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SUMMARY 

 

Polymer composites with applications in space are a high priority for the National 

Aeronautics and Space Administration (NASA).  Thus, next generation polymer 

composites that utilize the high-impact properties of carbon nanotubes are desired.  

 

Atomic Force Microscopy (AFM) is a tool that has been integral in the characterization 

of materials on the nanoscale.  The mechanical response of single molecules can be 

observed and characterized. The efforts of this research were to characterize the 

polymer/nanotube interface so that scientists may have a clearer understanding of how 

molecules interact with the nanotube as well as the mechanical response of the nanotube.  

As a result, a new force spectroscopic tool was developed (Multi Parameter Force 

Spectroscopy).  This probing approach has been critical in facilitating the understanding 

of how carbon nanotubes respond on the nanoscale.  

 

Ultimately, this research has led to a clearer understanding of the chemistry between 

single molecules and carbon nanotubes.  Also, this research has led to a force 

spectroscopic approach that should be extremely helpful in characterizing the mechanical 

response of a myriad of nanoscale objects, thus making nanoscale devices a reality.    

 

 



CHAPTER 1 

REVIEW OF ATOMIC FORCE MICROSCOPY 

 

History of Scanning Probe Microscopy 

Scanning Probe Microscopy (SPM) is a family of related techniques that provide 

information about atomic scale structure and processes.  The first of these to be 

developed was the Scanning Tunneling Microscope (STM) by Gerd Binning and 

Heinrich Rohrer at IBM Zurich in 1981 [1,2].  They were awarded the Nobel Prize in 

Physics in 1986 for their invention.  In 1986 Binnig, Calvin Quate, and Christopher 

Gerber invented another scanning probe instrument called the Atomic Force Microscope 

(AFM) [3]. 

 

These powerful techniques and others have been rapidly adopted by the scientific 

community and applied in numerous fields ranging from biology to materials science.  

The number of publications and patents in the SPM field has increased exponentially 

over the last twenty years [4].  In 1984 there were 16 publications utilizing scanning 

probe microscopy, whereas in 2003 there were over 10,000.  Since the conception of the 

STM and the AFM, a plethora of other scanning probe techniques have been devised that 

have helped scientists understand chemical and physical phenomena that occur on the 

nano-scale. 
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Fundamentals of Atomic Force Microscopy 

AFM is a surface analysis tool that is capable of achieving sub-angstrom resolution of the 

topological features of a surface [5].  The operation of the AFM is similar to that of a 

profilometer, which tracks the vertical movement of a stylus as it travels over a surface.  

The AFM can be viewed as a nanoscale profilometer that can yield a topographical map 

of the underlying surface.  

 

AFM operates in the following manner: a cantilever beam with a micro-machined tip on 

the end is brought into close proximity with the surface of a sample.  The sample is 

rastered below the cantilever beam. Sample topography and forces exerted between the 

tip and the sample cause upward or downward deflections of the cantilever.  Movement 

of the cantilever beam is typically tracked by illuminating the reflective back-side of the 

cantilever with a laser and monitoring the movement of the reflected spot on a position-

sensitive detector (PSD) [6]. The voltage output from the detector is proportional to the 

position of the movement of the laser spot on the face of the detector. These voltage 

changes are sent to a control module, which converts the voltage level into a distance. An 

image is computed by correlating the output voltage from the PSD with the X and Y 

coordinates of the sample. A schematic of the AFM is provided in Figure 1.1.  This 

scheme is the simplest and most commonly used in commercial instruments.  A variation 

of this scheme involves scanning the tip over the sample surface to allow analysis of 

larger samples. 
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Figure 1.1. Schematic of the typical components that make up an atomic force 
microscope. 
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Instrument Components 

There are several integral components in an AFM.  Some of the most pivotal components 

are: vibration isolation units, piezoelectric scanners, cantilever probes, and detectors. 

 

Vibration Isolation 

Rigidity is important because all SPM techniques require minimization of all sources of 

electrical and mechanical noise [7].  Typically, electrical wires in the microscope are 

fully shielded and all mechanical components are held tightly in place. The entire 

microscope is mounted on a vibration isolation apparatus.  Vibration isolation units can 

range from simple homemade units such as a concrete block hanging from bungee-cords 

(~$100) to vibration isolation tables that have pneumatically suspended tabletops (> 

$2,500).  If these types of noise are not controlled or reduced, visualizing atomic-scale 

features is impossible.  

 

Piezoelectric Scanners 

Piezoelectrics are materials whose dimensions deform in response to an applied electric 

field.  Application of precisely controlled voltages to a piezoelectric produce extremely 

precise movements.  The geometry of piezoelectric positioning devices used in AFM 

includes bars, bimorphs or tubes; tubular scanners are the most commonly used.  They 

operate at a high resonant frequency, enabling high scan rates.  Piezoelectric scanners 

exhibit both linear and nonlinear responses to an applied voltage (Figure 1.2).  As a 

result, careful scanner calibration is required.  Thermal isolation of the piezoelectric  
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Figure 1.2. Plot of the response of a typical piezoelectric scanner to an applied voltage. 
The area of the response curve that is between the dashed lines is the area of linear 
response.   
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elements is necessary because their dimensions are also sensitive to temperature 

fluctuations [6]. 

 

Scanner calibration is typically performed using a standard surface having image features 

comparable in size to experimental sample features.  For example, one would not want to 

calibrate the movement of a scanner using a grating that has 20 µm spacings and then 

attempt to image a sample that has feature sizes below 1 µm.  It is recommended that a 

piezoelectric be calibrated versus a large-scale grating (> 10 µm line spacing) and versus 

a smaller scale grating (< 1 µm line spacing) to correct for the nonlinearities in scanner 

movement.  Gratings are typically used as calibration standards.  They are created using 

micromachining techniques [8] and then characterized using other surface profiling 

techniques.  

 

The sample can be mounted directly onto the scanner and rastered underneath the 

cantilever tip, or the cantilever can be mounted to a scanner tube and rastered over a 

sample fixed below it.  The former case is advantageous in imaging larger samples and 

increases the speed of imaging [9].   

 

Samples for analysis are mounted onto a specimen disk that can be magnetically held 

onto the piezoelectric scanner.  Double-sided tape is typically used when imaging 

samples in air and leads to very little movement of the sample on the specimen disk.  

Double-sided tape typically does not work well when imaging in liquid environments.  
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More permanent adhesives are required (such as glue or two-part epoxies), with careful 

consideration of the chemical inertness and potential out-gassing of the adhesive.  

   

Cantilevers 

Cantilevers are commercially produced from silicon and silicon nitride using 

microfabrication processes similar to those employed in integrated circuit manufacture. 

Cantilevers are often coated with metal on the topside to enhance laser reflection.  There 

are two primary geometries of AFM cantilevers; triangular and rectangular (Figure 1.3).  

Rectangular cantilevers are susceptible to torsional bending during contact mode imaging 

whereas, triangular cantilevers have been designed to reduce the lateral forces exerted on 

the cantilever.  

 

Important cantilever specifications are their dimensions, flexibility, and resonance 

characteristics (resonance frequency and quality factor).  The fundamental resonance 

frequency of the cantilever should be high in order to avoid interference from building 

vibrations and acoustic noise.  Thermal noise from the cantilever can limit the sensitivity 

of the AFM and should be minimized by using shorter length cantilevers.  A shorter 

length cantilever also provides greater angular displacement of the laser resulting in 

greater resolution.   

 

Cantilever tip shape and dimensions are critical to the quality of the AFM image.  The 

overall tip geometry is often square pyramidal resulting from an etching process.  The 

aspect ratio (height to width ratio) of the tip is important for imaging rough samples in  
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Figure 1.3. Scanning electron micrographs of cantilever probes that are typically used in 
AFM. (a) a rectangular cantilever (top) and a triangular cantilever (bottom). (b) Zoomed 
image of the microfabricated tip located at the end of the cantilever probe. (c) Image of a 
single walled carbon nanotube on the end of a cantilever tip (Probe fabricated by 
Nanodevices). 
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order to fully contact recesses.  Tip sharpness, or the radius of curvature at the apex, is 

one of the key elements in achieving high-resolution images.  Both tip contamination (eg. 

polymer stuck on the tip) or general wear (mechanical rounding) can drastically reduce 

image resolution.  Recently, carbon nanotubes have become popular tips because of their 

high aspect ratio, small radius of curvature, and durability (Figure 1.3c).  Tips are often 

functionalized in order to study tip to sample interactions or to conduct chemically 

sensitive measurements.  Arrays of parallel cantilevers have been developed for use in 

sensor applications, data storage, and increasing scan sizes and imaging speed.  A more 

in-depth explanation of cantilever probe fabrication and the cantilever beam’s mechanical 

properties will be described in Chapter 3. 

 

Detectors 

The original AFM used a STM to sense the movement of the cantilever in response to 

interactions with the sample.  In most commercial AFM instruments, optical detectors 

have supplanted this type of electrical detector.  The most widely used detection system 

uses laser beam reflection off the end of the cantilever onto a position sensitive detector 

(PSD).  A change in the angle of the cantilever moves the spot on the detector, producing 

a change in the voltage output.  Early on in AFM, two-segment photodiodes were used 

(Figure 1.4a).  Transducers were used that compared the light intensity on the top 

segment versus that on the bottom segment and convert this into an output voltage of the 

photodiode to the voltage level on the bottom face of the photodiode. This type of PSD 

only allows for tracking the vertical movement of the laser spot (i.e. vertical movement of 

the cantilever). Surface scientists later realized that the twisting motion that the cantilever  
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Figure 1.4. Schematic of a two segment (a) and a four segment (b) photodiode device 
used to monitor cantilever deflection and torsion. Cantilever deflection (and torsion) is 
determined by the ratio of voltages on each segment of the detector, as defined in the 
equations given to the right of each schematic. 
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experiences when imaging could reveal useful information regarding friction between the 

tip and the sample (Lateral Force Microscopy, see below). To facilitate this, a quad-

photodiode was used (Figure 1.4b). The quadrant-photodiode is capable of measuring 

vertical cantilever deflection (quadrants A and C vs. quadrants B and D) as well as 

cantilever torsion (quadrants A and B vs. quadrants C and D).  

 

Integration of a detector onto the cantilever (i.e. strain gauge) has also been accomplished 

using the piezoresistive properties of silica.  As the cantilever beam bends, the electrical 

resistance of the beam changes. Thus, by monitoring the fluctuations of an electrical 

current passing through the cantilever, one can interpret cantilever bending.  This 

eliminates the laser and the position sensitive detector.  This integrated approach is 

beneficial for imaging samples that are light sensitive.  The idea of integrating a detector 

on the cantilever has also led to the development of a cantilever that is piezoelectrically 

actuated (thus eliminating the bulky piezo scanner).  

 

Imaging Modes 

The atomic force microscope can be operated in several modes (contact, torsional, force 

modulation, intermittent contact, non-contact and force volume). Each imaging mode can 

provide a plethora of information regarding the chemical and physical nature of a surface. 

[10]. Several other imaging modes have been developed over the years but the following 

modes of operation are still the most widely used [11,12]. 
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Contact Mode 

In this mode, the probe tip is maintained in contact with the sample surface.  The image 

can be acquired under four different imaging methods: deflection, height, friction, and 

force modulation.  In the deflection method, the image is a map of cantilever bending as a 

function of position and is acquired under variable vertical loading forces.  To image 

under constant applied force, the height method uses a closed-loop feedback system to 

raise or lower the sample (or tip) to maintain a fixed cantilever deflection.  The user 

optimizes feedback system performance by adjustment of the proportional and integral 

gains.  Proportional gain sets the magnitude whereas integral gain sets the temporal 

response of corrective action to return the cantilever to its reference position.  If the gains 

are too high, feedback oscillations produce image artifacts.  If the gains are too low, 

resolution is poor due to slow response of the feedback loop.  

 

Force Curves 

Force curves are used to correlate vertical movement of the scanner with cantilever 

deflection.  An “ideal” force curve is depicted in Figure 1.5a.  Force curves are obtained 

by disabling the scanner movement in the x and y directions and extending and retracting 

the scanner in the z-direction.  As the tip approaches the sample, no cantilever bending is 

observed until the gap between the tip and the sample is extremely small (typically < 1 

nm).  At this point, attractive van der Waals interactions between the tip and the substrate 

will pull the cantilever downward [13,14].  Once in contact, raising the sample produces 

an upward bend in the cantilever.  On the downward movement of the scanner, the 

cantilever gradually returns to its original position.  Eventually the scanner is retracted far  
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Figure 1.5. Force curves depicting different motions of the cantilever beam. The blue line 
represents the cantilever’s position during the approach of the scanner towards the 
cantilever. The green line represents the cantilever’s position during the retraction of the 
scanner away from the cantilever. (a) Ideal force curve where no interfacial adhesion is 
present between the cantilever tip and the underlying surface. (b) Typical force curve 
where adhesion is present between the cantilever tip and the substrate (c) Single molecule 
force curve that is typically observed when pulling on a molecule that is affixed between 
the cantilever tip and the surface. 
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enough away from the cantilever until the tip and the surface are separated in space.   In 

the presence of attractive or adhesive forces, downward deflection of the cantilever (past 

the beam’s static position) may be observed.  When the restoring force of the cantilever 

exceeds these forces, the tip releases from the substrate surface and the cantilever returns 

to its original position (Figure 1.5b). The magnitude of the mechanical load that is 

vertically imposed on the beam is computed by multiplying the total vertical deflection of 

the beam times the stiffness of the cantilever.  The magnitude of the attractive or adhesive 

force is calculated by multiplying the downward deflection of the cantilever times its 

spring constant.  When a sample is stored at room conditions, hydration layers (water 

layers) are present on virtually every type of sample surface.  The thin hydration layers 

can bring the tip into contact with the surface.  Regardless of a sample’s hydrophobicity a 

nanometer-scale water layer will be present.  Water layers can be reduced by storing 

samples in a dessicator, imaging in a dry environment (for example a N2 enclosed AFM) 

or working under ultra high vacuum conditions (UHV) [6].   

 

Force curves enable calibration of cantilever deflection and commensurate movement of 

the laser spot on the PSD.  This is accomplished by fitting a line to the portion of the 

force curve where the scanner is pushing up on the cantilever beam.  The units of the 

sensitivity parameter are: change in voltage across the PSD (volts) / change in voltage 

being applied to the scanner (volts).  This parameter is also used to determine the spring 

constant of the cantilever beam (see Chapter 3). 
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A third type of force curve is depicted in Figure 1.5c.  When contact of the tip to a long 

molecule on the surface occurs, mechanically induced elongation and unfolding results 

from downward movement of the scanner.  This mechanically induced unfolding yields a 

more gradual deflection of the cantilever with respect to the movement of the scanner 

away from the beam. With knowledge of the stiffness of the cantilever, researchers have 

attempted to interpret the forces required to unfold biomolecules and polymers.   

 

Torsional Mode 

This mode of AFM requires a quadrant photodiode was implemented into AFMs. This 

mode measures the local variations of friction that may exist between the cantilever tip 

and the substrate.  Lateral forces on the tip cause torsional bending (twisting) of the 

cantilever that is detected by horizontal movement of the laser spot on the detector.  This 

is also referred to as Friction Force Microscopy.  For example, this can be used to 

interpret the “stickiness” of a sample (hydrophilicity or hydrophobicity).  Figure 1.6 is an 

example of a typical topographical image with a corresponding friction map.  Areas that 

are lighter in the friction image depict areas on the surface where the cantilever 

experienced a high degree of drag. 

 

Force Modulation Imaging 

Force modulation is a contact imaging method that enables simultaneous measurement of 

the topology and compliance of the substrate.  In force modulation, a piezoelectric 

actuator oscillates the cantilever chip. The tip is positioned above the substrate so that 

during its oscillation, the tip slightly indents the substrate.  The amplitude of the  
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Figure 1.6. Contact mode AFM of the surface of a TiO2 thin film. (a) Topographical 
image of a 1 µm × 1µm domain. (b) Corresponding friction map of the same region. 
(Reproduction from Roberson and Poggi et al. [15]) 
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cantilever’s oscillation is monitored as the tip is rastered across the surface.  Compliant 

areas on the sample will produce larger cantilever deflections compared to more rigid 

areas.  This is an invaluable method for characterizing the mechanical and topological 

properties of composite materials on the nanoscale.  

 

Intermittent Contact Mode 

Intermittent contact or TappingMode™ oscillates the cantilever at its resonance 

frequency or one of the higher vibrational modes [16].  To operate in intermittent contact 

mode, the cantilever chip is mounted into a holder that mechanically oscillates the entire 

cantilever chip (via a piezoelectric that is fused to the cantilever chip holder).  Surface 

topology is measured with the height method while maintaining constant dampening of 

cantilever oscillation rather than cantilever measuring beam deflection as is done in 

contact mode.  Cantilever oscillation amplitude dampening is maintained at a fixed value 

using a closed-loop feedback system to raise or lower the sample (or tip).  

 

Increasing or decreasing the drive voltage being sent to the piezoelectric in the chip 

holder can modulate the oscillation amplitude of the cantilever. The major advantages of 

intermittent contact mode imaging are reduced vertical loads, lateral forces, and adhesive 

interactions between the tip and the substrate.  This mode enables imaging of soft 

samples or molecules that are not strongly attached to the surface.  Low drive amplitude 

is desired to minimize impact on soft molecules; however the drive amplitude must be 

sufficient to overcome attractive capillary forces.  This problem can be resolved by 
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imaging under fluid.  Imaging under fluid also provides the opportunity to examine 

interactions between the substrate and molecules in the liquid environment. 

 

Oscillation Amplitude Curves 

Oscillation amplitude curves are similar to the force curves.  They are acquired by 

moving the scanner in the z-direction and monitoring the corresponding change in 

oscillation amplitude of the cantilever (at a specified drive frequency).  A typical 

oscillation amplitude curve and corresponding deflection curve (force curve) acquired 

with a silicon cantilever beam is shown in Figure 1.7.  During the extension of the 

scanner towards the cantilever, the oscillation amplitude of the beam remains unchanged 

until the tip begins to gets close to the sample.  When the van der Waals forces pull the 

tip into contact with the substrate, a gradual drop in the oscillation amplitude is observed.  

The oscillation amplitude of the cantilever “bottoms out” or remains at a constant 

negative value while the tip is “pinned” on the surface.  Then as the scanner retracts from 

the surface, and the adhesive interaction between the tip and the surface is exceeded, the 

cantilever’s oscillation amplitude is almost instantaneously restored (far right portion of 

Figure 1.7b). The “ringing” that is observed near the far right of the oscillation amplitude 

curve is a result of the cantilever snapping off of the surface and then returning to its 

fundamental resonance.  Oscillation amplitude curves are important observables that 

allow microscopists to more precisely position the cantilever in ultra-close proximity 

with the underlying surface while minimizing tip damage.   
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Figure 1.7. (a) Force Curve acquired using a Veeco FESP Probe and a clean gold 
substrate (the green line represents the cantilever’s position during the approach of the 
scanner towards the cantilever, while the red line represents the cantilever’s position 
during the retraction of the scanner away from the cantilever.  (b) Corresponding 
oscillation amplitude curve while the cantilever is driven at 67kHz. 
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Phase Imaging 

Phase imaging is an extension of intermittent contact mode that enables measurement of 

surface properties such as adhesion, friction, and elasticity.  Phase imaging detects the 

phase shift of the cantilever oscillation, which is related to the surface rigidity.  Phase 

shifts above 90º are due to attractive interactions, whereas phase shifts below 90º are due 

to repulsive interactions.  Phase imaging has become the workhorse tool for analyzing the 

elasticity of composite materials.  For topologically homogeneous surfaces, more elastic 

domains are readily distinguished from less elastic regions in the phase image.  Figure 1.8 

depicts a Tapping ModeTM topographical and phase image of a colloidal hydrogel 

particles deposited on a glass microscope slide. 

 

Noncontact Mode 

Noncontact mode (or Dynamic Force) imaging relies on longer-range molecular forces to 

obtain surface topology [17].  The cantilever is either artificially oscillated at its 

resonance frequency by a piezoactuator (as in intermittent contact mode) or thermally 

driven.  The surface topography is measured by monitoring the shifts in cantilever 

resonant frequency. The cantilever’s resonance will shift depending upon tip/sample 

interactions.  For example, if the cantilever/substrate separation decreases, the 

cantilever’s resonance becomes dampened due to the sample being at a slightly different 

temperature than that of the cantilever.  Specialized expertise in controlling the placement 

of the tip above the sample is required to avoid image artifacts. 
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Figure 1.8. Topographical (a) and Phase (b) images of spherical hydrogels on glass 
acquired simultaneously over a 12 µm × 12µm domain. 
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Force Volume Imaging 

Force volume imaging is an extension of contact mode AFM.  A sample is translated 

underneath the cantilever in the x, y and z direction via the piezo-scanner. As the sample 

moves in x and y, a topographical image of the underlying sample is generated (Figure 

1.9). For every incremental movement in x and y, a corresponding z-movement 

(extension and retraction of the scanner) is executed for each pixel in the topographical 

image.  During z-movement of the sample, the piezoelectric scanner extends “up” 

moving the sample closer to the cantilever. Once the sample touches the cantilever, the 

scanner is extended “up” only to a point that exerts a predefined load on the cantilever. 

Once the cantilever deflects a certain amount (by monitoring the position of the laser spot 

on the PSD), the scanner will begin to retract the sample from the cantilever “down”. The 

z-movement of the sample yields a force curve (as discussed previously). 

 

The maximum vertical loading of the sample can be controlled by reversing the scanner 

movement when the deflection reaches a predetermined value (i.e. trigger threshold).  

The downward deflection of the cantilever at each location above the sample can provide 

“maps” of areas of large adhesion (cantilever pulled down a large distance) or small areas 

of small adhesion (cantilever pulled down a large distance).  Force volume imaging can 

reconstruct surface topology (Figure 1.10a) and also measure cantilever displacement at 

each topographical pixel (Figure 1.10b and c).  If one were interested in the actual forces 

that the cantilever experiences at each point in the force volume image, by multiplying 

stiffness of the cantilever times the deflection of the beam the adhesive force present 

between the cantilever tip and the substrate can be elucidated (as discussed in Chapter 5). 
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Figure 1.9. Schematic of the movement of a sample during Force Volume imaging. At 
each topographical pixel in the image a corresponding movement in the z-direction is 
made (i.e. a force curve) 
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Figure 1.10. (a) Topographical image acquired in Force Volume mode. (b) Force Volume 
image, where each pixel represents an individual force curve. The contrast in this image 
is related to the maximum deflection of the cantilever. Force curves that have a small pull 
down distance are light while force curves that have a large pull down distance are dark 
(c) Individual force curves that were acquired at each location that is marked with an 
“X”. The yellow line represents the cantilever’s position during the approach of the 
substrate towards the cantilever, while the white line represents the cantilever’s position 
during the retraction of the scanner away from the cantilever.  
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Force volume imaging is not only used to characterize the adhesion across a surface but 

can also be used in single molecule mechanical testing experiments. This mode of 

operation facilitates the interrogation of a large area of a surface, thus large sampling 

domains can be investigated.  As a result this approach in single molecule mechanical 

testing can aid in locating regions where molecules of interest are located.  

 

In summary, the atomic force microscope is an analytical tool that can yield extremely 

valuable information regarding chemical and physical phenomena that can and does 

occurring on the nanoscale.  To obtain reliable information with the AFM, one needs to 

be knowledgeable of its fundamental components, operating principles and equipment.  

In many instances AFM provides information unobtainable with any other technique.  

This is why almost every major university in the United States and abroad have one or 

more scientists who are actively using and or improving this invaluable instrument.  
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CHAPTER 2 

REVIEW OF SCANNING PROBE MICROSCOPY 

 

Scientists across the globe are inventing new scanning probe techniques, improving 

instrumentation, and developing theories to guide experimentalists and finding new 

applications of scanning probe microscopy. During the course of my dissertation 

research, I have co-authored two in-depth review articles focusing on the recent advances 

in SPM. In preparing these reviews, over 25,000 abstracts pertaining to SPM were 

reviewed (spanning the years 2000 to 2004). Over 3,000 papers were read and 

summarized to properly convey the scientific findings in the reviews.  

 

The purpose of this chapter is to highlight innovations and applications of SPM that 

pertain to the topic of this dissertation. The text that follows are excerpts from the two 

articles published in Analytical Chemistry [9,18]. Permission to use and elaborate upon 

these important advancements has been granted by the American Chemical Society, 

2004. 

 

Advanced Theoretical Modeling 

Hofer et al. [19] presented a thorough review of theoretical models that have been used to 

interpret SPM data. Balantekin et al. have devised a model the can elucidate the amount 

of power that is dissipated into a sample during tapping-modeTM AFM [20]. This model 

facilitates in the determination of the dampening constant of a sample and could 

potentially be used to quantify dampening phenomena in composite systems. Boisgard et 
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al. have presented a short overview covering two models that evaluate the loss of energy 

when a cantilever tip is oscillated in close proximity of a surface [21]. Rodriguez et al. 

have provided a thorough interpretation of an AFM when operated under active quality 

factor control [22]. Their theoretical treatment demonstrates that when using Q-control 

(the resonant characteristics of the cantilever), the force exerted on the substrate is 

minimized. Su et al. [23] have correlated residual tip speed before impacting with a 

surface and the associated tip wear for relatively hard samples. They have shown that a 

lower setpoint is not harmful and actually leads to higher resolution images. Stark et al. 

have presented dynamic experiments where the contact force during a typical tapping 

modeTM experiment is determined [24]. They’ve shown that under normal imaging 

condition, the contact force exceeds 200nN. Lee and co-workers [16] used nonlinear 

dynamical systems theory to analyze the oscillatory properties of a cantilever when used 

in dynamic force microscopy. They brought better understanding of the sudden global 

changes that occur in the interaction potential at certain gap widths that cause the tip to 

irregularly tap the sample. Hoffmann has presented simulations of driving a cantilever 

off-resonance when performing noncontact-atomic force microscopy [25] which 

facilitates a more general route to the reconstruction of the surface force gradients.  

 

Couturier et al. have provided a complete analysis of the behavior of a noncontact atomic 

force microscope (NC-AFM) [26]. They present numerical models for the stability of the 

cantilever tip when it oscillates close to the sample. Chang and Chu have derived a 

closed-form expression for the oscillatory behavior of cantilevers with complicated cross-

sections [27]. 
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Hardware Improvements/New Techniques 

Detectors 

Schaffer et al. [28] have implemented a new detector for SFM.  The optical power from 

the beam is distributed across a photodetector array, splitting it into multiple channels.  

An adjustable gain factor is dynamically set to weigh the contribution from each channel.  

A factor of five improvement in signal to noise ratio over the conventional segmented 

detector was obtained. Schaffer has designed an array detector that combines a higher 

sensitivity and a larger dynamic range (in the z-direction) than conventional 2-segment 

photodiode detectors [29]. This detector is less susceptible to nonlinearities during force 

measurements. Onaran and colleagues  [30] utilized radiation pressure generated by a 

focused acoustic beam to implement tapping mode and elasticity imaging by AFM.   

Their method enables efficient excitation and spatial mapping of both higher-order 

flexural and torsional modes of AFM cantilevers in liquids. 

 

Cantilever Arrays 

Progress in cantilever arrays has been critically evaluated by Vettiger and co-workers.26 

Recent emphasis has focused on reducing the size and increasing the number of actuators 

in the array. Cantilever arrays have been proposed as an alternative high-density data-

storage device. King and co-workers[31] continued their evaluation of a resistively 

heated cantilever as a thermomechanical data storage device. Their technique uses the 

cantilever to write/read/erase/rewrite bits of data into a thin polymer layer on a silicon 

surface.  Heat conduction governs the ultimate writing and reading capabilities of the 
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device. They measured and simulated transient thermal and electrical behavior in a 

resistively heated cantilever and concluded that reduction in cantilever dimensions and 

tip height should improve the speed and sensitivity of the writing step. 

 

Chow et al. [32] has improved upon previous cantilever arrays by incorporating through-

wafer interconnects enabling more complicated and compact arrays to be fabricated. 

Integration of the cantilevers, tips, and interconnects enabled operation of a high 

dimension probe array over large areas. Despont et al. [33] set out to improve the data 

reading and writing characteristics of cantilever arrays. They fabricated a 32 x 32 

cantilever array with integrated Schottky diodes in series with each cantilever. This led to 

a large reduction in cross talk between actuators. Cross and co-workers[34] have carried 

out theoretical and experimental treatments on the reading/writing capabilities of polymer 

indentations carried out with a thermomechanically actuated SFM. 

 

In addition to their application in data storage, cantilever arrays facilitate faster imaging 

over large substrate domains.  Sulchek and co-workers[35] created an instrument with 

parallel readout from an array of five cantilevers using an interferometric detection 

scheme. Each cantilever contained a phase sensitive diffraction grating consisting of a 

reference and movable set of interdigitated fingers. As a force is applied to the tip, the 

movable set is displaced and the intensity of the diffracted orders is altered. The order 

intensity from each cantilever is measured with a custom array of silicon photodiodes 

with integrated complementary metal–oxide–semiconductor amplifiers. Their interdigital 

method for cantilever array readout is scalable, provides angstrom resolution, and is 

 29



potentially simpler to implement than other methods. Akiyama et al. [36] has successfully 

used a 2 x 1 array of active and self-detecting cantilevers to acquire two images taken in 

parallel. The cantilevers possess an integrated deflection sensor based on a stress sensing 

metal-oxide-semiconductor transistor and amplifiers for signal readout. The number of 

electrical interconnects were significantly reduced by routing electric signals directly on 

the chip. Constant height mode, tapping mode and force mode images were obtained with 

this array. 

 

Enhanced Image Acquisition 

Another focus involved increasing scanning speed. Sulchek and co-workers[37] have 

achieved high-speed SFM imaging in solution. Their technique used a ZnO self-actuating 

cantilever and achieved an imaging bandwidth 100 times faster than typical SFMs. Ando 

et al. [38] designed a SFM capable of obtaining 100 x 100 pixel images of biological 

media within 80ms. The apparatus consisted of a newly designed sample scanning system 

free of resonant vibrations up to 60kHz and short, flexible cantilevers with high 

resonance frequencies. Images detailing the movement of myosin on mica under buffer 

solution were acquired with this instrument. Several groups have investigated 

improvements in apparent cantilever Q factor using acoustic, radiation pressure, and 

magnetic actuation to improve force sensitivity. [39-41] Methods for improving Q factors 

have immediate application in imaging, dynamic force spectroscopy measurements, and 

microcantilevers-based sensors. [42,43] 
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Sulchek et al. critically examined ways to increase the scan speeds of both contact and 

intermittent contact imaging [44]. Current limitations on scan speeds can be eliminated 

by integration of a faster feedback actuator as well as active control of the dynamics of 

the cantilever. Akiyama et al. [45] devised a fast driving technique that utilizes a tuned 

filter that boosts the servo signal in proportion to its frequency.  An imaging bandwidth 

of 5 kHz was achieved; images were acquired in constant force mode at tip velocities up 

to 0.62 mm/s. Stark et al. [46] have improved tapping mode imaging by driving 

cantilever resonance at one frequency and monitoring deflection at a harmonic of this 

frequency.  The result is significant enhancement in image contrast. 

 

Zahl and co-workers have created software that can be used to control many different 

types of SPMs and process images [47]. The software is extremely flexible and can be 

used to control many of the different modes in SPM. The software package is available at 

no cost to users. Trawick and co-workers used a polynomial mapping method to correct 

for piezoelectric-induced artifacts in SPM images [48]. This correction scheme can 

reduce the effects of distortion in an AFM image from 5% of the scan width to a single 

pixel. Kindt et al. [49] developed a real time method for eliminating the drift component 

associated with AFM images. Their method incorporates automatic changes in the 

setpoint to maintain a set difference in the relative feature richness of two traces taken 

with slightly offset setpoints.  

 

Arnold et al. [50] presented a new approach for studying friction and stick-slip 

phenomena analyzing the torsional resonance of the cantilever. Pfeiffer and coworkers 
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[51] proved that lateral forces can be measured even when the tip is not in contact with 

the surface. Alcarez and co-workers measured and modeled the viscous drag that a 

cantilever experiences when in close proximity with a surface [52]. Correction of the drag 

artifact could lead to an improvement in the scan speed in contact mode imaging of soft 

samples in liquid and to an increase in the pulling speed range in force spectroscopy 

measurements. Two groups have examined the cross-talk that occurs during the 

acquisition of topographical and friction data in AFM [53,54] and presented methods for 

detection and correction of this artifact. 

 
Nishino and co-workers[55] developed a tensile loading stage that facilitated the 

observation of polymer films under stress. Strain was determined from measurements of 

the changes in distance between image features on a polyethylene terephthalate film 

surface as a function of tensile load.  Strain was evaluated both parallel and perpendicular 

to the tensile load direction. The microscopic stress–strain relationship determined by 

SFM coincided with that determined in a conventional macroscopic mode suggesting that 

deformation of the film is an affine process. Buh and Kopanski [56] have looked at the 

effect of illumination from the laser of an optical-beam-deflection AFM on a 

semiconductor sample with a scanning capacitance probe connected in parallel. 

Significant differences in the capacitance-voltage characteristics were observed and 

attributed to light spillage over the edges of and transmission through the cantilever. The 

creation of automated instruments that can acquire images without human involvement 

was a focus for research on improving SPM instrumentation.  For example, Akiyama and 

co-workers[57] have built a stand-alone instrument for conducting soil and dust analyses 

on Mars. Their instrument is capable of self-engaging the cantilever on a substrate and 
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frequency modulation measurements. Barth and co-workers[58] described an array-based 

SFM designed for imaging interplanetary particles onboard the ESA-Midas/Rosetta space 

mission vehicle.  

 

New Imaging Techniques 

Krotil et al. [59] have created a new scanning force technique in which a low-frequency 

vertical modulation is combined with a second high-frequency lateral modulation as the 

tip translates across the surface of the substrate. This enables topographical mapping of 

the surface simultaneously with quantitative mapping of adhesive, static, and dynamic 

frictional forces. [60] Similarly, Syed Asif and co-workers[61]  have designed a hybrid 

nanoindenting instrument that combines a depth-sensing nanoindenter with scanning-

probe imaging capabilities. This instrument is capable of measuring the damping 

coefficient and loss modulus of a substrate while generating a topographical picture of 

the regions with different mechanical properties.   

 

Takano et al. [62]  have shown that electric force microscopy (EFM) can be used to map 

compositional differences in organic monolayers buried under a thick polymeric film. A 

mixed underlayer comprised of methyl and hydroxyl terminated alkanethiols was 

patterned onto a gold surface using microcontact printing.  EFM imaging exhibits 

sufficient contrast to function as a mapping methodology for buried functional groups. 

 

Anderson has integrated vibrational spectroscopy with an SFM. [63,64] In the first report, 

a cantilever was used to spatially enhance a Raman signal via surface enhanced Raman 
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scattering.  In the second report, Anderson used the cantilever as an IR detector and a 

surface separation device for spectroscopic analyses of substrates.  These combined 

vibrational spectroscopy/probe microscopy approaches enable acquisition of high content 

spectra that identifies the chemical composition of image features.  

 

With advances in device miniaturization, it is becoming increasingly difficult to test their 

electrical properties, especially resistance. The probes commonly used in SFM-based 

electrical characterizations are either silicon probes with conductive coatings or silicon 

probes with integrated tips. [65] Scanning spreading resistance microscopy (SSRM) is a 

technique commonly used for characterizing semiconductor devices. Hantschel and co-

workers [66] designed diamond-tipped probes integrated onto a silicon cantilever. This 

probe increases the dynamic range of SSRM by an order of magnitude. Boggild and co-

workers [67] fabricated a nanoscale four-point probe device for high spatial resolution 

conductivity measurements on surfaces and thin films.  

 

Scanning thermal microscopy maps spatial variations in temperature, thermal 

conductivity, or thermal diffusivity on a surface.  Recent efforts have focused on 

improving spatial resolution and probe response time through reduction in probe 

geometry. [68-70] Li and co-workers[71]  fabricated thermal probes in which a thin 

thermocouple wire is imbedded in a polyimide cantilever. They found that the thermal 

sensitivity of polymeric probes could be up to ten times greater than silicon-based probes 

of similar dimension.  
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Wold, [72]  Cui, [73] and their colleagues have independently shown that conducting 

probe-SFM is a reliable method for fundamental studies of electron transfer through 

small numbers of molecules. The junction resistance of alkanethiol molecules increased 

exponentially with chain length and decreased with increasing load. Conducting probe-

SFM measurements open opportunities for exploring electron transfer as a function of 

molecular deformation.  Topinka and co-workers[74] have successfully imaged electron 

flow from two quantum point contacts. The electron flow is imaged by scanning a 

negatively charged, conductive SFM tip above the surface of the device while measuring 

the position dependant conductance. 

 

Burns has presented a unique technique where AFM is coupled in real time with 

submicron confocal fluorescence imaging [75]. Hu and co-workers have combined 

tapping-mode atomic force microscopy and fluorescence lifetime imaging microscopy 

[76]. They have demonstrated that spatially mapping the change in fluorescence lifetime 

and intensity is a promising approach to spectroscopic imaging at the length scales 

obtainable with AFM. Noy and Huser [77] integrated an AFM into a scanning confocal 

optical microscope enabling simultaneous acquisition of optical and topographical 

images of surfaces. 

 

Fukushima et al. [78] developed an AFM that mounts in an SEM with easy sample 

change, optical alignment, and sample positioning capabilities. The viewing angle of the 

SEM was designed so that the apex of the AFM tip could be observed for most samples.  

Browne et al. have designed a scanning transmission X-ray microscope (STXM) for use 

 35



with synchrotron radiation allowing simultaneous X-ray imaging and topological probing 

of a surface [79]. This technique could provide a plethora of information regarding 

radiation damage to surfaces or samples, and dynamic processes like specimen corrosion. 

Bondarenko et al. [80] have developed a scanning magnetic microscope (SMM) that does 

not induce appreciable applied forces or magnetic excitations on specimens. This 

microscope is intended to measure weak magnetic field distributions near the surface at 

micron and sub-micron scales. 

 

Dubreuil et al. [81] have used an AFM to directly image the air/water interface.  Phase 

and topography images revealed information about the layering of Langmuir-Blodgett 

films. Several groups have employed in situ AFM to characterize adsorbates on the active 

surface of acoustic resonators [82-84].  This combined technique facilitates correlation of 

mass changes with topology. 

 

Force Spectroscopy 

Biological Samples 

Force spectroscopy has matured in the past few years from an experimental technique 

practiced by a select few to one widely used by the SPM community. The specialized 

equipment for force spectroscopy is now commercially available from multiple vendors. 

The issues of force calibration and force sensitivity have been addressed by manufactures 

allowing for greater confidence in the analyses. Reduction in cantilever dimensions has 

allowed for the measurement of smaller and smaller forces. This, coupled with a redesign 

of the optics, has facilitated force measurements in the sub-attonewton range at 
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millikelvin temperatures. [85] For researchers working under more temperate conditions, 

low pN forces are now routinely measured. Advances in cantilever design are continuing 

to push the limits of force detection. 

 

Numerous reviews pertaining to all aspects of force spectroscopy have been published 

during the past two years.  Hugel et al. [86] has thoroughly reviewed the recent progress 

of SFM-based single molecule mechanical testing emphasizing recent refinements of 

existing polymer theories and their applicability to interpretation of SFM-based single 

molecule mechanical measurements.  Zlatanova et al. [87] reviewed instrumental aspects 

of SFM force measurements. Bustamante and co-workers have reviewed the methods 

currently used in single-molecule mechanical testing of proteins, nucleic acids, protein-

DNA complexes and chromatin. [88]  The review by Carrion-Vazquez and co-

workers[89] focused on protein folding/unfolding. Clausen-Schaumann et al. have 

highlighted recent progress in single-molecule force spectroscopy and commented on the 

prospects of force spectroscopy in characterizing molecular motors. [90] 

 

Automated or semi-automated methods of force curve analysis are a continuing area of 

investigation.  Baumgartner et al. [91] developed algorithms for the analysis of force 

distance curves whereas Gergely et al. [92] developed algorithms detecting rupture points 

along a force-distance curve. Todd and co-workers[93] have generalized the flexural 

beam theory for SFM cantilevers to include tip interactions that are present in the snap-

to-contact region. They have extended their theory to the analysis of continuous force-

separation curves. [94] Vinogradova and co-workers[95] have theoretically evaluated the 

 37



possibility of carrying out force measurements (mechanical tests) at much higher speeds 

than are currently practiced. This has led to the development of a number of models that 

can be used to estimate the deflection caused by viscous drag on a cantilever in various 

experiments. 

 

The predominance of the work published in force spectroscopy is shifting from model 

proteins (e.g. titin) to more complex biologically relevant materials. Thompson et al. [96] 

examined the self-healing mechanism of bone.  They found that bone contains sacrificial 

bonds that both protect and dissipate energy. The recovery of toughness in these pulling 

experiments paralleled that of titin and nacre, which have been shown to unfold or extend 

in a similar manner.  Binding of multivalent Ca2+ and phosphate ions to sites on collagen 

molecules forming “sacrificial bonds” in bone were postulated to account for the 

observed recovery. Bone that had been soaked in Na+ did not show recovery in either 

tension or compression and served as a control in support of this postulate. 

 

Individual bacteriorhodopsin molecules were first extracted from a membrane and then 

pulled to determine the unfolding pathways of the protein. Oesterhelt et al. [97] first 

imaged a native purple membrane to locate the bacteriorhodopsin molecules and then 

pushed the tip into the protein with ~1 nN of force. This was sufficient to extract the 

protein from the membrane and leave a vacancy where the protein once was. Subsequent 

force spectroscopy measurements on the protein revealed that the anchoring forces for the 

individual helices of the bacteriorhodopsin molecule ranged between 100 and 200 pN. 
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Specific attachment of terminal ends allowed for the resolution of unfolding pathways for 

individual helices. 

 

Oberhauser et al. [98] designed a controlled load apparatus for single molecule 

mechanical testing that mimics mechanical testing on bulk samples. Their apparatus 

operates in a manner that directly probes the mechanical stability of elastic proteins. 

Mitsui et al. [99] designed a method for performing dynamic measurements as well as 

quasi-static measurements. During the force extension experiment, a sinusoidal excitation 

is applied to the molecule in the same manner as with macroscopic viscoelastic 

measurements for bulk polymers. This is important for mechanical studies on polymers 

and proteins that have a viscoelastic response since these properties can only be measured 

dynamically. With their approach, differences between random-coil polymers and 

proteins with high order structures can be deduced.  

 

Li et al. [100-102] investigated “mechanical phenotypes,” point mutations within the 

immunoglobulin molecule generated by protein engineering.  They demonstrated a 

previously unrecognized class of phenotypes that may be common in cell adhesion and 

muscle proteins. Using protein engineering, Li and coworkers assembled new proteins 

from three identical repeats of I27-PEVK and showed that the unfolding of tandem 

modules follows the mechanical stability of the module. This finding enabled the use of 

the I27 module as a marker for the boundaries of the PEVK segment. With this marker, 

they were able to determine the persistence and contour lengths of the individual PEVK 
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molecules. Similar protein engineering techniques were used to examine the unfolding of 

spectrin. [103] 

 

Clausen-Schaumann et al. examined the kinetics of force-induced melting and 

reannealing as well as the influence of ionic strength, temperature, and sequence on the 

mechanical properties of double stranded DNA (ds DNA). [104] They showed that when 

dsDNA is overstretched, it begins to melt into single strands that can recombine upon 

relaxation. 

 

Green and Lee[105] have built on their development of tip arrays and tipless cantilevers 

for force spectroscopy by extending the technique to patterned tip arrays and patterned 

cantilevers. They use microcontact printing techniques to carefully functionalize a 

cantilever with both –OH and –CH3 functionality. They pattern the tip array in a similar 

manner and measure the contact forces. Their approach can be extended to probe 

intermolecular force information on large libraries of molecules.  

 

Lo et al. [106] and Yuan et al. [107] have independently analyzed dynamic force spectra 

of biotin-streptavidin interactions over a range of loading rates. Both observed linear 

relationships between the unbinding force and the log of the loading rate. Two linear 

regimes in the dynamic force spectrum were observed, indicating that multiple energy 

barriers exist in the mechanical detachment of biotin from streptavidin.  
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Hugel et al. [108] investigated the response of single polyvinylamine chains of various 

line charge densities via single molecule force spectroscopy. They showed that the 

electrostatic contribution to polyelectrolyte elasticity diminishes under high mechanical 

stress. The detachment force of single polyvinylamine chains from the silicon oxide 

surface was a function of the polymer charge density and electrolyte concentration. 

 

Krautbauer and coworkers[109] used single molecule force spectroscopy to characterize 

DNA-small molecule interactions. Binding of cisplatin and ethidium bromide to duplex 

DNA produced marked changes in its mechanical properties.  Lioubashevski et al. [110] 

measured hybridization forces between PNA and DNA and detected single-base 

mismatches. The adhesion force between double-stranded PNA/PNA molecules was 1.8 

times larger than double-stranded DNA/PNA.  Cocco et al. [111] developed models for 

the mechanical unzipping of DNA under the conditions used in typical force 

spectroscopy experiments.  

 

Schmitt and colleagues[112] presented a universal anchor system for high-affinity ligand-

receptor systems based on N-nitrilo-triacetic acid (NTA) binding to His-tags. This 

binding pair requires the presence of a divalent cation. Thus, the molecular interaction 

can be blocked by addition of EDTA. Mechanical separation of this binding pair in the 

presence of various cations requires between 22 and 58 pN of force.   

 

Marszalek et al. [113] used single molecule force spectroscopy to identify the 

components in mixtures of polysaccharides. Using the elasticity of the various 
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polysaccharides as a fingerprint, the force spectra obtained were related to the 

conformation of the pyranose ring and the type of glycosidic linkages. Their approach 

allows for the identification of individual polysaccharide molecules.  

 

To measure the driving forces present during cell division, Matzke et al. [114] probed the 

stiffening of the cortex of adherent cultured cells along a single scan-line during their 

division. It was discovered via force mapping that cortical stiffening occurs over the 

equatorial region of the cell about 160 s before any furrow appears and that stiffening 

markedly increases as the furrow starts.    

 

Oyama and co-workers[115] have analyzed the adhesion properties of cyclodextrins 

(CyDs) with various guest materials immobilized on a substrate. There was an observed 

change in the intermolecular interaction between cyclodextrins (CyDs) with guest 

materials as was detected via changes in the adhesive force. The adhesive force varied 

with each separate guest material.  

 

Bowen and co-workers[116] measured the adhesion properties of single Aspergillus niger 

spores on mica substrates with SFM. A single spore was immobilized on the apex of the 

tip. The spore’s adhesive characteristics depended upon environmental factors such as 

ionic strength and pH.  Specific interactions between appendages and protrusions on the 

spore surface were postulated to play an important role in adhesion.  Bowen et al. [117] 

used a similar technique to characterize the adhesive properties of metabolically active 

Saccharomyces cerevisiae cells at a hydrophilic mica surface. Dufrene et al. [118] have 
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used chemically modified probe tips (hydrophilic/hydrophobic) to characterize the 

adhesive properties of Phanerochaete chrysosporium spores. van der Aa and co-

workers[119] have used force spectroscopy and microscopy to distinguish between 

dormant and germinating spores. Dormant spores exhibited no surface adhesion while the 

germinating spores exhibited adhesion forces up to 5.4 N/m. Adhesive interactions were 

attributed to the stretching of polysaccharides on the cell surface.  

 

Dufrene et al. [120] correlated the adhesion of microbial cells with type of organism, 

physiological state and environmental conditions. Chen et al. [121] investigated ligand-

receptor binding forces for receptors on the surface of fibroblast cells. Lee and co-

workers[122] reported two-dimensional force mapping of human platelets adsorbed on a 

glass substrate under physiological buffer. Their results provide insight into the 

mechanism of platelet adhesion and aggregation, which play an integral part in 

hemostasis and thrombosis. Grandbois and co-workers[123] characterized a mixed layer 

of type A and O red blood cells based on the adhesive strength of a specific receptor-

ligand pair. Adhesion maps afforded discrimination of these blood cell types. 

Fiorini et al. [124] reported the first direct measurements of competitive binding 

interactions between an active enzyme (shikimate kinase) immobilized upon the tip and 

two ligands, one immobilized on the substrate (ATP mimic) and the second in free 

solution (Shikimic acid).  Adhesion experiments were carried out in a competitive 

scheme with a blunt tip to maximize the number of interactions per rupture event.  This 

technique shows great promise for creating a force spectroscopy-based screening method 

for enzyme inhibition.  
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The potential role of SPM in high-resolution epitope mapping of ligand-receptor binding 

was also evaluated.  Kada and co-workers[125] probed the antigenic binding site of a 

ryanodine receptor in its physiological environment via force spectroscopic 

measurements and lateral force mapping. LFM images afforded localization of binding 

sites with nanometer resolution. Varying the loading rate in force spectroscopy 

experiments revealed a logarithmic dependence of the unbinding forces between the 

antibody-functionalized probe and the ryanodine receptor that ranged from 42-73 pN. 

The authors noted that highly oriented immobilized proteins are required for epitope 

mapping. Harada and co-workers[126] have investigated control of molecular orientation 

for mechanical testing of antibody-antigen binding using orientationally specific and 

random antibody immobilization schemes. Adhesion forces between horse spleen ferritin 

and the antiferritin Fab fragment of IgG for molecularly oriented molecules greatly 

exceeded those for randomly oriented molecules. 

 

Chemical and Polymer Applications 

Humphris et al. have presented a new force spectroscopic technique called transverse 

dynamic force microscope (TDFM) [127]. This approach allows one to monitor shifts in 

the cantilever drive frequency, phase and amplitude during a single pulling event. Lim 

and co-workers used sample modulation force spectroscopy to study the effects of tip 

roughness and geometry in the AFM measurements of solvation [128]. The sample-

modulation response curves allow one to make a direct measurement of the interaction 

stiffness (force gradient) as a function of tip-sample distance, and this technique is 
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capable of measuring both repulsive and attractive solvation potentials in a single 

approach. 

 

Kappl et al. [129] have presented a thorough review of colloidal probe force 

spectroscopic measurements. Zhang et al. has written a comprehensive review covering 

many of the force spectroscopic techniques that have been used to probe the local 

mechanical properties of polymers [130]. Akhremitchev et al. present a thorough review 

of the use of scanning probe microscopy in characterizing the function and aging of 

textured, minimally adhesive polymer surfaces [131].  Chen and co-workers have 

claimed to be the first to successfully measure the lateral Casimir force [132].  A full 

understanding of the Casimir force could play a large part in applying/utilizing this force 

in micro-scale devices. 

 

Kudera et al. used single molecule force spectroscopy to investigate the mechanical 

properties of individual bis-terpyridine ruthenium(II) complexes [133]. Marszalek et al. 

observed the chair-boat transitions of a single polysaccharide molecule  using force 

spectroscopy (183). Zapotoczny and co-workers measured the rupture forces of 

individual β-cyclodextrin (β-CD)-ferrocene host-guest complexes in an aqueous medium 

[134]. The observed rupture force for the host-guest conjugate was 55 ± 10 pN. Tivanski 

et al. have measured both conduction and adhesion forces simultaneously of a 

polythiophene [135]. 
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During chemical force microscopy measurements between self-assembled layers of  

methoxy-tri(ethylene glycol) and methyl-terminated alkanethiols, Dicke et al. have 

shown that water is crucial for the stability of the surface charge that is associated with 

organic films and acts as a template for hydroxyl adsorption [136]. Zepeda et al. [137] 

have determined the energy barriers of alternative interfaces at variable temperatures. 

This exhaustive endeavor reveals an important role of solvation in many of the systems 

probed using chemical force microscopy. 

 

Green has reviewed the recent progresses of using a new inverted AFM technique [138], 

which can carry out combinatorial atomic force microscopy [139]. Connell et al. used 

adhesion mapping to locate nanometer-scale oil droplets existing on a polystyrene surface 

[140]. Force curve mapping was used to gently probe the surface of the fluid droplets, 

and through automated analysis of the force curves, the true topography and microscopic 

contact angle of the droplets were determined. Eaton and co-workers utilized topographic 

imaging, adhesion force mapping, and indentation mapping to investigate the surface of 

an elastomeric filled silicone coating. Topographic observations revealed randomly 

distributed protruding features, which lead to a source of error when assessing the 

nanoscale stiction [141]. The source of peak broadening in the adhesion force histograms 

acquired in typical chemical force microscopy experiments was further characterized by 

Sato and co-workers on homogenous and non-homogeneous surfaces [142].  Akabori and 

co-workers have monitored the mechanical properties of a polystyrene film using lateral 

force microcopy while the film was subjected to a temperature ramp [143]. The authors 

were able to observe a thinning induced relaxation process, called surface β-relaxation. 
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Bliznyuk et al. investigated the surface glass transition temperature of several molecular 

weight films of polystyrene by studying the hysteresis in the loading-unloading cycles of 

force-distance curves [144]. Harmon and co-workers have measured the change in elastic 

modulus of hydrogel films as the films were gradually heated past their transition point 

[145]. They also performed the inverse of the previous experiment where a hydrogel 

sphere was affixed to the cantilever tip and its compressibility measured during its phase 

transition. Hodges has presented a very thorough review of AFM-based mechanical 

testing of polymer films in liquid environments [146]. 

 

Bunker et al. used an interfacial force microscope (IFM) to study the surface chemistry 

changes that occur during the photoactivated opening and closing of rings in tethered 

spiropyran monolayers [147]. This study demonstrated the ability of the IFM to probe 

differences in surface polarity, providing insight into the impact of surface charge on 

electrokinetic flow in microfluidic systems. Houston et al. reviewed the use of the IFM to 

characterize the adhesion, friction, and mechanical properties of self-assembled systems 

on gold surfaces [148]. Hugel et al. performed force spectroscopic measurements on a 

polymer composed of bistable photosensitive azobenzenes [149]. The polymers were 

exposed to ultraviolet light that induced lengthening and contraction of individual 

polymers through photo-induced switching the azo groups between their trans and cis 

configurations. The polymer was found to contract against an external force acting along 

the polymer backbone, thus delivering mechanical work. 
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Rabe and co-workers used atomic force acoustic microscopy [150] and monitored the 

amplitude and phase of the cantilever vibration as well as the shift of the cantilever 

resonance frequencies to interpret the local tip-sample contact stiffness and used this 

information to generate elastic maps of a surface. Benmouna and co-workers [151] have 

developed a unique imaging mode that is capable of measuring the thermal resonance of 

the cantilever as it travels above a latex surface. This approach provides topologically 

defined “maps” of the cantilever’s resonance as it travels above a substrate. They have 

also used a similar setup to during themonitor the mechanical pulling of acrylic fibers 

[152]. 

 

Force Spectroscopy Theoretical Advances 

In an effort to model the interaction of a solid colloidal probe with an incompressible 

liquid drop, Bardos presented a very rigorous theoretical interpretation [153]. His models 

avoid the pitfalls of both perturbation theory and of purely numerical solutions to the 

Young-Laplace equation. Bedrov et al. has performed molecular dynamics simulations of 

the mechanical pulling of poly(ethylene oxide) (PEO) chains in water and n-tridecane to 

elucidate the mechanism(s) of elastic response of the amphiphilic PEO chain in 

hydrophilic and hydrophobic environments [154]. The simulations quantitatively match 

AFM-based single molecule mechanical tests. Biesheuvel et al. has derived models 

describing the electrostatic repulsion between similar surfaces with ionizable surface 

groups interacting across aqueous solutions  [155]. Butt et al. has theoretically treated the 

jump to contact point of a cantilever tip through a thin polymer film [156]. They have 

derived a relationship between the force dependence of the activation energy of the point 
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of initial snap down and the approaching velocity of the tip. Fraxedas and co-workers 

have presented a new model based on an equivalent spring constant that takes into 

account the changes in in-plane interactions during nanoindentation [157]. Their model 

correlates well with experimental data from nanoindentation of several crystalline 

surfaces. Patrick et al. [158] have used molecular dynamics simulations to provide a 

detailed description of the adhesive interactions that are probed in chemical force 

microscopy experiments. Their models take into account atomic-scale motions and 

distributions of forces. Dean et al. have developed molecular-level models for 

characterizing electrostatic interactions between polyelectrolyte brushes when explored 

using chemical force microscopy [159]. The relevance of these models to the modeling of 

native cartilage is discussed in detail. Dudko and co-workers have described a new model 

which predicts a distribution of forces, the mean rupture force and the variance during 

single molecule pulling experiments [160]. The mean rupture force follows a (InV)2/3 

dependence on the pulling velocity, V, which differs from earlier predictions and have 

shown that at low pulling velocities a rebinding process can occur which can delay the 

rupture of the molecule and lead to a bimodal distribution of the observed rupture forces. 

Leng et al. [161] used a hybrid molecular dynamics simulation to investigate adhesion 

and friction in chemical force microcopy experiments. The hybrid simulation method 

allows one to simulate force-distance curves (or adhesion) and friction loops (or friction) 

in the CFM on the experimental time scale for the first time.  Friedsam et al. have 

performed Monte Carlo simulations that demonstrate the severe impact that variable 

polymer spacer lengths can have on the mean rupture force that is observed during single 

molecule mechanical tests [162].  
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An exciting new and evolving application of AFM involves the manipulation of matter 

on the atomic scale.  The AFM tip can be used to place, move, or react chemical moieties 

at specific locations on a surface.  This can be achieved by frictional wear, controlled 

surface oxidation, and/or deliberate material transport between two surfaces. Material 

transport is unrestricted; atoms, molecules, or even cells can be attached to the AFM tip 

and transferred to the opposing surface at a desired location.  In addition, thermal 

patterning of substrates can be achieved by contacting a heated cantilever tip with the 

surface. Potential applications include preparation of ultra-high density data storage 

devices, nanoscale sensors, and molecular machines.   

 

In summary, scanning probe microscopy has revolutionized our understanding of 

chemical phenomena on the nanoscale.  New applications of this important 

nanotechnological tool will make possible the manipulation of matter on the atomic scale 

and enable the construction of new materials and devices for the benefit of mankind. 
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CHAPTER 3 

CANTILEVER FABRICATION AND CALIBRATION 

 

Background 

The original cantilever probe used by Binnig and Quate was a diamond tip that was 

fastened to a piece of gold foil [3].  Now, cantilevers are commercially available with 

ultra-sharp tips (typically a radius of curvature of around 5-10 nm) [9]. Most AFM 

cantilevers are fabricated from silicon, silicon dioxide and silicon nitride using silicon 

micromachining techniques. More recently polymeric cantilevers have been designed that 

could significantly decrease the cost of the cantilever probes [163,164]. Several methods 

have been reported regarding the fabrication of cantilevers with carbon nanotubes 

mounted on the apex of the silicon probe. These cantilevers provide extremely robust tips 

that are capable of reproducibly resolving ultra-small features. In the beginning of this 

chapter, a literature review of the methods of fabrication and calibration are presented, 

followed by an improved calibration method. 

 

Fabrication  

Recent progress has been reported in the fabrication and use of ultra-small cantilevers. 

Chand et al. [165] have fabricated gold cantilevers with integrated silicon tips that were 

13-40 µm long. The shortest of these resonated at 0.5 MHz with a Q-factor of 100. 

Residual stress in the gold was relieved using rapid thermal annealing and thereby 

reducing the extent of cantilever bending.  Hosaka and coworkers[166] fabricated 

cantilevers that were 7-20mm long having a maximum resonant frequency of 6.6 MHz. 
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They reported acquisition of images at scanning rates four orders of magnitude faster 

than normal scanning rates.  

 

Yang and co-workers[167] fabricated ultrathin cantilevers from SIMOX wafers. These 

cantilevers are theoretically capable of detecting forces as small as 1.4 x 10-16 N in the 

first resonance mode. Even smaller minimum detectable forces are achievable when 

using higher resonance modes.  McCarthy and colleagues[168] have demonstrated the 

utility of focused-ion beam (FIB) milling in creating thin cantilevers (below 1µm).  

 

Fabricating cantilevers that possess integrated instrumentation on chip will significantly 

reduce the size of equipment required for scanning probe experiments. Heisig and co-

workers [169] have designed a GaAs cantilever probe with an integrated vertical cavity 

surface emitting laser  above the cantilever tip. This integrated design simplified the 

optical components of the SFM.  Lee et al. [170] designed a single cantilever probe 

consisting of a small torsional resonator incorporated onto the end of the cantilever for 

improved force detection/actuation.  The cantilever’s fundamental resonance frequency 

was 49 KHz.  The resonator was coated with a thin film of Pt-Cr and driven with an 

external magnetic field at 3 MHz.  This approach reduced the minimum detectable force 

by two orders of magnitude relative to a conventional cantilever and substantially 

improved the signal to noise ratio necessary for ultrafast scanning.  Kawakatsu and co-

workers [171] have designed uniquely shaped probes that resonate in the gigahertz range. 

The oscillator has a tetrahedral or conical tip between 100-1000 nm in diameter 

supported by an elastic neck.  
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Hybrid scanning force and near-field scanning optical microscopy (NSOM) probes 

provide optical and topographical information about the underlying substrate. Dual 

functioning probes have been made by various micro-machining methods. [172,173] 

Recent emphasis has been placed on devising methods that create smaller and more 

reproducible aperture geometries.  Focused-ion beam (FIB) milling is a high precision 

technique that can be used to create unique and reproducible silicon structures. Although 

a FIB milling tool is expensive and possesses low sample throughput, it is currently the 

best way to fabricate hybrid probes. Lehrer et al. [174] utilized FIB milling to create a 

reproducible aperture of less than 50 nm at the tip of a conventional SFM cantilever.  

 

Significant advances in the design and application of microcantilever probes have been 

reported.  Manning and coworkers fabricated piezoelectric tapping mode cantilevers that 

have an integrated oscillation drive mechanism on the cantilever [175]. Miyahara et al. 

reported a piezoelectric cantilever capable of simultaneous deflection sensing, cantilever 

oscillation and feedback actuation in non-contact mode AFM imaging [176].  Rogers and 

co-workers have fabricated piezoelectric probes capable of imaging in fluid [177]. Brook 

et al. created a unique piezoresistive probe that can carry out both topological and 

magnetic imaging [178]. This probe enables scanning Hall probe imaging of 

nonconducting or unconnected magnetic samples.  

 

Grow et al. presented a simpler method for fabricating silicon nitride cantilevers with 

oxidation-sharpened tips. The height of the tip is taller than commercially available 
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nitride tips and is especially useful for imaging fragile samples that possess large 

topological relief [179].  

 

Bale and Palmer have fabricated tip arrays that are suitable for parallel STM imaging 

applications [180]. Chow and co-workers [181] have addressed approach alignment and 

density issues associated with operating two-dimensional scanning probe arrays.  They 

reported the fabrication and characterization of two-dimensional micromachined silicon 

cantilever arrays with integrated through-wafer electrical interconnects.  With these 

arrays, a substrate domain as large as 3.8 mm x 0.45 mm can be imaged.  

 

Several reports of probes specifically designed for the acquisition of optical information 

about substrates appeared.  For example, Aigouy and co-workers attached a fluorescent, 

rare-earth-doped fluoride glass particle to the end of an AFM tip [182]. When this probe 

was scanned over the surface of a nanostructured sample illuminated by a laser beam, the 

intensity of fluorescence from the particle is then recorded as a function of the position. 

This method enabled them to map the location of pinhole defects in opaque films. Crozier 

et al. [183] fabricated a silicon nitride solid immersion lens onto a cantilever beam. This 

probe was used for scanning optical microscopy and was capable of achieving optical 

resolution l/(2n) where n is the refractive index of the nitride lens.   

 

Lee, Ding and Bard [184,185] reported the first successful simultaneous topographic and 

optical imaging of a living unicellular organism using a novel probe tip. The tip, 

consisting of an optical fiber core, a gold ring, and an insulator, served as an 
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ultramicroelectrode for scanning electrochemical microscopy (SECM) and as a light 

source for optical microscopy when coupled to a laser. Images were acquired in either 

constant force or constant current mode.  Improved lateral resolution for both optical 

imaging and SECM imaging was achieved in using a constant current while maintaining 

a fixed distance between the tip and the sample. This technique enables simultaneous 

electrochemical, optical, and structural information about interfaces. 

 

Hughes and co-workers created nanoscale cantilevers composed of zinc oxide [186]. 

Extremely small forces could be measured using cantilevers of this size once a means for 

force/deflection transduction is realized. Similarly, chromium nanocantilevers were 

fabricated and mechanically tested with an AFM probe [187].  

 

Lee and co-workers [188] fabricated a novel probe for integrated AFM-mass 

spectrometry. The cantilever acts as the force sensor for topological imaging and the tip 

acts as a sampler for chemical analysis by time-of-flight mass spectrometry. As the tip in 

contact with the sample scans across the surface, chemical compounds from the surface 

adhere to it.  At a desired location, the tip is raised via the integrated piezoelectric 

actuator into a position near an extraction electrode.  Application of a potential pulse 

between the tip and the extraction electrode results in ionization and acceleration of the 

tip-adherent chemicals into the time-of-flight mass analyzer.  The mass spectrum 

provides identification of the tip-adherent molecule(s). 
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Polymeric Cantilevers 

Experimentally induced tip-crash generally requires manual replacement of the cantilever 

probe. Genolet and co-workers [189] have designed multiple, single-lever probes 

arranged in a cassette format. The cassette consists of a one-dimensional array of 

photoplastic cantilevers with integrated tips.  The first cantilever is used for imaging 

while the others are available if the first one becomes degraded. A worn-out cantilever 

can be replaced with a fresh one by only small positional adjustments and without any 

changes in the operating conditions. 

 

Genolet et al. [190] produced a hybrid probe that consists of a micromachined polymeric 

tip with an aperture at the apex that is attached to an optical fiber. This probe takes 

advantage of the reproducibility of batch fabrication processes for micromachined tips 

and the well-characterized light guiding characteristics of optical fibers. Extremely small 

probes have been fabricated without any post processing steps. Topographical and optical 

imaging with the probe demonstrates the great potential of the photoplastic probe for 

NSOM applications. 

 

Recently McFarland et al. devised a simple fabrication scheme for the creation of 

polystyrene cantilever using a solvent-casting approach [191].  

 

Nanotube-tipped Cantilevers 

Carbon nanotubes have the potential to be ideal SPM probes due to their unique 

properties including small diameter, high aspect ratio, large Young’s modulus and 
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mechanical robustness. The nanotubes can also be chemically functionalized leading to 

advanced chemical and biological mapping studies. The use of nanotubes as probes for 

SPM has gained momentum in the last three years. Hafner et al., [192]  pioneers in the 

field of using carbon nanotubes as SFM probes, wrote an excellent review of their use in 

structural and functional imaging. This review covers the topics of the fabrication, 

structural and mechanical properties, characterization of the tip, resolution, applications, 

functional imaging and force spectroscopy. 

 

Nanotube tips can be fabricated in a variety of ways.  Cheung et al. [193] have grown 

single-walled nanotubes (SWNTs) directly on the tip via a surface growth chemical vapor 

deposition method. The tips can also be used in SWNT lithography where SWNTs are 

patterned on a substrate by peeling them off an SFM tip. Other fabrication techniques 

include picking up vertically aligned SWNT from a silicon surface[194] and using an arc 

discharge to transfer multi-walled nanotubes (MWNTs) to the SFM tip. [195] 

 

Nanotube probes are mechanically robust, maintain their lateral resolution and are readily 

functionalized.13, [192,196,197]  Akita et al. [198] have fabricated a nanotweezers 

consisting of MWNT ~2.5 mm long separated by 780 nm. A DC voltage applied to two 

electrodes causes the nanotubes to be electrostatically attracted to each other, closing the 

nanotweezers.  Nanotube tips are sharp yet “gentle,” providing images of biomolecules 

and bio-assemblies with resolution comparable to cryogenic electron microscopy. Some 

of the biological systems examined include: RecA-DNA, [199] mono- and 

polynucleosomes,21 IgG, [200] IgM, [192] GroES, [200] and amyloid-b fibrils.13 
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Woolley et al.23 developed a method for multiplexed detection of polymorphic sites and 

direct determination of haplotypes in DNA fragments. With this technique it is possible 

to detect single nucleotide polymorphisms in sequences up to 10,000 bases. 

 

Several methods were reported for fabricating nanotube-tipped AFM probes [201-203]. 

Nishino et al. [204] immobilized carbon nanotubes onto a gold-coated STM tip.  Images 

acquired with these showed increased spatial resolution and afforded chemical 

discrimination of oxygen functionality present on the substrate surface. Snow and co-

workers examined the factors that influence topological imaging with carbon nanotube-

tipped probes [205]. 

 

Calibration Methods 

 

Current Approaches 

Atomic force microscopy (AFM) has become an invaluable metrological tool for science 

and technology enabling researchers to characterize surface topology on the nanometer 

scale and visualize the orientation and spatial distribution of molecules adsorbed to 

surfaces. [19] AFM also has been used to measure the mechanical properties of single 

molecules, molecular ensembles, and surface structures as well as adhesive interactions 

between chemically modified tips and a substrate. Knowledge of cantilever beam 

stiffness (spring constant) is required for proper interpretation of images acquired under 

constant force and for extracting the mechanical properties of samples from force curve 

data. 
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Several methods for determining cantilever beam stiffness have been presented, each 

with advantages and limitations. [206] Cleveland’s method involves measurement of the 

resonance of the beam before and after loading it with a known mass. [207] Although 

highly accurate, this method is tedious, time consuming and can lead to damage of the 

cantilever tip. Gibson and Watson, as well as Tortonese and Kirk have developed a 

“beam on beam” approach, where the cantilever is brought into contact with a calibrated 

standard cantilever beam. [208,209] The accuracy of this straightforward method is 

limited by the certainty to which the reference beam stiffness is known, the positioning of 

the tip onto the end of the reference beam, and the calibration of the photodiode 

sensitivity and scanner vertical movement.  A third method involves measurement of the 

dimensions of the beam and calculation of its stiffness assuming a known density and 

Young’s modulus using the following equation for a rectangular cantilever with a 

rectangular cross section 

3

3

4l
Ewtk =     Equation 3.1 

where k is the spring constant, E is the Young’s modulus of the beam and w, l, and t are 

the beam width, length, and thickness, respectively.  The simplicity of this method serves 

as the basis for its widespread popularity. A fourth method (referred to as Sader’s 

method) involves measurement of the thermal resonance spectrum of the cantilever and 

fitting a simple harmonic oscillator model to it. [210-212] The thermally driven 

resonance of a cantilever can be acquired by mounting a cantilever in an AFM, aligning 

the laser spot on a sebmented photodiode and then monitoring the fluctuations of the light 

on the detector (Figure 3.1). Using a dynamic signal analyzer, the voltage signal from the  
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Figure 3.1. (a) Schematic of laser light reflecting off of a cantilever and onto a position 
sensitive detector. (b) Schematic depicting the variance of the voltage signal coming off 
of the detector as a function of time from a cantilever under thermal oscillation. (c) Raw 
power spectral density plot (blue) of a silicon cantilever oscillating in air. 
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PSD is passed through a fast Fourier transform (FFT). The transform yields the resonant 

spectra of the cantilever, where the cantilever has a defined resonance, amplitude and 

quality of oscillation (peak sharpness). Sader’s method can be used to approximate the 

beam stiffness using the following equation: 

( ) 22 *****1906.0 ffiff ffQlwk Γ= ρ    Equation 3.2 
 
where ρf is the density of the fluid, w is the width of the cantilever, l is the length of the 

cantilever, Qf is the quality factor in fluid, Γi(ƒf) is imaginary component of the 

hydrodynamic function and ƒf is the primary resonant mode of the cantilever in fluid. 

 

A fifth method (initially devised by Hutter and Bechoefer [213] and then refined for 

higher vibration modes by Butt and Jaschke [214] models the energy dissipation of a 

cantilever resonating freely in space. This model fits a Lorentzian to the power spectrum 

of the cantilever beam’s vibrational energy. The refined version of this fit, takes into 

account the higher vibrational modes of the beam (Figure 3.2). The amplitude of the 

beams oscillation is determined via the following equation: 
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CCfA DCC   Equation 3.3 

where C0, C1, and C2 are constants, ADC is the DC amplitude, and Q is the beam and 

quality. This models a constant (white) noise floor, a second term to model so-called one-

over-f (1/f) noise, and a simple harmonic oscillator (SHO) term. Then, the mean-square 

displacement of the beam is calculated: 

[ ]∫= dffAA 22 )(     Equation 3.4 

 

 61



 

 

 

 

 

Figure 3.2. The first four vertical oscillation modes of a cantilever beam 
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Finally, the stiffness of the beams can be determined via equation 3.5: 

2*

4
3 A

Tkk B=      Equation 3.5 

where kb is the Boltzmann’s constant and T is the temperature (in Kelvin). This method 

requires that a calibrated load be exerted on the cantilever beam (typically carried out by 

using the calibrated piezo-scanner) [213]. Both of these methods provide estimates of the 

spring constant, k, and quality factor, Q, of the beam. The theoretical foundation of 

several of the previously discussed methods assumes a cantilever beam with a rectangular 

cross section.  Burnham and co-workers have commented on the advantage and 

disadvantages of many of these methods. [206]  

 

New methods for determining cantilever spring constants under fluid have been 

developed.  Maeda and co-workers [215] presented a semi-empirical relationship 

between the deflection of a cantilever under a point load and the same cantilever under 

laminar flow. This relationship enables in situ determinations of cantilever force 

constants and demonstrates that the hydrodynamic contribution to cantilever deflection is 

linear with speed, independent of tip size and position, and scale invariant. Craig and co-

workers [216]  have extended this work to include attachment of colloidal particles on the 

tip. Degertekin et al. [41] have devised a novel method to actuate AFM cantilevers in 

fluids via focused acoustic waves. This technique can be used to measure the spring 

constant and resonance frequency of various AFM probes. The frequency response is 

determined by the bandwidth of an acoustic transducer/Fresnel lens system. 

 

 63



Cain and co-workers [217] developed a method of force calibration for a lateral force 

microscope.  By using spheres of different radii, the effects of contact stiffness can be 

isolated and an absolute force calibration achieved in terms of measured beam 

deflections. The method does not rely on any particular model of contact mechanics and 

extends the capability of lateral force microscopy (LFM) to quantify frictional forces 

between arbitrary materials. 

 

Improved Stiffness Calculation 

High-resolution imaging applications require tips with a small radius of curvature. AFM 

probe manufacturers now use dynamic micromachining techniques after the beam and the 

tip have been lithographically defined and etched to produce high aspect ratio tips. The 

dynamic etch process modifies the shape of both the tip and the cantilever. Dynamic 

etching of a rectangular beam produces a cantilever with a trapezoidal cross section; 

[218,219] triangular-shaped cantilevers are similarly effected. [179] Since several of the 

methods delineated above assume uniform cross-sections, significant error results when 

using these to determine the spring constant of the cantilever with a sharpened tip (e.g., 

FESP probes from Veeco Metrology, Golden probes from NT-MDT, and most of the 

rectangular probes from MikroMasch) [163,164,220]. A straightforward method to 

determine the spring constant of the beam based on knowledge of the true geometry of 

the cantilever and its measured resonance has been devised.   

 

The following portion of this chapter involves the use of a modified cantilever calibration 

approach.  The results of this work address some of the shortcomings of many of the 
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calibration techniques that were previously mentioned.  The stiffness calibration reported 

here is also used in several of the experiments reported in Chapters 6 and 7.  

 

Experimental 

Cantilevers fabricated from single crystal <100> silicon wafers were obtained from 

NanoDevices and Veeco Probes. The geometry of cantilevers with sharpened tips was 

determined by scanning electron microscopy.  Cantilever chips were mounted onto 

standard aluminum specimen mounts (Ted Pella) pretreated with a small amount of 

Aquadag colloidal graphite (Ted Pella). Images were acquired with a Hitachi Model S-

800 scanning electron microscope (SEM). Distances measured in the SEM were accurate 

to within ±10%. A Nanoscope IIIa scanning probe microscope (Veeco Metrology) in 

“Extended Mode” equipped with a signal access module (SAM) and a SR785 Dynamic 

Signal Analyzer (Stanford Research Systems) were used to monitor/acquire the thermally 

driven power spectrum of the cantilever beams natural motion. 

 

Results and Discussion 

Figure 3.3 presents a set of images acquired on a FESP cantilever probe and is typical of 

those obtained on all probes examined.  Clearly visible in these images is the trapezoidal 

cross section of the beam. Ten different beams from two different manufacturers and five 

different fabrication batches were examined.  Careful inspection of the images and 

cantilever dimensions reveals a high degree of uniformity among cantilevers from 

different manufactures and fabrication batches.  The average ratio of the bottom face to  
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Figure 3.3.  SEM images of several FESP probes fabricated by Veeco Probes. (a) Top-
view of the entire cantilever beam (b) an increased magnification of the beam in (a) 
showing the two apparent widths of the beam (marked in white) (c) and (d) angled views 
of a cantilever probe showing the trapezoidal cross-sectional shape. 
 

 

 

 66



the top face (tip side) of the beam was 1.69 ± 0.15. The incline angle from the bottom 

face to the top face was on average 22.3 ± 1º. 

 

From Euler-Bernoulli beam theory [221], the stiffness, k, of rectangular beams with 

trapezoidal cross sections is proportional to I, the second moment of its cross sectional 

area  

      3

3
l
EI

=k     Equation 3.6 

Where I for a beam with a rectangular cross-section is: 

12

3wtI =      Equation 3.7 

Geometrically, the second moment of a beam with a trapezoidal cross section, Itrapezoid, 

[222] [Appendix for derivation] is: 

( )
( )ba

babatItrapezoid +
++

=
36

4 223

    Equation 3.8 

where t is the beam thickness, a is the width of the top face (tip side) of the beam, b is the 

width of the bottom face (see Figure 3.4). Stiffnesses for ten beams were determined 

based on the Euler-Bernoulli model (eqn 3.6 and 3.8) and an elastic modulus[218] of 130 

GPa and are presented in Table 3.1. 

 

The fundamental resonance mode of the beam, fo, is related to its stiffness by 

   
m

k
A

EI
L

f i
o *2427.02

12

πρ
α

=





=     Equation 3.9 

where m is the mass of a free cantilever beam oscillating in space [7]. The effective mass 

of the beam is a function of the density of the silicon as well as the volume of the beam  
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Figure 3.4. Graphical depiction of the location of the center-of-mass of a trapezoid and 
the corresponding measurable lengths where a is the width of the top portion of the beam 
(tip-side), b is the width of the bottom portion, t is the beam thickness, the point (cx,cy) 
represents the center-of-mass of the trapezoid. 
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(function of beam geometry). Calculated values of ƒo (using a density[218] for silicon of 

2.33 g/cm3) also are listed in Table 3.1. 

 

To account for dampening in air, the calculated (or modeled resonance with air 

dampening) was calculated using the approach reported by Chon et. al [223] is: 

2
1

**4
**1*

−

















+=

l
tff

c
vacair ρ

ρπ   Equation 3.10 

where ƒair is the primary resonant mode of the cantilever in air, ƒvac is the primary 

resonant mode of the cantilever in vacuum, ρ is the density of the fluid environment that 

the cantilever resides (ρair = 1.18 kg/m3) [223], t is the beam thickness, ρc is the density of 

the cantilever (ρc = 2330 kg/m3) [218] and l is the length of the cantilever. 

 

The calculated values compare favorably with measured values (~ average difference of 

2%). The small difference between the computed and observed resonance frequencies is 

likely due to the unaccounted mass of the tip. 

 

To estimate the impact of calculating beam stiffnesses for cantilevers with sharpened tips 

using the rectangular cross section model (method #3 and equations 3.6 and 3.7), the base 

width of the trapezoid was used as the width of the beam.  Computed stiffness values 

ranged from 15 to 25% larger than the stiffness calculated for a trapezoidal moment 

(equations 3.6 and 3.8) (Table 3.2).  Thus, the widespread use of method #3 for  
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Table 3.2. Comparing the stiffnesses of the same beam that are derived 
from using a trapezoidal moment, a rectangular moment, and Sader’s 
Method (equation  (3.2)) 

Cantilever No. k*
trapezoid k*

rectangle kSader 
1 2.82 3.66 2.34 
2 2.42 3.24 3.39 
3 2.01 2.38 3.39 
4 3.38 4.45 5.18 
5 2.02 2.58 2.79 
6 1.79 2.28 2.28 
7 4.83 6.37 6.38 
8 2.29 2.77 4.03 
9 4.17 5.48 6.05 
10 3.58 4.79 5.31 

* Beam stiffnesses calculated via equation (3.6) using either a 
trapezoid or a rectangle as the second moment of the beam's cross 
sectional area. 
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cantilevers of this type results in a substantial and systematic overestimate of the spring 

constant, the magnitude of which scales with cantilever thickness.   

 

Conclusions 

In light of these findings, interpretations of force-based measurements acquired with 

cantilevers having non-rectangular cross-sections whose spring constants were 

determined using method #3 should be reevaluated.  In comparison with Sader’s method, 

significantly different stiffnesses were determined. Thus, Sader’s method needs to be 

used with caution when approximating the stiffness of AFM cantilevers. Other methods 

that assume a uniform width may also require the corrections delineated herein. 

 

In summary, this new approach of carefully characterizing the cross-sectional geometry 

of a cantilever beam can have a large impact on calculated cantilever beam stiffnesses. 

The presented approach accounts for the nonrectangular cross-section of the cantilever 

beam that results from dynamic etch processes currently used to sharpen the probe tip. 

The current practice of computing beam stiffness assuming a rectangular cross section 

results in a gross overestimation of the actual value. Provided that the cantilever 

manufacturers can provide researchers in the SPM field with reliable elastic moduli for 

the silicon that the cantilevers are fabricated from, this geometrical method would only 

require that the dimensions of the cantilever be accurately determined.   
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CHAPTER 4 

CARBON NANOTUBES 

 

MULTIWALLED AND SINGLE WALLED CARBON NANOTUBES 

Carbon nanotubes, first discovered by Sumio Iijima [224], are cylinders only composed 

of graphitic carbon.  Single walled carbon nanotubes (SWNT) have diameters as small a 

3 nm and can be several microns in length.  Multiwalled carbon nanotubes (MWNT) are 

comprised of several concentric carbon cylinders (Figure 4.1).  Their diameters are 

proportionate with the number of walls and can span a range from 4 to 30 nm.  The 

lengths, like SWNTs, can be several micrometers long.  

 

Carbon nanotubes exhibit very high thermal and electrical conductivities and have a 

tensile modulus outmatching steel [225].  This unique combination of properties has 

spawned a global research effort in nanotube applications in composites, chemical 

sensors, logic gates and drug delivery [226,227].  In this chapter, nanotube synthesis, 

characterization of properties and applications will be reviewed. 

 

Synthesis 

Several methods for creating carbon nanotubes have been developed.  Arc-discharge, 

laser ablation and chemical vapor deposition (CVD) are the three main methods for 

fabricating SWNTs and MWNTs [228].  Both arc-discharge and laser ablation require 

solid-state carbon precursors and these processes involve the vaporization of carbon at 

thousands of degrees Celsius. CVD requires hydrocarbon gases as the carbon source and  
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Figure 4.1. (a) Cartoon depicting the formation of a single walled carbon nanotube from a 
single sheet of carbon atoms rolled into a cylinder. (b) Cartoon depicting the formation of 
a multiwalled carbon nanotube from a multiple sheets of carbon atoms rolled on top of 
one another.  
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metal particles to act as catalysts.  CVD can be carried out at significantly lower 

processing temperatures (500 - 1000°C) [229].  

 

Recently Smalley and co-workers have devised a process that provides substantially 

higher yields and purity levels of nanotubes [230,231].  This process, coined the “HiPco 

Process” uses iron pentacarbonyl as the catalyst source and carbon monoxide (CO) as the 

carbon source.  At the relatively high temperatures and pressures (~1000°C and 40 atm, 

respectively), Fe(CO)5 decomposes and acts as nucleation sites for the growth of the 

carbon nanotubes.  Solid carbon is produced from the CO feedstock via the Boudouard 

reaction: 

 

The solid carbon nucleates at the iron site and forms a uniform lattice structure. This 

process is capable of yielding approximately 10 grams of nanotubes per day.  

 

It has been estimated that the global production of carbon nanotubes to date has been 

approximately 10 lbs.  Each method for preparing carbon nanotubes can be characterized 

by the purity and yield of the nanotubes obtained (# of nanotubes vs. amount of catalyst 

vs. byproducts).  The typical purity of carbon nanotube synthesis can range anywhere 

from 30 to 90%.  Thus, improved synthetic routes must be developed if devices requiring 

a high purity of nanotubes are to be realistically designed and marketed.  
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A single nanotube’s diameter, mechanical and electrical properties have been shown to 

be dependent on the orientation of the hexagonally packed carbon atoms relative to the 

longitudinal axis of the tube [[232-238]].  The orientation of the carbon atoms on the 

nanotube’s axis is referred to as chirality and can be determined by establishing a vector 

on a graphene plane and wrapping the tube about this vector (see Figure 4.2).  The chiral 

indicies (a1, a2) of a nanotube are determined from a vector that is drawn from a reference 

point (0,0) on the nanotube’s backbone to another point on the nanotube’s backbone.  The 

lattice vector is established by drawing a line from the reference point (0,0) to another 

indicie on the graphene plane (9,-5), (7,0) or (2,5).  Then the graphene sheet is folded 

along one of these the lattice vectors.  As a result, the carbon atoms will be arranged in 

either a symmetric (Figure 4.2b), positive (Figure 4.2c) or negative (Figure 4.2d) twist 

around the axis of the tube.  A nanotube’s chirality is typically determined via STM and 

Raman spectroscopy [239].  It has been shown that the chirality of a nanotube will 

influences its electronic conductivity: metallic or semiconducting [225,240].  

 

Proposed Nanotube Uses 

As alluded by de Heer [241] there has been a significant amount of “hype” involving the 

commercialization of nanotube-based materials and devices.  To date however, there is 

only one known commercial product that utilizes carbon nanotubes.  Hyperion Catalysis 

Interantional Inc. markets a composite material with, unfortunately, only marginally 

enhanced mechanical properties.  
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Figure 4.2. (a) Graphene sheet with three different orientation vectors drawn illustrating 
positive, negative and neutral chirality. Wrapping the graphene sheet around each vector 
individually, yields a nanotube with a specific diameter and a particular orientation of the 
carbon atoms about the linear axis of the nanotube (b) symmetric (c) positive and (d) 
negative twist. 
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Fundamental research is needed for development of many of the proposed applications, 

especially as components in devices.  For example, promising nanotube applications in 

the semiconductor industry involve the use of carbon nanotubes in ultra-small logic gates.  

If possible these devices would be considerably smaller than the transistors that are 

created via silicon micromachining techniques[242-247].  Also, nanotubes are attractive 

from a packaging standpoint; since the nanotubes are extremely robust, their 

incorporation into packages would provide increased strength and improved thermal 

management. Thus, the finished products could be more robust. 

 

Nanotubes have also been proposed as active sensing elements in chemical sensors [248-

252].  For example, specific analytes in solution have been detected in solution by 

monitoring electron transport through the nanotube [248-250,252].   

 

Carbon nanotubes are highly suited as fillers in composites.  They are extremely strong, 

both thermally and electrically conductive, and coupled with their lightweight, suggest 

other applications of polymeric composites. A nanotube filled composite is analogous to 

concrete reinforced with re-bar.  Re-bar acts as a structural stabilizer for the concrete so 

that that composite can bear larger loads and withstand larger shearing forces [253].  

Typical polymeric composites utilize polymers and some type of “filler” material such as 

carbon black, metal particles, etc. [254]. 

 

Aerospace engineers are interested in using carbon nanotubes for space applications.  It 

has been extremely difficult to tailor composites that can handle transport into space; 
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nanotube composites show promise [255].  A common problem in space is that there is 

no electrical “ground”.  Instrumentation can build up significant levels of static charge 

that cannot be dissipated. This leads to device failure [255].  The high electrical 

conductivity of nanotubes suggests their use in composites for dissipation of static 

charge.  

 

Nanotube-based composites have been prepared; albeit with extensive aggregation and 

little control over their orientation [225,256-259].  Ideally, if the nanotubes dispersed 

perfectly into the polymer, there would be no mechanical defects and the bulk composite 

would have uniformly enhanced mechanical and electrical properties.  This is illustrated 

in Figure 4.3.  

 

To increase the dispersal of the nanotubes in the polymer researchers have chemically 

modified nanotubes in hopes of reducing aggregation.  The dispersions of the tubes have 

been enhanced using this approach, but electron transport is significantly reduced [260-

263].  Chemical modification results in a change in the hybridization of the carbon in the 

nanotube from sp2 to sp3.  This modification significantly reduces the electron transport 

properties of the nanotube.  However, composites made in this fashion would be 

appropriate for applications where electrical conductivity is not desired (i.e. strictly a 

reinforcing agent). 

 

Research is ongoing to find ways to disperse nanotubes without covalent modification 

[264,265].  If polymers can be tailored to enhance the dispersal of the nanotubes and not  
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Figure 4.3. (a) Cross-sectional view of an ideal dispersal of nanotubes into a polymer. (b) 
typical dispersion of nanotubes into polymers which leads to defect areas (dashed lines) 
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sacrifice their conductive properties, viable composites for space applications will 

become a reality. 

 

Characterizations of Nanotubes 

Several analytical techniques have been used to probe the chemical and physical 

properties of carbon nanotubes.  Many of these techniques and the chemical/physical they 

provide are summarized in Table 4.1.  As noted in the table, the scanning probe 

microscope has proven to be the best tool in this endeavor. The remaining pages of this 

chapter are excerpts pertaining to the characterization of nanotubes from the reviews I 

have co-authored and presented. The intent is to demonstrate the power of the scanning 

probe microscope in characterizing the chemical, structural, and mechanical properties of 

SWNTs and MWNTs. 

 

STM/STS Characterizations of Carbon Nanotubes  

Odom et al. [266] and Ouyang et al. [267] performed a thorough investigation of their 

structural and electronic properties.  This work is the basis for the advanced studies 

presented in the following paragraphs. 

 

Ouyang et al. [268,269] significantly advanced the characterization of SWNT via STM 

and scanning tunneling spectroscopy (STS).  First STM and STS were used to image and 

characterize junctions on individual SWNT.  The atomic structures and electronic 

properties of metal-semiconductor and semiconductor-semiconductor junctions on 

individual SWNT were resolved.  Spatially resolved STS spectra were obtained across a  
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Table 4.1 Analytical techniques that are used to characterize the various 
properties of carbon nanotubes 

 
Analytical Technique(s) Nanotube Properties References 

Temperature programmed 
desorption, IR spectroscopy 

bulk molecular binding [270-278] 

Raman scattering degree of ordering of the 
nanotubes, the ratio of sp2 to sp3 
bonding and the size of graphitic 
crystallites in the bulk material 

[279-281] 

Electron spin resonance (ESR) 
and Conduction electron spin 
resonance (CESR) 

electronic properties [282,283] 

scanning tunneling microscopy 
and spectroscopy (STM, STS) 

band gap investigation, chirality 
and topography 

[284-286] 

contact angle measurements Wetting of nanotubes [287] 
Transmission electron 
microscopy (TEM) and Scanning 
electron microscopy (SEM) 

wall structure [288,289] 

Atomic force microscopy mechanical properties, electrical 
properties and manipulation 

[9,18,290] 
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metal-semiconductor junction.  Second, they were able to detect energy gaps in SWNT 

due to the curvature of the graphene sheet and observed a pseudogap on a (8,8) SWNT 

bundle.  This work has led to the advancement of STM and STS techniques by other 

researchers in the field.  Their technique enables prediction of individual nanotube 

behavior prior to their assembly in nano-scale devices. 

 

Lemay et al. [291] used STM and STS to map the two-dimensional structure of 

individual wavefunctions in a metallic SWNT. Their results verified that the dispersion 

relation near the Fermi level is linear.  Based on the data obtained, the Fermi velocity and 

the p-p overlap energy was calculated to be 8.2 ± 0.7 x 105 m/s and 2.6 ± 0.2 eV, 

respectively for the individual SWNT studied.  Their results are comparable to those 

obtained with other techniques that measure bulk properties of nanotube ensembles.  

 

The local potential barrier above a carbon nanotube connected to two metal electrodes 

and switched on by a backside gate was examined using a conductive tip.  This tip is able 

to map a potential variation above the tube with a period of about 40 nm [292].  Transport 

current was spatially imaged for nanotubes wired between electrodes. It was found that 

tubes within bundles have weak electronic coupling [293]. 

 

Nanotubes filled with spherical molecules are known as “nanopeapods”.  STM can be 

used to visualize the location of the inclusion compounds in the peapod [294].  

Conductance along the backbone of the nanopeapod was measured; a drop in bandgap 
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energy was found at locations where fullerenes resided in the tube [295,296].  Theoretical 

treatment of the conduction in these nanostructures has been presented [297]. 

 

Carbon nanotubes are thermally and electrically conductive materials with high tensile 

strength.  Their incorporation into polymer composites portends of next-generation light-

weight, high-strength materials and motivates research in this area.  Technical challenges 

that presently inhibit realization of new materials with these properties include control of 

the orientation and dispersion of the nanotube within the polymer matrix. 

 

Mechanical Properties Measured with AFM (NanoSpring Introduction) 

The atomic force microscope (AFM) has been used to probe many of the mechanical 

properties of carbon nanotubes [298] Bending properties of both SWNTs [299] and 

MWNTs [300-303] have been explored. It has been demonstrated that these bending 

properties can influence the electrical characteristics of the nanotube [304]. The radial 

compressibility of a MWNT has also been experimentally probed. [305] Recently Park et 

al. developed a model to predict the influence of nanotube bending/compression on 

chemical reactivity. [306] 

 

Using the AFM as a force spectroscopic tool has enabled the measurement of the tensile 

strength of single walled [307] and multiwalled [308] nanotubes.  More recently Chen 

and co-workers demonstrated the ability stretch and measure the tensile response a 

carbon nanocoil using a fairly elaborate experimental setup [218].  Other work has 

focused on the non-tensile mechanical measurements of carbon nanotubes.  Radial 
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compression of MWNTs showed that they can be reversibly deformed up to ~40% and 

that compression increases nonlinearly with applied stress [305].  The elastic modulus 

increases with compression ranging from 9.7 to 80 GPa.  The compression strength was 

greater than 5.3 GPa for a 10 nm diameter MWNT [309]. 

 

Collapsed MWNTs or nanotube ribbons are extremely flexible and readily conform to an 

underlying substrate [310].  Coiling of MWNTs was observed; the helical shape has little 

effect on the measured Young’s modulus. Typical values for Young’s modulus were 0.4 

– 0.9 TPa. [311]  

 

Rolling of carbon nanotubes while on highly ordered pyrolytic graphite (HOPG) follows 

a gear-like motion. This motion is governed by an overlap of the hexagonal graphite 

surfaces of the carbon nanotube and the HOPG.  Interlocking of the atomic lattices 

increases the force required to move the carbon nanotube and the result is the nanotube 

“locks” into a gear-like motion.  As a nanotube is rotated in plane the resulting “lock” 

into gear like motion occurs every 60 degrees, consistent with theoretical predictions 

[312]. 

 

The electronic properties of nanotubes, either under or after applied strain, have also been 

research focus.  In situ measurements of the electronic properties of carbon nanotubes 

under stress have shown that the conductance in a SWNT drops by two orders of 

magnitude when deformed by an SFM tip.  This is consistent with the reversible 

formation of sp3 bonds during the mechanical deformation [313,314].  Other studies have 
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measured the resistance of induced defects such as closely separated kinks in a SWNT 

[315].  These defects were found to have a resistance from 10 to 100 kW and even 

showed single electron charging behavior.  The electronic behavior of carbon nanotubes 

has lead to their use in single electron transistors [247]. 

 

It has been demonstrated that an AFM tip can also be used to cut either multi-walled 

[316] or single-walled [317] nanotubes, affording a straightforward method for removing 

defect-laden portions or creating nanotube-fragment quantum dots.  Woodside and 

McEuen used the AFM to study single-electron motion in nanotube quantum dots [318].  

They remind us that although scanned probe techniques have great sensitivity, these 

techniques alter the native properties of the system under measurement. 

 

Measurement of the impact of mechanical stress on the electrical properties of carbon 

nanotubes has been a research focus.  Bozovic et al. [319] studied the effect of strain on 

the electrical properties of single walled carbon nanotubes.  Using scanning gate 

microscopy they showed that defect sites, created by mechanical deformation, cause a 

significant decrease in electron transport along the tube. 

 

Kim et al. [320] elucidated the electrical properties of a MWNT while it was being 

mechanically deformed using nanomanipulators, Thelander and Samuelson  [321] made 

electrical contact to both ends of a nanotube and then used an AFM tip to manipulate the 

nanotube on the surface.  Tip-induced bending of the nanotube caused measurable 

decreases in the tubes conductance.  Minot and coworkers [304] have shown that the 
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band structure of a carbon nanotube can be dramatically altered by mechanical strain.  

They suspended a nanotube over a trench and clamped both ends with electrical contacts.  

An AFM tip was brought into contact with the tube and used to vary the strain on the 

nanotube.  Nanotube conductance was monitored as a function of strain.  Their results 

demonstrate that strain can open a band gap in a metallic nanotube and modify the band 

gap in a semiconducting nanotube.  

 

Williams and co-workers present a unique AFM-based technique for measuring the 

torsional stiffness of multiwalled nanotubes [303].  They found that the torsional stiffness 

of a multiwalled nanotube becomes larger during repeated torsional strains.  

 

Recently, the research groups of both Professor Hongjie Dai (Stanford University) and 

Professor Charles Lieber (Harvard University) have used the AFM to study the 

bending/buckling of nanotubes that are attached to the tip of the AFM cantilever probe 

[200,203].  In both research groups, they have interpreted the bending response of the 

tube by monitoring both the deflection of the cantilever and the oscillatory behavior of 

the cantilever/nanotube probe prior to and during contact with a surface (Figure 4.4, 

Figure 4.5).  For example, Lieber and co-workers have interpreted the immediate 

deflection upward and subsequent static position of the beam as the nanotube making 

contact with the surface and then the nanotube bending out of the way.  They have 

interpreted the corresponding drop in oscillation amplitude of the beam during the 

approach of the scanner towards the tip as the point at which the tube makes contact with 

the surface.  Then (still during upward movement of the scanner) the amplitude begins to  
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Figure 4.4. (a) SEM image of multiwalled nanotube on the end of a cantilever tip. (b) 
Deflection force curve of the nanotube-tipped beam when it makes contact with the 
substrate. (c) corresponding oscillation amplitude curve that is measured during the 
approach of the substrate towards the nanotube/tip. (Reproduced from Cheung, C. L.; 
Hafner, J. H.; Lieber, C. M. Proceedings of the National Academy of Sciences of the 
United States of America 2000: 97; 3809-13. Permission granted from both the PNAS 
copyright office and from Professor Lieber). 
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Figure 4.5. (a) SEM image of multiwalled nanotube on the end of a cantilever tip. (b) 
oscillation amplitude curve that is measured during the approach of the substrate towards 
the nanotube/tip where once the tube touches the surface the oscillation amplitude 
randomly drops continually during the rest of the approach and for a majority of the 
retract portion of the curve (approach is in grey and retract is in black). (c) oscillation 
amplitude curve that is measured during the approach of the substrate towards the 
nanotube/tip after the tube is shortened. (Yenilmez, E.; Wang, Q.; Chen, R. J.; Wang, D.; 
Dai, H. Applied Physics Letters 2002: 80; 2225-27.  Permission granted from both the 
AIP copyright office and from Professor Dai). 
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rise slightly (but never back to its free amplitude).  A symmetric response for both the 

deflection and oscillation amplitude curves is observed during the retraction of the 

substrate away from the cantilever/nanotube. 

 

Dai and co-workers have monitored the oscillation amplitude of the cantilever/nanotube 

to interpret the buckling characteristics of a long nanotube and then have shortened the 

length of the nanotube via a bias voltage between the cantilever and a conductive surface.  

The shortening of the nanotube is tracked following the voltage bias, by acquiring 

another oscillation amplitude curve where the duration of dampening is much shorter 

than the dampening of the long (uncut) nanotube (Figure 4.5c). 

 

Scanning Probe Studies Aiding Nanotube Composite Research 

Characterization of the defect density of nanotubes in polymer composites has been 

accomplished using both current sensing AFM and magnetic force microscopy [322,323].  

Wagner’s group has measured the force required to detach a nanotube from a polymer by 

laterally scratching the nanotube out of the polymer using an AFM tip [324].  More 

recently, they embedded a nanotube-tipped cantilever in a polymer and then measured the 

force required to pull the nanotube out [325].  After removal, images of the polymer 

surface revealed the location where the nanotube was previously embedded.  

 

Ding et al. [326] have observed polymer sheathing in a carbon nanotube-polycarbonate 

composite.  Contact of the polymer sheath with an AFM tip perturbs the polymer 

multilayer structure and the polymer sheath rolls into a ball.  These observations suggest 
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the importance of both nanotube-polymer and polymer-polymer interactions in enhancing 

the performance of nanotube-polymer composites.  
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CHAPTER 5 

ADHESION MAPPING OF CARBON NANOTUBES 

 

Introduction 

As mentioned in the previous chapter, carbon nanotubes possess high electrical 

conductivity and mechanical strength.  This unique combination of properties has led to 

the investigation of using carbon nanotubes in polymeric composites.  It is clear from 

current research, that a fundamental understanding of the interface between carbon 

nanotubes and polymeric materials is needed to enhance the dispersal and controlled 

orientation of nanotubes into polymer composites.  

 

Thus far, only a few theoretical and experimental studies have been reported on the 

chemical and physical interactions at the nanotube/polymer interface. 

[287,324,325,327,328] One of the objectives of this research was to use chemical force 

microscopy to probe the nanotube/polymer interface.  The aim was to measure the 

binding force of single molecules to the sidewalls of carbon nanotube. 

  

Chemical Force Microscopy (CFM) [329] is an extremely versatile technique that has 

been used to explore the mechanical properties of single biological molecules [330-332], 

the adhesive forces between molecules [333-337] and adhesive mapping of polymer 

composites [141,338,339].  By bringing a chemically modified AFM cantilever tip into 

contact with the sidewall of a SWNT, the adhesion present between specific molecules 

and the backbone of single walled carbon nanotubes was examined. 
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Experimental 

Materials  

There were two classes of thiols used in this study; linear alkanethiols and para-

substituted arylthiols.  The linear alkanethiols used in this study were: 11-amino 

undecanethiol (Dojindo Chemicals), 1H,1H,2H, 2H perfluorodecane-1-thiol 

(FluroFlashTM), 11-dodecane thiol, 11-mercaptoundecanoic acid, 1,6 hexanedithiol 

(Aldrich), bis(11-hydroxyundecyl) disulfide [340], 11-undecenethiol [341].  The para-

substituted arylthiols used in this study were 4-mercaptobenzonitrile (Apin Chemicals 

Ltd.), 4-bromobenzenethiol, 4-methylbenzenethiol, 4-nitrobenzenethiol, benzenethiol, 4-

methoxybenzenethiol, 4-fluorobenzenethiol, 4-mercaptophenol and 4-aminothiophenol 

were used as received (Aldrich).  Stock solutions were 1mM thiol in either filtered 

ultrapure ethanol or hexane (Aldrich).  All of these thiols are known to form well-ordered 

self-assembled monolayers (SAMS) [342].  

 

Commercially available cantilevers used in these experiments were coated with gold on 

both sides to enable functionalization of the cantilever tip with a thiol chain 

(MikroMasch).  The cantilevers were cleaned in 3 parts H2SO4/ 1 part H2O2 (piranha), 

thoroughly rinsed in EtOH and placed in 1 mM thiolic solution for 3-24 hrs. Following 

exposure to thiolic solutions each cantilever was thoroughly rinsed in wither filtered 

ethanol or hexane.  Following the rinsing step, the thiolated cantilevers were placed under 

a backfilled dry nitrogen vacuum for 3 hrs and then placed in a dessicator before use 

[343].  
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All experiments were carried out on highly purified single walled carbon nanotube paper 

of predominantly (10, 10) chirality.  The paper was prepared by workers in Professor 

Richard E. Smalley’s lab at Rice University according to their previously reported 

method [344].  The paper consisted of single walled nanotube ropes and bundles of ropes. 

Figures 5.1 and 5.2 depict SEM and AFM images of the paper and verify the presence of 

a high number of tubes and bundles per unit area.  

 

Instrumentation  

AFM/Adhesion measurements were carried out with a Nanoscope IIIa Extended 

Multimode SPM (Veeco) operated in “Force Volume” mode.  The piezoelectric scanner 

was calibrated in x, y and z with NIST certified calibration gratings (MikroMasch). Force 

constants for the cantilevers were acquired via the thermal resonance method [213,214] 

using the Signal Access Module (Veeco) and a SRS 785 Dynamic Signal Analyzer 

(Stanford Research Systems).  Force constants ranged from 0.7 to 1.2 N/m. After the 

adhesion measurements were complete, each cantilever was cleaned using a UVO-

Cleaner® (Jelight Company).  The tip radius of each cantilever was determined using tip-

deconvolution software (SPIPTM by Image Metrology).  All experiments were performed 

under a custom-built nitrogen atmosphere to reduce the relative humidity to less than 2%. 

[345,346] 
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Figure 5.1. Scanning electron micrographs of SWNT paper prepared by the HiPco 
process. (a) low magnification. (b) high magnification. 
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Figure 5.2 Tapping ModeTM AFM images at different locations (a) and (b) on the SWNT 
paper (Image sizes are 1µm x 1µm).  
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Force Volume Imaging and Adhesion Mapping  

The force volume mode (see Chapter 1) is an extension of contact mode AFM. The 

sample is translated underneath the cantilever in the x,y and z direction.  As the sample 

moves in x and y, a topographical image of the underlying sample is generated (Figure 

5.3a).  For every incremental movement in x and y, a corresponding z-movement is 

executed for each pixel in the topographical image (i.e. a force curve measurement at 

every pixel).  All of the force measurements are summarized in a “force volume image” 

of the sample (Figure 5.3b).  The contrast in a force volume image is related to the 

maximum deflection of the cantilever.  Force curves that have a small pull down distance 

are light while force curves that have a large pull down distance are dark.     

 

Force volume experiments in this study were acquired at 256 pixels per topographic 

image (i.e. 256 force measurements per image).  All experiments were carried out using 

the same x, y scan size (50 nm X 50 nm) and the same z-loading rate (controlled via the 

trigger threshold). Using a method similar to the one presented by Eaton et al. [141,339] 

cantilever deflection (nm) vs. scanner/sample position (nm) (force curves) were extracted 

using a custom designed data extraction program (Visual Basic)(Appendix B.1).  The 

program is capable of extracting 256 force measurements per image.  Following the 

extraction of the force curves from the force volume images, the individual force curves 

are converted from tip deflection (nm) vs. separation (nm) to force (nN) vs. separation 

(nm), using the spring constants that were experimentally determined for each cantilever.  

Next, the force at maximum tip deflection (adhesion force) was extracted from each force 

curve.  These forces were then used to generate 2-D adhesion maps that illustrate the  
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Figure 5.3. Typical force volume data acquired on the SWNT paper output from the 
Nanoscope IIIa software. (a) Topographical image of the SWNT paper (50 nm x 50 nm). 
b) Force volume image corresponding to the topographical image. c) Individual force 
curves taken across the sample (marked with a red “x” in the force volume image). 
 

 

 98



amount of adhesive force present between the thiol-modified cantilever and the SWNT 

paper. Force volume images were acquired over 10 different locations on the SWNT 

paper for each chemically modified tip.  

 

Results 

Adhesion Mapping of SWNT Paper  

Prior to force volume imaging, the SWNT paper was imaged in Tapping ModeTM using a 

NSC 12 cantilever (MikroMasch) to locate areas on the paper that possessed a high 

density of tubes/bundles per unit area (Figure 5.2). Once these areas were located the 

chemically modified cantilever was mounted into the AFM to perform force volume 

measurements.  

 

Figure 5.4 depicts a typical topographical image and that image’s corresponding adhesion 

map (following data extraction) using a cantilever that had a hydroxyl-terminated thiol 

self assembled on its tip.  After acquiring ten different adhesion maps at various locations 

on the SWNT paper, the frequency at which the cantilever experienced a force of a 

particular magnitude was investigated and plotted in a histogram.  

 

Figure 5.5 is a histogram plot of the rupture forces that the cantilever experienced during 

the force volume imaging of the SWNT paper using a hydroxyl-terminated thiol.  A 

bimodal distribution of the forces, one band centered at 5nN and the other at 12 nN is 

present in the data.  Histograms summarizing the adhesion forces that the cantilever 

experienced during force volume imaging with each alkanethiol are presented in Figure  
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Figure 5.4. (a) Highly pixelated topographical image acquired in force volume mode 
using a cantilever tip that was modified with a hydroxyl-terminated alkanethiol (50 nm x 
50 nm scan size). (b) Adhesion map generated from the individual force curves measured 
at each pixel in the image. The contrast in the adhesion map is blue represents an 
adhesive force from 0 to 4 nN, maroon 4-8 nN, yellow 8-12 nN, and green 12-16 nN. 
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Figure 5.5. Histogram showing the distribution of forces required to detach the hydroxyl-
terminated thiol modified cantilever from the SWNT paper.  
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Figure 5.6. Histograms showing the distribution of forces required to detach a chemically 
modified cantilever tip from the SWNT paper (a) Methyl (b) Hydroxyl (c) Carboxylic 
Acid (d) Perfluoro (e) Undecene (f) Sulfur (g) Amine 
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5.6.  Other thiols seem have mono-, bi-, or tri-modal distributions of forces.  The average 

rupture force (and standard deviation) was determined for each thiol; the data is 

summarized in Table 5.1.  From this table, no clear trend is apparent.  

 

After further inspection of the topographic and force volume data, a direct correlation of 

sample topography to the adhesion forces was observed.  For example, by comparing the 

topographical image to its adhesion map (Figure 5.7), one can see that the areas that are 

that are topologically “low” correspond to areas of “high” adhesion.  Similarly, the areas 

that are topologically “high” in the image correspond to areas of “low” adhesion.  This 

phenomena has been observed in other adhesion experiments [141,339] as well as in 

force modulation experiments [347]. The relationship of topography to the adhesion force 

is a direct function of the surface area contact that exists between the cantilever tip and 

the substrate during the force volume experiments.  

 

As the cantilever travels to areas that are low (“valleys”) in the topographical picture, 

there will be a large area of the cantilever tip/thiol touching the sample (Figure 5.8a).  As 

the cantilever moves from the low area of the substrate to the top of a tube or bundle of 

tubes, there should be a decrease in the overall adhesion because there is now a lower 

amount of surface area contact present between the tip and the sample (Figure 5.9b). 

Also, notice in the adhesion map that the width of the area that has the lowest adhesive 

force corresponds to width of the tall feature in the topographical image (the width of the 

linear feature is approximately 15 nm).  
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Table 5.1.  Summary of the total adhesive forces 
measured between each chemically modified 
cantilever and the SWNT paper. 

 

Thiol 

Average Force 
of Adhesion 

(nN) 
Standard 
Deviation 

OH 11.7 8.9 

CH3 6.90 6.5 

COOH 9.32 5.8 

NH2 11.7 5.6 

Perfluorinated 5.47 3.4 

S 6.22 3.8 

C=C 10.0 6.0 
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Figure 5.7. (a) Topographical image (50 nm x 50 nm) with corresponding adhesion map, 
red arrows denote areas of the topographical image that have a correspondingly high 
adhesion. (b) Topographical image (50 nm x 50 nm) with corresponding adhesion map, 
red arrows denote areas of the topographical image that have a correspondingly low 
adhesion. The contrast in the adhesion map is blue represents an adhesive force from 0 to 
4 nN, maroon 4-8 nN, yellow 8-12 nN, and green 12-16 nN. 
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Figure 5.8. (a) Cartoon depicting the high adhesion force that the cantilever will 
experience as it makes contact in a topographically recessed area (i.e. between 
nanotubes). (b) Cartoon depicting the low adhesion force that the cantilever will 
experience as it makes contact in a topographically high area (i.e. along the backbone of a 
nanotube). 
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The distribution of forces observed in the histograms can be explained by the changes in 

sample topography as the cantilever travels from one area of the nanotube paper to the 

next.  Since it is of interest to determine the single molecule rupture force between the 

thiols and the single walled nanotubes, the adhesion forces for one thiol group cannot be 

averaged together; it is necessary to extract the forces that only correspond to a “known” 

or defined contact.  

 

Forces Corrected for Contact Area 

To obtain the single molecule adhesion forces, it is necessary to correct for the surface 

area contact artifact that is observed when performing these force measurements.  To do 

so, it was assumed that the rupture forces found on “high” topographical regions, are 

those from the smallest area of contact.  The force data was parsed so that data taken 

from regions of “low” topography were discarded.  This was accomplished by setting an 

upper and lower adhesion boundary that would output only the adhesion forces that were 

between the boundary values (Figure 5.9). These adhesion forces were then processed 

using the contact models proposed below. 

 

A common approach for comparing adhesion force measurements is to divide the mean 

adhesive force by the radius of the cantilever tip (F/r) [329,332].  Tip radii are typically 

determined by either placing the cantilever probe into a high-resolution scanning electron 

microscope (SEM) or transmission electron microscope or by imaging a sample that 

possesses precisely known geometrical features (for example; gold nanoparticles 

dispersed onto mica) [348,349].   
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Figure 5.9.  (a) The measured adhesion forces from a force volume measurement carried 
out at a 50 nm x 50 nm scan size  (b) Plot that graphically displays the numbers in (a), 
also referred to as an Adhesion Map. (c) Spreadsheet that is generated after using the 
adhesion force culling macro that only shows force that fall inside a predefined limit. All 
adhesion forces that fall outside the predefined limit (0 and 4 nN) are denoted as 0.00.   
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The tip radii of each of the cantilevers used in this study were determined after each 

adhesion mapping experiment.  The cantilever was exposed to an oxygen plasma to 

remove the thiol from the cantilever tip.  Then a high-resolution image of the nanotube 

paper was acquired with the cantilever at 8 locations on the nanotube paper (500nm scan 

size at 512 x 512 pixels per image).  These images were then processed using 

commercially available tip-deconvolution software (SPIPTM by Image Metrology).    

 

The approach of normalizing the adhesion forces by F/r does not take into account the 

contribution of topography or compressibility of the SAM.  To do so requires parsing of 

the adhesion data, removing adhesion data acquired at high areas of contact, measuring 

the tip geometry and analyzing the maximum load versus tip, monolayer and nanotube 

compressibility. 

 

The AFM tip and the nanotube can be represented geometrically as a sphere pressing on a 

cylindrical object.  If the nanotube compresses under cantilever tip (Figure 5.10), the 

following model is used to approximate the surface contact area: 
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where rtip = radius of the cantilever tip, rnt = the radius of the nanotube and t = height of 

thiol.  This model assumes that the nanotubes themselves are compressible under the 

forces exerted in these experiments and this is debatable [309,350-352].  An alternative  
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Figure 5.10. Cartoon depicting the alkane-thiol modified cantilever and the nanotube, 
assuming a rigid cantilever tip, pliant thiol layer and a rigid nanotube. a) prior to contact. 
b) thiol wraps around the tube during contact and the tube compresses radially and 
axially. c) the contact area between the cantilever and the tip is then numerically modeled 
as an elongated ellipse. 
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geometrical model depicts a cantilever tip (sphere), with a compressible thiol layer 

(second sphere coating the tip) and a nanotube (rigid cylinder) (Figure 5.11). 

 

If the nanotube remains uncompressed under the tip, the following model is used to 

approximate the surface area contact.  The cantilever was deflected the same amount in 

each experiment, so the thiols should all be deformed consistently from one experiment 

to the next.  The same loading rate was also used from one cantilever to the next.  These 

parameters not only influence the mechanical load on the thiol, but also influence the 

mechanical load on the nanotubes.  The calculated pressure exerted on the nanotube 

surface was 66 MPa and the known bending/compression force of a single walled carbon 

nanotube has been reported to be around 1 GPa.  Since the maximum applied pressure 

used in these experiments was much too small to buckle or compress the nanotubes but 

large enough to compress the thiol, equation 5.2 has been used to calculate the contact 

area: 

   

22 2 ttrraContactAre tipNT +⋅⋅⋅≈ π    (Equation 5.2) 

 

It is assumed that the thiols form a densely packed monolayer with a thiol packing 

density of 4.65 thiol molecules per square nanometer [341,353,354] with a tilt angle of 

30° relative to the surface normal [355,356]  . In this case it is assumed that the thiol film 

was totally compressible at the loads that were used in the experiments (Figure 5.11).  It 

is understood that the thiol molecules should compress [357-360] but assessing the 

degree of compressibility and its endgroup dependence needs further investigation.  
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Figure 5.11. Cartoon depicting the alkane-thiol modified cantilever and the nanotube, 
assuming a rigid cantilever tip, pliant thiol layer and a rigid nanotube. a) prior to contact. 
b) thiol wraps around the tube during contact. c) the contact area between the cantilever 
and the tip is then numerically modeled as an ellipse. 
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Linear Alkanes 

The adhesion forces corrected for contact area with equation (5.2) are summarized in 

Table 5.2.  The adhesion forces for the linear alkanes are strongest for the amine-

terminated alkane, which correlates with previous reports of SWNTs having a higher 

propensity to adhere on a surface modified with amine terminated molecules [361].  The 

general trend observed is that the affinity of the alkanethiol decreases in the following 

order: -NH2 > -COOH > -C=C > -OH > -F3 ≈ -SH > -CH3.  

 

An attempt was made to correlate these results with MD simulations as well as 

temperature programmed desorption studies that have been performed in other research 

labs studying carbon nanotubes and graphite.  A discrete correlation could not be made, 

however there a several plausible explanations.  Many of the methods used to study 

molecular interactions with HOPG [362-366] and activated carbon [367,368] assess the 

interaction of the bulk molecule with the carbonaceous substrate (i.e. the entire molecule 

lying on the carbon surface [369,370]). The interest here is strictly the interaction of the 

endgroup molecule with the nanotube backbone and thus far only molecules such as O2, 

NO2, NH3, and CO have been run in simulational and experimental contact with a carbon 

nanotube [371-375]. Comparisons were also made between the theses measured binding 

force and the electronegativity of the endgroup of the ω-terminated alkanethiol although 

no noticeable trend was observed. 
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Table 5.2. Measured rupture forces for the alkyl-thiols after correcting for the 
contact area between the cantilever tip and the SWNT paper  

 

Thiol 
Rupture Force per 

molecule (pN) 
Standard 
Deviation 

# of Force 
Curves 

F / R 
(nN/nm) 

Standard 
Deviation 

-CH3 7.55 2.03 142 0.15 0.04 

-S 8.24 2.55 1185 0.11 0.04 

-CF3 8.74 2.64 863 0.12 0.04 

-OH 9.62 2.49 696 0.09 0.02 

-C=C 11.38 2.76 943 0.18 0.04 

-COOH 12.2 2.65 289 0.18 0.04 

-NH2 23.42 4.11 1029 0.34 0.06 
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Para-substituted Benzenethiols 

Figures 5.12 and 5.13 depict a typical topographical images with each image’s 

corresponding adhesion map (following data extraction).  It is apparent from these 

images that the same topologically induced adhesion artifact is present.  Thus, making 

conclusions strictly from the adhesion histograms (Figures 5.14 and 5.15) will not yield 

any meaningful result.  

 

After correcting for the contact area-induced artifact (using a tilt angle of 40°[354]), it 

appears that the nitrile-terminated arylthiol clearly exhibits the highest binding force 

whereas the methyl-terminated arylthiol adhered the least (Table 5.3). The general trend 

in the adhesion force per molecule in regards to the substituient located at the para-

position is: -C≡N > -H > -OCH3 > -F > -OH > -Br > -NH2 > -NO2 > -CH3.   

 

A majority of the measured adhesion forces for the para-substituted benzenethiols are 

significantly higher than the adhesion forces measured for the alkanethiols. This could be 

due to a contribution of the aryl group interacting with the nanotube as well as the 

molecule located at the para-postion.  It is also important to note that several of these 

para-substituted arylthiols are known to have significantly different packing densities 

[376-378]. Benzenethiol has been reported to both self-assemble with a regular packing 

angle but can also lie down on the surface with an extremely small tilt angle (less than 

10°) [379].  If this were taken into account, the calculated binding force for per molecule 

for benzenethiol would increase drastically due to the drop in packing density.  
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Figure 5.12. (a) Highly pixelated topographical image acquired in force volume mode 
using a cantilever tip that was modified with aminobenzenethiol (50 nm x 50 nm scan 
size). (b) Adhesion map generated from the individual force curves measured at each 
pixel in the image. The contrast in the adhesion map is blue represents an adhesive force 
from 0 to 4 nN, maroon 4-8 nN, yellow 8-12 nN, and green 12-16 nN. 
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Figure 5.13. (a) Highly pixelated topographical image acquired in force volume mode 
using a cantilever tip that was modified with nitrobenzenethiol (50 nm x 50 nm scan 
size). (b) Adhesion map generated from the individual force curves measured at each 
pixel in the image. The contrast in the adhesion map is blue represents an adhesive force 
from 0 to 2 nN, maroon 2-4 nN, yellow 4-6 nN, and green 6-8 nN. 
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Figure 5.14. Histograms showing the distribution of forces required to detach a 
chemically modified cantilever tip from the SWNT paper (a) Methylbenzene (b) H-
Benzene (c) Bromobenzene (d) Methoxybenzene (e) Fluorobenzene 
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Figure 5.15. Histograms showing the distribution of forces required to detach a 
chemically modified cantilever tip from the SWNT paper (a) Hydroxylbenzene (b) 
Aminobenzene (c) Nitrobenzene (d) Cyanobenzene 
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Table 5.3. Measured rupture forces for the aryl-thiols after correcting for the 
contact area between the cantilever tip and the SWNT paper.  

Thiol 

Rupture 
Force per 
molecule 

(pN) 
Standard 
Deviation

# of Force 
Curves 

F / R 
(nN/nm) 

Standard 
Deviation 

4-Methylbenzene 18.94 5.65 873 0.22 0.06 

4-Nitrobenzene 21.79 5.29 1735 0.26 0.06 

4-Aminobenzene 22.64 4.66 1580 0.41 0.08 

4-Bromobenzene 26.92 3.55 649 0.23 0.03 

4-Hydroxybenzene 32.00 8.39 1044 0.55 0.14 

4-Fluorobenzene 39.47 8.84 1436 0.39 0.09 

4-Methoxybenzene 41.51 10.9 1531 0.58 0.15 

H-Benzene 46.79 11.79 1256 0.52 0.13 

4-Cyanobenzene 56.93 15.47 1392 0.66 0.18 
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An attempt has been made to correlate the experimental binding force per molecule and 

the ability of the substituent located at the para position to either accept or donate 

electrons with the nanotube.  The parameters for used to makes these correlations are: 

hardness (η), ionization potential (I) [380], and each substituents sigma value (σp) (also 

called the Hammett substituent constant) [381].  Figure 5.16a depicts a somewhat linear 

relationship when comparing the binding force of the para-substituted aryl thiols to the 

reported sigma-value (i.e. the binding force increases as the ability of the substituent to  

withdraw electrons also increases). Figure 5.16b also depicts somewhat linear 

relationship between the measured adhesion force per molecule versus the hardness (η) 

and the ionization potential (I).  Potential correlations with other substituent parameters 

for the aryl thiols were investigated but no noticeable trend was observed. [382]. 

 

Recently, scientists have demonstrated that certain molecules (when in contact with a 

nanotube) can modulate the band-gap of the nanotube backbone [383-385]. Star and co-

workers have recently shown a strikingly similar linear relationship between the gate 

voltage modulation of a SWNT-based field-effect transistor (FET) and each molecules 

Hammett substituent constant [386] (Figure 5.17). TPD and MD studies have also shown 

similar trends [387-390]  

 

One might expect that the fluorinated benzene derivative used in the adhesion mapping 

studies, might yield a similar response in the gate voltage modulation to that of a 

chlorinated aromatic compound (characterized by Star et al.), due to the similarities in the 

arrangements of the electrons in the outer shells of fluorine and chlorine. Deviations  
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Figure 5.16. (a) Plot of the measured rupture force per molecule vs. the corresponding 
Hammett parameter of a para-substituted benzene molecule. (b) Plot of the measured 
rupture force per molecule vs. the magnitude of each respective hardness parameter (■-
absolute hardness, ▲- basic ionization potential) 
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Figure 5.17. (a) Cartoon depicting the interaction of para-substituted benzene molecules 
with a SWNT (Copyright by Nanomix Inc.). (b) Cartoon depicting a SWNT-based field-
effect transistor that was used to detect para-substituted benzene molecules. (c) Linear 
regression analysis of the gate voltage shift (∆Vg) of NTFET device in 0.1 M 
cyclohexane solutions of the selected aromatic compounds. Reproduced with permission 
from Nano Letters 2003, 3(10), 1421-1423.Copyright 2003 American Chemical Society. 
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between the work done by Star et al. and the experiments presented here, could be a 

result of the orientation and packing of the molecules on the tip of the cantilever 

compared to the sterically uninhibited orientations of the para-substituted benzene 

molecules in solution.  

 
 

Conclusions 

By characterizing the local adhesion across SWNT paper, the adhesion of specific 

molecules and the sidewall of carbon nanotubes has been quantified.  Chemical force 

microscopy has been used to probe the specific chemical interactions. It has demonstrated 

that the topography of the sample and the radius of the cantilever tip have a large impact 

on the adhesive forces.  By accounting for the contact area between the cantilever tip and 

the features of the substrate, a more accurate interpretation of mechanical forces is 

possible [338]. 

 

The results reported herein have broad implication.  Incorporating the functional groups 

identified herein with strong adhesive interaction with the nanotube’s sidewalls into 

polymers could strengthen the polymer-nanotube interface.  This should enable more 

effective dispersal of the carbon nanotubes in the polymer composite matrix. CFM can 

effectively be used as a tool that can further enhance our understanding of the interfaces 

that exists between filler and composite materials. 
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CHAPTER 6 

MEASURING THE COMPRESSION/BENDING OF A CARBON NANOSPRING 

 

Introduction 

Creating nanometer scale devices is one of the major challenges of the new millennium.  

This goal cuts across many disciplines, requiring extensive collaboration between 

scientists and engineers.  Carbon nanotubes have attracted a lot of interest for potential 

nanoscale applications because of their unique mechanical and electrical properties.  

Carbon nanotubes can be as long as hundreds of microns yet have diameters of only a 

few nanometers.  Most single walled carbon nanotubes (SWNT) are straight, whereas the 

multi walled carbon nanotubes (MWNT) can have straight as well as a coiled 

morphology [391,392].  

 

Knowledge of the mechanical properties of nanoscale materials is important to research 

that pertains to the development of functioning nanoscale devices. Several “potential” 

uses for many of the nanoscale materials being developed in labs across the globe have 

little or no evidence of the true physical characteristics of these materials. Thus, more 

invasive experimental techniques need to be developed that can facilitate the 

manipulation and interpretation of how materials on the nanoscale behave.  

 

In an effort to achieve a more complete understanding of the mechanical 

response/properties of nanoscale objects, an in situ AFM investigation of the mechanical 

response of a coiled MWNT (nanospring) under compression was investigated.  A 
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MWNT nanospring was fixed on the tip of the cantilever (Figure 6.1) and brought in 

contact with a surface using the precise positioning of an AFM.  A multi parameter force 

spectroscopy (MPFS) technique has been devised that monitors several of the key output 

signals that are generated during a typical AFM-based force spectroscopy measurement. 

Vertical cantilever deflection, torsional cantilever movement, thermally-driven resonance 

and substrate position are all synchronously monitored during the compression and 

decompression of the nanospring.  

 

Experimental Setup 

The MWNT coil used herein was fabricated and mounted on a FESP silicon probe 

(Veeco, Santa Barbara, CA) at NASA Ames (Figure 6.1). This nanotube-mounting 

process has explained in detail elsewhere by Stevens and co-workers [195]. A NSC12 

silicon AFM probe (NT-MDT, Zelenograd, Moscow) was used as a control cantilever 

since its resonance frequency was close to that of the MWNT-tipped cantilever. 

Cantilever spring constants were determined via the modified method presented in 

Chapter 3.  

 

All mechanical tests were performed under a nitrogen atmosphere using a Nanoscope IIIa 

(Veeco, Santa Barbara, CA) scanning probe microscope operating in Tapping ModeTM. 

The piezo scanner was calibrated in x, y, and z dimensions using NIST certified 

calibration gratings (MikroMasch). The substrate was a template stripped gold surface 

[393] that was pretreated with 11-dodecanethiol (Sigma-Aldrich).  This surface treatment  
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Figure 6.1. SEM image of the multiwalled nanospring mounted on the end of a cantilever 
tip. 
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was chosen to minimize adherence of the nanospring to the substrate (as was 

demonstrated in Chapter 5)   

 

Each experiment commenced by cycling the scanner in the z-direction for ~2 hours to 

allow the scanner to reach thermal equilibrium.  Then false engagement of the 

microscope was initiated at a point where the nanospring was not in contact with the 

surface of the substrate.  The microscope was immediately toggled from image 

acquisition to force curve operation whereby cantilever deflection is monitored as a 

function of scanner vertical movement.  Force curves were acquired at four different 

scanner velocities (400, 200, 100 and 50 nm/sec) with and without the cantilever being 

driven at its natural resonance with an oscillator on the cantilever holder.  The natural 

resonance frequency was determined a priori using the thermal spectrum method.  

 

To acquire cantilever resonance information simultaneously with cantilever deflection, 

cantilever torsion and scanner position, the cantilever deflection signal was routed from 

the signal access module to a SRS 785 Dynamic Signal Analyzer (DSA) (Stanford 

Research Systems, Sunnyvale, CA) (Figure 6.2).  The DSA acquired the time-dependent 

deflection data, converted it into the frequency domain using a BMH window, ensemble 

averaged the resultant power spectral density plots (PSD), and displayed them in a 

“waterfall” format.  The acquisition time per spectra was 7.81 ms, the number of 

averaged PSDs per ensemble was 25, and the number of ensembles per “waterfall” was 

150.  Thus, the time duration of each “waterfall” plot was 29.3 s.  During this period, the 

number of nanospring compression/decompression cycles was proportional to the scanner  
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Figure 6.2. Schematic of the experimental setup used to simultaneously monitor substrate 
position, horizontal cantilever movement, and thermally driven resonant spectra. 
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velocity.  A square wave pulse (2.5 Vpp) from a 33120A Function / Arbitrary Waveform 

Generator, 15 MHz (Agilent, Palo Alto, California) was used to trigger acquisition of the 

waterfall by the DSA.  A 9304M Quad Oscilloscope (LeCroy, Chestnut Ridge, New 

York) was used to record the piezo drive voltage signal, the horizontal deflection signal 

and the triggering pulse over time. This pulse made possible time synchronization of 

scanner movement horizontal deflection signal and acquired thermal spectra. The 

horizontal cantilever deflection signal was accessed directly from the printed circuit 

board on the base of the microscope.  All data were downloaded to a computer through a 

USB-B GBIB interface (National Instruments, Austin, Texas) with a data acquisition and 

processing program written in C++ and Visual Basic.   

 

Results and Discussion 

Standard Cantilever Contact 

Figure 6.3 depicts cantilever deflection and oscillation amplitude as a function of scanner 

movement typical of the traces obtained when a silicon tip is brought into contact with 

the methyl-terminated alkanethiol modified gold substrate.  On the approach of the 

substrate towards the tip, no cantilever deflection is observed until the tip is in contact 

with the substrate (Figure 6.3a). At the point of contact, the cantilever oscillation 

amplitude drops to a baseline value (Figure 6.3b).  Further extension of the scanner 

results in a proportionate increase in cantilever deflection but no change in oscillation 

amplitude.  Upon retraction, the tip remains in contact with the substrate long after the 

initial point of contact due to strong adhesion between the tip and the substrate. Once the 

restoring force of the cantilever exceeds the adhesive force, the tip releases from the  
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Figure 6.3. (a) Force curve and (b) cantilever oscillation amplitude curve acquired in 
tapping mode with a silicon cantilever. Cantilever deflection and oscillation amplitudes 
are displayed for both the approach (green) and retraction (red) of the scanner relative to 
the tip and were acquired at a z-scan size of 500 nm and a z-scan rate of 0.1 Hz. (c) 
Illustration of the position of the cantilever above the substrate during the movement of 
the scanner. (d) Cantilever thermal resonance spectra obtained during the acquisition of a 
single force curve (150 thermal spectra displayed). Blue markers indicate the amplitude 
of the highest resonance peak in each spectrum. During the initial part of the approach, 
the cantilever’s fundamental mode of resonance is present but is subsequently damped 
upon the contact of the tip with the substrate. In part (a) & (b), the green trace denotes the 
signal acquired during scanner extension; the red trace denotes the signal acquired during 
scanner retraction.  This color scheme is used throughout this dissertation. 
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surface restoring the cantilever deflection and oscillation amplitudes to the values 

observed initially when the cantilever tip was above the substrate surface. Release of the 

tip from the substrate surface produces a sharp but transient increase in amplitude due to 

“ringing” (high 1/f component) until its natural thermal vibration is restored. Figure 6.3c 

interprets the various regions of the deflection and oscillation amplitude traces by 

illustrating cantilever deflection and tip-substrate gap at various scanner positions. 

 

Figure 6.3d presents the thermal resonance spectra acquired during a single force curve 

for the silicon tip contacting the thiolated gold substrate.  For clarity, only the frequency 

span between 20 and 80 kHz is displayed.  When the tip is above the surface of the 

substrate, the primary resonant mode of the cantilever is observed at 57.0 kHz.  This 

resonant mode is eliminated upon contact and remains so until the tip is released from the 

surface.  The 1/f noise component (not shown) is dampened as well.  We postulate that 

when the tip is in contact with the substrate, the primary resonant mode of the cantilever 

beam is dampened.  Varying the scanner velocity only altered the duration for which the 

cantilever oscillation was dampened. These observations parallel those previously 

reported [394].  

 

NanoSpring Response 

Deflection\Oscillation Amplitude 

Figure 6.4a (upper panel) presents the cantilever deflection signal observed when a 

nanospring-tipped cantilever was brought into and out of contact with the methyl-

terminated alkanethiol modified gold substrate. Scanner movement was large enough to  
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Figure 6.4. (a) Raw cantilever deflection signal (top frame) as a function of the position 
of the scanner (bottom frame); cantilever deflection versus scanner movement after the 
removal of optical interference. (b) Load exerted on the nanospring when the substrate is 
pushed toward the cantilever. (c) Illustration of the postulated response of the nanotube 
during vertical loading. 
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encompass both compression of the nanospring and mechanical contact between silicon 

cantilever tip and the substrate.  The distance between point of contact of the substrate to 

the nanospring and to the silicon tip is ~1100 nm compares well with the length of 

nanospring extending above the silicon tip as measured by analysis of the SEM image 

(Figure 6.1). The oscillatory motion of the voltage signal, is a result of optical 

interference created by the laser light reflecting off of two interfaces (the top of the 

cantilever and the reflective substrate).  Removal of the contribution of optical 

interference to the cantilever deflection signal was achieved by fitting a sine function to 

the portion of the curve in which the nanospring was not in contact with the substrate. 

The domain of this function was extended over the range of scanner movement and 

subtracted from the force curve.  The result was then multiplied by the detector 

sensitivity.  Figure 6.4a (lower panel) presents the magnitude of cantilever deflection 

versus scanner movement.  The force applied to the nanospring was computed by 

multiplying cantilever deflection by the cantilever beam spring constant.  Figure 6.4b 

depicts the force exerted on the nanospring during compression (the x-axis is a rescaling 

of the scanner movement axis in Figure 6.4a relative to the point of contact).  From the 

slope of the steeply rising portion of this trace, a stiffness of 0.7 N/m for the nanospring 

was computed.  The postulated response of the nanotube during vertical loading is 

illustrated in Figure 6.4c.  Prior to contact of the nanospring with the substrate, no 

deflection is observed (item #1).  During the steeply rising portion (item #2) the 

cantilever is deflecting rapidly with scanner movement commensurate with compressive 

loading of the nanospring until bending occurs.  Additional movement of the scanner 

results in increased bending with little change in cantilever deflection (item #3).  When 
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the nanospring is further compressed past item #3, the nanospring appears to get stiffer 

(plausibly a second bending moment) as the slope of the beam deflection versus scanner 

movement increases (item #4) until the substrate contacts the silicon tip onto which the 

nanospring is appended (item #5).    

 

Repeated compression/buckling/decompression of the nanospring was very reproducible.  

Figure 6.5 depicts the average of five consecutive force curves acquired when scanner 

movement was limited to 500 nm (limiting compression of the nanospring to only 400 

nm).  Clearly evident in this figure is remarkable reproducibility in cantilever deflection 

during the bending of the buckled nanospring.  Note that on the retract cycle, the 

nanospring remains attached to the substrate for ~60 nm indicating some adhesive 

interaction between the terminus of the nanospring and the chemically modified 

substrate.  This high degree of reproducibility suggests that the placement and orientation 

of the nanospring is constant throughout this series of compression/decompression 

cycles.  

 

It has been previously reported that monitoring shifts in oscillation amplitude can be used 

to interpret the mechanical response (contact and buckling) of an MWNT-tipped 

cantilever. Figure 6.6a presents the dependence of oscillation amplitude on scanner 

movement acquired during one of the force curves presented in Figure 6.5.  The shape of 

this curve is qualitatively similar to those previously reported for MWNT-laden tips (as 

described in Chapter 3) A decrease in oscillation amplitude is observed when the 

nanospring touches the surface and it falls to the baseline upon additional loading.  No  

 135



 

 
 
 
 
 
 
 

 
Figure 6.5. (a) Plots of the average of five force curves acquired with the nanospring tip 
before and  (b) after correcting for optical interference. The green trace is the approach, 
and the red trace is the retraction of the scanner relative to the tip; black lines indicate the 
confidence interval about the mean (±5σ). 
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Figure 6.6. (a) Oscillation amplitude change of the nanospring-tipped cantilever as the 
surface is brought into intimate contact with the nanotube and then subsequently pulled 
away from the nanospring. (b) Time-synced cantilever thermal resonance during the 
acquisition of a single force curve. Blue markers indicate the peak amplitude of each FFT 
(150 thermal spectra displayed). (c) Nanospring-tipped cantilever peak resonance (blue) 
with time-correlated scanner movement (yellow). Note that a secondary x axis is 
provided to enable a comparison of the observed frequency shift with the extent of 
nanospring compression. 
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change in oscillation amplitude is observed until the nanospring is released from the 

surface on retraction of the scanner.  Since the oscillation amplitude trace records the 

amplitude only at the drive frequency being imposed on the cantilever, a decrease in 

oscillation amplitude can be due to either loss of beam resonance (as observed for the 

silicon tip in contact with the substrate) or a shift in the resonant frequency of the 

cantilever.  It has been widely reported that when straight SWNT and MWNT tips come 

in contact with a substrate, the cantilever oscillation amplitude is dampened [200,203].  

Further compression results in the buckling of the nanotube; an increase in cantilever 

oscillation amplitude is observed at the moment of buckling.   Since an increase in 

amplitude was not observed in this study, a shift in the resonant frequency is a likely 

possibility for this particular nanospring-tipped cantilever. 

 

Resonant Response 

To distinguish between dampening versus shifting of cantilever resonant frequency, we 

continuously acquired thermal resonance spectra during a single force curve for the 

nanospring-tip (Figure 6.6b).  Prior to the point of contact, the cantilever resonant 

frequency was 67.8 kHz.  At the point of contact, the fundamental vibration mode of the 

beam\nanospring markedly increases beyond the range of our spectral analyzer (102.4 

kHz) and remains so during compression of the nanospring.  After buckling of the 

nanospring, the resonance frequency drops to a value of 76.2 kHz at full extension of the 

scanner.  Then, as the scanner retracts away from the nanospring, the resonance 

frequency increases until it again exceeds the range of the analyzer.  At the point of 

release of the nanospring from the surface, the resonance of the free beam again returns 
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to its fundamental resonance.  Figure 6.6c presents the time dependence of the maximum 

peak in the thermal spectrum as a function of time during force curve acquisition.  

Overlaid on the frequency-time data is the scanner movement enabling ready comparison 

of the frequency shifts with position.  The points of contact and release of the nanospring 

with the substrate is identified by the zero point on the secondary x-axis labeled 

“nanotube height change.”  The time correlated horizontal photodiode signal (not shown) 

was unchanged during the entire extension and retraction of the scanner, indicating that 

the cantilever beam underwent no detectable torsional strain.  Given the large torsional 

spring constant of this particular beam, this was the expected result.   

 

Comparison of the oscillation amplitude (Figure 6.6a) and frequency (Figure 6.6c) versus 

scanner movement reveals that the point of decrease of oscillation amplitude correlates 

with contact of the nanospring to the substrate.  For this particular coiled MWNT tip, the 

oscillation amplitude remains baselined through the compression and buckling regions 

and returns to the free oscillation value only after release of the nanotube from the 

substrate.  This is quite different from that reported for straight nanotube-tipped 

cantilevers and calls into question some of the previously reported interpretations of 

nanotube-tipped AFM probes based exclusively on changes in the oscillation amplitude 

signal. 

 

The frequency shift that was observed upon compression of the nanotube was extremely 

reproducible (Figure 6.7a).  It is also important to note that the amplitude of the 

cantilever/nanospring oscillation follows a similar trend.  This also brings to light a  
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Figure 6.7. (a) Resonant frequency of the cantilever/nanospring (blue) and scanner 
position (yellow) upon repeated contact with the underlying substrate. (b) Corresponding 
resonant peak amplitude (red) of the cantilever/nanospring before and during contact with 
the underlying surface. Substrate was moving at 100 nm/sec. 
 

 

 140



limitation of the resonance method: if the oscillation amplitude of the 

cantilever/nanospring is not above the noise floor, following the resonance shifts will 

prove extremely difficult.  This could potentially be circumvented by performing these 

compression studies in fluid, which inherently drops the amplitude of the noise floor but 

also drops the amplitude of oscillation of the cantilever beam (due to fluidic viscous 

dampening [223])   

 

From high degree of reproducibility of the observed resonant shifts, it is assumed that 

compression and bending of the nanospring is highly reproducible and unlikely to cause 

defects in the nanospring.  However, the location of the bending movement of the 

cantilever is difficult to establish.  Whether this buckling phenomenon occurs randomly 

along the nanospring or specifically at a defect site is a point of speculation. 

   

Modeled Response 

Analytic modeling 

Its proposed that the cantilever-nanospring system follows a simple two spring, two mass 

series model (Figure 6.8a), mathematically described by Equation 6.1 
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where f0 is the resonant frequency of the spring system, kB is the cantilever beam 

stiffness, m is the effective beam mass equal to 0.24 times the actual beam mass [207], 

and  is the effective nanotube mass (assumed to be negligible henceforth) and the 

nanotube stiffness, k , being a function of the change in nanotube height due to loading. 
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With a nanotube mass of zero, the system reduces to that shown in Figure 6.8a.  In 

practice, the beam deflections measured in the experiments correspond to the variable α  

(defined in Figure 6a) while γ  corresponds to the scanner movement after it contacts the 

nanotube.  Note that the top plate in Figure 6.8a is the analog to the fixed end of the 

cantilever, and hence is fixed in space.  Equation 6.1 is derived from the two-spring 

model by employing a conservation of power assumption (or by solving the equations of 

motion).   Another useful relationship can be derived from the system by noting that the 

change in nanotube spring height, δ , is equal to ( )αγ − , both of which are available 

experimentally.  An assumption here is that the scanner displacement after contact with 

the nanotube (i.e., γ ) must always be larger than the beam deflection (i.e., α ) else we 

would see a beam deflection larger than the amount of scanner displacement during 

nanotube-scanner contact.  Another assumption is that the substrate mounted on the 

scanner is completely rigid and not deformed by the nanotube. By assuming static 

equilibrium we can equate the two forces acting on the effective mass, namely that due to 

the nanotube, ,   

)α−k

αB

( αγ
α
−
Bkk

(γδ = NTNT k    Equation 6.2  

and that due to the beam, k .  This leads to Equation 6.3, an expression for nanotube 

stiffness under the previously discussed assumptions. 

δ
α
== B

NT
k    Equation 6.3 )

All of the values of the right side of the equation are experimentally determined.  If the 

beam stiffness and the effective mass are constant then to observe a change in resonance 

frequency, the nanotube stiffness must vary, manifested by the change in the quantity  
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Figure 6.8. a) Model of the cantilever-nanospring system. (b) FEA simulated nanotube 
force versus height-change curve (blue closed circles, left-side scale) and stiffness versus 
height change (orange open circles, right-side scale). (c) Modeled resonance frequency 
versus nanotube height-change plot (orange open-circle data points fall below 102.4 kHz, 
to be compared with the nonzero nanotube height-change region of Figure 6.6(c). 
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( )αγ

α
−  as the scanner motion proceeds.  Solving Equation 6.3 for the measured beam 

deflection α  gives the proper asymptotic behavior with respect to the nanotube stiffness 

(i.e., γα =
→∞NT

lim
k

 and 0lim
0

=
→
α

NTk
). 

 

The assumption of constant cantilever stiffness is validated in the force-distance curve 

(see Figure 6.4a). The linearity of cantilever deflection versus scanner movement in the 

contact region is indicative of constant stiffness (i.e.  
i

i
x

F
ik ∂

∂≡ for a single force  

displacing a spring in the  coordinate). [14,395]  The beam stiffness was calculated 

using Euler-Bernoulli beam theory [221], i.e. Equation 6.4. 
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EIkB =     Equation 6.4 

Beam geometry was determined by using a white light interferometer (Zygo Newview 

3000, Zygo Corp., Middlefield, CT) and an SEM (Hitachi S-800).  The geometric values 

were used to calculate the second moment of the cross sectional area, I .   The elastic 

modulus of the silicon beam was 180 Gpa [7]. When the calculated beam stiffness of 1.99 

N/m and the beam mass (using a density of 2330 ) [218] was substituted into 

equation 1 (with a nanotube stiffness of zero to simulate the free fundamental resonance 

of the cantilever), the predicted resonant frequency is 66.8 kHz, in good agreement with 

the value of 67.8 kHz from the thermal spectrum.    

3/ mkg

 

While the beam stiffness is constant, the experimental results suggest that the nanotube 

stiffness is not.  During initial nanotube-cantilever loading, (i.e., nanotube contact with a 
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surface)  is constant as the loading is mainly axial; the nanotube behaves as a simple 

compression spring (i.e., linear).  However, upon onset of buckling, bending, and 

possibly other modes of deformation, the nanotube stiffness changes as the force required 

for a given deflection is different in this deformational mode than in the axial 

deformation mode.  This change in nanotube stiffness produces a resonance frequency 

shift in accordance with Equation 6.1.   

NTk

 

Finite Element Modeling 

To validate the proposed model of the nanospring-cantilever as a two-spring system, 

nonlinear structural finite element analyses (FEA) were conducted to simulate the 

mechanical response to the applied load.  The particular MWNT coil used in this study 

was comprised of 5-10 layers.  An effective wall thickness of 0.32 nm [396] was 

assumed. Since the spacing and number of walls comprising the MWNT spring were not 

precisely known, the nanospring was geometrically modeled as a solid helical cylinder.  

The length and diameter of the cylinder were that of the nanospring length and coil 

diameter as determined by SEM (Figure 1).  Previous research has shown huge ranges for 

the effective thickness (from 0.66 [397] to 3.4 Å [398]) and elastic modulus (from 1.0 

[398] to 5.5 TPa [397]).  The nanospring was given an elastic modulus of 1 TPa 

comparable to the literature value for a 10 wall nanotube). [399]   

 

A computer model was generated (ProEngineer Wildfire, Parametric Technology Corp., 

Needham, MA) using this information and subsequently imported into the finite element 

analysis program (ANSYS 7.1, ANSYS Inc., Canonsburg, PA).  An adaptive meshing 
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scheme (i.e., the p-method) was implemented with a convergence criterion of 5% on the 

total model strain energy.  The boundary conditions fixed the displacement and rotation 

of all nodes at the base of the beam (effectively cantilevering the beam) and applied two 

force components to the nodes corresponding to the end of the modeled nanospring (to 

simulate the 12° angle of the cantilever relative to the thiol-treated template-stripped gold 

surface).  It should be noted that other deformational behavior could manifest, such as a 

rippling mode [288,400-402] or some nanospring slippage, but our simulations did not 

model this, nor did it allow any collapse of the thiol-terminated gold surface.  Note that 

this simulation assumes that the bottom of the nanotube is free to rotate and displace but 

does not account for any nanotube-surface interactions.   

 

Conclusions 

The results of the FEA simulation, presented in Figure 6.8b, predict nonlinearity in 

nanospring stiffness under applied force.  Nanospring stiffness is predicted to be high 

during initial loading (axial) and then progresses to a lower value during secondary 

deformational modes.  To compare the simulation to the experimental data, the nanotube 

stiffness values from Figure 6.4b, up through a nanospring height change of 400 nm (the 

amount of compression experienced by the nanotube in our experiments), were 

substituted into equation 1 (using the calculated beam stiffness of 1.99 N/m).  The 

predicted resonant frequency versus nanotube height change is plotted in Figure 6.8c.  

Comparison of Figure 6.8c to the experimental data depicted in Figures 6.6 and 6.7 

shows qualitative agreement.   
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The predicted nanospring stiffness (Figure 6.8b) ranges from 4 N/m down to near zero 

N/m.  Our measured nanotube stiffness (from Figure 6.4b) varies from only 0.7 N/m in 

the axial regime down to roughly zero N/m after buckling.  Thus, the measured value in 

the axial compression regime is a factor of six lower than the predicted value.  However, 

the x-axis in Figure 3b was calculated under the assumption that scanner displacement is 

equal to the displacement of the bottom of the nanotube (no substrate compliance under 

load).  If, in reality, the substrate is compliant, then the change in nanotube height during 

the experiment is less than the assumed value of ( )αγ −  and the experimentally 

determined stiffness would be larger than 0.7 N/m.  Secondly, when the measured 

stiffness value is inserted into equation 1, the calculated maximum resonant frequency is 

only 80 kHz, in disagreement with the experimental results presented in Figure 6.7c.  

Thus, the discrepancy between measured and predicted nanospring stiffness values is 

predominantly due to errors in the measured value that result from compliance of the 

alkanethiol/gold/epoxy substrate and/or incomplete removal of the contribution of optical 

interference in cantilever deflection.     
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CHAPTER 7 

FLY-FISHING WITH SINGLE WALLED CARBON NANOTUBES 

 

Introduction 

In Chapter 6, the mechanical response of a multiwalled carbon nanospring under 

compression using multi parameter force spectroscopy (MPFS) was described.  

Cantilever deflection, oscillation amplitude, and thermally driven resonance were 

simultaneously measured and synchronized with movement of the substrate.  A nonlinear 

response of the nanospring was observed consistent with its compression, buckling and 

bending.  In Chapter 5, chemical force microscopy was used to elucidate the adhesive 

interactions between an alkanethiol modified AFM cantilever and a SWNT laden surface. 

To reduce (and either validate or disprove) the number of assumptions needed to be made 

to measure the binding forces (contact area assumptions), the reverse experiment was 

carried out where a nanotube is mechanically peeled off of a chemically modified 

surface. Here, the mechanical response and interfacial adhesion of SWNTs that have 

several different lengths and orientations are explored.  In an effort to elucidate the 

importance of nanotube orientation when performing adhesion measurements where the 

nanotube is actively peeled away from chemically modified surfaces, short, kinked, long 

and looped single walled nanotubes were all investigated.  The work reported here may 

drive research avenues that have a vested interest in using the carbon nanotube as a probe 

in chemical force microscopy.   
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Experimental 

Cantilevers with SWNTs attached to the probe tip were purchased from Nanodevices 

(now Veeco Metrology) and characterized by scanning electron microscopy prior to and 

following mechanical testing experiments.  The probes were fabricated in a similar 

fashion to the process reported by Cheung et al. [200].  Each nanotube-tipped cantilever 

was imaged with a scanning electron microscope (Hitachi S-800).  A low accelerating 

voltage (5kV) was used during imaging to reduce carbon deposition onto the nanotube.   

 

All experiments were carried out by operating the microscope in Tapping ModeTM under 

a nitrogen atmosphere (relative humidity below 6%).  All gold substrates were freshly 

prepared template-stripped gold [393] that was treated with 1mM thiolic solutions.  Gold 

surfaces were modified with 11-dodecanethiol (Sigma-Aldrich), 11-amino-undecanethiol 

(Dojindo Chemicals), 11-mercaptoundecanol (Sigma-Aldrich) or 11-mercaptoundecanoic 

acid.  After several hours each substrate was removed from derivatizing solution and 

subsequently rinsed in filtered ethanol and then stored in a dessicator prior to use.  

Assembly of the alkanethiol was verified via contact angle measurements.  All thiolized 

surfaces were imaged using a native silicon cantilever probe (NSC12, MikroMasch) prior 

to using a nanotube-tipped cantilever.  The r.m.s. roughness of each sample was below 

0.5 nm. Freshly cleaved grade-1 highly oriented pyrolytic graphite (HOPG) was also used 

as a substrate (SPI Supplies). 

 

Several of the mechanical tests were performed using a similar experimental setup to that 

previously reported in Chapter 6.  A Veeco Instruments (Santa Barbara, CA) Nanoscope 

 149



IIIa scanning probe microscope with extender electronics was used for all force 

measurements.  The piezo scanner was calibrated in x, y, and z using NIST certified 

calibration gratings (MikroMasch).   

 

Each experiment commenced by cycling the scanner in the z-direction for ~2 hours to 

allow the scanner to reach thermal equilibrium.  Then false engagement of the 

microscope was initiated at a point where the nanotube was not in contact with the 

surface of the substrate.  The microscope was immediately toggled from image 

acquisition to force curve operation whereby cantilever deflection is monitored as a 

function of scanner vertical movement.  Force curves were acquired at four different 

scanner velocities (400, 200, 100 and 50 nm/sec) with and without the cantilever being 

driven at its natural resonance the oscillator on the cantilever holder.  The natural 

resonance frequency was determined a priori using the thermal spectrum method.  To 

simultaneously acquire cantilever resonance, cantilever displacement and substrate 

position, the same experimental setup described in Chapter 6 was used (Figure 6.2).  

 

Results and Discussion 

A scanning electron micrograph of one of the SWNT-laden tips is shown in Figure 7.1a.  

To determine the mechanical response of the SWNT, cantilever beam deflection was 

monitored over time as the nanotube was subjected to repeated compression and 

decompression cycles.  In other instances, MPFS was used to more completely interpret 

the impact of nanotube orientation as well as potentially elucidate chemical information.  
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Figure 7.1. a) SEM image of a nanotube grown off of the end of an AFM tip. b) top 
frame: force curve acquired using the AFM tip in a) and a freshly cleaved HOPG 
substrate at a scanner rate of 2Hz. The green line represents the approach of the substrate 
towards the tip and the retraction of the scanner relative to the tip is drawn in red. b) 
bottom frame: force curve acquired after five repetitive up-down movements of the 
scanner. 
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Deflection-based Studies 

Short Nanotube  

To elucidate the adhesion between a SWNT and a substrate, a short nanotube (<600 nm 

long) (Figure 7.1a) was repeatedly brought into and out of contact with a freshly cleaved 

HOPG surface (SPI-1, 0.4° +/- 0.1° mosaic spread).  Since sidewall interactions between 

the nanotube and the underlying substrate are what require investigation, it was thought 

that the tube should be pushed on by the underlying substrate and bent, so as to force the 

nanotube to lie on its side.  

 

A typical force curve acquired using this probe is shown in Figure 7.1b.  During the 

approach an initial deflection of the cantilever beam is observed roughly 700 nm away 

from the point of contact between the silicon tip and the surface (Figure 7.1b, point 1).  

As the substrate is brought closer to the silicon/nanotube junction, the tube unresistively 

bends or slides on the surface (no cantilever deflection).  Once a large amount of stress is 

imposed on the tube, the tube becomes more difficult to bend thus pushing up on the 

cantilever (Figure 7.1b, point 2).  Under even further compression, the tube is most likely 

force out of the way (at almost a 90o angle relative to the tip) and mechanical contact is 

made between the silicon tip and the graphite surface (Figure 7.1b, point 3).  Then, as the 

substrate is gradually pulled away from the silicon tip, the tube begins to “snap” back 

(Figure 7.1b, point 4).  The substrate is eventually removed from the nanotube after a 

final “snap-in” of the nanotube (Figure 7.1b, point 5). 
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Compressing the nanotube to the point where mechanical contact is made with the silicon 

cantilever has an advantage in that the sensitivity parameter (as discussed in Chapter 1) 

could be determined, thus calibrating the movement of the cantilever beam.  This 

facilitates the interpretation of adhesive interactions between the nanotube and the 

substrate (via multiplying the stiffness of the cantilever times any observed beam 

deflection). 

 

Repeated cycling of the scanner gave rise to force curves which displayed the same 

featuresas depicted in Figure 7.1b.  After five compression and decompression cycles, the 

force curve presented in Figure 7.1c was obtained.  This curve is identical to those 

obtained using a naked cantilever tip indicating that the tube fractured off of the silicon 

tip.  Further evidence of fracture was obtained by imaging the underlying surface in 

Tapping ModeTM and locating the tube (Figure 7.2).  From cross-sectional analysis of the 

image feature, the nanotube is roughly 1.5 nm tall, corresponding to the diameter of a 

single walled carbon nanotube. 

 

An important conclusion can be drawn from this experiment.  A short nanotube on the 

end of a cantilever tip, although ideal for imaging purposes, is non-ideal for force 

spectroscopic investigations concerned with interpreting sidewall interactions between 

the nanotube and chemically homogenous surfaces.  First, the point of contact with the 

substrate is the tip end, not the sidewall.  Stress sufficient to bend the nanotube is 

required to ensure contact of the surface with the sidewall of the nanotube, this will lead 

to the removal of the nanotube from the silicon tip (thus terminating the spectroscopic  
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Figure 7.2. a) Cross-sectional image of the nanotube that was fractured in Figure 7.1. The 
vertical height of the nanotube is 1.5 nm. (b) Tapping modeTM topographical image of the 
fractured nanotube lying on the HOPG surface. 
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study).  Second, since the cantilever tip/nanotube junction is a weak mechanical point, 

repeated compression/decompression cycles results in breakage or removal of the 

nanotube from the cantilever tip.  Whether the mechanically weak point is the tip to 

catalyst or the catalyst to nanotube contact point is a matter of speculation. 

 

Kinked Nanotube 

To foster physical contact with the sidewall of a nanotube during the force measurement, 

a kinked or “L”–shaped nanotube was used.  Figure 7.3a depicts an SEM image of the 

tube.  The stability of the tube was significantly enhanced compared to the short 

nanotube.  

 

 

As shown schematically in Figure 7.3b, the substrate was brought into intimate contact 

with then subsequently retracted away from the bent nanotube.  Deflection-based 

adhesion measurements were performed on several different template stripped gold 

(TSG) surfaces that were modified using self-assembly chemistry.  All substrates 

possessed an r.m.s. roughness less than 0.5 nm thereby minimizing topologically induced 

artifacts in the adhesion data.  All of experiments were carried out using the same scanner 

z-velocity. 

  

Force curves acquired on chemically modified TSG substrates are presented in Figure 

7.4.  Note that the final pull-off event on the retract portion of each curve approximates 

the length of the lower “L” portion of the nanotube (as shown in the SEM image).    
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Figure 7.3. (a) SEM image of a kinked SWNT grown off of the tip of an AFM cantilever. 
(b) Cartoon depicting the adhesion experiment facilitating contact between the sidewall 
of the nanotube and the substrate. 
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Figure 7.4. Force curves acquired using the kinked SWNT-tipped cantilever shown in 
Figure 7.3 (a). Notice the increase in deflection of the cantilever beam follows a similar 
trend to what was observed using the adhesion mapping studies presented in Chapter 4. 
The periodic motion of the extension and retraction curves is an artifact of the optical 
interference of light bouncing off of the cantilever and light also bouncing off of the 
reflective substrate. 
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Variability in the contact length results from buckling and slip stick motion of the 

nanotube.  A general trend was observed in the deflection data.  The amine-terminated 

SAM generated the largest adhesive interaction (2.5 nm pull-down), whereas the methyl-

terminated SAM caused the lowest beam deflection (0.75 nm).  It is also worth drawing 

attention to the pull-off events.  It appears that the tube is being “peeled” off of the 

surface similar to the separation of Velcro.  This trend mirrors what was observed using 

the adhesion mapping approach presented in Chapter 5. 

 

The idea of using a nanotube to control the length of contact between the outer surface of 

the nanotube and a chemically modified has merit in the present context.  To our 

knowledge, there has yet to be reported a controlled synthetic route for creating these 

“kinked” nanotubes [391,392] .  The “L”–shaped nanotube used herein was an accidental 

by-product of the synthesis of straight nanotubes.  However, as was the case in the study 

presented in Chapter 6, the optical inference that is observed due to the use of such large 

scan sizes, makes elucidating and quantifying the chemically-significant rupture forces a 

very difficult task. 

 

Long and Looped Nanotubes 

Long nanotubes and looped nanotubes mounted on the tip of an AFM cantilever could 

prove advantageous for adhesion studies (Figure 7.5).  Since both the long and looped 

nanotubes are very large (over 2 µm in length), the probability of removing the nanotube 

from the tip of the cantilever is reduced.  It could be possible to make contact with the 

nanotube without coming close to making mechanical contact between the silicon tip and  
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Figure 7.5. SEM images of SWNT-tipped cantilevers fabricated by NanoDevices (now 
Veeco Metrology). (a) long straight SWNT. (b) long looped SWNT. Images were 
obtained with a Hitachi model S-800 scanning electron microscope operating under a low 
accelerating voltage (5kV).  
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the substrate, thus avoiding potential defects located at the tip-nanotube interface. Due to 

the excessive lengths of these nanotubes, the Euler buckling force should be so small that 

the nanotube buckles immediately forcing the tube to lie on the surface.  Also, a tube 

such as the looped nanotube could provide both a controlled orientation and defined 

contact length during the adhesion studies. 

 

First the long straight nanotube was brought into contact with the substrate.  The position 

of the nanotube relative to the surface was controlled by periodically turning on the 

piezoelectric drive in the cantilever holder and monitoring changes in the oscillation 

amplitude of the cantilever.  Approximately 1.25 µm of the nanotube was laid down on 

the surface prior to peeling (scanner movement direction reversal).  Force curves are 

depicted in Figure 7.6.  The severe impact of the optical interference masks the adhesive 

interaction.  However, differences in the amount that the cantilever bends, seems to 

depend upon the chemical identity of the surface. The magnitude of the interference 

compared to the adhesion-induced deflection made removal of the optical interference 

difficult.  Detector sensitivity cannot be measured without making mechanical contact 

with the silicon tip; this was not attempted for fear that mechanical damage or removal of 

the nanotube would occur.  Thus, the deflection of the cantilever beam relative to the 

chemical identity of the substrate is strictly interpreted from the change in voltage on the 

PSD. 

 

A similar set of experiments were performed with the SWNT loop.  The force curves 

obtained are depicted in Figure 7.7.  Note that compared to the long , straight nanotube,  
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Figure 7.6. Force curves acquired between the long SWNT-tipped cantilever in Figure 
7.6.(a) on TSG substrates modified with C11 alkanethiols with different terminal groups. 
Alternate terminal groups are noted above each force curve. All of the above force curves 
were obtained at a velocity of 100 nm/sec in the z-direction. Using a z-scan size of 1350 
nm. 
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Figure 7.7. Force curves acquired between the looped SWNT-tipped cantilever in Figure 
7.6.(b) on TSG substrates modified with C11 alkanethiols with different terminal groups 
as well as a freshly cleaved graphite surface. All of the above force curves were obtained 
at a velocity of 100 nm/sec in the z-direction.  
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the cantilever deflection for the looped tube is substantial.  Even though the optical 

interference isn’t as bad, the ignorance of the sensitivity factor precludes quantization of 

the rupture forces. 

 

Multi Parameter Force Spectroscopy Studies 

Cantilever deflection can result from adhesion between the nanotube and the surface or 

from the nanotube’s response to the applied load (buckling). Thus, multi parameter force 

spectroscopy was used to discriminate between these two scenarios. 

 

Short Nanotube  

In this section, experiments taken with the same nanotube-tipped cantilever will be 

presented. An SEM micrograph of the nanotube-tipped cantilever is depicted in Figure 

7.8a.  Following interchanging of the sample, the laser position was never moved on the 

backside of the cantilever until a different cantilever/nanotube probe was used.  When a 

substrate was brought into intimate contact with the end of the short tube, the scanner 

movement after contact was maintained at 50 nm (i.e. the piezo-scanner was retracted 

from the substrate once the substrate had been “pushed” 50 nm into the nanotube.  This 

scanner displacement after substrate/tube contact should be enough to “force” interaction 

between the end of the nanotube and the substrate (Figure 7.8b).  At all scanner z-

velocities, the cantilever deflection and amplitude curves were consistently similar.  

 

The cantilever deflection of the nanotube-tipped probe when brought into mechanical 

contact with the methyl-terminated SAM is linear in the approach and retract curve  
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Figure 7.8. (a) SEM image of a short SWNT grown off of a cantilever tip. (b) cartoon 
depicting a force spectroscopic study that will test end-on interactions of the nanotube 
with the substrate. 
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(Figure 7.9).  The corresponding cantilever oscillation amplitude drops to a baseline 

value as soon as the tube touches the surface.  The time-correlated beam resonance and 

scanner movement (Figure 7.9c and 7.9d) are consistent with previous experiments for a 

native silicon cantilever touching a surface. That is, the beam motion goes to a much 

higher frequency as soon as mechanical contact is made between the end of the nanotube 

and the substrate as demonstrated previously in Chapter 5 and by Roters et al [394].  The 

beam does not have a restored thermal motion until the substrate is fully removed from 

the end of the nanotube.  

 

When the short nanotube is brought into contact with the hydroxyl-terminated SAM a 

highly nonlinear beam deflection is present (see Figure 7.10) when the nanotube is loaded 

and unloaded.  This nonlinearity in the contact region could be induced by the nanotube’s 

ability to slide on the surface. Note that the corresponding cantilever oscillation 

amplitude curve begins to show “fine structure” during the retract portion of the plot.  

The observed movement could be due to either a loss of mechanical motion at the point 

of resonance or could be due to the movement of the resonant mode. Since the AFM 

software monitors the cantilever’s amplitude at a single frequency, shifts in the 

cantilever/nanotube resonance will drop the amplitude of oscillation.  The amplitude of 

oscillation at that singular frequency does indeed drop, but a more accurate description 

would be that the mechanical resonance of the system might change. In the case of the 

short nanotube and the hydroxyl-SAM, during the retraction of the substrate from the 

nanotube the tube seems to reproducibly “snap” back into its natural position, which will 

cause a noticeable increase in total “system” resonance until the substrate is fully  
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Figure 7.9. Force measurements made between a methyl-terminated alkanethiol-modified 
TSG substrate. (a) Force curve. (b) Oscillation amplitude. (c) Substrate position (orange) 
and cantilever/nanotube peak resonance (blue). (d) Waterfall of the thermally-driven 
resonance of the cantilever/nanotube during the force measurement.   
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Figure 7.10. Force measurements made between a hydroxyl-terminated alkanethiol-
modified TSG substrate. (a) Force curve. (b) Oscillation amplitude. (c) Substrate position 
(orange) and cantilever/nanotube peak resonance (blue). (d) Waterfall of the thermally-
driven resonance during force measurements using the cantilever/short nanotube. 
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removed from the nanotube. Similar responses are seen for not only the hydroxyl-

terminated SAM but also for the amine- and carboxylic acid-terminated SAMs (Figures 

7.11, 7.12 respectively).  

 

It is interesting to note that when HOPG is brought into contact and released from the 

tube, the contact area of the deflection curve (both the approach and retract) are almost 

linear and superimpose able (Figure 7.13).  At the same time when the cantilever beam’s 

resonance is monitored as a function of scanner displacement, a “roll-down” is observed 

in the peak resonance when the graphite is being pulled away or “unbending” the 

nanotube.  This could be due to either some type of adhesive interaction between the 

nanotube and the graphite, or due to the tube being more readily able to restore its 

orientation on a surface that has such a low coefficient of friction [403,404].  Graphite 

has a frictional coefficient that is 100 orders of magnitude smaller than many of the thiols 

used to create the self-assembled monolayers [148,405-410] 

.  

 

The low frictional coefficient could explain why there is no noticeable cantilever 

deflection hysteresis when the graphite contacts the tube; the tube is simply sliding out 

from under the vertical load.  Thus, these experiments may help in interpreting previous 

rheological studies of carbon nanotubes [312,411,412].  The only noticeable change in 

these experiments when using different piezo-scanner z-velocities was that at the lower 

scanner rate (lower velocity) we were able to elucidate more of the fine features in the 

cantilevers resonant response.  This is most likely the result of two scenarios; 1. The  
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Figure 7.11. Force measurements made between a carboxylic acid-terminated 
alkanethiol-modified TSG substrate. (a) Force curve. (b) Oscillation amplitude. (c) 
Substrate position (orange) and cantilever/nanotube peak resonance (blue). (d) Waterfall 
of the thermally-driven resonance during force measurements using the cantilever/short 
nanotube. 
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Figure 7.12. Force measurements made between a amine-terminated alkanethiol-modified 
TSG substrate. (a) Force curve. (b) Oscillation amplitude. (c) Substrate position (orange) 
and cantilever/nanotube peak resonance (blue). (d) Waterfall of the thermally-driven 
resonance of during force measurements using the cantilever/short nanotube. 
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Figure 7.13. Force measurements made between a freshly cleaved HOPG substrate. (a) 
Force curve. (b) Oscillation amplitude. (c) Substrate position and cantilever/nanotube 
resonance. (d) Waterfall of the thermally-driven resonance of the during force 
measurements using the cantilever/short nanotube. 
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lower velocity gives the nanotube more time to reach a mechanically stable configuration 

2. The sampling rate of the DSA is optimized relative to the number of scanner cycles 

during the entire measurement (i.e. at the slowest velocity the scanner has moved only 

slightly more than one full cycle, thus more thermal spectra are acquired during the 

approach and retract cycle. 

  

Long Nanotube 

Figure 7.14 presents force curve information acquired when a SWNT approximately 3.5 

µm long was brought in and out of contact with a methyl-terminated alkanethiol modified 

gold substrate.  This surface is known to have a low affinity for nanotubes (as previously 

demonstrated in Chapter 5). Scanner extension in this run was limited to 1.35 µm, 

thereby avoiding mechanically induced damage (and possible fracture!) of the SWNT.  

Figure 7.14c depicts a plot of the cantilever oscillation amplitude as a function of scanner 

extension acquired while the cantilever was mechanically driven at a frequency of 69.5 

kHz.  During the approach, no change in oscillation amplitude is observed until the 

scanner has extended ~800 nm.  At this point, the oscillation amplitude drops possibly 

indicating contact and/or bending of the SWNT against the opposing surface.  As the 

scanner continues to extend, the magnitude of oscillation dampening is intermittent. 

When the scanner is retracted from the cantilever, the oscillation amplitude remains 

negative of its value in free space well past the initial point of dampening.  Only after the 

scanner has retracted ~1100 nm from its maximal extension is the oscillation amplitude 

restored to zero dampening.  This point marks the release of the substrate from the 

nanotube. 
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Figure 7.14. (a) The same SEM image presented in Figure 7.5(a). (b) Force curve plot 
acquired on using the nanotube-tipped cantilever shown in Figure 7.14. (a) and a 12-
dodecanethiol-functionalized gold substrate (without mechanical oscillation of the 
cantilever). (c) Cantilever oscillation amplitude plot acquired as the long SWNT is 
brought into and out of contact with same surface while the cantilever is driven at a 
frequency of 69.5 kHz. (d) Thermal spectra acquired simultaneously with the force curve 
and presented in a waterfall format. 
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Following completion of this cycle, the piezoelectric device mechanically driving 

cantilever oscillation was turned off.  A force curve was acquired simultaneously 

recording both cantilever deflection and thermal resonance.  Figure 7.14b depicts a plot 

of cantilever deflection versus scanner movement over the identical range presented in 

Figure 7.14c.  Interestingly, no discernable deflection of the cantilever commensurate 

with point of contact is evident in this curve.  Substantial optical interference, due to the 

magnitude of scanner extension and to the highly reflective gold coatings on both the 

substrate and cantilever, masks the contact event.   

 

To gain insight into the mechanical response of the SWNT under the applied load, the 

thermal resonance and oscillation amplitude of the cantilever was time correlated with 

scanner movement (see Figure 7.15).  As the scanner extends toward the tube, no shift in 

resonance (or dampening in oscillation) is observed until the scanner has extended ~800 

nm.  At this point, the resonance frequency increases by ~1 kHz.  Continued upward 

extension of the scanner produces a decrease in resonance frequency to a plateau ~250 

Hz higher than the fundamental resonance of the beam prior to contact of the nanotube 

with the substrate.  Upon retraction of the scanner, the frequency increases to 72 kHz. 

With continued retraction, the SWNT is eventually released from contact with the 

substrate and resonance returns to its original value (69.5 kHz).  Note that the release 

event occurs after the scanner has retracted ~1100 nm.  When referenced to the starting 

position of the scanner, there exists a 600 nm difference in the apparent points of contact 

and release.  
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Figure 7.15. (a) Plot of the scanner movement (gold), thermal resonance (blue) and 
oscillation amplitude (green and red) of the cantilever versus time during the compressive 
loading of a SWNT in contact with a 12-dodecanethiol-functionalized gold substrate.  To 
facilitate comparison, only the frequency of maximum amplitude is depicted here.  The 
complete set of thermal spectra is presented in Figure 3(c). Note that the scanner was 
retracted after 1.35 µm of the nanotube was in contact with the substrate. (b) Schematic 
of the orientation of the nanotube during compression and pull-off.  
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As was previously shown in Chapter 6, the compression-induced buckling or bending of 

a carbon nanospring is a highly repeatable and reversible process, giving rise to 

symmetrical resonance frequency shifts during the compression/decompression cycle.  In 

contrast, compression/decompression of long SWNTs exhibit asymmetric resonance 

frequency shifts.  Figure 7.16 presents the frequency shifts as a function of scanner 

movement observed when the nanotube was repeatedly brought into and out of contact 

with the methyl-terminated alkanethiol-modified gold surface.  This data attests to the 

repeatability in nanotube response to compressive loading. 

 

It is postulated that contact and release of the nanotube occurs at the same vertical 

position of the scanner (~250 nm).  A pictorial representation of SWNT contact, 

compression, bending and release from the substrate is provided in Figure 7.15b.  No 

detectable deflection, frequency shift or change in oscillation amplitude is observed upon 

contact due to slip-stick motion of the nanotube on the substrate surface and to the 

stiffness of the cantilever to which the nanotube is attached (2.0 N/m).  The observed 

change in oscillation amplitude and frequency shift after an 800 nm extension of the 

scanner is due to bending of the nanotube as a consequence of axial compression. 

 

To test this hypothesis, the SWNT-tipped cantilever is modeled as two springs in series.  

The following equation can be used to approximate the experimental compression 

stiffness: 

NT
B
eff

NTB

mm
kkf

+
+

=
π2
1

0     Equation 7.1 
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Figure 7.16. Plot of resonance frequency shifts (blue) and scanner movement (gold) 
versus time for sequential engagements of a SWNT with a 12-dodecanethiol-
functionalized gold substrate. Note that the scanner was retracted after 1.25 µm of the 
nanotube was in contact with the substrate. 
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where f0 is the resonant frequency of the spring system, kB is the cantilever beam 

stiffness, mB
eff is the effective beam mass equal to 0.24 times the actual beam mass, [207] 

 is the mass of the nanotube, and kNTm NT is the nanotube stiffness.  From the 

experimentally measured resonance shift of 964 Hz, the calculated compression stiffness 

is 0.035 N/m assuming mNT << mB
eff.   

 

The theoretical axial compression stiffness of this particular nanotube can be calculated 

from the following equation: 

L
AEkaxial
⋅

=     Equation 7.2 

where E is the elastic modulus of the tube in the axial direction, A is the cross-sectional 

area of the nanotube, and L is the total length of the nanotube.  We compute a cross-

sectional area for the cylindrical SWNT of 0.65 nm2 (assuming an outer diameter of 1.50 

nm and an inner diameter of 1.19 nm).  The length of the nanotube is equal to its nominal 

length (3.59 µm) minus scanner movement following contact (600 nm).  Assuming a 

bending modulus of 153 GPa, [352] the calculated compression stiffness on this 

particular tube using equation 2 is 0.033 N/m.  The remarkably good agreement between 

the experimentally measured and theoretical values for axial compression stiffness must 

be viewed with caution since both the reported axial compression moduli and cantilever 

calibration methods can have relatively large degrees of uncertainty. [206,299,352,413] 

 

As a second test of the hypothesis, the distance between the substrate and the cantilever 

was increased and the force curve was reacquired under the same conditions used in 

acquiring the data presented in Figure 7.17 (scanner velocity of 100 nm/s and extension  
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Figure 7.17.  (a) Plot of the scanner movement (gold), thermal resonance (blue) and 
oscillation amplitude (green and red) of the cantilever versus time during the compressive 
loading of a SWNT in contact with a 12-dodecanethiol-functionalized gold substrate.  
Note that the scanner was retracted after only 500 nm of the nanotube came in contact 
with the substrate. (b) Schematic of the orientation of the nanotube during compression 
and pull-off.  
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of 1350 nm).  This substantially reduces the compressive loading of the nanotube by 

reducing time the tube is in contact with the substrate.  Figure 7.17 depicts the data 

acquired under these conditions.  Note that there is no change in oscillation amplitude or 

frequency on the approach.  Shifts in oscillation amplitude and frequency occur only 

during retraction of the scanner.  The magnitude and duration of the frequency shift is 

reduced compared to that observed under higher axial compression (Figure 7.15).  No 

deflection event was seen in the force curve (data not shown).  This result supports the 

hypothesis that the point of contact is undetectable for long SWNTs in the presence of 

slip-stick phenomena and that the frequency shift observed on the approach of the 

scanner in Figures 7.15 and 7.17 are due to nanotube bending.  

 

The asymmetry in resonance shifts during a compression/decompression cycle could 

potentially be the result of adhesive interactions between the tube and the substrate.  As a 

test of this hypothesis, compressive loading of the long SWNT was performed on three 

surfaces with differing chemical functionality.  All substrates were template-stripped gold 

that were modified with 1 mM ethanolic solutions [393]. Figure 7.18 presents a 

comparison of the oscillation amplitude curves obtained on an undecylmercaptan-

modified surface with methyl, hydroxyl, and amino termini acquired under conditions 

identical to the data presented in Figure 7.15.  Little difference is observed in these 

curves.   Figure 7.19 presents the corresponding resonance of the cantilever time 

correlated with scanner movement.  All three substrates give rise to asymmetry in the 

frequency response.  In contrast to the oscillation amplitude curves (Figure 7.18), large 

differences in resonance frequency shifts are observed during scanner retraction  
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Figure 7.18. Cantilever oscillation amplitude plots acquired as a long SWNT is brought 
into and out of contact with a (a) 12-dodecanethiol (b) 11-hydroxy-undecanethiol, and (c) 
11-amino-undecanethiol functionalized gold substrate while the cantilever was driven at a 
frequency of 69.5 kHz. 
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Figure 7.19. Plots of scanner movement (gold) and thermal resonance (blue) of the 
cantilever versus time for a long SWNT brought into and out of contact with (a) 12-
dodecanethiol (b) 11-hydroxy-undecanethiol, and c) 11-amino-undecanethiol 
functionalized gold substrates. (all at 200 nm/sec) 
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commensurate with differing degrees of adhesion between the sidewall of the nanotube 

and the terminus of the alkanethiol monolayer on the substrate.  It is interesting to note 

that the trend in frequency shift (CH3 < OH < NH2) mirrors that observed in the 

previously reported assessment of the affinity of alkanethiol-modified gold-coated AFM 

probe tips to the surface of SWNT paper (Chapter 5).  The observed trend supports the 

hypothesis that adhesion of the nanotube to the substrate gives rise to asymmetry in the 

frequency response curves.  In addition, since the same length of nanotube is in contact 

with each substrate, frequency shift data may serve as an alternate means for assessing 

the strength of adhesion.  

 

In an attempt to elucidate the rupture force per molecule in this peeling study, a model is 

proposed that is somewhat similar to the two springs in series model used in the previous 

chapter.  Here, the nanotube and the cantilever are modeled in a the same way as before 

but now another spring (or springs) need to be added which represent the molecular 

interactions that exist between the sidewall of the nanotube and the chemically 

homogeneous surface (Figure 7.20).  If one models the cantilever/nanotube/surface in this 

way, the following numerical model can be results: 

∑
∑
++

++
=

MolNT
B
eff

MolNTNTB

mmm
kkk

f /
0 2

1
π

  Equation 7.3 

where kB is the cantilever beam stiffness, kNT is the bending stiffness of the nanotube, Σ 

kNT/mol is the sum of the stiffnesses of each molecule interacting with the sidewall of the 

nanotube, mB
eff is the effective mass of the cantilever, mNT is the mass of the nanotube 

and Σ mmol is the sum of the mass of each molecule interacting with the sidewall of the  
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Figure 7.20. A plausible model for the cantilever/nanotube/surface interaction. Schematic 
on the right is of a nanotube-tipped cantilever interacting with a chemically homogenous 
surface. This model is similar to the two-springs in series model used to model the 
mechanical response of the carbon nanospring studied in Chapter 6. M1, M2, and M3 are 
the mass of the cantilever, nanotube and the molecules on the surface respectively. The 
stiffness of the interaction between the nanotube and the molecules on the surface is the 
sum of the forces of each individual NT/molecule along the contact length of the 
nanotube. 
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nanotube. It was assumed that Σ mmol and mNT were negligible relative to the mass of the 

cantilever beam. 

 

The results from the experimental data are shown in Table 7.1.  It is very interesting to 

note that the adhesion force per molecule follows a trend that mirrors the adhesion forces 

observed via the adhesion mapping studies.  Although the values are slightly different 

than the forces elucidated via adhesion mapping, taking into account that a fairly general 

mechanical model was used to asses the interfacial adhesion the results are nonetheless 

impressive.  It should be mentioned that this model is not refined by any means and that 

there more than likely are other elements that are not considered in this model but are 

definitely present.  For example, Rabe and co-workers have studied the mechanical 

contact of a naked cantilever tip with a substrate.  They have brought to light that there is 

likely a dashpot element that would need to be characterized and could be a factor in 

these experiments [414] (this is further addressed Chapter 8).   

  

Looped Nanotube 

For the following experiments, the same nanotube-tipped cantilever was used in each trial 

(SEM image inset in Figure 7.21).  As determined using the SEM, the nanotube loop was 

approximately 3 µm in total length.  For all experiments the after the point of contact 

between the nanotube and the substrate was established (as was determined via changes 

in the oscillation amplitude of the cantilever) a final pull-off event that was 400 nm away 

from the initial retraction point was maintained from substrate to substrate (Figure 7.21 a 

and b).  Near the end of the approach curve in the cantilever oscillation plot, it was  
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Table 7.1 Summary of the experimental rupture forces measured via the peeling study 
involving the long nanotube. The reported rupture forces are based upon a three springs 
in series model where the average resonance at pull off was determined from the data 
presented in Figure 7.19.  

Thiol Terminal 
Group 

Average Pull-off 
Resonance (Hz) 

Change in 
Resonance (Hz) 

Rupture force  per 
molecule (pN) 

- CH3 70349 849 7.79 

- OH 70869 1369 13.05 

- NH2 72058 2558 34.50 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 186



 
 
 
 
 

 
 
Figure 7.21. (a) SEM image (inset) of the looped SWNT and the oscillation amplitude 
curve obtained between the tube and a 11-mercaptoundecanoic self-assembled 
monolayer. (b) the corresponding force curve that possess a large amount of optical 
interference which inhibits determining the rupture force between the nanotube and the 
substrate. 
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typical that an amplitude drop would occur roughly 200 nm before the scanner was fully 

extended.  Then, during retraction the cantilever would not reach a restored oscillation 

until the substrate had moved almost exactly 200 nm past that point of the initial 

dampening (thus, the tube remained in contact with the substrate during the first 400 nm 

of travel of the retraction of the scanner from the surface, i.e. total compression of 400 

nm) (Figure 7.22).  This could plausibly be explained by more of the nanotube being in 

contact from relaxation of the tube onto the surface during the approach.  

 

When the nanotube loop is brought into and out of contact with a SAM composed of 11-

dodecanethiol at a velocity of 100 nm/sec the resonant response appears to look strikingly 

similar to the resonant response for a long straight nanotube.  When the substrate initially 

touches the loop the resonant frequency jumps up but then starts to drop down roughly 1 

kHz.  Then as the substrate is removed from the nano-loop the frequency of the 

cantilever\loop increase until the sample is no longer in contact.  The loop gives the same 

resonance signature with repetitive measurements (possibly indicating that the tube is 

undergoing the same mechanical and chemical strains during each extension and 

retraction).  

 

It is postulated that the looped nanotube is pulled in tension as the surface is initially 

brought into contact with the underlying surface (Figure 7.23 c. point #1 to point #2). 

Then as the scanner continues to push up on the loop, the loop may slide on the 

methylated surface (Figure 7.23 c. point #3 to point #4). Then as the sample is removed 

from the nano-loop, the loop is pulled in tension due to possible stiction with the  
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Figure 7.22. Oscillation amplitude curves acquired when the looped SWNT is brought 
into and out of contact with a TSG substrate that has a carboxylic acid terminated thiol. 
The same oscillation amplitude dampening during the approach was investigated at two 
different scanner velocities (a) 400 nm/sec. (b) 100 nm/sec. 
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Figure 7.23. (a) Thermally-driven resonance of the looped nanotube/cantilever as it is 
repetitively brought into and out of contact with a methyl-terminated alkanethiol-
modified TSG substrate at 100 nm/sec. (b) peak resonance of the nanotube/cantilever 
with corresponding substrate position. (c) schematic of the possible orientation of the 
looped tube during compression. 
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underlying surface (as was the case with the long nanotube) (Figure 7.23 c. point #5 to 

point #6)  

 

When the looped nanotube is brought into and out of contact with a SAM composed of 

11-mercaptoundecanol the resonant response looks qualitatively different than the 

resonant response of the methyl-terminated SAM (Figure 7.24).  During the approach 

cycle the resonance jumps up roughly 1.5 kHz and stays at that level (plateaus) and stays 

at a plateau during a portion of the retraction and them gradually increases until the 

substrate is fully removed from the nano-loop.  This could be explained in the following 

manner: the loop once touched by the surface begins to “bow” and continues to do so 

until the substrate is remove from the nanotube. The observed shifts in the 

cantilever/nanotube’s resonance are extremely reproducible regardless of the velocity of 

the scanner. 

 

When the nanotube loop is brought into and out of contact with a SAM composed of 11-

mercaptoundecanoic acid the resonant response looks qualitatively similar to that of the 

hydroxyl terminated alkanethiol SAM.  Again in this case the loop demonstrates a very 

reproducible resonance response (Figure 7.25a).  One interesting item to note is that 

during the retraction of the sample, there appears to be a resonant plateau followed by a 

final increase in frequency before the tube is fully removed from the surface.  These 

resonant plateaus could potentially indicate that the looped nanotube is reversibly being 

uncompressed until an adhesive force dominates the sidewall of the tube. 
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Figure 7.24. Repetitive compression/decompression cycles of the SWNT loop on a 
hydroxyl-terminated alkanethiol-modified TSG substrate. (a) 200 nm/sec. (b) 100 nm/sec 
respectively.  
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Figure 7.25. Repetitive compression/decompression cycles at 100 nm/sec of the SWNT 
loop on alternate surfaces (a) carboxylic acid-terminated alkanethiol (b) amine-
terminated alkanethiol.  
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When the nanotube loop is brought into and out of contact with a SAM composed of 11-

amino-undecanethiol the resonant response looks qualitatively similar to that of the 

carboxylic acid-terminated alkanethiol SAM.  Although in this case, the stepwise 

progression of the resonance during retraction is much less pronounced (Figure 7.25b). 

The release frequency is also about 0.5 kHz less than the carboxylic acid. 

 

When the nanotube loop is brought into and out of contact with freshly cleaved SPI-1 

(ultra flat) HOPG the resonant response looks qualitatively similar to that of the 

carboxylic acid and amine-terminated alkanethiol SAMs.  One interesting difference is 

that during the approach, the resonant frequency of the beam/nano-loop increases only 

0.5 kHz, and remains flat (Figure 7.26).  This could be indicative of the loop being able 

to slide on the surface of the graphite (as was the case with the short nanotube).  Then 

during the retraction of the graphite from the loop, the resonance jumps about 1 kHz and 

then drops.  Then there is a final increase in resonance prior to removal from the graphite 

(beam’s resonance is restored).  A similar motion is also observed in the deflection curve 

that is presented in Figure 7.7 (bottom curve).  During retraction of the sample the 

cantilever beam gets pulled downward, begins to bend up, and then gets pulled down 

again one last time before the tube is fully removed from the substrate. 

 

It is interesting that the methyl-terminated SAM and the graphite surface yielded 

somewhat similar responses to each and that the other substrates (amine, hydroxyl and 

carboxylic acid terminated) all exhibited a “plateau” upon contact and compression. 

Recent rheological studies of self-assembled monolayers on gold have been studied and  
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Figure 7.26. Repetitive compression/decompression cycles of the SWNT loop on HOPG 
at 100 nm/sec. (a) thermally-driven resonance waterfall of the cantilever/nanotube during 
the compression. (b) Substrate position (yellow) and peak resonance of the 
cantilever/nanotube during the compression event. 
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coefficients of friction have been reported. Graphite (as mentioned earlier) has extremely 

low coefficients of friction [404], while hydroxyl and carboxylic acid terminated 

alkanethiols have much larger coefficients of friction [406,407,410].  These frictional 

properties correlate fairly well with the nanotube\substrates investigated here and are 

most likely the driving force for the looped nanotube’s inability to slide on these surfaces. 

  

Conclusions 

In a broader context, the results presented herein have important consequences for 

imaging and force spectroscopy studies involving carbon nanotube tips.  The commonly 

used method of monitoring oscillation amplitude as a function of scanner position has 

limited applicability.   Depending upon the mechanical properties of the tip, this plot may 

not be a reliable indicator of the point of contact and release from the opposing substrate.  

Secondly, since amplitude is measured at a specific frequency, decreased amplitude may 

be observed when resonance amplitude is diminished or shifted in frequency.  

Diminished amplitudes do not provide a reliable indicator of the state of the nanotube 

[200,203].  Thus, multi parameter force spectroscopy (MPFS) can provide a more 

accurate interpretation of nanoscale adhesion phenomena and can provide information 

that was previously unattainable. 
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CHAPTER 8 

FUTURE DIRECTIONS OF RESEARCH 

 

Adhesion Mapping 

In Chapter 5 several thiols molecules were evaluated using adhesion mapping.  However, 

there are several other chemical moieties found in the polymers commonly used in 

composites.  Adhesion mapping studies could also be carried out by coating the entire 

cantilever tip with polymers that could potentially be used in nanotube-based composites.  

Poly aromatic molecules would be interesting candidates for study via the adhesion 

mapping approach (Figure 8.1)[415]. It would be expected that these molecules should 

pose very large binding forces per molecule due to the potential for a high number of π-π 

overlaps to occur between the aromatic end group and the sidewall of the nanotube. 

There are several other candidates for these studies which include DNA [416,417] and 

porphyrins [418] (which have both been shown to interact with the back bone of a carbon 

nanotube. 

 

It has been reported that if a SWNT is sufficiently loaded that the carbon atoms that are 

being mechanically loaded have been shown to undergo a sp2 to sp3 transition [419] (this 

would inherently alter the reactivity of the nanotube backbone [306]).  Dynamic tests 

where the mechanical load is gradually increased on the backbone of the carbon nanotube 

while the adhesion mapping is being performed.   

 

 

 197



 

 

 

 
 

 
Figure 8.1. Potentially interesting molecules that could be of interest in using for the 
adhesion mapping studies. (a) naphthalene. (b) coronene. (c) ovalene.  
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Based on the results presented for characterizing adhesion between chemically modified 

cantilevers and SWNT paper, one of the questions remaining unanswered is the role of 

hydration layers in the adhesion of nanotubes with the SAMs.  A proposed study of 

adhesion in fluid would provide an answer to this question.  This study is nontrivial and 

will require careful selection of a solvent that will stabilize the monolayer and effectively 

wet both the monolayer and the nanotube [329].  

 

Nanostructure Mechanics 

The development and utilization of multi parameter force spectroscopy as introduced in 

Chapters 6 and 7, should create an entirely new way to probe materials on the nanoscale.  

Additional experiments regarding the peeling of the nanotubes off of the chemically 

modified surfaces could be performed to investigate the possibility of a time dependence 

of these interactions. For example, the AFM used herein was limited in that the velocity 

used during the approach was also that for retraction of the scanner. Newer models of 

commercial AFMs enable force curve acquisition at variable velocities (i.e. one velocity 

for the approach and another velocity for the retraction of the scanner. 

 

Another potentially fruitful endeavor would be to extend MPFS to measuring the 

shearing response between that nanotube and a substrate.  This can be accomplished by 

bringing the nanotube into physical contact with the surface and then translate the surface 

in the x and y plane.  Nanoscale shearing could be measured by monitoring cantilever 

deflection, torsion and resonant frequency. 
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One of the current challenges in nanotube research is the acquisition of information 

regarding defect identity and location on individual nanotubes. TEM can and has been 

used to study the wall structure of both the SWNT and MWNT structures [288]. In this 

work it was not possible to locate defect areas in the nanotubes sidewalls without 

detachment of the nanotube from the tip.  The design of a cantilever chip holder that can 

be mounted in s TEM would enable characterization of the nanotube without sacrificing 

the nanotube.  This would provide a means to correlate the location of a defect with the 

measured resonance response during the mechanical peeling tests. With the MWNTs, 

knowing the exact number of walls in each coil would allow further refinement of the 

models used to predict the mechanical response of the nanospring. 

 

The study presented in Chapter 6 where a MWNT spring was repetitively compressed 

and decompressed should open up other areas of nanostructure research.  One could study 

the mechanical response of coils that have different tighter or wider helical rises, different 

numbers of walls and varying numbers of coils per unit length.  This will help scientists 

understand the physical limitations of devices that could potentially be made using nano-

scale springs.   

 

In Chapter 6 the carbon nanospring was only compressed a small amount, it should be of 

interest to monitoring the frequency response of the nanosprings under even larger 

compression lengths.  This could provide insight into the plausible orientation, shape and 

size of the spring while its being mechanically loaded (Figure 8.2).  The higher vibration 

modes of the cantilever could also be studied during the compression of the nanosprings  
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Figure 8.2. (a) Nanospring-tipped cantilever peak resonance (blue) with time-correlated 
scanner movement (yellow). Scanner velocity during compression was 100 nm/sec. The 
nanospring was compressed 1000 nm. (b) Illustration of the postulated response of the 
nanotube during vertical loading. 
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and nanotubes.  This should provide more information regarding the orientation of the 

tube coming off of the surface as well as enhance the understanding of the dynamic 

nature of these nanoscale springs.  This could be accomplished by utilizing a data 

acquisition card that has a higher acquisition rate than the analyzer used in the 

experiments presented here.  Then, one could monitor more than one cantilever vibration 

mode during a single compression\decompression cycle. The multi parameter force 

spectroscopy (MPFS) approach should be applicable to a myriad of nanostructures 

[252,420,421] and help researchers determine the feasibility and tolerances of proposed 

nanoscale devices.  

 

Biomolecules 

MPFS provided a straightforward means for determining the stiffness of nanoscale 

materials.  An obvious extension of this approach is the determination of the stiffness of 

biopolymers under mechanical load.  Force spectroscopic investigations of biomolecules 

such as DNA that are performed using the AFM, typically rely solely on knowledge of 

the stiffness of the cantilever beam and the deflection of the cantilever during unwinding 

of the molecule. MPFS will provide more information regarding the mechanical response 

of biological molecules and could be used to reduce the vertical load applied to 

biopolymers.   

 

Currently, force spectroscopic investigations involve strictly monitoring the vertical 

movement of the cantilever during biopolymer unwinding.  These deflection-based 

experiments require making mechanical contact between a chemically modified 
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cantilever tip and a molecule tethered to a substrate.  This mechanical contact (vertical 

load) can damage or alter the natural state of the biopolymer, MPFS could eliminate the 

need to make mechanical contact between the underlying surface and the tip (which in 

some instances can destroy molecular recognition elements on the surface). Force 

example, if one were to track the thermal motion of the cantilever during the extension of 

the scanner towards the cantilever, as soon as dampening is observed, the scanner could 

be turned around (retracted) thus easing (or eliminating) the forces exerted on the 

molecules to be strictly those induced by van der Waals interactions (Figure 8.3). 

 

Nanotube-tipped Plastic Cantilevers 

The work presented in this dissertation is, in fact, only a portion of the research I 

conducted during my tenure at Georgia Tech.  In a project that has been jointly worked 

on in collaboration with Professor Jonathan Colton and Andrew McFarland, we have 

created injection-molded cantilevers that could potentially have nanotubes embedded at 

the end of the beam (simply by pushing the polymeric beam into a low-density field of 

vertically aligned nanotubes).  If this nanotube tethering mechanism can be achieved, not 

only would SPM be revolutionized, but also the experiments that were just presented 

could truly be in their infancy.  

 

Also, cantilever-based sensing that currently utilizes cantilevers that are produced via 

silicon micromachining could also be severely impacted by the implementation of these 

plastic cantilevers.  The implementation of plastic cantilevers into disposable sensing  
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Figure 8.3. (a) Ideal force curve where mechanical contact is made between the cantilever 
tip and the substrate and where no interfacial adhesion is present between the cantilever 
tip and the underlying surface. (b) Theoretical curve obtained using MPFS where the 
scanner is retracted after the detection of a certain amount of change in the cantilever 
beam’s resonance (zoomed-in portion of the plot).   
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units could propel cantilever-based sensing from the lab into more dynamic 

environments.     
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APPENDIX A: 

 
DERIVATION OF THE SECOND MOMENT OF INERTIA OF A TRAPEZOID  

 
Defining the moment of inertia of a trapezoid is done first by locating the center of mass 
(yc) in the cross-section of the beam. 
 

dAy
A

yc ∫≡
1  

 

 
 
This integration can be achieved by breaking up the trapezoid into two triangles and a 
rectangle.  
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This integration can also be evaluated by re-establishing the faces of the trapezoid in 
terms of y (i.e. reverse order).  
 
Where: 
 

( ) ( )cbaygxorcbaxfy ,,,,,,, 11 ==  
 

and 
 

( ) ( )cbaygxorcbaxfy ,,,,,,, 22 ==  
 
 
By utilizing Fubini’s Theorem the complicated integral becomes less difficult to solve: 
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This integration yields the centroid of the trapezoid: 
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With the center of mass of the trapezoid defined, the second moment of the trapezoid can 
be derived by translating the center of mass of the trapezoid’s location to the origin. 
 

 

 
 
 
Now, one decomposes the trapezoid into two triangles and a rectangle; and integrates. 
 
Where: 
 

dAyI xc ∫= 2  
 

( ) ( )cbaygxorcbaxfy ,,,:,,,, 33 ==  
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and 
 

( ) ( )cbaygxorcbaxfy ,,,:,,,, 44 ==  
 
 
The moment is now expressed as: 
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From this, the 2nd moment of the trapezoid is defined: 
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