VPI with ∆Ub ≈ 3.75 × 103kBT , due to (a)-(b)
thermomechanical noise and (c)-(d) temperature fluctuations stiffness
noise. Us denote the potential energy at equilibrium position i.e., at
the bottom of potential well. Symbols in Figs. a & c denote the total
energy (kinetic + potential). Dotted black line in Fig. c correspond
to maximum stiffness; whereas magenta line to minimum stiffness.
Inset in Figs. a & c show the zoomed region around the bottom of
potential well.

as shown in Figs. 6.9 a-b. Symbols in Fig. 6.9 a denote total energy (kinetic +

potential) of movable electrode during fluctuations.

Due to the presence of a high energy barrier ∆Ub = U(yu)−U(ys) ≈ 3.75×103kBT ,

(ys : stable equilibrium position and yu : unstable equilibrium position) movable

electrode only fluctuates around the bottom of potential well in Fig. 6.9 a, but

cannot surmount the energy barrier to make the system unstable. On the other
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hand, stiffness noise due to temperature fluctuations will make the potential energy

landscape fluctuate as shown in Fig. 6.9 c. Dotted black line corresponds to the

potential energy profile for maximum stiffness; whereas dotted magenta for minimum

stiffness. Due to the fluctuations in the stiffness, position of electrode fluctuates

around its equilibrium position as shown in Figs. 6.9 c-d. However, the stiffness

fluctuations are not strong enough to make the electrode pull-in. Therefore, we will

classify VG = 0.995VPI as the safe operating voltage.

Note that, if VG is increased further, ∆Ub decreases and becomes ∆Ub ≈ 5kBT at

VG = 0.99994VPI as shown in Fig. 6.10 a. In this case, the movable electrode gets

the sufficient energy from the surrounding to surmount the energy barrier and gets

pulled-in as shown in Figs. 6.10 a-b. Therefore, VG = 0.99994VPI cannot be classified

as the safe operating voltage. Interestingly, pull-in at VG = 0.99994VPI occurs due to

thermomechanical noise, and not because of stiffness noise. However, if the voltage is

increased even further, pull-in can occur due to stiffness noise because of temperature

fluctuations as shown in Figs. 6.10 c-d. The bottom line from this section is that as

we go closer and closer to pull-in point, chances of noise initiated pull-in increases. A

safe operating voltage is that does not cause noise initiated pull-in or at least not in

the time duration of measurement.

6.2.4 Discussions

Before we conclude this section, let us highlight some of the assumptions that

were made during the analysis of SNR. First of all, we have modeled Flexure sensor

using a single degree of freedom model and ignored all the details of the fixed-fixed

beam [51,55]. Although, these details are important, spring-mass model captures very

well the spring softening effect (positive feedback effect of a Flexure sensor) that is the

sole reason of improvement in SNR. Therefore, even if we include the details of beam

mechanics, it will only change the quantitative value of SNR, qualitative improve-

ment in SNR will still remain the same. Also,we have neglected the spatial profile of
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Fig. 6.10. Noise initiated pull-in due to (a)-(b) thermomechanical
noise at VA = 0.99994VPI with ∆Ub ≈ 5kBT and (c)-(d) stiffness noise
due to temperature fluctuations at VA = 0.999995VPI . ys corresponds
to the stable equilibrium position; whereas yu unstable.

adsorbed molecules on the movable electrode. The adsorption of biomolecules have

been modeled assuming an effective change in the stiffness. Again, the details of the

molecules adsorption on the surface are important, but will not modify the qualita-

tive improvement in SNR due to positive feedback effect. Although, we have only

considered two types of noise sources, the analysis framework and the conclusions are

very general. If the input noise source is white, SNR corresponding to that source

will always increase due to the reduced bandwidth close to pull-in.
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6.2.5 Summary of Noise in Flexure Sensors

In this section, we have systematically analyzed the noise response of Flexure

sensors using both linear transfer function analysis and time domain stochastic sim-

ulations. Surprisingly, both SNR and LOD improves close to the pull-in point. In

presence of various noise sources considered, LOD is determined by thermomechani-

cal noise. The analysis also provides the guidelines for the safe operating voltage to

avoid noise initiated pull-in. We believe that the analysis presented in this section

will serve as a platform for the analysis of SNR in other sensors that also operate at

the boundary of stable and unstable regimes.

6.3 Conclusions

In this chapter:

• We showed another example in which instability or operation regime plays a

critical role for performance enhancement. We showed that operation at the

boundary between stable and unstable regimes can be advantageous for certain

applications.

• We proposed a novel Flexure-FET biosensor that operate close to the pull-in

instability and in subthreshold regime to achieve exponentially better sensitivity

compared to the existing electronic/mechanical biosensors.

• Surprisingly, both signal-to-noise ratio and limit-of-detection improve close to

the pull-in point. This improvement is the result of internal low pass filtering

due to spring-softening effect, which reduces the resonance frequency close to

pull-in.

• We found the voltage (called safe operating voltage) beyond which sensor will

not function properly due to noise initiated pull-in. We also confirmed that
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both sensitivity and signal-to-noise ratio at the safe operating voltage is higher

than that of zero applied bias.

So far, we have covered many important aspects of instability starting from uni-

versal framework in chapter 3, novel solutions to the problems arising because of

instability in chapter 4, and harnessing instability in this and previous chapter. In

the next chapter, we will summarize all our findings and discuss the possible future

directions.
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7. SUMMARY AND FUTURE WORK

7.1 Summary

In this thesis, we have established fundamental design principles of Landau switches,

sensors, and actuators. Landau systems such as MEMS capacitive actuators and fer-

roelectrics are bi-stable and their inherent instability divides the operation regime

into stable and unstable. We proposed novel device solutions to the problems arising

due to instability and harnessed instability for performance enhancement in novel

Landau switches and Flexure sensors, respectively. The summary of the thesis is as

follows:

Chapter 2 : Examples of Landau Systems

In this chapter, we illustrated the elementary physics of instability and its corre-

sponding consequences in Landau systems.

• We discussed the origin of pull-in instability in MEMS capacitive actuators

using both the evolution of energy landscapes and interaction of spring and

electrostatic forces.

• We highlighted the consequences of pull-in instability on the static and dynamic

response of MEMS capacitive actuators and established the concepts of spring-

softening, negative capacitance, abrupt transition, hysteresis, dynamic pull-in,

noise initiated pull-in, and hard-landing. Corresponding to each concept, we

then pointed out applications in which the respective concept plays the critical

role.
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• We then discussed the origin of instability and its consequences such as negative

capacitance behavior and hot-atom switching in ferroelectric materials.

• We concluded by identifying that MEMS capacitive actuators and ferroelectric

materials belong to a broader class of “Landau” systems. Stable regimes are

separated by an inherently unstable regime in each Landau system and that is

a typical feature of all bi-stable systems.

Chapter 3 : Understanding Instability in MEMS

In this chapter, we develop a universal theory of instability of MEMS capactive

actuators that works irrespective of the electrode geometry, nature of spring and/or

actuation mechanisms.

• We unify the performance characteristics of electromechanical actuators through

scaling relationships for pull-in instability, pull-in voltage/charge, and resonance

frequency. These scaling relationships depend only on two scaling parameters,

n and p, related to the electrostatic force and the nature of spring, respectively.

• We use these scaling relationships to explain a broad range of existing experi-

mental data from literature in a single theoretical framework.

• We show how the scaling relationships can be used to characterize the electrode

geometry and nature of spring for any new actuator.

Chapter 4 : Providing Solutions to the Problems due to Instability

In this chapter, we propose novel device designs to address the problems that arise

due to the intrinsic instability of MEMS capacitive actuators.

• Pull-in instability limits the travel range of movable electrode to only one third

of the initial air-gap in tunable-gap electromechanical actuators with planar

electrodes and linear spring. To address the problem of limited travel range,
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we proposed the idea of electrically reconfigurable nano-structured electrodes to

extend the travel range beyond the fundamental limit of one third of the initial

air-gap. The proposed electrically reconfigurable nano-structured electrodes

also enable post fabrication tuning of the travel range.

• In RF-MEMS capacitive/ohmic switches or NEMS relays, during pull-in, the

movable electrode hits the bottom dielectric or electrode with very high impact

velocity and damages the surface. To address this problem of hard-landing,

we proposed two novel strategies of dynamic soft-landing, namely resistive and

capacitive braking. Resistive braking simply requires putting a resistance in

series with the voltage source; whereas capacitive braking requires patterning

of the bottom dielectric or electrodes. Both strategies reduce the impact velocity

without affecting the pull-in voltage or time significantly.

Chapter 5 : Harnessing Negative Capacitance

This and the next chapter highlights “operation regime” as a new design variable

in contrast to classical design variables such as material or geometry and focus on

harnessing instability.

• Here, operation in the unstable regime leading to negative capacitance behavior

of air-gap in MEMS capacitive actuators or ferroelectric materials, respectively,

is utilized for the reduction of sub-threshold in field effect transistors.

• We show that Landau switches (or negative capacitance FETs) that have un-

stable gate insulators such as air-gap in suspended-gate FET or ferroelectric

dielectric in ferroelectric-FET, typically exhibit abrupt switching characteris-

tics (0mV/decade) with hysteresis.

• We discuss that stabilization of the unstable gate insulators using a series

capacitor leads to hysteresis-free switching characteristics. This stabilization

in the unstable regime results in the essential voltage amplification to reduce
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body factor below one and sub-threshold swing below thermodynamic limit of

60mV/decade.

• We establish that the sub-threshold swing cannot be arbitrarily reduced in NC-

FETs. There is a fundamental lower limit of sub-threshold swing associated

with each type of negative capacitance gate insulator or channel configuration,

respectively. The existence of such a limit is the direct consequence of the

stability constraints for hysteresis-free stable operation.

• We show that sub-threshold swing can be reduced in NC-FETs by improving the

matching between the negative capacitance of the gate insulator and the positive

series capacitance of the channel. The sub-threshold swing cannot however be

reduced all the way to 0mV/decade in an NC-FET with single type of NC gate

insulator. This is due to the presence of a point with infinite capacitance that

restricts the perfect matching between the two capacitances and therefore make

it impossible to achieve hysteresis-free 0mV/decade switching characteristics.

• We propose that the point of infinite capacitance can be bypassed in a series

combination of two different types of negative capacitance gate insulators. This

removal of the point of infinite capacitance will therefore enable perfect match-

ing between the effective negative capacitance of the series combination and

positive channel capacitance to realize hysteresis-free 0mV/decade switching

characteristics.

• We illustrate the concept of hysteresis-free zero sub-threshold FET in a suspended-

gate ferroelectric FET. The properly designed series combination of the air-gap

and ferroelectric lead to a constant negative capacitance, which can be per-

fectly matched by the constant positive capacitance of the channel to achieve

hysteresis-free 0mV/decade switching characteristics.
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Chapter 6 : Harnessing Spring-Softening

In this chapter, we continue with the philosophy of harnessing instability and

discuss our proposal of novel Flexure biosensors.

• We start this chapter with the proposal of a Flexure-FET biosensor in which the

adsorption of biomolecules on a suspended-gate changes its stiffness. Change

in the stiffness is reflected as a direct change in the drain current of the under-

neath FET. The operation of the proposed biosensor at the boundary between

the stable and unstable regime results in maximum sensitivity towards capture

of biomolecules due to spring-softening effect. At the same time, if the FET

is biased in the sub-threshold regime, sensitivity of Flexure-FET biosensor be-

comes exponentially higher than existing electronic or mechanical biosensors.

• In order to ascertain the technological relevance of the novel biosensor, we sys-

tematically analyze its noise response to answer the fundamental question:“

Does operation close to pull-in instability point also improve signal-to-noise ra-

tio?” We find that the reduction in the resonance frequency close to the pull-in

instability point due to spring-softening helps reject the high frequency noise

and thus also improve the signal-to-noise ratio.

• Once we establish that Flexure sensors can also improve signal-to-noise ratio

by operating close to the pull-in instability point, we ask another fundamental

question:“How close can we operate close to the instability without making the

system unstable?” Using the time domain stochastic simulations, we found the

safe operating voltage at which the movable gate will not undergo noise initiated

pull-in.
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7.2 Future Work

The focus of this thesis has been to explore the fundamentals of instability in

Landau systems - switches, sensors, and actuators. The contributions of the work

are not only in exploring the fundamental science, but also in proposing novel device

designs for several applications in the field of switching, sensing, and actuation. On

the science side, the work explores the universal features of instability (chapter 3)

and establishes fundamental limits of sub-threshold swing in negative capacitance

field effect transistors (Chapter 5). On the applications side, the work has resulted

into several novel device proposals which not only address the problems arising due

to instability (chapter 4), but also harness instability for performance enhancement

(chapters 5 & 6). Based on the work presented in this thesis, following directions can

be explored both in experimental and theoretical fields:

7.2.1 Guidelines for Future Experiments

In this thesis, analytical modeling and numerical simulations have been used as a

tool to explore the fundamentals of Landau systems. The role of simulations is not

only to understand the physical phenomenon, but also to provide new directions to

the experiments. Since this thesis has resulted into several novel ideas (Fig. 7.1), we

believe these ideas can inspire future experiments in the following ways:

• MEMS with Nanostructured Electrodes: In chapter 4, we saw that the use

of nanostructured electrodes (instead of classical planar) in MEMS can address

the problem of travel range in tunable electromechanical actuators and hard-

landing in MEMS based switches. One can focus on fabrication/characterization

of MEMS devices with novel patterned electrodes and demonstrate the concept

of extended travel range and soft-landing. MEMS with patterned electrodes

will help verify the scaling relationships developed in chapter 3. The fabricated

devices can also be used to generalize the scaling relationships to account for
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Fig. 7.1. Several novel devices proposals are the outcome of this the-
sis and should inspire future experiments in the field of switching,
sensing, and actuation.

the non ideal effect such as residual stress [55] that may be present in a practical

device.

• Hysteresis-Free Suspended-Gate FET: Since the proposal of negative ca-

pacitance field effect transistor in 2008 [19], there has been only one experi-

mental demonstration of the concept on a ferroelectric capacitor structure [104]

and one on a ferroelectric FET [103]. The field however lacks sufficient experi-

mental data to clearly validate the concept and several related predictions e.g.,

minimum sub-threshold swing. In this direction, one can focus on the fabri-

cation/characterization of suspended-gate FET (instead of ferroelectric FET)
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and demonstrate (i) hysteresis-free sub-60mV/decade switching characteristics

and (ii) associated minimum sub-threshold swing. Although, SG-FET does not

require fabrication of any specific material, it will have its own set of challenges

such as creating air-gap above the semiconductor channel, suspending the gate,

and controlling doping in the channel so that channel capacitance can stabilize

the gate throughout the air-gap.

• Hysteresis-Free Zero Sub-threshold Swing FET: In chapter 5, we pro-

posed the concept of hysteresis-free zero sub-threshold swing FET (ZSubFET)

and demonstrated that suspended-gate ferroelectric FET can lower the sub-

threshold swing all the way to 0mV/decade. The fabrication/characterization

of ZSubFET will not only validate the proposed concept, but can also help us

explore fundamental questions regarding ideal switching characteristics. Since

concept of ZSubFET requires a specific set of parameters as discussed in chap-

ter 5, the challenge will be to achieve exact matching between ferroelectric and

suspended-gate (needed for 0mV/decade switching) in presence of process vari-

ations.

• Flexure Biosensors: In chapter 6, we proposed novel Flexure sensors that uti-

lize spring-softening effect to improve both the sensitivity and signal-to-noise

ratio. Although, individual pieces of Flexure biosensors such as stiffness in-

crease due to capture of biomolecules and maximum change in the displace-

ment close to pull-in, have been experimentally demonstrated [118], complete

demonstration of the novel sensor awaits. Along these lines, one can focus on

the fabrication of Flexure sensor to establish the fundamental fact that both

signal and signal-to-noise ratio increase at the boundary of stable and unstable

regime. Like SG-FET challenge in the fabrication of Flexure biosensors will be

creating the air-gap and suspending the gate. Moreover, if the measurements

are performed in liquid environment, the biggest challenge will be to keep the
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air-gap isolated from liquid. If liquid goes inside the air-gap, it may lead to

malfunctioning of the device.

7.2.2 Analyzing the Available Experimental Data on Negative Capaci-

tance

In chapter 5, we discussed negative capacitance behavior of MEMS and ferroelec-

tric materials to achieve sub-60mV/decade switching characteristics in FETs. Since

2008, when Salahuddin et al., [19] proposed negative capacitance (NC) for the first

time, there have been couple of experimental works [103, 104, 152–155] on the proof-

of-concept of NC. However, there are several puzzles in the available experimental

data, which needs to be resolved before one confirms the presence of NC in an exper-

iment. Below we lay down the key features of the available experiments and point

out various puzzles, which needs to be resolved.

Historically, the temperature dependent hysteresis and it’s disappearance above

the curie temperature can be considered as a signature of the negative capacitor [156].

In the recent literature [103, 104, 152–155], when negative capacitor is being consid-

ered for voltage amplification in transistors, there have been experiments on two

types of structures, namely, capacitor and transistor to experimentally demonstrate

the concept of negative capacitance (NC). A capacitor structure consists of a series

combination of a negative (a ferroelectric) and a positive capacitor; whereas a transis-

tor structure employs a negative capacitor as the gate insulator. Before we discuss any

specific experiments, let us highlight the key points that one should look to confirm

the presence of an NC in an experiment.

1. In a capacitor structure, total capacitance of the series combination of a nega-

tive and positive capacitor should be higher than that of the positive capacitor.

Since, the negative capacitance regime of a ferroelectric material is temperature

dependent, one can use temperature as a variable to observe negative capaci-

tance.
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2. In a transistor structure, sub-threshold swing should be less than 60mV/decade

without any hysteresis for low power applications. If there is any hysteresis

associated with negative capacitor, the hysteresis window should not depend on

the range as well as rate of voltage sweep.

3. If negative capacitor cannot be stabilized in the entirety of the unstable regime,

there will be a hysteresis in the output characteristics characterized by branches

with abrupt transition. The hysteresis window will however not depend on the

range as well as rate of the voltage sweep.

It is also important to emphasize that the mere presence of any NC does not

guarantee an improved transistor with lower sub-threshold swing. Other effects such

as short channel effects and self-heating needs to be considered as well. Also, inability

to observe NC does not mean that NC is impossible in principle. It is possible that the

presence of domains in a ferroelectric and other non-idealities may be preventing from

clear observations. With this background let us look at the available experimental

data in literature-

Capacitor Structure

First, let us revisit the physics of negative capacitance in a series combination of

a negative and positive capacitor. The total capacitance of the series combination of

a ferroelectric and a regular series capacitor is given by (Fig. 7.2 a)-

C−1
G = C−1

FE + C−1
s , (7.1)

C−1
G =

(

α0 + 3β0Q
2
)

yFE + C−1
s , (7.2)

where CFE is the capacitance of the ferroelectric, Cs is the capacitance of the series

positive capacitor, α0 and β0 > 0 are material constant of ferroelectric material. Note
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Fig. 7.2. (a) Capacitive divider model of the series combination of
ferroelectric and regular capacitor and (b)-(c) Simulated capacitance
of the ferroelectric highlighting the increase in the capacitance in the
region when ferroelectric is stabilized in the unstable regime. (d)
Schematic of the structure fabricated by Khan et al., [104] and (e)
Corresponding experimental data (taken from [104]) of total capaci-
tance at three different temperatures.

that, α0 = α (T − Tc) and is negative for T < Tc, where α is a material constant and

Tc is curie temperature. Figure 7.2 b shows CFE (< 0) for three different temperatures

below Tc. Cs is a constant and is assumed to be independent of temperature. Note

that, the negative capacitance of ferroelectric cannot be observed in isolation since

ferroelectric is unstable in that regime. However, when it is in series with Cs, it can be

stabilized in the negative capacitance regime provided total capacitance CG > 0 [19].

Figure 7.2 c shows the corresponding total capacitance for constant Cs, which is

positive at low T in a very limited range. However, as T is increased, α0 decreases,

and CG becomes positive in a large range. Note that, whenever CG > 0 with CFE < 0,

CG is larger than Cs (signature of negative capacitance and point 1 mentioned above).

However, if CG becomes negative, the structure will become unstable once again,

leading to hysteresis.
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With this background, let us look at the experimental data by Khan et al., [104]

in Figs. 7.2 d-e. They fabricated a stack of STO (regular positive capacitor) and

PZT (temperature dependent negative capacitor) as shown in Fig. 7.2 a. Using

temperature as the tuning parameter (ranging from 30◦C−500◦C), they showed that

the capacitance of the series combination (Fig. 7.2 d) was larger than the capaci-

tance of STO (Fig. 7.2 e). They observed this increase in the capacitance over large

range of frequencies (ranging from 100KHz − 1MHz), various thicknesses of PZT

(28nm, 29nm, and 64nm) and STO (48nm, 46nm,54nm), and over wide temper-

ature range [104]. Based on these observations, they attributed the increase in the

capacitance to the negative capacitance of PZT and thus providing a proof-of-concept

of negative capacitance of ferroelectric materials. Since temperature dependence of

total capacitance is consistent with the theory discussed above, negative capacitance

observed in capacitor structure can be attributed to the real negative capacitance of

ferroelectric materials. Since Khan et al., [104] observed negative capacitance at very

high temperature (300◦C− 500◦C), which may not be relevant for room temperature

applications, a proof-of-concept of negative capacitance at room temperature (27◦)

was recently provided by Appleby et al., [154], again in a capacitor structure with

BaTiO3 (thickness 20nm, 30nm, 50nm) as the ferroelectric material and STO as the

regular positive capacitor (thickness 25nm).

Transistor Structure

We have so far seen that the experiments done on the capacitor structures provide

a reasonable proof-of-concept of negative capacitance of ferroelectric materials. We

now look at the other set of experiments performed on the transistor structures with

ferroelectric [103,152,155] material or a polarization layer [153] as the gate insulator.

The summary of the experimental observations is as follows-

• Experimental data shows sub-60mV/decade switching characteristics with hys-

teresis (Fig. 7.3). In some cases, sub-60mV/decade is observed along one branch
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Fig. 7.3. Hysteretic sub-60mV/decade switching characteristics ob-
served in experiments. (a) Schematic of a ferroelectric FET with a
polymer ferroelectric as the gate insulator [103], (b) current-voltage
characteristics showing sub-60mV/decade switching with hysteresis,
and (c) sub-threshold swing as a function of gate voltage. (Data
taken from [103]) (d) Schematic of a HEMT with AlInN as the po-
larization layer [153], (e) corresponding thickness dependent current-
voltage characteristics showing sub-60mV/decade switching, and (f)
sub-threshold swing as a function of the drain current. (Data taken
from [153]) (g) Schematic of a transistor with ZrHfO as the ferro-
electric material [155], (h) range of voltage sweep dependent hys-
teretic capacitance voltage characteristics, and (i) corresponding hys-
teretic sub-60mV/decade current-voltage characteristics. (Data taken
from [155])

only [153] (Figs. 7.3 d-f), while in other cases sub-60mV/decade switching oc-

curs along both branches [103,152,155] (Figs. 7.3 a-c & g-i).

• Sub-threshold swing in Figs. 7.3 b-c is less than 60mV/decade only at five

points at very low current values. For majority of the experimental data points,

sub-threshold swing is close to 60mV/decade.
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• Hysteresis window depends upon the range of sweep voltages [152,153,155]. As

the range of sweep voltage increases, hysteresis window increases as well (Fig.

7.3 h).

In the literature, this hysteretic sub-60mV/decade switching characteristics along

one or both branches has been attributed to the negative capacitance of the underlying

gate insulator. First, the hysteresis loop defeats the main purpose of NC-FETs,

namely, to reduce the power supply voltage. Second, although one cannot deny the

experimental hysteretic sub-60mV/decade switching characteristics, one should be

very careful before correlating it with the negative capacitance of the ferroelectric

material due to following reasons. Both the experimental observations are not in

accordance with the points (two and three mentioned previously), namely, (i) sub-

60mV/decade switching due to negative capacitor should be hysteresis-free for low

power applications and (ii) if there is any hysteresis associated with the negative

capacitor, it should be independent of the range as well as the rate of voltage sweep.

Without addressing the origin of hysteresis in these transistor structures, it will not

be reasonable to associate sub-60mV/decade switching with negative capacitance.

In general, hysteretic sub-60mV/decade switching characteristics may also arise

in one of the following two ways. First, if the internal charges inside the gate insu-

lator (which is ferroelectric in this case) move slowly compared to the voltage sweep

rate, one may observe hysteresis in the output current-voltage characteristics. Also,

sub-threshold swing could be lower than 60mV/decade during the downward voltage

sweep. Moreover, the hysteresis window will also depend on the range of voltage

sweep since larger voltage will induce more internal charges. Some of these features

of charging appears to be present in Fig. 7.3.

Second, hysteretic sub-60mV/decade switching characteristics may also arise be-

cause of the poly-crystalline nature of the ferroelectric. A poly-crystalline material

will have several grains and each grain will switch at a different voltage. We can view

a transistor with poly-crystalline ferroelectric as gate insulator as several transistors

connected in parallel with single crystalline ferroelectric as gate insulators (each with
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different switching voltage). The current voltage characteristics for each of such par-

allel transistors will be hysteretic with abrupt transition. The total current will be

sum of the individual currents and can in principle exhibit sub-60mV/decade switch-

ing. Although, both of these hypothesis will require detailed analysis, they highlight

that hysteretic sub-60mV/decade switching may arise because of other reasons also,

which one should carefully consider while interpreting the experimental data.

One of the key goals of the future work will be to isolate these parasitic effects

from negative capacitance phenomena.

7.2.3 Minimum Power Supply Voltage

In chapter 5, we proposed a switch that in principle can achieve ideal switching

characteristics i.e., 0mV/decade sub-threshold swing without any hysteresis. This

proposal of ideal switch raises a question of fundamental interest:“ What is the corre-

sponding power supply voltage and energy dissipation?” Without the answer to this

question, it is difficult to ascertain the relevance of an ideal switch. As briefly men-

tioned in chapter 5, the answer to this question will fundamentally be determined

by noise considerations and error probabilities. The work will require identifying

various noise sources associated with movable gate, ferroelectric dielectric, and semi-

conductor channel in ZSubFET. Based on the analysis of various noise sources, one

would require to calculate the power supply voltage corresponding to an allowed error

probability (for accidental switching from one state to another) [102].

7.2.4 Single Molecule Detection

In chapter 6, we proposed novel Flexure sensors, which amplify both the signal

and signal-to-noise ratio (SNR) close to the instability point. The extreme sensitivity

of these sensors raises a very important and technologically relevant question: “Can

novel Flexure biosensors detect single molecule and enable early stage detection of

fatal diseases?” First of all, the answer to this question will require modeling of
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Flexure sensors using Euler-Bernoulli (EB) framework (section A.1.1) (as opposed

to lumped parameter spring-mass model in chapter 6). EB framework will help

understand how does the position of molecule on the movable gate affect the signal.

Second, in order to evaluate the corresponding SNR, one would require noise analysis

of the beam (again as opposed to spring-mass system in chapter 6). Based on the

analysis of position dependent signal and SNR, one can find out the molecules which

can be detected using Flexure sensor.

7.2.5 Exploring Other Instabilities

In this thesis, we have explored the fundamentals of instability by using pull-in

instability of MEMS capacitive actuators as an illustrative example. In the future, one

can explore other kind of instabilities, which may be present in a MEMS capacitive

actuator.

Buckling Instability

In this thesis throughout, we did not consider any axial load in the movable

electrode, i.e., P = 0 in Eq. 2.1. If a compressive axial load (P > 0 by definition)

is present and is above a critical load, the movable electrode may be buckled up or

down. As a part of the future work, one can explore the effect of this buckling on

the negative capacitance and sub-threshold swing in chapter 5. The work will require

exploring how does drain current change as a function of P and how does buckling

transition affect switching characteristics of suspended-gate FET.

One can also use buckling of the movable gate for stress based sensing. Change

in the stress of a movable electrode has previously been used for vapor, pH and/or

biomolecules [139, 157, 158], but with limited sensitivity. Inspired from the idea of

operating close to an instability point for better sensitivity and SNR, one can explore

novel sensors operating close to the buckling instability point. One can also explore
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the extra advantages that can be obtained through exploitation of both pull-in and

buckling instability.

Ferroelastic Materials

In chapter 2-6, we focused on MEMS actuators in which the material of movable

electrode was presumed to be linear elastic. Linear elastic materials have a parabolic

energy dispersion such that U = 1
2
Eǫ2, where U is the energy per unit volume, E is

the Young’s modulus and ǫ is the strain. Therefore, they follow a linear σ = Eǫ stress

(σ)-strain (ǫ) relationship. As mentioned in appendix A, the modeling framework

developed in this thesis, is applicable to only linear elastic materials. However, there

are ferroelastic materials [159], which do not follow linear stress-strain relationship.

Like other ferroics e.g., ferromagnets and ferroelectric, they have two well potential

energy landscape and are characterized by an intrinsic instability. As a part of the

future work, one can explore MEMS capacitive actuators in which movable electrode

is made of a ferroelastic material. One can try to answer the questions such as:(i)

how will the pull-in instability change?, (ii) can one get additional advantages in

a suspended-gate FET, (iii) will the sensitivity of Flexure sensors with ferroelastic

membrane be better than conventional sensors?

7.3 Conclusions

To conclude, this thesis advances the field of MEMS by proposing electrode ge-

ometry as a new design variable and the field of electronic devices such as transistors

by proposing operation regime as a new design variable. We believe that the novel

device proposals will provide new directions to researchers working in both theoretical

and experimental fields. Since this thesis introduces several new concepts regarding

instability, we hope that the work may find applications in other fields beyond MEMS

and FETs as well.
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A. EULER-BERNOULLI BEAM FRAMEWORK FOR

MEMS

Here, we discuss Euler-Bernoulli (EB) beam framework for the modeling and simula-

tion of MEMS actuators (sec. A.1). We will illustrate that the physics of instability

studied using simple spring-mass model in chapter 2 is consistent with the detailed

numerical simulations (sec. A.2). The difference between the spring-mass model of

chapter 2 and EB framework is the following. In spring-mass model, all the points on

the movable electrode M1 are assumed to move together. In EB framework, position

resolved deflection of M1 is considered to account for the bending of M1.

A.1 Model System

Figure A.1 shows the schematic of capacitive and FET actuators and highlights

that different points on M1 have different deflection. As explained in chapter 1,

capacitive actuator consists of a movable electrode M1 and a fixed electrode M2,

separated by an air-gap and a thin dielectric (Fig. A.1 A); whereas FET actuator (Fig.

A.1 B) consists of a movable gate suspended above a semiconductor channel which

is connected between source and drain. Both actuators are actuated by applying

a voltage between the movable electrode M1 or gate and the fixed electrode M2 or

the semiconductor channel. Note that, in capacitive actuators, application of voltage

only changes the capacitance; whereas in FET actuators, it changes the drain current

IDS also. The operation of both actuators is dictated by the interaction between

mechanical energy (or force) and electrostatic energy (or force), which are discussed

below-
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Fig. A.1. Schematic of MEMS Actuators. (A) Capacitive actuators
represent RF-MEMS capacitive switches, varactors, deformable mir-
rors, and Mirasol displays. (B) FET actuators represent suspended-
gate FET, resonant gate transistor, and SG-FET.

A.1.1 Euler-Bernoulli Beam Framework

Mechanical Energy

From the mechanical perspective, we treat movable electrode (M1 or gate) as

a fixed-fixed beam, albeit cantilever or some other configuration are also possible.

Fixed-fixed beam satisfies the following boundary conditions-

y(0) = y(L) = y0, (A.1)

∂y

∂x
(0) =

∂y

∂x
(L) = 0, (A.2)

where y(x) defines the shape of the beam, L is the length, and y0 is the initial air-gap.

Equation A.1 suggests that both ends of the beam are fixed at y0. The slope of beam

shape y(x) at both ends is zero and Eq. A.2 reflects that. The mechanical energy of

the beam consists of three parts: (i) bending energy (UBending), (ii) stretching energy

(UStretching), and (iii) stress energy (UStress) [160] i.e.,



189

UBending =
1

2
EI

∫ L

0

(

∂2y

∂x2

)2

dx, (A.3)

UStretching =
EWH

8L

[

∫ L

0

(

∂y

∂x

)2

dx

]2

, (A.4)

UStress = −P
4

∫ L

0

(

∂y

∂x

)2

dx, (A.5)

where E is the Young’s modulus of the beam’s material, I is the second moment of

area, W is the width, H is the thickness, x is along the length of the beam, and P is

the axial load in the beam. For a rectangular cross-sectional beam, second moment

of area is I = WH3

12
. Equations A.3-A.5 govern the mechanical aspect of the actuator.

The electrostatic aspect of the actuator is discussed below.

Electrostatic Energy

The electrostatic energy of a MEMS actuator is given by-

Uelec = −1

2
W

∫ L

0

∫ y(x)

−∞

ǫ0E
2(x, u)dudx = −1

2

∫ L

0

C(y(x))V 2
Gdx, (A.6)

where ǫ0 is the permittivity of free space, E(x, y) is the electric field at the point

(x, y), C(y(x)) is the capacitance per unit length, and VG is the applied voltage,

Now, knowing both the mechanical and electrostatic energy component, we obtain

the governing equations of MEMS actuation below.

Euler-Bernoulli Equation

The steady state behavior of the MEMS actuator is dictated by the minimization of

the total energy U , which consists of mechanical energy (Eqs. A.3-A.5) and electro-

static energy (Eq. A.6). Since, U = UBending+UStretching+UStress+Uelec, minimization

of U with respect to y(x) (i.e., dU = 0) yields Euler-Bernoulli equation [161,162] i.e.,
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EI
∂4y

∂x4
+

(

P − EWH

2L

∫ L

0

(

∂y

∂x

)2

dx

)

∂2y

∂x2
= Felec, (A.7)

where the first term on left hand side corresponds to UBending, term with P to UStress,

and the other term to UStretching. Felec is the electrostatic force per unit length and

is given by [161]-

Electrostatic Force

Felec =
1

2
ǫ0E

2
airW = −1

2

dC

dy
V 2
G, (A.8)

where Eair is the electric field in air. Now, steady state behavior of the actuator can

be obtained from the solutions of Eqs. A.7-A.8. Note that, electrostatic force for a

parallel-plate capacitive actuator (Fig. A.1 A) is solely governed by its capacitance

C = ǫ0W

y+
yd
ǫd

, where yd is the dielectric thickness and ǫd is the dielectric constant.

Therefore, Felec =
1
2

ǫ0W
(

y+
yd
ǫd

)2V 2
G for parallel-plate capacitive actuators . In case of FET

actuators, we need to consider the physics of semiconductor channel to calculate Felec,

which is discussed below.

Electrostatic Force in FET Actuators

In case of FET actuators, Felec for a given y(x) is given by the coupled solution of

the following equations [163]-

VG =

(

y +
yd
ǫd

)

ǫsEs(ψs) + ψs, (A.9)

Es(ψs) =

√

2qNA

ǫ0ǫs

[

ψs +
(

e
−
qψs
kBT − 1

) kBT

q
−

(

ni
NA

)2 (

ψs −
(

e
qψs
kBT − 1

) kBT

q

)

] 1
2

,

(A.10)
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where ψs is the surface potential in the semiconductor channel, ǫs is the dielectric

constant of the channel material, q is the charge on an electron, kB is the Boltzmann

constant, T is the absolute temperature, ni is the intrinsic carrier concentration in

the channel, and NA is the doping concentration. Note that, Es(ψs) is the electric

field at semiconductor-dielectric interface and Eair = ǫsEs(ψs) is the electric field in

air which dictates Felec (Eq. A.8). Equation A.9 suggests that sum of voltage drop in

air (yEair = yǫsEs(ψs)), dielectric (
yd
ǫd
ǫsEs(ψs)), semiconductor (ψs) must be equal to

the applied gate voltage VG. yd is the thickness of thin dielectric layer and ǫd is the

dielectric constant. Now, the coupled solutions of Eqs. A.7-A.10 governs the steady

state response of FET actuators.

The corresponding drain current IDS in response to the applied gate voltage VG is

given by-

Qi =
qn2

i

NA

∫ ψs

0

e
qψ
kBT

Es(ψ)
dψ, (A.11)

IDS = µ
VDS
W

∫ L

0

Qidx, (A.12)

where Qi is the inversion charge density, µ is the mobility of mobile charge carriers

in the channel, and VDS is the drain to source voltage.

Equations A.7-A.10 describe the steady state response of MEMS actuators. The

transient response or the dynamics of M1 or gate, when VG is applied and removed

is governed by [51, 55]-

Beam Dynamics

ρWH
∂2y

∂t2
+ b

∂y

∂t
+

[

EI
∂4y

∂x4
+

(

P − EWH

2L

∫ L

0

(

∂y

∂x

)2

dx

)

∂2y

∂x2

]

= Felec, (A.13)

where ρ is the density of the M1 or gate’s material, b is the damping coefficient and

t is the time. The first term on the left hand side is the inertia term and the second
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terms corresponds to the dissipation due to damping. In MEMS actuators, damping

is dominated by squeeze-film gas damping [39] which depends on the pressure of

surrounding gas. Note that, Equation A.13 in steady state (all time derivative equated

to zero) reduces to equation A.7.

A.1.2 Limitations and Approach

Limitations

Although the modeling framework developed above is sufficiently general for our

purpose, it is only applicable to linear elastic materials following σ = Eǫ, where σ is

the stress and ǫ is the strain. The models do not apply to other materials following

nonlinear stress-strain relationship e.g., ferroelastic materials [159]. Moreover, the

modeling framework only accounts for the mechanical and electrostatic forces and

does not account for the other forces like casimir forces [164], which may be present

at very small air-gap (y0). It should also be stressed, that the nonlinearity arising

because of the stretching (i.e., cubic nonlinearity in spring) is only the consequence

of large deflection and not any specific material behavior.

Approach

Although we have discussed both Euler-Bernoulli framework and spring-mass

model (chapter 2), we have relied on Euler-Bernoulli framework for the reliability

study of MEMS actuators (appendix G and H) and used spring-mass model to pro-

pose new device proposals (chapters 3-6). Specifically:

• Implications of degradation mechanisms e.g., (i) dielectric charging and creep

in context of RF-MEMS capacitive switches in appendix G and (ii) NBTI, HCI

and creep in context of SG-FET in appendix H are studied using Euler-Bernoulli

framework.
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• Problem of travel range (chapter 4), hard-landing (chapter 4), hysteresis (chapter

5), and new proposal of Flexure biosensor (chapter 6) have been analyzed using

the spring-mass model.

Our reliance on spring-mass model is justified because it captures all the essential

features of instability and this thesis advocates instability as a design variable. Also

note that, we have not considered the effect of UStretching (Eq. A.4) and UStress (i.e.,

P = 0, Eq. A.5) unless otherwise specified. Similarly, the nonlinear component of

spring force has not been considered without any specific mention. These additional

effects are important in a practical device, but here our focus is on the fundamentals

of an idealized device free from non ideal effects arising from UStretching and UStress.

A.2 Results and Discussions

A.2.1 Operation of MEMS Actuator

Static Behavior of Capacitive Actuator: CV Characteristics and Beam

Shapes

We numerically solve Eqs. A.7-A.8 for the static behavior of a parallel-plate

MEMS actuator and the results are summarized in Fig. A.2. The steady state

shapes of the beam, during voltage sweep from 0V to 60V and then back to 0V ,

are shown in Figs. A.2(a)-(b). In response, the beam bends symmetrically towards

the dielectric (Fig. A.2(a)), with a corresponding increase in the capacitance (Fig.

A.2(c), bottom branch). When VG > VPI , Felec exceeds spring-like restoring force

(fourth order derivative term in Eq. A.7), and beam is pulled-in abruptly to rest

on the dielectric (Fig. A.2(a)). Note that, this pull-in (for a thin dielectric) occurs

when beam crosses two third of the air-gap (Fig. A.2 (a)). Therefore, beam shapes

such that 0 < ycenter < 2/3y0, where ycenter is the position of the center of the

beam, are fundamentally not accessible which is equivalent of having a band-gap in

semiconductors (Figs. A.2 (a)-(b)). This pull-in behavior causes the capacitance (C)
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Fig. A.2. (a)-(b) Steady state shapes of the beam when the voltage
is increasing (a) and when it is decreasing (b). (c) The capacitance
vs. voltage (CV) curve of a capacitive actuator e.g., RF-MEMS ca-
pacitive switch. Abrupt jump in capacitance at VPI (when voltage is
increasing) is due to pull-in behavior of the device.

to jump discontinuously from the lower to the upper branch (Fig. A.2(c)). Any

further increase in VG, increases the contact area (Fig. A.2(a)), and hence, the

capacitance of the device (Fig. A.2(c)). In the reverse cycle, when voltage is ramped

down, the contact area reduces gradually (Fig. A.2(b)), and so does the capacitance

(Fig. A.2(c)). At VG = VPO, the beam barely touches the dielectric at a single point,

which is shown in Fig. A.2(b). When VG < VPO, beam is released from the dielectric

and comes back in air (Fig. A.2(b)).

Pull-in Dynamics of Capacitive Actuator: Effect of Voltage and Pressure

For pull-in dynamics of the switch, we solve Eq. A.13 in response to a step

voltage. The corresponding shapes of the beam, displacement and velocity of the

center of the beam as a function of time are shown in Figs. A.3(a) and A.3(b),
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Fig. A.3. Pull-in dynamics of capacitive MEMS actuator. (a) Shape
of the fixed-fixed beam at different instants of the time during pull-
in. Time is increasing in the direction of arrow. (b) Displacement
(left axis) and velocity (right axis) of the center of beam during pull-
in showing tPI and vimpact (c) Effect of voltage on pull-in dynamics
of the switch. tPI (left axis, ◦) decreases and vimpact (right axis,△)
increases with voltage due to increase in the electrostatic force. (d)
Effect of pressure on pull-in dynamics of the switch. When pres-
sure is low, dynamics is inertia dominated and hence tPI (left axis,
◦) and vimpact (right axis,△) are almost constant. Above a certain
pressure (in our case ∼ 0.1 atm), pull-in dynamics becomes damping
dominated, therefore, tPI and vimpact changes rapidly as a function of
pressure.

respectively. We define tPI as the pull-in time needed for the upper electrode to

reach the dielectric from its up state position, and vimpact as the impact velocity with

which the upper electrode lands on the dielectric. The rapid increase in the velocity

near the contact (Fig. A.3(b)) reflects the rapid increase in Felec =
1
2

ǫ0W
(

y+
yd
ǫd

)2V 2
G close

to the contact (when y ≈ 0). Figure A.3(c) shows tPI and vimpact as a function of

the applied voltage VG. As VG increases, Felec increases as ∼ V 2
G thereby decreasing

tPI and increasing vimpact. Our numerical simulation shows that vimpact increases

almost linearly with voltage (vimpact ∝ VG), and tPI decreases as tPI ∝ 1/VG (Fig.
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A.3(c)). Another important factor in determining tPI and vimpact is the squeeze film

gas damping, which is dictated by the pressure p of the ambient gas [39]. As p

decreases, mean free path of gas molecules (λ ∝ 1/p) increases, which then reduces

the squeeze film gas damping [39]. This reduction in damping decreases tPI (Fig.

A.3(d)), and increases vimpact (Fig. A.3(d)). Figure A.3(d) also shows that tPI and

vimpact are insensitive to pressure when p is low (dynamics is dominated by inertia

i.e., ρWHd2y/dt2 > bdy/dt in Eq. A.13); whereas tPI increases and vimpact decreases

rapidly above a critical pressure (in this case 0.1 atm), and dynamics become damping

dominated i.e., bdy/dt > ρWHd2y/dt2 in Eq. A.13.

Static and Dynamic Behavior of FET Actuator

Figure A.4 shows the static and dynamic behavior of a FET actuator e.g., SG-FET

obtained from self consistent numerical simulations of Eqs. A.7-A.10 & A.13 . The

application of gate voltage (VG) bends down the beam symmetrically as shown in Fig.

A.4(a) (like in Fig. A.2). Such bending of the beam increases the gate capacitance

and the drain current (IDS )(Fig. A.4(c)). For VG > VPI , the beam is abruptly pulled-

in giving rise to abrupt switching equivalent to subthreshold swing of 0mV/dec (Fig.

A.4(c) and Fig. A.4 (d) for pull-in dynamics). Further increase in VG beyond VPI

increases the contact area of the beam with the dielectric (Fig. A.4(a)) and thereby

increases the capacitance. Increase in VG also increases the inversion charge in the

channel. As a consequence of this increase in the inversion charge, drain current

continuously increases beyond VPI . During pull-out, VG must be reduced below VPO

to restore the beam into its original shape. During this release phase (Fig. A.4(b)),

first the contact area of the beam reduces, and then at VG = VPO, the beam touches

the dielectric only at a single point (Fig. A.4(b)). Finally, for VG < VPO, beam comes

back in air (Fig. A.4 (d) for release dynamics).
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Fig. A.4. Device operation of a SG-FET. The shapes of the beam
when gate voltage is (a) increasing, and (b) decreasing. (c) Drain
current (IDS) vs. VG characteristic showing the pull-in voltage (VPI),
pull-out voltage (VPO), and arbitrarily low subthreshold swing due to
abrupt pull-in behavior. (e) Pull-in and release dynamics of SG-FET
suggests response of the system within ∼ 10ns during the on (pull-in)
and off (release) transition.

A.3 Conclusions

To conclude, we have provided the Euler-Bernoulli equation based modeling frame-

work for MEMS actuators. We also highlighted the limitations and discussed our

approach. The operation of MEMS actuators have been illustrated using detailed

numerical simulations. Most importantly, this chapter confirms that the spring-mass

system in chapter 2, captures all the essential features of instability very well.
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B. SPRING-MASS MODEL OF SUSPENDED-GATE FET

The operating principle of Suspended gate FET can be understood using the lumped

parameter spring-mass model (Fig. 5.3 a). With the application of gate bias VG, the

gate moves downward towards the dielectric and the corresponding increase in gate

capacitance is reflected in the increased drain current IDS. The static behavior of the

device is dictated by the balance of spring and electrostatic forces, i.e.,

k(y0 − y) =
1

2
ǫ0E

2
airA, (B.1)

where k = αWH3

12L3 is the stiffness, α is a geometrical factor, E is the Young’s modulus,

W is the width, H is the thickness, L is the length of the gate electrode, y0 is the

air-gap, y is the position of the gate electrode, ǫ0 is the permittivity of free space,

Eair is the electric field in the air, and A = WL is the area of the gate electrode. The

electric field below the membrane Eair is equal to ǫsEs(ψs), where, ǫs is the dielectric

constant of the substrate and,

Es(ψs) =

√

2qNA

ǫ0ǫs

[

ψs +
(

e
−
qψs
kBT − 1

) kBT

q
−

(

ni
NA

)2 (

ψs −
(

e
qψs
kBT − 1

) kBT

q

)

] 1
2

,

(B.2)

where Es(ψs) is the electric field at the substrate-dielectric interface (see Ref. [94] page

64 for a detailed derivation of Eq. B.2 ), ψs is the surface potential, q is the charge

of an electron, NA is the substrate doping, kB is the Boltzmann constant, T is the

absolute temperature, and ni is the intrinsic carrier concentration in the substrate.

The voltage drop in air (yǫsEs(ψs)), dielectric
(

yd
ǫd
ǫsEs(ψs)

)

, and substrate(ψs) can

be related to the applied gate bias VG as follows-

VG =

(

y +
yd
ǫd

)

ǫsEs(ψs) + ψs, (B.3)
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where yd is the dielectric thickness. Equations B.1-B.3 are solved self-consistently for

y and ψs at each VG. The corresponding inversion charge density (Qi)in the channel

and drain current (IDS) are given by,

Qi =
qn2

i

NA

∫ ψs

0

e
qψ
kBT

Es(ψ)
dψ, (B.4)

IDS = µnLQi

VDS
W

, (B.5)

where µn is the channel mobility for electrons, VDS is the applied drain to source

voltage.
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C. SIMULATION FRAMEWORK FOR FERROELECTRIC

FET

For FE-FET, the static behavior is governed by the minimization of total systems

energy and that results in the voltage drop across the ferroelectric (VFE) given by:

VFE
yFE

= α0Q+ β0Q
3 + γ0Q

5, (C.1)

where Q is the total charge, yFE is the insulator thickness, and α0,β0,γ0 are material’s

constant. Equation C.1 is same as Eq. 2.27 discussed in chapter 2. In an FE-FET,

the total charge Q is same as the total charge in the channel (Qs(ψs)), which is given

by:

Q = Qs (ψs) = ǫ0ǫsEs (ψs)

=
√

2qǫ0ǫsNA

[

ψs +
(

e
−
qψs
kBT − 1

) kBT

q
−

(

ni
NA

)2 (

ψs −
(

e
qψs
kBT − 1

) kBT

q

)

] 1
2

,

(C.2)

where Es (ψs) is the electric field at semiconductor dielectric interface (Eq. B.2 in

appendix B). ψs is the surface potential and is related to gate voltage (VG) as follows:

VG = VFB +
(

α0Q+ β0Q
3 + γ0Q

5
)

yFE + ψs. (C.3)

Now, Eqs. C.2-C.3 are solved self consistently at each VG to find ψs and Q. The

corresponding inversion charge density and drain current are given by Eq. B.4 & Eq.

B.5, respectively.
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D. NUMERICAL SIMULATIONS FOR CALCULATION

OF RESONANCE FREQUENCY

In the previous appendix section, we disucseed the Euler-Bernoulli framework and

numerical simulations. Here, we discuss the numerical simulations of spring-mass

system to obtain voltage dependent resonance frequency for various actuators con-

sidered in chapter 3. For all the actuators, the static response (i.e. y vs.VG/QG)

has been obtained by iteratively solving the equation of force balance Eq. 2.5 with

Felec given in Table 3.1. Figure A1(a) shows the response (i.e., y vs. VG/QG) of one

such simulation for parallel-plate actuator. The simulations for the static response

are straightforward; however, dynamic response (i.e., ω vs. VG/QG) requires time

consuming iterative simulations. Specifically, in order to obtain ω vs. VG/QG char-

acteristics for any actuator, we first obtain its y vs. VG/QG characteristics as shown

in Fig. D.1 a. Then, at each VG/QG, we perturb the system from its steady state

equilibrium position and observe the small oscillation behavior. For example, Fig.

D.1 b shows the displacement vs. time sequence for small oscillation at VG = 40V .

The phase plot for the same is shown in Fig. D.1 c. We then take the FFT (Fast

Fourier Transform) of the displacement (Fig. D.1 d). The peak in the amplitude

corresponds to the resonance frequency. For small oscillations there is only one dom-

inant frequency as expected. Now, we perform these dynamic simulations at each

VG/QG to obtain ω vs. VG/QG characteristics discussed in chapter 3.
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resonance peak

(a) (b)

(c) (d)VG(V) 

Fig. D.1. Dynamic behavior of a parallel-plate actuator for a linear
spring (a) steady state y vs. VG characteristics, (b) displacement vs.
time for small oscillation at VG = 40V around the steady state equi-
librium position, (c) phase plot for the same with v being the velocity
of M1, and (d) amplitude of Fast Fourier Transform of displacement
as a function of ω/ω0. Frequency corresponding to peak denotes the
resonance frequency at VG = 40V . ω0 is the resonance frequency at
VG = 0.
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E. TIME DOMAIN STOCHASTIC SIMULATIONS FOR

NOISE IN FLEXURE SENSORS

E.1 Time Domain Simulation Framework for Force Noise

The time domain response of Flexure sensor in presence of white thermo-mechanical

force noise is modeled using Newton’s law, given by-

m
dv

dt
+ bv = k (y0 − y)− ǫ0WL

2y2
V 2
G + FN(t), (E.1)

dy

dt
= v. (E.2)

Here, m is mass of the movable electrode, v is the velocity, t is time, b = mω0/Q is the

damping coefficient. FN(t) is the random noise force with autocorrelation function
〈

FN(t)FN(t
′

)
〉

= 2kBTbδ(t−t′) and one sided power spectral density SF (ω) = 4kBTb.

It is also important to note that, white Gaussian noise force is FN(t) =
√
2kBTb

dW (t)
dt

,

where W (t) is the Brownian process.

Using the definition dv
dt

= v(t+∆t)−v(t)
∆t

and dy

dt
= y(t+∆t)−y(t)

∆t
, Eqs. E.1 - E.2 can be

written as follows-

(

1 +
b∆t

m

)

v (t+∆t) = v(t) +
k∆t

m
(y0 − y(t))− ǫ0WL

2my2
V 2
G∆t+

√

2kBTb
dW∆t(t)

m
(E.3)

y(t+∆t) = y(t) + v(t+∆t)∆t, (E.4)
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where v(t) and v(t + t) are the values of velocity, at time t and t +∆t, respectively.

Similarly, y(t) and y(t+∆t) are the values of electrode position, at time t and t+∆t,

respectively. ∆t is the time step. Most importantly, dW∆t(t) is a random variable

that is normal distributed with mean zero and standard deviation
√
∆t. Knowing

the initial condition i.e., y(0) and v(0), Eqs. E.3 - E.4 can be solved for any VG. At

every instant t, a new random variable dW∆t(t) is generated to evaluate Eqs. E.3 -

E.4.

E.2 Time Domain Simulation Framework for Stiffness Noise

The time domain response of Flexure sensor in presence of white stiffness noise is

also modeled using Newton’s law, given by-

m
dv

dt
+ bv = (k +∆kN(t)) (y0 − y)− ǫ0WL

2y2
V 2
G + FN(t), (E.5)

dy

dt
= v. (E.6)

where ∆kN (t) is the random noise due to stiffness fluctuations with autocorrelation
〈

∆kN (t)∆kN
(

t
′
)〉

= 0.5Nk

(

t− t
′
)

and one sided power spectral density S∆k(ω) =

Nk. It is also important to note that white stiffness fluctuations are ∆kN(t) =
√
0.5Nk

dW (t)
dt

. For numerical simulations, Eqs. E.5 - E.6 can be written as follows-

(

1 +
b∆t

m

)

v (t+∆t) = v(t) +
k∆t

m
(y0 − y(t))− ǫ0WL

2my2
V 2
G∆t

+ (y0 − y(t))
√

0.5N∆k
dWdW∆t

(t)

m
(E.7)
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y(t+∆t) = y(t) + v(t+∆t)∆t, (E.8)

Equations E.7-E.8 can be now solved for any VG to evaluate the noise response due

to stiffness fluctuations.

E.3 Numerical Simulations

Figures E.1-E.2 show the results of time domain stochastic simulations (for same

parameters as used in chapter 6) for thermo-mechanical noise and stiffness noise due

to temperature fluctuations, respectively. We simulated the noise response at different

voltages. For one voltage VG = 0.9VPI , results are summarized in Figs. E.1 a-d and

Figs. E.2 a-d, respectively. Figures E.1 a-b show the fluctuations in the position of

electrode on the potential energy landscape. Each symbol denote the total energy

during fluctuations. As expected, electrode does random thermal vibration around

its equilibrium position as shown in Fig. E.1 c. Figure E.1 d shows the corresponding

sample average of root mean square fluctuations i.e.,

∆yN(t) =

√

√

√

√

1

Ns

i=Ns
∑

i=1

(yi(t)− yimean(t))
2 (E.9)

yimean(t) =
1

Ns

i=Ns
∑

i=1

yi(t). (E.10)

Here, yi(t) denote the position of electrode during ith simulation at time t and

yimean(t) is the corresponding mean position. Ns (1000 in this thesis) is the number

of simulations performed to do the averaging. Interestingly, ∆yN(t) starts from zero
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(a) (b) (c)

(d) (e)
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Fig. E.1. Time domain stochastic numerical simulations of thermo-
mechanical noise. (a)-(b) Fluctuations of movable electrode position
shown on the potential energy landscape. The region in the oval has
been zoomed. Symbols denote the total energy (kinetic + potential)
of the electrode. (c) Position of electrode as a function of time. ys
denote the equilibrium position. (d) Root mean square fluctuations
as a function of time. (e) Equilibrium value of root mean square
fluctuations is the average noise power. Symbols denote the results
from time domain numerical simulations; whereas solid line denote the
calculations from linear transfer function based analysis (Eq. 6.17 in
chapter 6).

and then saturates to an equilibrium value (solid dot in Fig. E.1 d), which is nothing

but the average noise power. Figure E.1 e compares the results obtained from time

domain simulations (symbols) with the ones obtained from transfer function based

analysis (solid line). In spite of the presence of highly nonlinear electrostatic force,

the results match due to small values of fluctuations (Fig. E.1 d and Fig. E.2 d), thus

justifying linearization around the equilibrium value (Eq. 6.14 & Eq. 6.15 in chapter

6) for transfer function based analysis. Having said that, as we go closer to the pull-
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(a) (b) (c)

(d) (e)
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Fig. E.2. Time domain stochastic numerical simulations of stiffness
noise due to temperature fluctuations. (a)-(b) Fluctuations of mov-
able electrode position shown on the potential energy landscape. The
region in the oval has been zoomed. Dotted black curve corresponds
to the maximum stiffness; whereas magenta dotted to minimum stiff-
ness. Symbols denote the total energy (kinetic + potential) of the
electrode. (c) Position of electrode as a function of time. ys denote
the equilibrium position. (d) Root mean square fluctuations as a func-
tion of time. (e) Equilibrium value of root mean square fluctuations
is the average noise power. Symbols denote the results from time do-
main numerical simulations; whereas solid line denote the calculations
from linear transfer function based analysis (Eq. 6.18 in chapter 6).

in voltage, fluctuations increase eventually leading to noise initiated pull-in. So, the

linear transfer function based analysis is valid so long as we are below safe operating

voltage. Note that, similar results and similar matching between time domain and

transfer function analysis is achieved for stiffness noise also (Fig. E.2).
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F. ANALYTICAL FORMULA OF TRAVEL RANGE

Here, we derive the analytical formula (Eqs. 4.2-4.3) of travel range for array of

nano- wires/tubes (example of cylinders). The static operation of microactuator (as

discussed in chapters 2-3) is governed by the balance of spring and electrostatic force

(Eq. F.1). Equation F.2 is the condition for pull-in instability-

k (y0 − y) = −1

2

dC

dy
V 2, (F.1)

k = −1

2

d2C

dy2
V 2, (F.2)

where k is the spring constant, y0 is the initial air-gap, y is the gap between the two

electrodes, C is the capacitance and V is the applied voltage. The solution of Eqs.

F.1-F.2 yields-

yc
y0

=
1

1 + α
, (F.3)

where yc = y0 − tVr is the critical gap at which pull-in instability occurs, tVr is the

travel range, and-

α = −
dC
dy

yc
d2C
dy2

(F.4)

For an array of cylinders with Carray = (2πǫ0L)/ log(sinh(2π(y + R)/g)/(πR/g),

expression for α is given by-

α =
g

4πyc

sinh
(

4π(yc+R)
g

)

log

(

sinh( 2π(yc+R)
g )

πR
g

)

(

1 + cosh
(

4π(yc+R)
g

)

+ log

(

sinh( 2π(yc+R)
g )

πR
g

)) (F.5)
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where ǫ0 is the permittivity of free space, L is the length of individual cylinder and g

is the separation between the individual cylinders. This complex looking expression

for α (Eq. F.4) can be simplified in the two regimes (left of the peak and right of the

peak in Fig. 4.4, chapter 4). For small values of g (left of the peak), using the fact

that, cosh
(

4π(yc+R)
g

)

≫ log

(

sinh( 2π(yc+R)
g )

πR
g

)

,
sinh( 4π(yc+R)

g )
cosh( 4π(yc+R)

g )
∼ 1, and sinh

(

4π(yc+R)
g

)

≈
1
2
exp

(

2π(yc+R)
g

)

, α reduces to

α ≈ g

4πyc
log





exp
(

2π(yc+R)
g

)

2πR
g



 . (F.6)

On further simplification of Eq. F.6, we get-

exp(ax) = 2bx exp(cx) (F.7)

where a = 2π(yc + R), b = 2πR, c = 4πycα, and x = 1/g. Interestingly, Eq. F.7 has

an analytical solution which when combined with Eq. F.3 gives us the result shown

in Eq. 4.2 in chapter 4.

In contrast, for large values of g (right of the peak in Fig. 4.4, chapter 4),

log

(

sinh( 2π(yc+R)
g )

πR
g

)

≈ log
(

2π(yc+R)
g

)

. This logarithmic dependence allows us to as-

sume log
(

2π(yc+R)
g

)

≈ log
(

2π(y0+R)
g

)

≡ λ. Moreover, using the fact that sinh(z) ≈
z + z3

6
, and cosh(z) ≈ 1 + z2

2
, where z = 4π(yc +R)/g, value of α reduces to -

α ≈ g

4πyc

λ
(

z + z3

6

)

λ+ 2 + z2

2

. (F.8)

Simplifying Eq. F.8, we get-

ax+
(ax)3

6
= bx

(

λ+ 2 +
(ax)2

2

)

. (F.9)

where a = 4π(yc + R), b = (4πycα)/λ, and x = 1/g. Solving Eq. F.9 in conjunction

with Eq. F.3, we get back the equation 4.3 in chapter 4.
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G. RELIABILITY OF RF-MEMS : DIELECTRIC

CHARGING AND CREEP

In chapter 4, we discussed one of the reliability issues of RF-MEMS capacitive

switches, namely hard-landing. Here1, we focus on other electromechanical relia-

bility issues of RF-MEMS capacitive switches and varactors. We specifically address

the reliability issues of dielectric charging in capacitive switches (sec. G.1) and creep

(sec. G.2) in varactors.

G.1 Capacitive Switches : Dielectric Charging

G.1.1 Background and Goals

Another key reliability issue of RF-MEMS capacitive switches is dielectric charging

[166, 167]. When the movable electrode M1 is pulled-in (down state, Fig. G.1 (a)),

charges are injected into the traps/defects inside the dielectric. These trapped charges

modify the electrostatic force acting on M1, and cause the CV curve to shift, and the

VPI and VPO to change over time. This parametric degradation eventually leads to

catastrophic failure by stiction i.e., the electrode M1 can no longer be restored to up

state even at zero voltage (i.e.,VPO < 0), because the restoring spring force can no

longer overcome the downward electrostatic force exerted by the accumulated charges

within the dielectric. We define the lifetime (tlife) of the device due to dielectric

charging by the condition VPO(tlife) = 0. In order to predict tlife, three key factors

should be considered: (1) physical mechanism of time-dependent charge injection into

the dielectric, (2) modification of electrostatic force due to injected charges, and (3)

evolution of VPO as a function of time.

1The content (text and figures) in this section have been adapted from [165] c©IEEE 2012.
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Fig. G.1. Problem of dielectric charging in RF-MEMS capacitive
switches. (a) Schematic of the capacitive switch when M1 is pulled-
in, showing charge injection into the bulk traps inside the dielectric.
(b) The band diagram of a metal-insulator-metal system defining the
barrier heights and current components into and out of the traps.
Voltage V has been applied between the electrode M1 and M2.

In the literature, time dynamics of VPO is modeled either by a simple resistor-

capacitor model, with its time constants fitted to experimental data [168–170], or by

considering the injected charge simply as an input parameter [171, 172]. Therefore,

it is difficult to know if the predictions from these empirical models are reliable, or

how sensitive the model is to the changes in physical parameters such as trap density

and barrier height, arising from changes in the fabrication conditions. Similarly, the

dependence of tlife on the stress voltage V has been studied experimentally, and a

basic model tlife ∼ exp (−γV ) has been observed to fit the data [167,173,174], where

γ is the voltage-acceleration factor. This “exponential” model has been derived by

assuming Frenkel-Poole (FP) charge injection [166, 174], but the applicability of FP

conduction to the dielectrics used in RF-MEMS (∼ 100−500nm) is questionable [175].

The field lacks a physics-based theoretical model/framework, which can anticipate

time evolution of VPI/VPO and predict tlife. In this section, we first develop a model

for time-dependent charge injection inside the dielectric and couple it with the Euler-

Bernoulli (EB) framework of MEMS actuation (sec. A.1.1) to achieve the following

goals-
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• establish a scaling relationship for time-dynamics of pull-out voltage, i.e., ∆VPO(t) =

g(t/tlife) ∼ (t/(tlife(V )))β, where β is device-specific constant,

• show that the number of cycles of reliable operation of a capacitive switch is

given by Nlife = (tlife(V ))/(dcT − tPI(V )) , where dc is the duty-cycle, tPI is the

pull-in time, and f = 1/T is the frequency of operation of actuation voltage,

• demonstrate that the lifetime predicted by the empirical “exponential model” is

unduly pessimistic; physics of charge injection within the dielectric anticipates

a more optimistic super-exponential voltage scaling, (i.e., tlife ≫ exp (−γV )),

• show that the dynamic charge injection within the dielectric increases the impact

velocity vimpact, which may further degrade surface morphology of the dielectric.

G.1.2 Dielectric Charging Model

There is a long history of modeling and experiments related to charge injection

into the dielectric, details of which can be found in references [176–179]. Here we

only highlight the key features/equations of dielectric charging related to RF-MEMS

capacitive switches. During the pulled-in state, the switch can be modeled as a

metal-insulator-metal (MIM) system. Figure G.1(b) shows the band diagram of the

MIM system, showing the location of a trap in energy, barrier height ΦB, and three

trapping/de-trapping (JIN , JOUT , and JE) fluxes into and out of the traps. The traps

are assumed electrically neutral (before charge injection from the contact), uniformly

distributed within the dielectric with density NT , with a tunneling capture cross

section σ, and located at an energy level ΦT below the dielectric conduction band

[180]. The three trapping/de-trapping fluxes are based on the following processes:

(1) electrons injected from the metal contacts into traps by tunneling (JIN), (2)

electrons tunneling out from the traps back into the contact (JOUT ), and/or (3)

electrons emitted out of the traps into the dielectric conduction band by a field-

assisted, temperature activated FP emission process (JE). The expressions for JIN(y),

JOUT (y) and JE(y) in terms of trapped electron density nT (y, t) and device-specific
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constants AIN(y), AOUT (y), and AE(y), (details of which can be found in [165, 181])

are given by Eqs. G.1-G.3.

JIN(y) = AIN(y)(NT − nT (y, t)), (G.1)

JOUT (y) = AOUT (y)nT (y, t), (G.2)

JE(y) = AE(y)nT (y, t). (G.3)

The rate of change of nT (y, t) is given by the balance of current fluxes going into and

coming out of the traps i.e.,

q∆y
dnT (y, t)

dt
= JIN(y)− JOUT (y)− JE(y). (G.4)

The solution of Eq. G.4 provides the time dynamics of nT (y, t). These trapped

charges modify the electrostatic force (Eqs. G.5-G.6) acting on the electrode M1 as

follows:-

Felec =
Wǫ0(V −∆V (t))2

2(y + yd
ǫd
)2

, (G.5)

∆V (t) = − 1

ǫ0ǫd

∫ 0

−yd

ynT (y, t)dy. (G.6)

Equation A.7 & A.13can now be solved with the modified electrostatic force (Eqs.

G.5-G.6) to study the effect of dielectric charging on VPI/VPO, tPI , vimpact, and tlife.

G.1.3 Results and Discussions

Figure G.2 summarizes the predictions regarding the lifetime of the capacitive

switch due to dielectric charging. Figure G.2(a) shows the evolution of electron

number density (nT ) inside the dielectric as a function of stress time when actuated

by 80V . The peak value of nT increases rapidly, and the centroid of nT profile moves
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away from theM1-dielectric interface deeper into the dielectric as a function of contact

duration. These negative charges within the dielectric increases the electrostatic force

on the upper membrane (Eqs. G.5-G.6), which makes the pull-in of the device easier

(smaller VPI) and the pull-out difficult (smaller VPO). This reduction in VPI/VPO

shifts the CV curve to the left (Fig. G.2(b)). Figure G.2(c) shows VPO as a function

of stress time at different stress voltages. When VPO crosses zero, electrodeM1 can not

be pulled-out even at zero applied voltage. As a result, the device fails due to stiction.

The corresponding lifetime of the switch is shown in Fig. G.2(e). Interestingly, if we

plot ∆VPO against a new variable t/tlife(V ), all the curves associated with different

stress voltages overlap, i.e., ∆VPO ∼ g(t/tlife), (Fig. G.2(d)). Although, we cannot

offer an analytical derivation, our numerical simulations of fixed-fixed beam strongly

suggests that-

∆VPO ∼ g

(

t

tlife

)

≈ 1− exp

(

−
(

t

tlife

)β
)

, (G.7)

which reduces to a power-law of the form, ∆VPO ∼ (t/tlife)
β, at short times. Here

β is constant that depends on material parameters and device geometry. Based on

some initial results, we speculate that ∆VPO = g(t/tlife) might apply to any MEMS

geometry, where the functional form of g can be obtained from experimental data for

arbitrarily complex MEMS switches. If so, this scaling function offers a new algorithm

for accelerated lifetime testing and would allow the device designer to determine tlife

at reduced Vstress based on the failure kinetics at higher applied biases.

We now explore the voltage dependence of tlife(V ) and Nlife(V ), related to the

voltage acceleration model. Figures G.2(e)-(f) suggest that an empirical exponential

model tlife(V ) ∼ exp (−γV ), based on voltage acceleration coefficient γ determined

from the accelerated tests, might severely underestimate the lifetime of RF-MEMS

capacitive switches at operating voltages. Therefore, a more physics based model like

the one discussed in this section is needed to correctly predict tlife/Nlife of the switch.

In an operational circuit, RF-MEMS switch is repeatedly turned on (pulled-in)

and off (pulled-out). Therefore, we need to look into how repeated switching affects
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the lifetime. The DC tlife can be viewed as a sum of the contact times during AC
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stress. Therefore, the number of cycles of safe operation (Nlife) of the switch under

AC stress can be deduced from DC tlife, as follows:-

Nlife =
tlife

dcT − tPI
, (G.8)

where dc is the duty cycle, and f = 1/T is the frequency of the operation of actu-

ation voltage. Equation G.8 assumes that there is no relaxation of trapped charges

during the time when voltage is removed because of the very low electric field in di-

electric [165]. It implies that during AC stress when voltage is removed, ∆VPO does

not recover. Hence, an AC stress that toggles between 0 and V , does not improve

integrated lifetime (tlife) of the switch, but it can only improve Nlife depending upon

dc and T . Figure G.2(f) shows Nlife for different values of dcT . Nlife increases as dcT

decreases, because lower dcT implies shorter contact time per cycle. Moreover, since

dcT − tPI is the contact time for dielectric charging, Nlife increases significantly as

dcT → tPI .

Dielectric charging not only affects the static behavior (VPI , VPO, and CV curve)

of the device, but also affects the pull-in dynamics (tPI and vimpact) and the under-

standing of this phenomenon is essential for correct operation of the switch. Figures
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G.3(a)-(b) show tPI and vimpact as a function of the total integrated stress time at

different actuation voltages. The trapped charges inside the dielectric increase the

electrostatic force, and therefore, decreases tPI (Fig. G.3(a)), and increases vimpact

(Fig. G.3(b)). Therefore, techniques of soft landing discussed in section 4.2 in chapter

4 will help lessen this problem.

Finally, to validate the model just developed, we interpret the data from the liter-

ature through two non-trivial predictions of our model. Figure G.4 shows ∆VPO as a

function of stress time for different temperatures [182]. Our simulation matches very

well with the experimental data [182] and suggests that the model is physically jus-

tified. The temperature dependence in our model comes from temperature activated

FP emission current JE(y) [165, 181].

As a second validation, we explore the validity of the novel scaling relationship

proposed in Fig. G.2(d) by using the experimental data from Ref. [183]. Figure

G.5(a) shows ∆VPO as a function of time for four different stress voltages. When this
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∆VPO is plotted against t/tlife, assuming VPO = 1.5V , all the curves overlap (Fig.

G.5(b)), which is consistent with Eq. G.7 and anticipated by our numerical model.

G.1.4 Summary

To summarize this section on dielectric charging, we have provided a theoretical

framework for lifetime prediction and parametric degradation of VPI , VPO, tPI , and

vimpact due to dynamic charge injection inside the dielectric. These results confirm

that the physical model may help interpret many features of the experimental data

that could not be analyzed by simpler empirical models.

G.2 Varactors : Creep

G.2.1 Background and Goals

RF-MEMS varactors operate below VPI , and are therefore safe from the problem

of dielectric charging and hard-landing. It has however been observed that a sustained

DC bias causes electrode M1 to continuously sag from its steady state equilibrium
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position, resulting in the steady increase in the capacitance [184, 185]. This change

in the capacitance degrades the tuning range of the varactor. This phenomenon has

been attributed to creep [184, 185]. In literature, experimentally derived dynamic

spring-constant was used to study the resonator’s (using an RF-MEMS varactor) fre-

quency degradation over time [184]. When generalized to a CAD model, it allows us

to explore “creep compliance” as a function of time and interpret the characteristics

of resonators and phase shifters [23]. Unfortunately, this empirical lumped-parameter

spring-mass model can neither account for the position-resolved bending of the mov-

able electrode as a function of time, nor does it address the “creep-limited lifetime” of

the varactors. We define “creep-limited lifetime” as the time needed to cross a certain

predefined (and circuit specific) threshold of capacitance degradation due to creep.

In this section, we generalize the EB equation (Eq. A.7) to include a spring-dashpot

model of viscoelasticity to predict the shape of the movable electrode as a function of

time and voltage. This model allows us to predict parametric degradation of varactor

performance and the associated creep-limited lifetime. Specifically, we achieve the

following goals in this section-

• generalize the EB equation (Eq. A.7) to include a spring-dashpot model of

viscoelasticity to predict the effect of creep on the time-dependent capacitance

change under DC/AC bias,

• predict the creep-limited tlife of a varactor, and finally,

• study the effect of AC bias on creep induced capacitance change.

G.2.2 Creep Model

Creep in RF-MEMS varactors has been studied using theory of viscoelasticity

[184, 186]. A viscoelastic material can be represented as a combination of linear

spring (elastic element) and a dashpot (viscous element) (Fig. G.6) [187]. The linear

spring follows the Hooke’s law, σ = Eǫ, where σ is the stress, ǫ is the strain, and E

is the Young’s modulus; whereas the dashpot follows the Newton’s law σ = ηdǫ/dt,
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this model in conjunction with EB equation to account for the creep
behavior observed in RF-MEMS varactors.

where, η is the viscosity of material. The elastic and viscous components experience

the same strain when they are in parallel, but the total strain is the sum of the two

strains when they are in series. A model of creep with multiple time constants, as

shown in Fig. G.6, can be defined by the following stress-strain relationship:-

σ

Ei
=
ηi
Ei

dǫi
dt

+ ǫi, i = 2, ...n, (G.9)

ǫ =
σ

E1

+
n

∑

i=2

ǫi, (G.10)

where, Ei, is the Young’s modulus, ηi is the viscosity, ǫi is the strain of the ith branch

of the model, σ is the total stress, and ǫ is the total strain.

The steady-state EB equation (Eq. A.7) describes the steady state elastic response

(σ = Eǫ) of the beam. It is, however, necessary to use a time-dependent stress-strain

relationship (Eqs. G.9-G.10) for modeling the creep behavior of the varactors. The

following generalized EB equation accounts for the “spring-dashpot” response of the

beam (Eqs.G.9-G.10), and allows us to interpret the time-dependent creep phenomena

observed experimentally (see the published report [165] by us for derivation).

E1I
∂4y

∂x4
= Felec + E1I

n
∑

i=2

ǫmi , (G.11)
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Felec
EiI

=
ηi
Ei

dǫmi
dt

+ ǫmi , i = 2, ...n, (G.12)

where, ǫmi is an intermediate strain of the beam.

G.2.3 Results and Discussions

Now, we explore the creep-limited lifetime of RF-MEMS varactors using the nu-

merical simulations of Eqs. G.11-G.12. Figures G.7-G.8 summarize the results of

time-dependent creep. We first validate the theoretical model by comparing against

experimental data [188] based on nickel (Ni) membrane. Figure G.7(b) shows the

capacitance of the device at V = 20V as a function of stress time. Using a three

branch model of viscoelasticity, our model predictions reproduces the experimental

features of creep degradation reasonably well [188]. The corresponding shapes of the

beam at different instants of time are shown in Fig. G.7(a).

The experimentally validated model offers us an opportunity to explore the creep

behavior of varactor at different voltages. The time-dependent change in capacitance

for two different operating voltages are shown in Fig. G.7(c). This change in ca-

pacitance degrades circuit performance, that is, an oscillator circuit will no longer

remain tuned at the desired frequency due to the creep induced capacitance change

and an external feedback circuit that compensates for the capacitance change will be

necessary for the correct operation of the circuit. To quantify the capacitance degra-

dation, we define the creep-limited lifetime as being the time in which capacitance

changes by a fixed percentage of the capacitance at t = 0, i.e.,
(

C(tlife)−C(0)

C(0)
= r

)

,

where C(tlife) is the capacitance at t = tlife, C(0) is the capacitance at t = 0 at the

operating voltage V , and r is the tolerance limit for degradation. For example, Fig.

G.7(d) shows creep-limited lifetime for r = 0.05 as a function of stress voltage. As

operating voltage increases, the lifetime reduces exponentially. The voltage acceler-

ation observed here is mainly due to spring-softening effect (see chapter 2), which

effectively weakens the spring as a function of stress voltage.
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cal model predicts very well the experimentally observed capacitance
change [188]. (c) Capacitance change as a function of time for two
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due to creep. tlife increases rapidly at low stress voltages.

When the voltage is removed, the beam should ideally be restored to the initial

position of zero deflection, but creep prevents this instant restoration of the pris-

tine beam shape (Fig. G.8(a)). Instead the beam (and the capacitance) is restored

asymptotically to the original shape over a long period of time (Fig. G.8(b)). In

practice however, device is operated continuously and voltage is applied repeatedly.

For such an AC stress, Figs. G.8(c)-(d) show the capacitance of the device at stress

voltage and at zero voltage. When the voltage is applied, the capacitance continues

to increase due to creep, and when voltage is removed, it recovers slowly. If the time
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allowed for recovery is insufficient, residual capacitance at zero voltage increases with

number of cycles (Fig. G.8(c)-(d)). This increase in the capacitance at zero voltage

is higher for higher duty cycle (Fig. G.8(c)-(d)), because less time is available for

recovery.
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G.2.4 Summary

To summarize this section on creep, our analysis shows that creep can be incor-

porated in the EB equation framework using viscoelastic theory. The framework pre-

sented can explain the experimentally observed time-dependent capacitance change

and offers the possibility to predict creep-limited lifetime for arbitrary voltages.

G.3 Conclusions

To conclude, we have discussed the electromechanical reliability issues of RF-

MEMS capacitive switches and varactors with the following contributions-

1. In the context of dielectric charging for capacitive switches, we developed a

physics based predictive modeling framework to predict the time evolution of

pull-in/pull-out voltage, pull-in dynamics (pull-in time and impact velocity) and

eventually DC and AC life-time of the switch.

2. For varactors, we provided a modified Euler-Bernoulli equation to predict creep

limited life-time.
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H. ELECTROMECHANICAL RELIABILITY ISSUES OF

SG-FET

In chapter 5, we discussed switching characteristics of SG-FET in detail. Here1,

we look into the reliability issues that may possibly arise when SG-FET is used

as an analog/digital switch. We explore how does the classical reliability of FET

or MEMS e.g., Negative Bias Temperature Instability (NBTI) [191], Hot Carrier

Initiated Degradation (HCI) [192], and creep affect the SG-FET’s long term operation.

H.1 Background and Goals

SG-FET, apart from its use in logic applications, can also be used as (i) a sleep

transistor and (ii) resonant gate transistor [1]. In spite of this wide range of appli-

cations of SG-FET, there has not been any systematic study on the reliability of

SG-FET to assess its promise for becoming a viable digital/analog technology.

SG-FET is analogous to a classical MOSFET in terms of the electrical perfor-

mance, except for its behavior in off state. Therefore, many of the reliability concerns

for MOSFET are also relevant for SG-FET. For classical digital technology based on

MOSFET switches, Negative Bias Temperature Instability (NBTI) [191, 193], Hot

Carrier Initiated Degradation (HCI) [192], and gate dielectric breakdown (TDDB)

[194] are the major reliability concerns. One wonders how these reliability concerns

would change if SG-FET were to replace the CMOSFET technology. Moreover, the

mechanical nature of SG-FET may introduce additional reliability concerns such as

creep [195], which is yet to be discussed in literature, but may have important con-

1The content (text and figures) in this section have been adapted from [189] c©IEEE 2010 and [190]
c©IEEE 2012.
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sequences for qualification of a technology that includes sleep transistor or resonant

gate transistor.

Therefore, we develop a systematic theory of electromechanical reliability of SG-

FET related to NBTI, HCI, and Creep. We show that these reliability concerns have

dramatically different implications for SG-FET compared to CMOS switches.

H.2 Hot Carrier Initiated Degradation

H.2.1 Theory of HCI

Hot carrier injection is a persistent reliability concern for CMOS technology in-

corporating p- and n-type MOSFETs. HCI causes degradation of the gate dielectric

near the drain side of a MOSFET (Fig. H.1 (a)). According to the classical theory of

HCI [192], it occurs when the product of number and energy of the channel carriers

is maximum. For long channel classical MOS transistors, it typically occurs near the

drain side when the gate voltage is about half the drain voltage. Below this critical

bias condition (i.e., at VG << VDS/2), there are not enough carriers near the drain

side of the channel to do any damage, whereas at higher bias (i.e., at VG >> VDS/2),

the carriers near the drain are not hot enough to cause any significant degradation.

In simple CMOS circuit like inverter (Fig. H.1 (b), such VG ∼ VDS/2 occurs when

both p- and n-type FETs are ON during switching of input signal. We will show

below that in a SG-FET inverter, during high to low switching of input, no current

flows through n-type SG-FET making it immune to the problem of HCI.

H.2.2 Results : HCI Immune SG-FET Inverter

In order to explore the response of SG-FET to HCI, we simulate switching behavior

of SG-FET inverter accounting for gate’s pull-in and release dynamics. The switching

behavior of SG-FET inverter is then compared with that of a classical MOSFET

inverter. Figures H.2-H.3 summarize the results of MOSFET and SG-FET inverter
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Fig. H.1. (a) Classical theory of HCI suggests oxide defect creation
near the drain side of a MOSFET when gate voltage is about half
the drain voltage. (b) Schematic of the inverter, where HCI situation
is simulated during 1 → 0 switching of input signal. Ip, In and IL
are different current components flowing through PMOS, NMOS and
load capacitor respectively. In is responsible for the HCI degradation.

respectively during high to low switching of the input signal. Figure H.2 (a) shows

input and output voltage during switching. Various current components in Fig. H.2

(b) suggest that non zero current flows through n-type MOS (current In) (Fig. H.2(b))

implying that there is a direct current path from VDD to ground. Note that, In is

the major cause of HCI in n-type MOS. Moreover, direct current path from VDD to

ground increases the power dissipation (also known as short circuit power) of the

switching.

In SG-FET inverter, when input voltage is switched from high to low, n-type SG-

FET turns off as soon as the input voltage goes below the threshold voltage. This

suggests that n-type SG-FET turns off within the fall time (tf ) of the input signal.

Moreover, it springs back in the air and its release dynamics is shown in Fig. H.3 (a).

In contrast, p-type SG-FET does not turn on even after the input voltage has reached

zero (i.e., |VGS| = VDD). This is because, it starts from the up state and sees a high

threshold voltage in the beginning. As it starts to move, threshold voltage decreases

and it turns on as soon as threshold voltage goes below VDD; which occurs close to

pull-in (Fig. H.3(a)). Therefore, p-type SG-FET sees the delay of pull-in time during

turn-on which is dictated by the intrinsic pull-in dynamics of SG-FET. The input and
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Fig. H.2. Simulation results of MOSFET inverter during high to low
switching of the input. (a) Input and output voltage and (b) various
current components during switching.

output voltage in Fig. H.3 (b) reflects that there is an intrinsic delay of pull-in time

between the input going low and output going high. Because of this intrinsic delay,

p- and n-type SG-FET are never simultaneously on. Interestingly, no current flows

through n-type SG-FET as expected as it turns off before p-type SG-FET is turned on

(Fig. H.3 (c)). Therefore, n-type SG-FET does not see the condition of HCI during

this transition. Hence, the logic family associated with complementary SG-FET will

be intrinsically immune to HCI degradation! Moreover, in SG-FET inverter there is

no direct current path from VDD to ground; all the current flowing through p-type

SG-FET directly flows through the load capacitor (Fig. H.3(c)). Therefore, SG-FET

inverter does not have the problem of short-circuit power dissipation and dissipates

only 1/2CLV
2
DD during the switching.

H.3 Negative Bias Temperature Instability

H.3.1 Theory of NBTI

Now, we discuss Negative Bias Temperature Instability which is one of the major

reliability problems in classical p-type MOSFET biased in inversion, i.e., when the
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Fig. H.3. Simulation results of SG-FET inverter during high to
low switching of the input. This simulation accounts for the pull-
in/release dynamics of the beam. (a) Displacement of the center of
the beam of p-and n-type SG-FET. p-type SG-FET is pulled-in and
n-type SG-FET is pulled-out during this switching. (b) Input and out
voltage and (c) various current components flowing through different
elements during switching.

gate is negatively biased with respect to source and drain. This phenomenon is at-

tributed to interface defect formation (Si−H → Si− +H) at the Si/SiO2 interface

of a PMOS transistor and is consistently modeled using the Reaction-Diffusion (R-D)

framework [191, 193, 196]. During ON state (when |VG| > |VPI |), inversion charges

(holes) populate near the Si/SiO2 interface. These holes are captured by the inter-

facial Si-H bonds and dissociate the bond creating interface defect or dangling Si-

bonds (Fig. H.4(a)). The rate of such defect generation is given by,

dNIT

dt
= kf (N0 −NIT (t))− krNIT (t)N

0
H , (H.1)

where N0 is the initial number of Si − H bond at Si/SiO2 interface, NIT (t) is the

fraction of these Si − H bonds broken at time t due to NBTI stress, kf is the dis-

sociation constant of Si − H bond breaking process, kr is the constant for reverse

reaction, and N0
H is the concentration of H atoms at the Si/SiO2 interface. The H

atom released in this process can anneal the broken bonds described by second term
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of the equation H.1 or may diffuse away from the interface, according to the following

diffusion equation, i.e.,

∂NX

∂t
= DX

∂2NX

∂y2
(H.2)

where NX is the concentration of diffusion species and DX is their diffusion coefficient,

which can be both H and H2 [191]. Equations H.1 and H.2 are solved self-consistently

to calculate the concentration of interface defect NIT (t). Now, this build up of NIT (t)

modify the electrostatic force (Eq. A.8) acting on the gate due to the modification of

electric field in air (Eair = ǫsEs(ψs) +
qNIT
ǫ0

, see Eq. A.10 for Es(ψs)). Therefore, we

now solve Eq. A.7 with the modified electrostatic force to study the effect of NBTI

on SG-FET’s long term operation.

H.3.2 Results : NBTI - DC Stress

Figure H.5 shows the results of NBTI under DC stress. During the DC stress in

SG-FET, dissociation of Si−H bonds increases the dangling bond density NIT (t) ∼
tn, n = 1/6 (Fig. H.5(a)), just like a classical MOSFET [191]. Increase in NIT (t),

increases the electric field in air Eair and hence the electrostatic force (Eq. A.8) act-

ing on the beam, which results in reduction of VPI and VPO (Fig. H.5(b)). Figure
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H.5 (c) shows the time evolution of ∆VPO for different stress voltages Vs. Eventu-

ally, when ∆VPO(tlife) = VPO(0), (VPO(0) is the initial pull-out voltage) the beam

sticks irreversibly with the dielectric (catastrophic failure due to stiction) and can

not be pulled-out even at zero applied bias. This stiction is a similar to the failure

mechanism of RF-MEMS capacitive switches due to dielectric charging (chapter 4)

and unfortunately, SG-FET will not be immune to it. Using ∆VPO = VPO(0) as the

lifetime criteria, we calculate lifetime (tlife) of SG-FET as a function of stress voltage

(Vs) in Fig. H.5(d). Lifetime decreases exponentially with Vs. Therefore, even though

time evolution of NIT in MOSFET and SG-FET is same, NBTI in MOSFET remains

a parametric degradation (only changes the threshold voltage), whereas it can lead

to catastrophic failure in SG-FET.

H.3.3 Results : NBTI - AC Stress

Now, we compare NBTI induced degradation of SG-FET and MOSFET under AC

stress condition. When gate bias is removed for classical MOSFET, NIT relaxes due

to repassivation of dangling Si bonds [191,193]. In SG-FET, however, NIT relaxation

is much smaller compared to classical MOSFET (Fig. H.6(a)), because the gate

is physically separated from the dielectric in off-state of SG-FET (Fig. H.4(b)).

Therefore, the hydrogen trapped within the gate can not diffuse back to repassivate

dangling Si bonds (Fig. H.4(b)). The hydrogen contained in the movable gate is lost

forever to the gate interconnect. Instead, only the residual hydrogen species contained

within the thin dielectric at the moment of electrode separation contributes to NIT

relaxation. As a result, SG-FET degrades faster than MOSFET at low frequencies

(Figs. H.6(b)). At high enough frequency (f > 2DH2/y
2
d, where DH2 is the diffusion

coefficient of H2), when SG-FET switching speed exceeds the hopping rate of H2,

hydrogen profile becomes insensitive to repeated opening/closing of the switch, and

NIT degradation of SG-FET and MOSFET becomes indistinguishable (Figs. H.6(c)).
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Fig. H.5. Simulation results for NBTI in SG-FET under DC stress.
(a) At the pulledin state of a p-SG-FET with stress voltage Vs =
−1.5V , Si − H bonds dissociate, and increases NIT ∼ tn, n = 1/6
just like classical MOSFET. (b) NIT increases the electrostatic force
acting on the beam and decreases VPI/VPO by left-shifting the IDS −
VG characteristics. (c) Change in pull-out voltage for different stress
voltages. (d) tlife decreases exponentially at higher Vs.

Figure H.6(d) shows the AC-DC ratio as a function of frequency, which summarizes

the discussions of Figs. H.6(b-c).

H.4 Creep

Now, we discuss the issue of creep in context of sleep transistor and resonant

gate transistor which operate below pull-in. To analyze the effect of creep, we use

modified Euler-Bernoulli framework developed in section G.2.2 in context of RF-

MEMS varactors, and the results are summarized below:
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Fig. H.6. Simulation results for NBTI in SG-FET after (a) one cy-
cle and (b) multiple cycles of low-frequency AC stress suggesting less
relaxation in SG-FET compared to classical MOSFET. (c) At high
frequency, degradation in SG-FET and MOSFET becomes indistin-
guishable. (d) AC/DC ratio for SG-FET and MOSFET as a function
of frequency for fixed stress time of 100 seconds suggesting that at
high frequency SG-FET and MOSFET degradation is indistinguish-
able.

H.4.1 Results : Creep

Creep will be a reliability problem in SG-FET when it is operated below pull-in

as in sleep transistor and resonant gate transistor. Even at VG = 0, there will be a

residual force acting on the gate, because of non-zero flat-band voltage, and the gate

will be deflected. This residual force will weaken the gate by creep (as in case of

RF-MEMS varactors in appendix G), and the gate will continue to move down over

time (Fig. H.7 (a)) and will cause air-gap to decrease. As a result of this, capacitance

of the device will increase (Fig. H.7 (b)). This increase in the off-state capacitance

will increase the off-state leakage over time. Eventually, the advantage of low-power
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Fig. H.7. Identifying creep as one of the reliability problem in SG-
FET. (a) For VFB 6= 0, gate will be deflected even for VG = 0, and
will continue to move down because of creep. (b) Movement of gate
will increase the capacitance with time, and hence the leakage current
(and off-state power consumption) of the device.

consumption will be diminished. Therefore, creep will be parametric degradation for

SG-FET circuits operating below pull-in.

H.5 Conclusions

To conclude, we find that SG-FET based logic family will be immune to reliability

issues associated with HCI due to intrinsic pull-in and release dynamics of SG-FET.

We also establish that NBTI may lead to catastrophic failure due to stiction in p-

SG-FET. And, finally creep is identified to be a reliability problem for below pull-in

operation in sleep transistors and resonant gate transistors.
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